
 Application Note

R03AN0016EJ0110 Rev.1.10 Page 1 of 167
Feb.06.23

RX23T, RX24T, RX66T, RX72M and RX72T Groups
Using the Driver (Rev. 2.10) for Resolver-to-Digital Converter Control

Introduction
This application note describes how to use the driver (Rev. 2.10) to control the resolver-to-digital converter IC
(RDC). This driver is an upgraded version of the driver library supplied together with Rev. 1.20 of the
application note "Using the Driver for Resolver-to-Digital Converter Control" for the RX24T group.

Target Devices
• RX23T (R5F523T5ADFM)
• RX24T (R5F524TAADFM)
• RX66T (R5F566TKCDFB)
• RX72M (R5F572MNDDFC)
• RX72T (R5F572TKCDFB)
• RDCs (RAA3064002GFP and RAA3064003GFP)

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 2 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

Contents

1. Overview .. 8
1.1 Functions of the Driver .. 8
1.2 Development Environment .. 8
1.3 Program Size ... 8
1.4 Related Documents ... 8

2. Overall Configuration ... 9
2.1 System Configuration .. 9
2.2 RDC Functions .. 10

3. Functions ... 11
3.1 Initialization of the Driver ... 12
3.1.1 Initial Settings for the On-Chip Peripheral Modules by the SC ... 12
3.1.2 Specifying System Information .. 13
3.1.3 Setting up Function Tables .. 13
3.1.4 Starting Peripheral Modules .. 13
3.2 RDC Settings ... 14
3.2.1 Initial Settings of the RDC ... 14
3.3 Output of the RDC Operating Clock .. 14
3.3.1 Starting the Output of the RDC Operating Clock .. 14
3.4 Communications between the RDC and MCU .. 15
3.4.1 Writing Data to an RDC Register .. 15
3.4.2 Reading Data from an RDC Register .. 15
3.4.3 Communications with the RDC ... 15
3.5 Output of the Excitation Signal .. 16
3.5.1 Excitation Signal Cycle Interrupt ... 17
3.5.2 Starting the Output of the Excitation Signal .. 17
3.5.3 Stopping the Output of the Excitation Signal ... 17
3.5.4 Adjusting the Timing for Starting Output of the Excitation Signal ... 18
3.6 Input of the Angle Signal ... 20
3.6.1 Angle Signal Input Interrupt ... 21
3.6.2 Starting the Input of the Angle Signal .. 21
3.6.3 Stopping the Input of the Angle Signal .. 21
3.6.4 Adjusting the Timing for Starting Input of the Angle Signal ... 21
3.7 Detection of Disconnection from the Resolver Sensor ... 22
3.7.1 Functions Used for Detecting Disconnection .. 22
3.8 Alarm Cancellation .. 23
3.9 Output of the Phase Adjustment Signals for the Resolver Signals ... 24
3.9.1 Starting the Output of the Phase Adjustment Signals ... 24
3.9.2 Stopping the Output of the Phase Adjustment Signals ... 24

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 3 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

3.9.3 Setting the Duty Cycles of the Phase Adjustment Signals in the Buffers ... 24
3.9.4 Setting the Duty Cycles of the Phase Adjustment Signals in the Registers 24
3.9.5 Reading the Duty Cycles of the Phase Adjustment Signals from the Buffers 24
3.10 Output of the Angle Error Correction Signal .. 25
3.10.1 Starting the Output of the Angle Error Correction Signal .. 26
3.10.2 Stopping the Output of the Angle Error Correction Signal .. 26
3.10.3 Settings for Updating the Duty Cycle of the Angle Error Correction Signal .. 26
3.10.4 Interrupt for Updating the Duty Cycle of the Angle Error Correction Signal .. 26
3.11 Automatic Calibration of Errors ... 27
3.11.1 Functions Used to Adjust Parameters ... 27
3.11.2 Adjustment of Gain and Phase of Resolver Signals ... 28
3.11.3 Adjustment of the Angle Error Correction Signal .. 30
3.12 Timing Chart (Excitation Signal, Input of the Angle Signal, and Angle Error Correction Signal) 32

4. Software Configuration .. 33
4.1 Folder and File Configuration .. 33

5. Settings for Peripheral Modules .. 34
5.1 List of Macro-Defined Names of Driver Facilities .. 34
5.2 List of Peripheral Modules Assigned to Driver Facilities (Recommended) ... 35
5.3 Setting Driver Facilities by the SC ... 41
5.3.1 Output of the Excitation Signal .. 41
5.3.2 Output of the Phase Adjustment Signals for the Resolver Signals ... 45
5.3.3 Output of the Angle Error Correction Signal .. 48
5.3.4 Interrupt for Updating the Duty Cycle of the Angle Error Correction Signal .. 51
5.3.5 Input of the Angle Signal ... 54
5.3.6 Output of the RDC Operating Clock .. 57
5.3.7 RDC Communications ... 60
5.4 Setting up Function Tables .. 63
5.4.1 Functions for Starting and Stopping the Timer .. 65
5.4.2 Functions for Acquiring and Setting the Counter Value .. 65
5.4.3 Functions for Acquiring and Setting the Duty Value ... 65
5.4.4 Function for Acquiring the Capture Value ... 66
5.4.5 Function for Acquiring the Port Level .. 66
5.4.6 Function for SPI Transmission/Reception ... 67

6. API Functions .. 69
6.1 List of API Functions ... 69
6.2 Descriptions of API Functions ... 73
6.2.1 API Function for Setting up a Function Table ... 73
6.2.2 API Function for Specifying System Information ... 73
6.2.3 API Function for Acquiring the RDC Driver Setting Information .. 74

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 4 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

6.2.4 API Function for Controlling Synchronous Starting of the MTU3 Timer Channels 74
6.2.5 API Function for Acquiring the RDC Driver Version Information ... 74
6.2.6 API Function for Starting the Output of the Angle Error Correction Signal ... 75
6.2.7 API Function for Stopping the Output of the Angle Error Correction Signal 75
6.2.8 API Function for Updating the Duty Cycle of the Angle Error Correction Signal 75
6.2.9 API Function for Synchronously Starting the Angle Error Correction Signal 75
6.2.10 API Function for Acquiring the Output State of the Angle Error Correction Signal 76
6.2.11 API Function for Starting the Angle Detection Timer .. 76
6.2.12 API Function for Acquiring the Angle Detection Value .. 76
6.2.13 API Function for Acquiring the Trigger Information of the Interrupt for Acquiring the Angle Detection

Value ... 77
6.2.14 API Function for Acquiring the Resolver Angle Count (Acquisition Trigger: Falling Edge) 77
6.2.15 API Function for Acquiring the Resolver Angle Difference Count (Acquisition Trigger: Falling Edge) 77
6.2.16 API Function for Acquiring the Resolver Angle Count (Acquisition Trigger: Rising Edge) 77
6.2.17 API Function for Acquiring the Resolver Angle Difference Count (Acquisition Trigger: Rising Edge) 78
6.2.18 API Function for Starting the Output of the Excitation Signal ... 78
6.2.19 API Function for Stopping the Output of the Excitation Signal .. 78
6.2.20 API Function for Setting the Timing to Start the Excitation Signal Output .. 78
6.2.21 API Function for Counting the Wait Time .. 79
6.2.22 API Function for Starting the Output of the Phase Adjustment Signals .. 79
6.2.23 API Function for Stopping the Output of the Phase Adjustment Signals .. 79
6.2.24 API Function for Setting the Phase Adjustment Signal Duty Cycle in the Buffer 79
6.2.25 API Function for Setting the Phase Adjustment Signal Duty Cycle in the Register 80
6.2.26 API Function for Reading the Phase Adjustment Signal Duty Cycle from the Buffer 80
6.2.27 API Function for Setting RDC Initial Values .. 80
6.2.28 API Function for Executing the RDC Initialization Sequence .. 80
6.2.29 API Function for Handling RDC Communications... 81
6.2.30 API Function for Writing to an RDC Register .. 81
6.2.31 API Function for Reading from an RDC Register.. 81
6.2.32 API Function for Acquiring the RDC Register Access State ... 81
6.2.33 API Function for Reading Data from the RDC Register Buffer ... 82
6.2.34 API Function for Writing Data to the RDC Register Buffer .. 82
6.2.35 API Function for Calling the Callback Processing for the RDC Communication Transmit/Receive End

Interrupt ... 82
6.2.36 API Function for Calling the Callback Processing for the RDC Communication Error Interrupt 82
6.2.37 API Function for Reporting Errors in RDC Communications .. 83
6.2.38 API Function for Starting RDC Alarm Cancellation ... 83
6.2.39 API Function for Controlling the RDC Alarm Cancellation Sequence ... 83
6.2.40 API Function for Adjusting the Gain and Phase of the Resolver Signals ... 83
6.2.41 API Function for Adjusting the Angle Error Correction Signal ... 84
6.2.42 API Function for Setting the Pointer to the User-Created Callback Function 84

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 5 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

6.2.43 API Function for Acquiring the A/D Conversion State ... 84
6.2.44 API Function for Setting the Phase Delay ... 84
6.2.45 API Function for Detecting Disconnection ... 85
6.3 Structures .. 86
6.3.1 Structure for R_RSLV_SetFuncTable ... 86
6.3.2 Structures for R_RSLV_SetSystemInfo .. 88
6.3.3 Structure for R_RSLV_GetRdcDrvSettingInfo .. 89
6.3.4 Structure for R_RSLV_ADJST_GainPhase .. 90
6.3.5 Structures for R_RSLV_ADJST_Carrier ... 92
6.3.6 Structure for R_RSLV_ADJST_SetPtrFunc .. 93
6.3.7 Structure for R_RSLV_DiscDetection_Seq ... 93

7. Examples of Implementing API Functions ... 94
7.1 Preparation for the Use of Peripheral Modules ... 95
7.1.1 SC Settings.. 95
7.1.2 User-Created Code ... 95
7.2 Initialization .. 96
7.2.1 Initialization of the MCU .. 96
7.2.2 Initialization of the Driver ... 96
7.2.3 Sample Code ... 100
7.3 Main Loop .. 108
7.3.1 Example of Implementation ... 108
7.3.2 Sample Code ... 109
7.4 Output of the Excitation Signal .. 111
7.4.1 Example of Using API Functions ... 111
7.4.2 Sample Code ... 112
7.5 Output of the Phase Adjustment Signals .. 113
7.5.1 Example of Using API Functions ... 113
7.5.2 Sample Code ... 114
7.6 Output of the Angle Error Correction Signal .. 115
7.6.1 Example of Using API Functions ... 115
7.6.2 Sample Code ... 116
7.7 Input of Angle Signal ... 118
7.7.1 Example of Using API Functions ... 118
7.7.2 Sample Code ... 119
7.8 Automatic Adjustment of the Gain and Phase .. 120
7.8.1 Example of Using API Functions ... 120
7.8.2 Details of Gain and Phase Adjustment ... 121
7.8.3 Sample Code ... 123
7.9 Automatic Adjustment of the Angle Error Correction Signal ... 124
7.9.1 Example of Using API Functions ... 124

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 6 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.9.2 Details of Angle Error Correction Signal Adjustment .. 125
7.9.3 Phase Delay by the Filter Circuit ... 128
7.9.4 Sample Code ... 129
7.10 Communications with RDC ... 130
7.10.1 Example of Using API Functions ... 130
7.10.2 Sample Code ... 131
7.11 Detection of Disconnection from Resolver Sensor .. 135
7.11.1 Example of Using API Functions ... 135
7.11.2 Sample Code ... 137
7.12 Cancelling an Alarm .. 139
7.12.1 Example of Using API Functions ... 139
7.12.2 Sample Code ... 140

8. Migration from Rev. 1.20 and Earlier Versions to Rev. 2.10 ... 141
8.1 Changing the Configuration of Folders and Files .. 141
8.1.1 Replacing the Library and Header Files and Adding the SC Code ... 141
8.1.2 Registering Files to a Project .. 142
8.2 Modifying the Source Code ... 143
8.2.1 Initialization Processing of Peripheral Modules ... 143
8.2.2 Modifying the SC Code ... 144
8.2.3 Modifying the API Functions .. 148
8.2.4 Other Modifications ... 152

9. Notes ... 153
9.1 Initial Setting Procedure .. 153
9.2 Assigning Multiple Driver Facilities to a Single Peripheral Module ... 153
9.3 Assigning Multiple Peripheral Modules to a Single Driver Facility .. 153
9.4 Initializing Variables for Communications with the RDC ... 153
9.5 Specifying Peripheral Modules for Phase Adjustment Signals ... 153
9.6 Setting Timer Start Timing ... 153
9.7 Adjustment Operation .. 153
9.8 Amount of Phase Shift for Angle Error Correction .. 154
9.9 Order of Function Table Settings .. 155
9.10 Adjustment of the Angle Error Correction Signal .. 156

10. Troubleshooting ... 157
10.1 Counter Value Errors ... 158
10.2 Rotation Direction Errors ... 159
10.3 Angle Errors ... 160
10.4 Detection of Disconnection from the Resolver Sensor ... 161

Revision History .. 167

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 7 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 8 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

1. Overview

1.1 Functions of the Driver
This driver has the following functions.

• RDC settings
• Output of the RDC operating clock
• Communications between the RDC and MCU
• Output of the excitation reference signal
• Input of the angle signal
• Detection of disconnection from the resolver sensor
• Deassertion of the ALARM# signal
• Output of the phase adjustment signals
• Output of the angle error correction signal
• Automatic calibration of errors

1.2 Development Environment
Table 1-1 shows the environment in which operations of this driver have been verified.

Table 1-1 Software Development Environment

IDE Version Toolchain Smart Configurator
CS+: V8.08.00
e2 studio: V2022-10

CC-RX V3.02.00 Version: 2.15.0

1.3 Program Size
Table 1-2 shows the program size of this driver.

Table 1-2 Program Size

ROM Size RAM Size Size of Stack Area Used
12570 bytes 1075 bytes 164 bytes

1.4 Related Documents
RX23T Group User's Manual: Hardware (R01UH0520)

RX24T Group User's Manual: Hardware (R01UH0576)

RX66T Group User's Manual: Hardware (R01UH0749)

RX72M Group User's Manual: Hardware (R01UH0804)

RX72T Group User's Manual: Hardware (R01UH0803)

RX Smart Configurator User's Guide: e2 studio (R20AN0451)

RX Smart Configurator User's Guide: CS+ (R20AN0470)

Resolver-to-Digital Converters User’s Manual: Hardware (R03UZ0002)

Guide to Selecting Peripheral Components for Use with the Resolver-to-Digital Converters (R03AN0012)

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 9 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

2. Overall Configuration

2.1 System Configuration
Figure 2.1 shows the configuration of the system incorporating the RDC and the MCU.

Converter block

RDC

Phase
adjustment

circuit A

Inverter circuit

SPI

ADC

POE

Registers

Synthesizer
circuit

MotorCurrent

Excitation signal

Alarm signal

Angle signal

Monitoring
signal

Phase adjustment
signals

Timer

MCU

ADC

Differential
amplifier A

Current
amplifier

Excitation
circuit

Timer

Abnormal temperature
detection

Error detection circuit

FilterWaveform
shaping circuit

Differential
amplifier B

Phase
adjustment

circuit B

Timer

Monitoring circuit

Timer

Correction
circuitTimer

Angle error
correction signal

Resolver

Figure 2.1 Configuration of the System Incorporating RDC and MCU

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 10 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

2.2 RDC Functions
The RDC incorporates an excitation circuit to excite the resolver sensor and a converter block to convert an
analog signal output from the resolver sensor into a digital signal.

The excitation circuit converts a rectangular wave output from the MCU to an analog signal to excite the
resolver sensor.

The converter block generates an angle signal (rectangular wave) from the two-phase signals (electrical
angle information) detected by the resolver sensor, and outputs the angle signal to the host MCU. A rotor
angle can be obtained by using the timer of the host MCU to measure the phase difference between the
rectangular excitation wave and angle signal. Furthermore, the converter block has gain adjustment, phase
adjustment, and angle error correction functions.

The gain adjustment function adjusts the amplitudes of the two-phase signals of the resolver sensor to the
same level according to the changes in the RDC settings.

The phase adjustment function receives the correction signals for phase adjustment output from the MCU to
the RDC and adjusts the phase difference between the two-phase signals of the resolver sensor to 90
degrees.

The angle error correction function corrects analog errors of the resolver sensor. The angle error correction
signal output from the MCU to the RDC is combined with the angle signal through the correction circuit in the
converter block.

This driver software provides functions to output the rectangular wave signal and the correction signal from
the MCU to the RDC and detect the angle signal output from the converter block.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 11 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

3. Functions
This section describes the functions of the driver software.

Resolver driver

Output of excitation signal

RDCOutput of angle error correction signal

Output of phase adjustment signals

Input of angle signal

Communications with RDC

Motor control (user)

Software configuration

Excitation signal cycle interrupt

Angle signal input interrupt
(input capture)

Interrupt for updating duty cycle of
angle error correction signal

SPI receive interrupt

SPI transmit interrupt

SPI error interrupt

SPI idle interrupt

PeripheralAPI

API Peripheral

API Peripheral

API Peripheral

API Peripheral

Function control (API calls)

Automatic calibration

API

Detection of disconnection from resolver
sensor

API

Interrupts

*

*

Note: * The RDC is accessed through the facility of communications with the RDC.

Initialization (API calls)

Initialization
• Initial settings of peripheral modules
• Initialization of driver (system information

settings, function table settings, and
RDC initial value settings)

RDC settings
(Communications for initial settings of RDC)
(Starting output of RDC operating clock)

RDC settings (API calls)

API

Signal input and output

Communications with RDC

Automatic calibration and disconnection detection

API

*

Figure 3.1 Software Configuration

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 12 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

3.1 Initialization of the Driver
To initialize the resolver driver, make initial settings for the peripheral modules of the MCU, specify system
information, and make settings of function tables. After that, start the peripheral modules assigned to the
driver facilities. To make initial settings of the peripheral modules, use the functions generated by the smart
configurator (hereafter called the SC) or created by the user.

Application and middleware

Use the SC to make initial
settings for peripheral modules.

RDC Driver

Specify system information.
Specify the excitation frequency,
angle error correction frequency,
number of updates, and
count clock sources for the peripheral
modules assigned to driver facilities.

Specify the functions to be assigned to
individual driver facilities.

Set up function tables. R_RSLV_SetFuncTable()
Set up function tables.

System start

Start peripheral modules. R_RSLV_****_Start()
Start each peripheral module.Call the API function for starting each

peripheral module.

R_RSLV_SetSystemInfo()
Set the excita tion frequency,

angle error correction frequency,
and number of updates.

Calculate the parameters for each facility.

Figure 3.2 Initialization Sequence

3.1.1 Initial Settings for the On-Chip Peripheral Modules by the SC
The user should use the SC to generate functions for initializing the peripheral modules assigned to
individual driver facilities. When the MCU is started, the generated functions are called to initialize the
peripheral modules.

This driver package includes a sample code of functions for initializing the peripheral modules, which were
generated by the SC and can be used for reference.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 13 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

3.1.2 Specifying System Information
Specify the system information, such as the excitation frequency, the angle error correction frequency, the
number of updates of the angle error correction signal, and the clock sources for the peripheral modules
assigned to individual driver facilities, and then execute the API function for specifying the system
information. For details of the system information settings, see section 6.3.2, Structures for
R_RSLV_SetSystemInfo.

Calling this function sets up the initial duty cycles of the phase adjustment signals, the maximum and
minimum numbers counted for the angle error correction signal, the interval for updating the duty cycle of the
angle error correction signal, and the maximum and minimum numbers counted for the input angle signal,
which are used in the driver.

API function: R_RSLV_SetSystemInfo

(ST_SYSTEM_PARAM *rdc_sys_param, ST_USER_PERI_PARAM *user_peri_param)

3.1.3 Setting up Function Tables
The resolver driver uses function tables to access peripheral module registers. Specify register access
functions generated by the SC or created by the user in function tables so that the driver can access
peripheral module registers. For details of the function table settings, see section 6.2.1, API Function for
Setting up a Function Table.

API function: R_RSLV_SetFuncTable

(unsigned char set_func, ST_FUNCTION_TABLE user_func_table)

3.1.4 Starting Peripheral Modules
This driver provides API functions for starting peripheral modules to activate individual driver facilities. For
details, see section 6.1, List of API Functions. Specific functions are prepared for output of the excitation
signal, output of the angle error correction signal, output of the phase adjustment signals, and input of the
angle signal.

<API functions for starting peripheral modules>

Output of the excitation signal: R_RSLV_ESig_Start(void)
Output of the angle error correction signal: R_RSLV_CSig_Start

(unsigned short phase_diff, unsigned short amp_level)
Output of the phase adjustment signals: R_RSLV_Phase_AdjStart(void)
Input of angle signal: R_RSLV_Capture_Start(void)

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 14 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

3.2 RDC Settings
To control the resolver, the operation of the RDC must be set up. Use SPI communications to set up RDC
registers.

3.2.1 Initial Settings of the RDC
To initialize the operation of the RDC, use the API function for setting the initial values of the registers in the
RDC and then call the API function for executing the RDC initialization sequence. The user should specify
the initial values of the registers according to the specifications of the resolver sensor used.

API function for setting the RDC initial values:
R_RSLV_Rdc_VariableInit((unsigned char*)s_u1_rdc_init_data)

API function for executing the RDC initialization sequence
R_RSLV_Rdc_Init_Sequence(unsigned short *init_status)

3.3 Output of the RDC Operating Clock
The MCU outputs an operating clock signal (4-MHz rectangular wave) for the RDC.

4 MHz

RDC clock

Figure 3.3 RDC Clock

3.3.1 Starting the Output of the RDC Operating Clock
The RDC operating clock is started by the API function for executing the RDC initialization sequence. This
driver does not stop the RDC operation clock.

API function: R_RSLV_Rdc_Init_Sequence(unsigned short *init_status)

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 15 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

3.4 Communications between the RDC and MCU
SPI communications are used between the MCU and the RDC. Figure 3.4 shows a system overview of the
RDC communications block.

MCU RDC

Reset

RDC Clock

SCLK

SDO

SCI

CS

RSPI or SCI

Figure 3.4 System Overview of the RDC Communications Block

3.4.1 Writing Data to an RDC Register
To write data to an RDC register, call the API function for passing a register value to the resolver driver and
then the API function for starting writing.

API function for writing to the RDC register buffer (passing a register value to the resolver driver):

R_RSLV_Rdc_SetRegisterVal(unsigned char wt_data, unsigned char address)
API function for writing to an RDC register (starting writing):

R_RSLV_Rdc_RegWrite(unsigned char *write_status)

3.4.2 Reading Data from an RDC Register
To read data from an RDC register, call the API function for starting reading from an RDC register and then
the API function for receiving a register value from the resolver driver.

API function for reading from an RDC register (starting reading):

R_RSLV_Rdc_RegRead(unsigned char address)
API function for reading from the RDC register buffer (receiving a register value from the resolver
driver):

R_RSLV_Rdc_GetRegisterVal(unsigned char *rd_data, unsigned char address)

3.4.3 Communications with the RDC
To communicate with the RDC, call the API function for handling communications with the RDC. This
function should be called repeatedly (for example, in the main loop) to write to or read from RDC registers.

API function: R_RSLV_Rdc_Communication(void)

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 16 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

3.5 Output of the Excitation Signal
To detect the position and speed of rotation, an excitation signal must be output to the resolver. A
rectangular wave is output as the excitation signal and is converted to a sine wave by the external circuit
between the MCU and RDC.

Either a single excitation signal or a signal synthesized from two rectangular waves (an excitation signal and
another signal that differs from the excitation signal in phase by 60 degrees) is input to the RDC.
An excitation frequency of 5 kHz, 10 kHz, or 20 kHz is selectable. The following figure shows the waveform
of the excitation signal synthesized from two rectangular waves.

Excitation cycle

Excitation cycle

60° phase
difference

Synthesized
rectangular
waveform

Excitation
signal

Signal for
synthesis

30° phase
difference

Excitation signal cycle interrupt

Figure 3.5 Synthesized Rectangular Wave Signal

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 17 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

3.5.1 Excitation Signal Cycle Interrupt
Excitation signal cycle interrupts are generated at intervals of the excitation signal output. When a single
PWM signal is output as the excitation signal, interrupts are generated on the rising edges of the rectangular
wave. When two PWM signals are output, interrupts are delayed by 30 degrees from the excitation signal.
This interrupt should be set up in the initial settings of peripheral modules generated by the SC.

This interrupt is used to synchronize the start of the timers for outputting the excitation signal, outputting the
angle error correction signal, and generating the interrupt for updating the duty cycle of the angle error
correction signal.

To output two PWM signals from a single timer channel, the timer should be set up so that the output of the
excitation signal toggles at every compare match of the timer. In this case, interrupts are generated twice in a
single excitation signal cycle; ignore the second interrupt in an excitation signal cycle. The following gives an
overview of the timing of the excitation signals and interrupts.

Timer counter

Excitation signal

Signal for synthesis

: Interrupt timing

5 kHz

10 kHz

Skip the processing of
these interrupts.

Figure 3.6 Timing of the Excitation Signals (Two Signals from a Timer Channel) and Interrupts

3.5.2 Starting the Output of the Excitation Signal
To start the output of the excitation signal, call the API function shown below. The timers for outputting the
excitation signal and inputting the angle signal should be started simultaneously. For synchronous start of
the timers, see section 3.6.2, Starting the Input of the Angle Signal.

API function: R_RSLV_ESig_Start(void)

3.5.3 Stopping the Output of the Excitation Signal
To stop the output of the excitation signal, call the API function shown below. The input of the angle signal
started in synchronization with the output of the excitation signal is also stopped by this API function.

API function: R_RSLV_ESig_Stop(void)

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 18 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

3.5.4 Adjusting the Timing for Starting Output of the Excitation Signal
The resolver driver has a function for adjusting the interrupt timing for the excitation signal. The load of
processing can be distributed by delaying the timing of the excitation signal interrupt from that of another
interrupt process in the motor control block. Call the API function for adjusting the timing for outputting the
excitation signal and inputting the angle signal.

API function: R_RSLV_ESigCapStartTiming

(unsigned short esig_start_tcnt, unsigned short cap_start_tcnt)

The following shows how to use the R_RSLV_ESigCapStartTiming function.

How to use R_RSLV_ESigCapStartTiming

Motor-driving PWM
carrier (MTU3/4)
20 kHz (50 µs)

Current
control
processing

A/D conversion time

A/D conversion
end interrupt
10-kHz (100-μs) cycle

An excitation signal interrupt
should be generated between
rounds of current control
processing to distribute the load of
processing.

Processing to start the excitation signal is placed at the end
of current control processing to obtain synchronization of
timing (to avoid branch processing at the beginning of
processing in the normal state).

R_RSLV_ESigCapStartTiming
is used to adjust this delay time.

Excitation signal (5 kHz)

Figure 3.7 Example of Using R_RSLV_ESigCapStartTiming (ESig)

Excitation signal
generating counter

Input capture counter

Timer lag
Though a small value should be
captured, a very large value is
captured.

R_RSLV_ESigCapStartTiming
enables synchronization by setting
the counter value for the timer lag
before starting counting.

How to use R_RSLV_ESigCapStartTiming
(Extreme example)

Angle signal
interrupt

Figure 3.8 Example of Using R_RSLV_ESigCapStartTiming (Capture)

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 19 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

The timing for starting the output of the excitation signal can be adjusted within the range shown below.

Excitation signal

Signal for synthesis

Timer counter

Counting starts.

The output of the excitation signal starts at a half
cycle of counting.

Allowable range of timing
adjustment

Note: Even if the start timing is specified in
this period, the timing is set to the
maximum value of the allowable range.

Figure 3.9 Allowable Range for Adjusting the Timing for Starting the Output of the Excitation Signal

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 20 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

3.6 Input of the Angle Signal
The angle signal output from the RDC is detected by using an external interrupt (input capture function). A
timer having the input capture function such as MTU3, GPT, and TPU can be used to detect the signal.

Excitation signal

Previous angle signal

Current angle signal

Phase

Phase difference

FirstEdge
(falling)

SecondEdge
(rising)

Figure 3.10 Angle Signal

The resolution of the angle signal depends on the excitation signal frequency, timer count clock, and the
number of pole pairs of the resolver sensor.

Timer clock:
40 MHz

One cycle of excitation signal: 360°
Excitation signal

Angle signal

Timer clock:
80 MHz

Excitation signal

Angle signal

Figure 3.11 Concept of Resolution

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 21 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

The resolution (in terms of mechanical angle) of the angle signal can be obtained by multiplying the
maximum timer counter value for a single excitation signal cycle by the number of pole pairs of the resolver
sensor. The maximum number counted in a single excitation signal cycle depends on the frequencies of the
output excitation signal and the clock that drives the timer counter. Assuming that the timer clock is at 40
MHz and excitation signal is at 10 kHz as in the first example in the figure above and the resolver sensor has
four pole pairs, the maximum number counted in a single excitation signal cycle becomes 4000 (40 MHz/10
kHz). Therefore, the resolution of the angle signal corresponds to 16000 values (4000 × 4). When the timer
clock is at 80 MHz, the resolution corresponds to 32000 values.

3.6.1 Angle Signal Input Interrupt
An input capture interrupt is generated on the specified edge of the input angle signal. The angle is obtained
from the timer counter value at that time. The first-edge (falling), the second-edge (rising), or both rising and
falling edges can be selected as the interrupt timing.

3.6.2 Starting the Input of the Angle Signal
To input the angle signal, counting in the timer should be started in synchronization with the output of the
excitation signal. Synchronous starting can be controlled in the following three ways: starting the timers
simultaneously in the API function for starting the output of the excitation signal, calling the API function for
controlling synchronous starting of the MTU3 timer channels (only when using the MTU), and calling the API
function for starting the angle detection timer when an excitation signal interrupt occurs.

API function for starting the output of the excitation signal:

See section 3.5.2, Starting the Output of the Excitation Signal.
API function for starting the angle detection timer: R_RSLV_Capture_Start(void)
API function for controlling synchronous starting of the MTU3 timer channels:

R_RSLV_MTU_SyncStart(unsigned char start_ch)

3.6.3 Stopping the Input of the Angle Signal
To stop the input of the angle signal, the excitation signal should be stopped. Call the API function for
stopping the output of the excitation signal.

API function: See section 3.5.3, Stopping the Output of the Excitation Signal.

3.6.4 Adjusting the Timing for Starting Input of the Angle Signal
A correct angle can be obtained only when the timer counters for the input of the angle signal and the output
of the excitation signal are started simultaneously. The driver has a facility for adjusting the timing for starting
counting in the timer for angle signal input. Call the API function for adjusting the timing for outputting the
excitation signal and inputting the angle signal. For details, see section 3.5.4, Adjusting the Timing for
Starting Output of the Excitation Signal.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 22 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

3.7 Detection of Disconnection from the Resolver Sensor
Figure 3.12 shows a system overview of detection of disconnection from the resolver sensor.

　MCU 　RDC

Differential
amplifier A

Differential
amplifier B

Phase
adjustment

circuit A

Phase
adjustment

circuit B

Synthesizer
circuitFilterMonitoring

circuit

Phase adjustment circuit A signal

Monitoring signal

A/D

Timer

Rectangular wave
signal Excitation

circuit

Resolver

Phase adjustment circuit B signal

Filter signal

XAP

XAN

XBP

XBN

Figure 3.12 System Overview of Detection of Disconnection from the Resolver Sensor

The normal voltages of the resolver signals are compared with abnormal voltages to detect disconnection
based on the difference in voltage.

To this end, the normal voltages of the resolver signals must be obtained in advance. The output signal from
the monitoring circuit is used to check the voltages. Voltages of the following five signals are checked.

• Filter signal (Monitored circuit: Filter output circuit 1 output)
• XAP signal (Monitored circuit: Phase adjustment circuit A output)
• XAN signal (Monitored circuit: Phase adjustment circuit A output)
• XBP signal (Monitored circuit: Phase adjustment circuit B output)
• XBN signal (Monitored circuit: Phase adjustment circuit B output)

3.7.1 Functions Used for Detecting Disconnection
The following functions are used to detect disconnection.

3.7.1.1 Communications with the RDC
RDC register settings required for detection of disconnection are made through SPI communications.

3.7.1.2 Measuring the RDC Monitoring Signal
The RDC monitoring signal is measured by continuous scan of the 12-bit A/D converter.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 23 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

3.8 Alarm Cancellation
When the RDC detects an excessive temperature, an alarm is output. To cancel this alarm, call the API
functions show below. After starting alarm cancellation, call the API function for controlling the alarm
cancellation sequence repeatedly.

API function for starting alarm cancellation: R_RSLV_Rdc_AlarmCancelStart(void)
API function for controlling the alarm cancellation sequence: R_RSLV_Rdc_AlarmCancel(void)

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 24 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

3.9 Output of the Phase Adjustment Signals for the Resolver Signals
The RDC converts the two-phase signals output from the resolver sensor into an angle signal, and then
outputs the converted angle signal to the MCU. Here, unless the phase difference between the two-phase
signals A and B is 90 degrees, a correct angle signal cannot be output to the MCU. For this reason,
adjustment signals for resolver phase signals A and B are output from the MCU to the RDC to adjust the
phase difference to 90 degrees. Phase adjustment signals are 400-kHz PWM signals.

Phase adjustment signal A

Phase adjustment signal B

400 kHz

Figure 3.13 Example of Phase Adjustment Signals

3.9.1 Starting the Output of the Phase Adjustment Signals
To start the output of the phase adjustment signals, call the API function shown below.

API function: R_RSLV_Phase_AdjStart(void)

3.9.2 Stopping the Output of the Phase Adjustment Signals
To stop the output of the phase adjustment signals, call the API function shown below.

API function: R_RSLV_Phase_AdjStop(void)

3.9.3 Setting the Duty Cycles of the Phase Adjustment Signals in the Buffers
To setting the duty cycle of a phase adjustment signal in a buffer, call the API function shown below.

API function: R_RSLV_Phase_AdjUpdateBuff(unsigned short duty, unsigned char ch)

3.9.4 Setting the Duty Cycles of the Phase Adjustment Signals in the Registers
To reflect the duty cycle specified as described in section 3.9.3 in the timer for phase adjustment, call the API
function shown below.

API function: R_RSLV_Phase_AdjUpdate(void)

3.9.5 Reading the Duty Cycles of the Phase Adjustment Signals from the Buffers
To read the duty cycle of a phase adjustment signal, call the API function shown below.

API function: R_RSLV_Phase_AdjReadBuff(unsigned short *duty, unsigned char ch)

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 25 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

3.10 Output of the Angle Error Correction Signal
When the motor is actuated, analog errors of the resolver sensor generate first-order distortion in the signal
synthesized from the two-phase signals. This makes the amplitude of the synthesized signal fluctuate. This
fluctuation is superposed as an error on the angle signal to be output from the RDC to the MCU.

Single rotation

Fluctuation

Figure 3.14 Fluctuation of Amplitude (RDC Internal Signal)

A correction signal is output from the MCU to the RDC to reduce this fluctuation. The correction signal is
identical in amplitude but its phase is the inverse of that of the first-order distortion.

The angle error correction signal is a PWM signal with a carrier frequency of 200 kHz or 400 kHz
(selectable). This signal is input to the RDC through a low-pass filter as an analog signal (sine wave). The
angle error correction signal must be synchronized with the excitation signal. The duty cycle for generation of
the sine wave is updated two or four times (selectable) per cycle of the excitation signal. The following shows
a schematic diagram of angle error correction signal output.

Angle error correction signal output cycle

Interrupt for updating the duty cycle of the angle error correction signal

Synchronized
with an interrupt

CMCOR

CMCNT

CMCOR

CMCNT

Excitation signal

Excitation signal carrier cycle

Angle error correction signal

Duty updated
twice

Duty updated
four times

Excitation signal carrier cycle

Interrupt for updating the duty cycle of the angle error correction signal

Figure 3.15 Output of the Angle Error Correction Signal
The duty cycle of the angle error correction signal (PWM signal) is changed using a duty cycle updating
interrupt. Figure 3.15 shows an example of using the CMT to generate duty cycle updating interrupts. The
CMT counter value is set to 1/2 or 1/4 of the excitation signal cycle to select updating of the duty cycle twice
or four times per cycle.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 26 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

3.10.1 Starting the Output of the Angle Error Correction Signal
To output the angle error correction signal, call the API function for starting the output of the angle error
correction signal. A value to be set in the timer for outputting the angle error correction signal is calculated
from the phase shift amount and amplitude level specified by this API function and the number of updates of
the angle error correction duty cycle. The values of the phase shift amount and amplitude level can be
obtained by using the automatic calibration of errors function. See section 3.11, Automatic Calibration of
Errors.

In addition, a value to be set in the timer for updating the duty cycle of the angle error correction signal is
calculated. The timers for outputting the angle error correction signal and updating the duty cycle of the
correction signal should be started in synchronization with the excitation signal. For synchronous starting,
call the API function for synchronously starting the angle error correction signal.

API function for starting the output of the angle error correction signal:

R_RSLV_CSig_Start(unsigned short phase_diff, unsigned short amp_level)
API function for synchronously starting the angle error correction signal:

R_RSLV_INT_CSig_SyncStart (void)

3.10.2 Stopping the Output of the Angle Error Correction Signal
To stop the output of the angle error correction signal (for example, when the settings of the correction signal
need to be changed), call the API function shown below. The timer for updating the duty cycle of the
correction signal is also stopped at the same time.

API function: R_RSLV_CSig_Stop(void)

3.10.3 Settings for Updating the Duty Cycle of the Angle Error Correction Signal
The output frequency and the number of duty cycle updates of the angle error correction signal are specified
by using the API function for specifying system information. According to the settings, this driver calculates
the adjustment ranges of the phase shift amount and amplitude level of the angle error correction signal.

API function: See section 3.1.2, Specifying System Information.

3.10.4 Interrupt for Updating the Duty Cycle of the Angle Error Correction Signal
This interrupt is used to update the duty cycle of the angle error correction signal. An interrupt is generated in
synchronization with the excitation signal and the duty cycle is updated by the API function for updating the
duty cycle of the correction signal called within the interrupt processing. This interrupt is generated twice or
four times per cycle of the excitation signal. The number of interrupt occurrences depends on the number of
duty cycle updates specified in the system information settings.

API function: R_RSLV_INT_CSig_UpdatePwmDuty(void)

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 27 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

3.11 Automatic Calibration of Errors
This driver has functions to automatically adjust for errors in the following items:

• Resolver signal gain
• Resolver signal phase
• Angle error correction signal

3.11.1 Functions Used to Adjust Parameters
Automatic calibration uses the following driver functions to adjust parameters.

• RDC communications
RDC registers are manipulated through SPI communications.

• Output of the angle error correction signal

This signal is output to correct the first-order distortion error of the resolver sensor.

• PWM output for phase adjustment

This PWM signal is output to adjust the phase difference between two-phase signals from the resolver
sensor.

• Acquiring the phase count

This phase count is angle information obtained from the RDC.

• Measuring the monitoring signal from the RDC

The internally-synthesized signal of the RDC is output from the monitoring pin, which is used in adjusting
the resolver signal gain and the angle error correction signal. To detect the monitoring signal, a function
for access to the 12-bit A/D converter must be prepared in the application.

Motor position
control

Modification of
 A/D converter

settings to convert
the monitoring

signal only

Measurement of the
monitoring signal
(A/D conversion)

Modification of A/D
converter settings to

control the motor

Figure 3.16 Schematic Processing Flow for Measuring Monitoring Signal
for Correcting Angle Errors

• Controlling the motor position

Motor position control is used for adjusting the angle error correction signal. Control in units of one degree
of the resolver angle is required.

• Controlling the motor speed

Motor speed control is used for adjusting the angle error correction signal.

• Referencing the speed data

The speed data (unit: rad/s) is referenced to control the speed for adjusting the angle error correction
signal.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 28 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

3.11.2 Adjustment of Gain and Phase of Resolver Signals
3.11.2.1 Resolver Signal Gain Adjustment
Figure 3.17 shows a block diagram for resolver signal gain adjustment.

　MCU 　RDC
Differential
amplifier A

Differential
amplifier B

Phase
adjustment

circuit A

Phase
adjustment

circuit B

Synthesizer
circuitFilter

Phase A
signal

Phase B
signal

Phase A
signal

Phase B
signal

Monitoring
circuit

Monitoring
signal

A/D

Figure 3.17 Block Diagram of Resolver Signal Gain Adjustment

When the phase A amplitude is small,
increase the phase A gain.

When the phase A amplitude is large,
decrease the phase A gain.

Phase
A signal

Phase A signal

Phase B signal Phase
B signal

Adjust the phase A signal level (gain) based on the phase B signal.

Figure 3.18 Resolver Signal Gain Adjustment

The phase A and phase B signals having different amplitudes produce an error in the angle information sent
from the resolver. Therefore, the phase A and phase B signal amplitudes are adjusted to the same level 
that is, so that the relative error between their amplitudes falls within the range ±0.28%.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 29 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

3.11.2.2 Resolver Signal Phase Adjustment
Figure 3.19 shows a block diagram for resolver signal phase adjustment.

　MCU 　RDC
Differential
amplifier A

Differential
amplifier B

Phase
adjustment

circuit A

Phase
adjustment

circuit B

Synthesizer
circuitFilter

Waveform
shaping
circuit

Phase A
signal

Phase B
signal

Phase A
signal

Phase B
signal

Angle signal

Timer

Timer

Phase B
PWM

Phase A
PWM

Figure 3.19 Block Diagram of Resolver Signal Phase Adjustment

Phase difference
90 degrees

Phase A signalPhase B signal

Adjust the phase so that the phase difference becomes 90 degrees.

Figure 3.20 Resolver Signal Phase Adjustment
The duty cycles of the phase adjustment signals for the phase A signal and phase B signal are changed so
that the phase difference between the phase A signal and phase B signal falls within the range of 90 degrees
±0.3% (more precisely, ±0.27 degrees).

Duty cycle adjustment range: 5% to 90% (1% steps)

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 30 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

3.11.3 Adjustment of the Angle Error Correction Signal
Figure 3.21 shows a block diagram for angle error correction signal adjustment.

　MCU 　RDC

Differential
amplifier A

Differential
amplifier B

Phase
adjustment

circuit A

Phase
adjustment

circuit B

Synthesizer
circuitFilterMonitoring

circuit

Phase A signal

Phase B signal

Phase A signal

Phase B signal

Monitoring
signal

Correction
circuit

Correction
signal

A/D

Timer
PWM signal

Figure 3.21 Block Diagram of Angle Error Correction Signal Adjustment

One rotation of motor

Monitoring
signal

Distortion of
monitoring signal

One rotation of motor

Angle error
correction signal

Difference

Figure 3.22 Angle Error Correction Signal Adjustment

This facility adjusts the amount of phase shift and the amplitude for the angle error correction signal input to
the correction circuit. The adjusted correction signal is superposed on the angle signal in the RDC to correct
angle errors due to analog errors of the resolver sensor.
The specifiable ranges of the amount of phase shift and the value of amplitude for the angle error correction
signal are shown below.

Table 3-1 Specifiable Range of the Amount of Phase Shift (0 to the Value Shown Below)

MCU RX23T RX24T RX66T / RX72T RX72M
Peripheral module CMT MTU GPT CMT MTU GPT CMT MTU GPT TPU CMT
Source clock setting
(MHz) 5 80 80 5 160 160 5 120 120 60 7.5
Excitation
frequency

5 kHz 999 15999 15999 999 31999 31999 999 23999 23999 11999 1499

10 kHz 499 7999 7999 499 15999 15999 499 11999 11999 5999 749

20 kHz 249 3999 3999 249 7999 7999 249 5999 5999 2999 374

Note: For the CMT, specify the peripheral module clock divided by 8 as the source clock.

Table 3-2 Specifiable Range of the Amplitude (0 to the Value Shown Below)

MCU RX23T RX24T RX66T / RX72T RX72M
Peripheral module MTU MTU GPT MTU GPT MTU GPT TPU
Source clock setting (MHz) 40 80 80 160 160 120 120 60
Angle error correction
signal cycle

200 kHz 199 399 399 799 799 599 599 299

400 kHz 99 199 199 399 399 299 299 149

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 31 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

3.11.3.1 Phase Delay by the Filter Circuit
To correctly adjust the amount of phase shift for the angle error correction signal input to the correction
circuit, it is necessary to consider the phase delay caused by the filter implemented in the circuit around the
RDC-IC.

If the user wants to change the phase delay value from the initial value, use the API function for setting the
phase delay.

API function: R_RSLV_ADJST_SetFilterDelay(float bpf_delay_deg, float csig_delay_deg)
For details, see section 7.9.3, Phase Delay by the Filter Circuit.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 32 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

3.12 Timing Chart (Excitation Signal, Input of the Angle Signal, and Angle Error
Correction Signal)

Timing charts of timers and waveforms related to the excitation signal, input of the angle signal, and the
angle error correction signal are shown below. Start the timer for angle signal input, angle error correction
signal output, and the timer for updating the duty cycle of the angle error correction signal at the timing of the
excitation interrupt.

For details on each setting, see section 3.1, Initialization of the Driver, and beyond.

Excitation
signal

Angle error
correction signal
with the amount
of shift is 0

Signal for
synthesis

Exciting signal
timer counter

Timer counter
for the input of
the angle signal

90° phase
difference

60° phase
difference

30° phase
difference

Skip the processing of
these interrupts.

Excitation
interrupt timing

Timer for
updating the

duty cycle of the
angle error

correction signal

Angle error correction signal：the number of duty cycle updates of the angle error correction signal is twice

Excitation signal：a signal synthesized from two rectangular waves (an excitation signal and
another signal that differs from the excitation signal in phase by 60 degrees)

Figure 3.23 Timing Chart of Timer Counter and Waveform

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 33 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

4. Software Configuration

4.1 Folder and File Configuration
Table 4-1 shows the configuration of the project folder and files of this driver.

Table 4-1 Folder and File Configuration

¥rx_rslv_drv
 ¥api*

r_rslv_api.h Header file for the RDC driver
(File for definitions of parameter structures, API functions,
and common constants)

¥lib
rdc_driver_library_RX.lib Library file

¥sample¥PeripheralCode_XXX (XXX : product name of MCU)
 ¥src¥smc_gen¥Config_peri_func

 Config_peri_func.c
Config_peri_func_user.c
Config_peri_func.h

Sample source files generated by the SC
peri: Peripheral module name (MTU0, TMR0, etc.)
func: Driver facility name: (Esig, Csig, etc.)
Note: The same naming method is applied to the functions

generated by the SC.
¥src¥sample_src
 r_sample_func_table.c Sample source file for function tables

Note: This driver is provided as a library. The file contained in ¥api is provided to be used for access to the
library.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 34 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5. Settings for Peripheral Modules

5.1 List of Macro-Defined Names of Driver Facilities
Table 5-1 lists the macro-defined names of the facilities of this driver.

Table 5-1 List of Macro-Defined Names of Driver Facilities

Defined Name
Defined
Value Description

F_ESIG1 0 Facility for setting the excitation signal (single-phase output)
F_ESIG2_1 1 Facility for setting the excitation signal (synthesized output with a

phase difference of 0 degrees, two timers are used)
F_ESIG2_2 2 Facility for setting the excitation signal (synthesized output with a

phase difference of 60 degrees, two timers are used)
F_ESIG12 3 Facility for setting the excitation signal (synthesized output, one timer

is used)
F_CSIG 4 Facility for setting the output of the angle error correction signal
F_PHASE_A 5 Facility for setting the output of the phase adjustment signal (phase

A)
F_PHASE_B 6 Facility for setting the output of the phase adjustment signal (phase

B)
F_PHASE_AB 7 Facility for setting the output of the phase adjustment signal (for the

output of phase A or B of one timer)
F_CAPTURE 8 Facility for setting the input of the angle signal
F_CSIG_UPD_TIMER 9 Facility for setting the timer for updating the angle error correction

duty cycle
F_RDC_COM 10 Facility for setting RDC communications
F_RDC_CLK 11 Facility for setting the output of the RDC clock

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 35 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5.2 List of Peripheral Modules Assigned to Driver Facilities (Recommended)
Table 5-2 to Table 5-6 list the (recommended) peripheral modules that can be assigned to serve individual
driver facilities.

Table 5-2 List of Possible Combinations of Peripheral Modules and Driver Facilities (RX23T)

 Defined Name of Driver Facility

F_

ES
IG

1

F_
ES

IG
2_

1

F_
ES

IG
2_

2

F_
ES

IG
12

F_
C

SI
G

F_
PH

A
SE

_A

F_
PH

A
SE

_B

F_
PH

A
SE

_A
B

F_
C

A
PT

U
R

E

F_
C

SI
G

_U
PD

_T
IM

ER

F_
R

D
C

_C
O

M

F_
R

D
C

_C
LK

Pe
rip

he
ra

l M
od

ul
e

TMR

TMR0 √ √ √
TMR1 √ √ √
TMR2 √ √ √
TMR3 √ √ √

MTU
MTU0 √ √
MTU1 √ √
MTU2 √ √

CMT

CMT0 √
CMT1 √
CMT2 √
CMT3 √

RSPI RSPI0 √

SCI SCI1 √
SCI5 √

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 36 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

Table 5-3 List of Possible Combinations of Peripheral Modules and Driver Facilities (RX24T)
 Defined Name of Driver Facility

F_
ES

IG
1

F_
ES

IG
2_

1

F_
ES

IG
2_

2

F_
ES

IG
12

F_
C

SI
G

F_
PH

A
SE

_A

F_
PH

A
SE

_B

F_
PH

A
SE

_A
B

F_
C

A
PT

U
R

E

F_
C

SI
G

_U
PD

_T
IM

ER

F_
R

D
C

_C
O

M

F_
R

D
C

_C
LK

Pe
rip

he
ra

l M
od

ul
e

TMR

TMR0 √ √ √
TMR1 √ √ √
TMR2 √ √ √
TMR3 √ √ √
TMR4 √ √ √
TMR5 √ √ √
TMR6 √ √ √
TMR7 √ √ √

MTU

MTU0 √ √ √ √ √ √ √ √ √ √ √
MTU1 √ √ √ √ √ √ √ √ √
MTU2 √ √ √ √ √ √ √ √ √
MTU6 √ √ √ √ √ √ √ √ √ √
MTU7 √ √ √ √ √ √ √ √ √ √
MTU9 √ √ √ √ √ √ √ √ √ √ √

GPT

GPT0 √ √ √ √ √ √ √ √ √ √ √
GPT1 √ √ √ √ √ √ √ √ √ √ √
GPT2 √ √ √ √ √ √ √ √ √ √ √
GPT3 √ √ √ √ √ √ √ √ √ √ √

CMT

CMT0 √
CMT1 √
CMT2 √
CMT3 √

RSPI RSPI0 √

SCI
SCI1 √
SCI5 √
SCI6 √

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 37 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

Table 5-4 List of Possible Combinations of Peripheral Modules and Driver Facilities (RX66T)
 Defined Name of Driver Facility

F_
ES

IG
1

F_
ES

IG
2_

1

F_
ES

IG
2_

2

F_
ES

IG
12

F_
C

SI
G

F_
PH

A
SE

_A

F_
PH

A
SE

_B

F_
PH

A
SE

_A
B

F_
C

A
PT

U
R

E

F_
C

SI
G

_U
PD

_T
IM

ER

F_
R

D
C

_C
O

M

F_
R

D
C

_C
LK

Pe
rip

he
ra

l M
od

ul
e

TMR

TMR0 √ √ √
TMR1 √ √ √
TMR2 √ √ √
TMR3 √ √ √
TMR4 √ √ √
TMR5 √ √ √
TMR6 √ √ √
TMR7 √ √ √

MTU

MTU0 √ √ √ √ √ √ √ √ √ √ √
MTU1 √ √ √ √ √ √ √ √ √
MTU2 √ √ √ √ √ √ √ √ √
MTU6 √ √ √ √ √ √ √ √ √ √
MTU7 √ √ √ √ √ √ √ √ √ √
MTU9 √ √ √ √ √ √ √ √ √ √ √

GPT

GPT0 √ √ √ √ √ √ √ √ √ √ √
GPT1 √ √ √ √ √ √ √ √ √ √ √
GPT2 √ √ √ √ √ √ √ √ √ √ √
GPT3 √ √ √ √ √ √ √ √ √ √ √
GPT4 √ √ √ √ √ √ √ √ √ √ √
GPT5 √ √ √ √ √ √ √ √ √ √ √
GPT6 √ √ √ √ √ √ √ √ √ √ √
GPT7 √ √ √ √ √ √ √ √ √ √ √
GPT8 √ √ √ √ √ √ √ √ √ √ √
GPT9 √ √ √ √ √ √ √ √ √ √ √

CMT

CMT0 √
CMT1 √
CMT2 √
CMT3 √

RSPI RSPI0 √

SCI

SCI1 √
SCI5 √
SCI6 √
SCI8 √
SCI9 √
SCI11 √
SCI12 √

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 38 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

Table 5-5 List of Possible Combinations of Peripheral Modules and Driver Facilities (RX72M) [1/2]
 Defined Name of Driver Facility

F_
ES

IG
1

F_
ES

IG
2_

1

F_
ES

IG
2_

2

F_
ES

IG
12

F_
C

SI
G

F_
PH

A
SE

_A

F_
PH

A
SE

_B

F_
PH

A
SE

_A
B

F_
C

A
PT

U
R

E

F_
C

SI
G

_U
PD

_T
IM

ER

F_
R

D
C

_C
O

M

F_
R

D
C

_C
LK

Pe
rip

he
ra

l M
od

ul
e

TMR

TMR0 √ √ √
TMR1 √ √ √
TMR2 √ √ √
TMR3 √ √ √

MTU

MTU0 √ √ √ √ √ √ √ √ √ √ √
MTU1 √ √ √ √ √ √ √ √ √
MTU2 √ √ √ √ √ √ √ √ √
MTU6 √ √ √ √ √ √ √ √ √ √ √
MTU7 √ √ √ √ √ √ √ √ √ √ √
MTU8 √ √ √ √ √ √ √

GPT

GPT0 √ √ √ √ √ √ √ √ √ √ √
GPT1 √ √ √ √ √ √ √ √ √ √ √
GPT2 √ √ √ √ √ √ √ √ √ √ √
GPT3 √ √ √ √ √ √ √ √ √ √ √

TPU

TPU0 √ √ √ √ √ √ √ √ √ √ √
TPU1 √ √ √ √ √ √ √ √ √
TPU2 √ √ √ √ √ √ √ √ √
TPU3 √ √ √ √ √ √ √ √ √ √ √
TPU4 √ √ √ √ √ √ √ √ √
TPU5 √ √ √ √ √ √ √ √ √

CMT

CMT0 √
CMT1 √
CMT2 √
CMT3 √

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 39 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

Table 5-6 List of Possible Combinations of Peripheral Modules and Driver Facilities (RX72M) [2/2]
 Defined Name of Driver Facility

F_
ES

IG
1

F_
ES

IG
2_

1

F_
ES

IG
2_

2

F_
ES

IG
12

F_
C

SI
G

F_
PH

A
SE

_A

F_
PH

A
SE

_B

F_
PH

A
SE

_A
B

F_
C

A
PT

U
R

E

F_
C

SI
G

_U
PD

_T
IM

ER

F_
R

D
C

_C
O

M

F_
R

D
C

_C
LK

Pe
rip

he
ra

l M
od

ul
e

RSPI
RSPI0 √
RSPI1 √
RSPI2 √

SCI

SCI0 √
SCI1 √
SCI2 √
SCI3 √
SCI4 √
SCI5 √
SCI6 √
SCI7 √
SCI8 √
SCI9 √
SCI10 √
SCI11 √
SCI12 √

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 40 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

Table 5-7 List of Possible Combinations of Peripheral Modules and Driver Facilities (RX72T)
 Defined Name of Driver Facility

F_
ES

IG
1

F_
ES

IG
2_

1

F_
ES

IG
2_

2

F_
ES

IG
12

F_
C

SI
G

F_
PH

A
SE

_A

F_
PH

A
SE

_B

F_
PH

A
SE

_A
B

F_
C

A
PT

U
R

E

F_
C

SI
G

_U
PD

_T
IM

ER

F_
R

D
C

_C
O

M

F_
R

D
C

_C
LK

Pe
rip

he
ra

l M
od

ul
e

TMR

TMR0 √ √ √
TMR1 √ √ √
TMR2 √ √ √
TMR3 √ √ √
TMR4 √ √ √
TMR5 √ √ √
TMR6 √ √ √
TMR7 √ √ √

MTU

MTU0 √ √ √ √ √ √ √ √ √ √ √
MTU1 √ √ √ √ √ √ √ √ √
MTU2 √ √ √ √ √ √ √ √ √
MTU6 √ √ √ √ √ √ √ √ √ √
MTU7 √ √ √ √ √ √ √ √ √ √
MTU9 √ √ √ √ √ √ √ √ √ √ √

GPT

GPT0 √ √ √ √ √ √ √ √ √ √ √
GPT1 √ √ √ √ √ √ √ √ √ √ √
GPT2 √ √ √ √ √ √ √ √ √ √ √
GPT3 √ √ √ √ √ √ √ √ √ √ √
GPT4 √ √ √ √ √ √ √ √ √ √ √
GPT5 √ √ √ √ √ √ √ √ √ √ √
GPT6 √ √ √ √ √ √ √ √ √ √ √
GPT7 √ √ √ √ √ √ √ √ √ √ √
GPT8 √ √ √ √ √ √ √ √ √ √ √
GPT9 √ √ √ √ √ √ √ √ √ √ √

CMT

CMT0 √
CMT1 √
CMT2 √
CMT3 √

RSPI RSPI0 √

SCI

SCI1 √
SCI5 √
SCI6 √
SCI8 √
SCI9 √
SCI11 √
SCI12 √

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 41 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5.3 Setting Driver Facilities by the SC
The initialization functions output from the SC are used to initialize the peripheral modules assigned to
individual driver facilities. Examples of SC settings are shown in this section. Note that the MCU is RX72M
and the system information to be set is as follows:

<Conditions>

Frequency of the excitation signal: 5 kHz
Frequency of the angle error correction signal: 200 kHz
Number of times the angle error correction duty cycle is to be updated: Twice

5.3.1 Output of the Excitation Signal
The MTU, GPT, and TPU (TPU is only for RX72M) are the peripheral modules recommended for assigning
outputting of the excitation signal. The modes for outputting the excitation signal are single-phase output
mode and synthesized output mode. The following tables show examples of setting the SC when selecting
synthesized output mode for a 1-channel timer.

5.3.1.1 Examples of SC Settings When Using the MTU
Table 5-8 Selecting the Component for Outputting the Excitation Signal (MTU)

Component Selection Selected Contents
Component Normal mode timer
Configuration name Config_MTU0_Esig12
Input capture/output compare pins 4 pins
Resource MTU0

Table 5-9 Case in Which the Frequency of the Excitation Signal is 5 kHz and the Output Pins are

MTIOC0A and MTIOC0B

Item Setting
Group: Setting the synchronous operation Setting not required.
Group: Setting the TCNT0 counter Set the following.

Counter clearing source TGRD0 compare match/input capture
Count clock PCLK

Group: Setting the external clock pins Setting not required.
Group: Setting the general registers Set the following. Other settings are not required.

TGRA Output compare register (50 μs)
TGRB Output compare register (83.33 μs)
TGRC Output compare register (66.67 μs)
TGRD Output compare register (100 μs)

Group: Setting the I/O pins Set the following. Other settings are not required.
(Pin output is disabled.)

MTIOC0A pin The initial output value of the pin is 0. The output is
toggled at a compare match.

MTIOC0B pin The initial output value of the pin is 0. The output is
toggled at a compare match.

Group: Setting the noise filter Setting not required.
Group: Setting the A/D conversion start triggers Setting not required.
Group: Setting the interrupts Set the following. Other settings are not required.

TGRC Enabled
Priority: Level 11

When the excitation signal is output with ESIG12, set the start of outputting the excitation signal to the
position of half of the count cycle of the timer counter. Since the count cycle is 100 μs in this example,
outputting of the excitation signal starts at the position of 50 μs.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 42 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5.3.1.2 Examples of SC Settings When Using the GPT
Table 5-10 Selecting the Component for Outputting the Excitation Signal (GPT)

Component Selection Selected Contents
Component General PWM timer
Configuration name Config_GPT0_Esig12
Operation Saw-wave PWM mode
Resource GPT0

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 43 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

Table 5-11 Case in Which the Frequency of the Excitation Signal is 5 kHz and the Output Pins are
GTIOC0A and GTIOC0B

Item Setting
Group: Setting the counting mode Set the following.

Clock source PCLKA (120.000 MHz)
Timer operation cycle 100 µs
Cycle register value 11999
Buffer operation Buffer operation is not performed.
Count direction Up-counting
Initial value of counter 0
To perform input capture when counting is stopped Setting not required.

Group: Setting the compare match registers and pins —
TAB: GTCCRA Set the following.

GTCCRA function Compare matches: 5999
Buffer operation Buffer operation is not performed.
GTIOC0A pin function PWM output pin
Noise filter Setting not required.
Duty cycle of GTIOC0A pin output Determined by a compare match.
Negate control of GTIOC0A pin Disabled
Output level at starting or stopping of the counter 0 is output when started and 0 is output when stopped.
Output level at compare match Toggle output
Output level at end of cycle Output is retained.
Output after release of duty cycle Setting not required.

TAB: GTCCRA input capture source Setting not required.
TAB: GTCCRB Set the following.

GTCCRB function Compare matches: 9999
Buffer operation Buffer operation is not performed.
GTIOC0B pin function PWM output pin
Noise filter Setting not required.
Duty cycle of GTIOC0B pin output Determined by a compare match.
Negate control of GTIOC0B pin Disabled
Output level at starting or stopping of the counter 0 is output when started and 0 is output when stopped.
Output level at compare match Toggle output
Output level at end of cycle Output is retained.
Output after release of duty cycle Setting not required.

TAB: GTCCRB input capture source Setting not required.
Group: Setting GTCCRC, GTCCRD, GTCCRE, and GTCCRF Set the following. Other settings are not required.

GTCCRC function Compare matches: 7999
Group: Setting the count source Setting not required.
Group: Setting the stopping of output Setting not required.
Group: Setting the A/D conversion start request Setting not required.
Group: Setting the interrupts Set the following. Other settings are not required.

Enabling the GTCCRC compare match interrupt Priority: Level 11
Group: Setting the function of skipping interrupts and A/D

conversion start requests
Setting not required.

Group: Setting the extended function of interrupt skipping Setting not required.
Group: Setting the extended function of buffer transfer skipping Setting not required.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 44 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5.3.1.3 Examples of SC Settings When Using the TPU
Table 5-12 Selecting the Component for Outputting the Excitation Signal (TPU)

Component Selection Selected Contents
Component Normal mode timer
Configuration name Config_TPU0_Esig12
Input capture/output compare pins 4 pins
Resource TPU0

Table 5-13 Case in Which the Frequency of the Excitation Signal is 5 kHz and the Output Pins are

TIOCA0 and TIOCB0

Item Setting
Group: Setting the synchronous operation Setting not required.
Group: Setting the TCNT0 counter Set the following.

Counter clearing source TGRD0 compare match/input capture
Count clock PCLK

Group: Setting the general registers Set the following. Other settings are not required.
TGRA0 Output compare register (50 µs)
TGRB0 Output compare register (83.333 µs)
TGRC0 Output compare register (66.667 µs)
TGRD0 Output compare register (100 µs)

Group: Setting the I/O pins Set the following. Other settings are not required.
TIOCA0 pin The initial output value of the pin is 0. The output is toggled at a

compare match.
TIOCB0 pin The initial output value of the pin is 0. The output is toggled at a

compare match.
Group: Setting the noise filter Setting not required.
Group: Setting the A/D conversion start triggers Setting not required.
Group: Setting the interrupts Set the following. Other settings are not required (setting

prohibited).
Enabling the TGRC input capture/compare match interrupt Priority: Level 11

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 45 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5.3.2 Output of the Phase Adjustment Signals for the Resolver Signals
The MTU, GPT, TMR, and TPU (TPU is only for RX72M) are the peripheral modules recommended for
assigning outputting of the phase adjustment signals. The following tables show examples of setting the SC.

5.3.2.1 Examples of SC Settings When Using the MTU
Table 5-14 Selecting the Component for Outputting the Phase Adjustment Signal (MTU)

Component Selection Selected Contents
Component PWM mode timer
Configuration name Config_MTU0_PhaseA
Operation PWM mode 1
Resource MTU0

Table 5-15 Case in Which the PWM Frequency of the Phase Adjustment Signals is 400 kHz and the

Output Pin is MTIOC0A

Item Setting
Group: Setting the synchronous operation Setting not required.
Group: Setting the TCNT0 counter Set the following.

Counter clearing source TGRA0 compare match/input capture
Count clock PCLK

Group: Setting the external clock pins Setting not required.
Group: Setting the general registers Setting not required.
Group: Setting the output pins Set the following. Other settings are not required. (Pin output is

disabled.)
MTIOC0A pin The initial output value of the pin is 1. 1 is output at a compare

match.
Operation at TGRB compare match 0 is output from the MTIOC0A pin.

Group: Setting the PWM output Set the following. Other settings are not required.
PWM cycle 2.5 μs
Initial value of TGRA 299
Initial value of TGRB 149

Group: Setting the A/D conversion start triggers Setting not required.
Group: Setting the interrupts Setting not required.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 46 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5.3.2.2 Examples of SC Settings When Using the GPT
Table 5-16 Selecting the Component for Outputting the Phase Adjustment Signal (GPT)

Component Selection Selected Contents
Component General PWM timer
Configuration name Config_GPT0_PhaseA
Operation Saw-wave PWM mode
Resource GPT0

Table 5-17 Case in Which the PWM Frequency of the Phase Adjustment Signals is 400 kHz and the

Output Pin is GTIOC0A

Item Setting
Group: Setting the counting mode Set the following.

Clock source PCLKA (120.000 MHz)
Timer operation cycle 2.5 μs
Cycle register value 299
Buffer operation Buffer operation is not performed.
Count direction Up-counting
Initial value of counter 0
To perform input capture when counting is stopped Setting not required.

Group: Setting the compare match registers and pins —
TAB: GTCCRA Set the following.

GTCCRA function Compare matches: 149
Buffer operation Buffer operation is not performed.
GTIOC0A pin function PWM output pin
Noise filter Setting not required.
Duty cycle of GTIOC0A pin output Determined by a compare match.
Negate control of GTIOC0A pin Disabled
Output level at starting or stopping of the counter 1 is output when started and 0 is output when stopped.
Output level at compare match 0 is output.
Output level at end of cycle 1 is output.
Output after release of duty cycle Setting not required.

TAB: GTCCRA input capture source Setting not required.
TAB: GTCCRB Setting not required.
TAB: GTCCRB input capture source Setting not required.
Group: Setting GTCCRC, GTCCRD, GTCCRE, and GTCCRF Setting not required.
Group: Setting the count source Setting not required.
Group: Setting the stopping of output Setting not required.
Group: Setting the A/D conversion start request Setting not required.
Group: Setting the interrupts Setting not required.
Group: Setting the function of skipping interrupts and A/D

conversion start requests
Setting not required.

Group: Setting the extended function of interrupt skipping Setting not required.
Group: Setting the extended function of buffer transfer skipping Setting not required.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 47 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5.3.2.3 Examples of SC Settings When Using the TMR
Table 5-18 Selecting the Component for Outputting the Phase Adjustment Signal (TMR)

Component Selection Selected Contents
Component 8-bit timer
Configuration name Config_TMR0_PhaseA
Counting mode 8-bit counting mode
Resource TMR0

Table 5-19 Case in Which the PWM Frequency of the Phase Adjustment Signals is 400 kHz and the

Output Pin is TMO0

Item Setting
Group: Setting the counting mode Set the following.

Clock source PCLK (60000.0 kHz)
Clearing of counter Cleared by compare match A
Value of compare match A 2.5 μs
A/D conversion start request for S12AD Setting not required.
Value of compare match B 1.25 μs

Group: Setting the TMO0 output Set the following.
Output level at compare match A 1 is output.
Output level at compare match B 0 is output.

Group: Setting the interrupts Setting not required.

5.3.2.4 Examples of SC Settings When Using the TPU
Table 5-20 Selecting the Component for Outputting the Phase Adjustment Signal (TPU)

Component Selection Selected Contents
Component PWM mode timer
Configuration name Config_TPU0_PhaseA
Operation PWM mode 1
Resource TPU0

Table 5-21 Case in Which the PWM Frequency of the Phase Adjustment Signals is 400 kHz and the

Output Pin is TIOCA0

Item Setting
Group: Setting the synchronous operation Setting not required.
Group: Setting the TCNT0 counter Set the following.

Counter clearing source TGRA0 compare match
Count clock PCLK

Group: Setting the general registers Setting not required.
Group: Setting the I/O pins Set the following. Other settings are not required.

(Pin output is disabled.)
TIOCA0 pin The initial output value of the pin is 1. 1 is output at

a compare match.
Operation at TGRB compare match 0 is output from the TIOCA0 pin.

Group: Setting the PWM output Set the following. Other settings are not required.
PWM cycle 2.5 μs
Initial value of TGRA 149
Initial value of TGRB 78

Group: Setting the A/D conversion start triggers Setting not required.
Group: Setting the interrupts Setting not required.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 48 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5.3.3 Output of the Angle Error Correction Signal
The MTU, GPT, and TPU (TPU is only for RX72M) are the peripheral modules recommended for assigning
outputting of the angle error correction signal. The following tables show examples of setting the SC.

5.3.3.1 Examples of SC Settings When Using the MTU
Table 5-22 Selecting the Component for Outputting the Angle Error Correction Signal (MTU)

Component Selection Selected Contents
Component PWM mode timer
Configuration name Config_MTU0_Csig
Operation PWM mode 1
Resource MTU0

Table 5-23 Case in Which the Frequency of the Angle Error Correction Signal is 200 kHz and the

Output Pin is MTIOC0A

Item Setting
Group: Setting the synchronous operation Setting not required.
Group: Setting the TCNT0 counter Set the following.

Counter clearing source TGRA0 compare match
Count clock PCLK

Group: Setting the external clock pins Setting not required.
Group: Setting the general registers Setting not required.
Group: Setting the output pins Set the following. Other settings are not required.

(Pin output is disabled.)
MTIOC0A pin The initial output value of the pin is 1. 1 is output at

a compare match.
Operation at TGRB compare match 0 is output from the MTIOC0A pin.

Group: Setting the PWM output Set the following. Other settings are not required.
PWM cycle 5 μs
Initial value of TGRA 599
Initial value of TGRB 299

Group: Setting the A/D conversion start triggers Setting not required.
Group: Setting the interrupts Setting not required.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 49 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5.3.3.2 Examples of SC Settings When Using the GPT
Table 5-24 Selecting the Component for Outputting the Angle Error Correction Signal (GPT)

Component Selection Selected Contents
Component General PWM timer
Configuration name Config_GPT0_Csig
Operation Saw-wave PWM mode
Resource GPT0

Table 5-25 Case in Which the Frequency of the Angle Error Correction Signal is 200 kHz and the

Output Pin is GTIOC0A

Item Setting
Group: Setting the counting mode Set the following.

Clock source PCLKA (120.000 MHz)
Timer operation cycle 5 μs
Cycle register value 599
Buffer operation Buffer operation is not performed.
Count direction Up-counting
Initial value of counter 0
To perform input capture when counting is stopped Setting not required.

Group: Setting the compare match registers and pins —
TAB: GTCCRA Set the following.

GTCCRA function Compare matches: 299
Buffer operation Buffer operation is not performed.
GTIOC0A pin function PWM output pin
Noise filter Setting not required.
Duty cycle of GTIOC0A pin output Determined by a compare match.
Negate control of GTIOC0A pin Disabled
Output level at starting or stopping of the counter 1 is output when started and 0 is output when stopped.
Output level at compare match 0 is output.
Output level at end of cycle 1 is output.
Output after release of duty cycle Setting not required.

TAB: GTCCRA input capture source Setting not required.
TAB: GTCCRB Setting not required.
TAB: GTCCRB input capture source Setting not required.
Group: Setting GTCCRC, GTCCRD, GTCCRE, and GTCCRF Setting not required.
Group: Setting the count source Setting not required.
Group: Setting the stopping of output Setting not required.
Group: Setting the A/D conversion start request Setting not required.
Group: Setting the interrupts Setting not required.
Group: Setting the function of skipping interrupts and A/D

conversion start requests
Setting not required.

Group: Setting the extended function of interrupt skipping Setting not required.
Group: Setting the extended function of buffer transfer skipping Setting not required.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 50 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5.3.3.3 Examples of SC Settings When Using the TPU
Table 5-26 Selecting the Component for Outputting the Angle Error Correction Signal (TPU)

Component Selection Selected Contents
Component PWM mode timer
Configuration name Config_TPU0_Csig
Operation PWM mode 1
Resource TPU0

Table 5-27 Case in Which the Frequency of the Angle Error Correction Signal is 200 kHz and the

Output Pin is TIOCA0

Item Setting
Group: Setting the synchronous operation Setting not required.
Group: Setting the TCNT0 counter Set the following.

Counter clearing source TGRA0 compare match
Count clock PCLK

Group: Setting the general registers Setting not required.
Group: Setting the I/O pins Set the following. Other settings are not required.

(Pin output is disabled.)
TIOCA0 pin The initial output value of the pin is 1. 1 is output at

a compare match.
Operation at TGRB compare match 0 is output from the TIOCA0 pin.

Group: Setting the PWM output Set the following. Other settings are not required.
PWM cycle 5 μs
Initial value of TGRA 299
Initial value of TGRB 149

Group: Setting the A/D conversion start triggers Setting not required.
Group: Setting the interrupts Setting not required.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 51 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5.3.4 Interrupt for Updating the Duty Cycle of the Angle Error Correction Signal
The MTU, GPT, CMT, and TPU (TPU is only for RX72M) are the peripheral modules recommended for
assigning the interrupt for updating the duty cycle of the angle error correction signal. The following tables
show examples of setting the SC.

5.3.4.1 Examples of SC Settings When Using the MTU
Table 5-28 Selecting the Component for the Interrupt for Updating the Duty Cycle of the Angle Error

Correction Signal (MTU)

Component Selection Selected Contents
Component Normal mode timer
Configuration name Config_MTU0_CsigUpdTim
Input capture/output compare pins Either 2 pins or 4 pins
Resource MTU0

Table 5-29 Case in Which the Frequency of the Excitation Signal is 5 kHz and the Number of Updates

is Twice

Item Setting
Group: Setting the synchronous operation Setting not required.
Group: Setting the TCNT0 counter Set the following.

Counter clearing source TGRA0 compare match/input capture
Count clock PCLK

Group: Setting the external clock pins Setting not required.
Group: Setting the general registers Set the following. Other settings are not required.

TGRA0 Output compare register (100 μs)
Group: Setting the I/O pins Setting not required.
Group: Setting the noise filter Setting not required.
Group: Setting the A/D conversion start triggers Setting not required.
Group: Setting the interrupts Set the following. Other settings are not required

(setting prohibited).
TGRA Enabled

Priority: Level 14

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 52 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5.3.4.2 Examples of SC Settings When Using the GPT
Table 5-30 Selecting the Component for the Interrupt for Updating the Duty Cycle of the Angle Error

Correction Signal (GPT)

Component Selection Selected Contents
Component General PWM timer
Configuration name Config_GPT0_CsigUpdTim
Operation Saw-wave PWM mode
Resource GPT0

Table 5-31 Case in Which the Frequency of the Excitation Signal is 5 kHz and the Number of Updates

is Twice

Item Setting
Group: Setting the counting mode Set the following.

Clock source PCLKA (120.000 MHz)
Timer operation cycle 100 μs
Cycle register value 11999
Buffer operation Buffer operation is not performed.
Count direction Up-counting
Initial value of counter 0
To perform input capture when counting is stopped Setting not required.

Group: Setting the compare match registers and pins —
TAB: GTCCRA Setting not required.
TAB: GTCCRA input capture source Setting not required.
TAB: GTCCRB Setting not required.
TAB: GTCCRB input capture source Setting not required.
Group: Setting GTCCRC, GTCCRD, GTCCRE, and GTCCRF Setting not required.
Group: Setting the count source Setting not required.
Group: Setting the stopping of output Setting not required.
Group: Setting the A/D conversion start request Setting not required.
Group: Setting the interrupts Set the following. Other settings are not required.

Enabling the GTCNT overflow (GTPR compare match) interrupt Priority: Level 14
Group: Setting the function of skipping interrupts and A/D conversion

start requests
Setting not required.

Group: Setting the extended function of interrupt skipping Setting not required.
Group: Setting the extended function of buffer transfer skipping Setting not required.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 53 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5.3.4.3 Examples of SC Settings When Using the TPU
Table 5-32 Selecting the Component for the Interrupt for Updating the Duty Cycle of the Angle Error

Correction Signal (TPU)

Component Selection Selected Contents
Component PWM mode timer
Configuration name Config_TPU0_CsigUpdTim
Operation PWM mode 1
Resource TPU0

Table 5-33 Case in Which the Frequency of the Excitation Signal is 5 kHz and the Number of Updates

is Twice

Item Setting
Group: Setting the synchronous operation Setting not required.
Group: Setting the TCNT0 counter Set the following.

Counter clearing source TGRA0 compare match/input capture
Count clock PCLK

Group: Setting the general registers Setting not required.
TGRA0 Output compare register (100 μs)

Group: Setting the I/O pins Setting not required.
Group: Setting the PWM output Setting not required.
Group: Setting the A/D conversion start triggers Setting not required.
Group: Setting the interrupts Set the following. Other settings are not required.

Enabling the TGRA input capture/compare match interrupt Priority: Level 14

5.3.4.4 Examples of SC Settings When Using the CMT
Table 5-34 Selecting the Component for the Interrupt for Updating the Duty Cycle of the Angle Error

Correction Signal (CMT)

Component Selection Selected Contents
Component Compare match timer
Configuration name Config_CMT0_CsigUpdTim
Resource CMT0

Table 5-35 Case in Which the Frequency of the Excitation Signal is 5 kHz and the Number of Updates

is Twice

Item Setting
Group: Setting the clock Set the following.

PCLK/8, PCLK/32, PCLK/128, or PCLK/512 PCLK/8
Group: Setting the I/O pins Set the following.

Interval time 100 μs
Register value 749
Enabling the compare match interrupt Enabled
Priority Level 14

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 54 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5.3.5 Input of the Angle Signal
The MTU, GPT, and TPU (TPU is only for RX72M) are the peripheral modules recommended for assigning
inputting of the angle signal. The following tables show examples of setting the SC.

5.3.5.1 Examples of SC Settings When Using the MTU
Table 5-36 Selecting the Component for Inputting the Angle Signal (MTU)

Component Selection Selected Contents
Component Normal mode timer
Configuration name Config_MTU0_Cap
Input capture/output compare pins Either 2 pins or 4 pins (only 2 pins for MTU1 or

MTU2)
Resource MTU0

Table 5-37 Case in Which the Frequency of the Angle Signal is 5 kHz and the Input Pin is MTIOC0B

Item Setting
Group: Setting the synchronous operation Setting not required.
Group: Setting the TCNT0 counter Set the following.

Counter clearing source TGRA0 compare match/input capture
Count clock PCLK

Group: Setting the external clock pins Setting not required.
Group: Setting the general registers Set the following. Other settings are not required.

TGRA0 Output compare register (200 μs)
TGRB0 Input capture register

Group: Setting the I/O pins Set the following. Other settings are not required. (Pin output is
disabled.)

MTIOC0B pin Input capture at the falling edge of the MTIOC0B pin
Group: Setting the noise filter Setting not required.
Group: Setting the A/D conversion start triggers Setting not required.
Group: Setting the interrupts Set the following. Other settings are not required (setting

prohibited).
Enabling the TGRB input capture/compare match interrupt Priority: Level 13

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 55 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5.3.5.2 Examples of SC Settings When Using the GPT
Table 5-38 Selecting the Component for Inputting the Angle Signal (GPT)

Component Selection Selected Contents
Component General PWM timer
Configuration name Config_GPT0_Cap
Operation Saw-wave PWM mode
Resource GPT0

Table 5-39 Case in Which the Frequency of the Angle Signal is 5 kHz and the Input Pin is GTIOC0A

Item Setting
Group: Setting the counting mode Set the following.

Clock source PCLKA (120.000 MHz)
Timer operation cycle 200 µs
Cycle register value 23999
Buffer operation Buffer operation is not performed.
Count direction Up-counting
Initial value of counter 0
To perform input capture when counting is stopped Setting not required.

Group: Setting the compare match registers and pins —
TAB: GTCCRA Set the following. Other settings are not required.

GTCCRA function Input capture
Buffer operation Buffer operation is not performed.
GTIOC0A pin function Input pin

TAB: GTCCRA input capture source Set the following. Other settings are not required.
Selecting the falling edge of the GTIOC0A pin Falling of GTIOC0A input

TAB: GTCCRB Setting not required.
TAB: GTCCRB input capture source Setting not required.
Group: Setting GTCCRC, GTCCRD, GTCCRE, and GTCCRF Setting not required.
Group: Setting the count source Setting not required.
Group: Setting the stopping of output Setting not required.
Group: Setting the A/D conversion start request Setting not required.
Group: Setting the interrupts Set the following. Other settings are not required.

Enabling the GTCCRA compare match/input capture interrupt Priority: Level 13
Group: Setting the function of skipping interrupts and A/D

conversion start requests
Setting not required.

Group: Setting the extended function of interrupt skipping Setting not required.
Group: Setting the extended function of buffer transfer skipping Setting not required.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 56 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5.3.5.3 Examples of SC Settings When Using the TPU
Table 5-40 Selecting the Component for Inputting the Angle Signal (TPU)

Component Selection Selected Contents
Component Normal mode timer
Configuration name Config_TPU0_Cap
Input capture/output compare pins Either 2 pins or 4 pins
Resource TPU0

Table 5-41 Case in Which the Frequency of the Angle Signal is 5 kHz and the Input Pin is TIOCB0

Item Setting
Group: Setting the synchronous operation Setting not required.
Group: Setting the TCNT0 counter Set the following.

Counter clearing source TGRA0 compare match/input capture
Count clock PCLK

Group: Setting the general registers Set the following. Other settings are not required.
TGRA0 Output compare register (200 μs)
TGRB0 Input capture register

Group: Setting the I/O pins Setting not required.
TIOCB0 pin Input capture at the falling edge of the MTIOC0B pin

Group: Setting the noise filter Setting not required.
Group: Setting the A/D conversion start triggers Setting not required.
Group: Setting the interrupts Set the following. Other settings are not required (setting

prohibited).
Enabling the TGRB input capture/compare match
interrupt

Priority: Level 13

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 57 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5.3.6 Output of the RDC Operating Clock
The MTU, GPT, TMR, and TPU (TPU is only for RX72M) are the peripheral modules recommended for
assigning outputting of the RDC operating clock. The following tables show examples of setting the SC.

5.3.6.1 Examples of SC Settings When Using the MTU
Table 5-42 Selecting the Component for Outputting the RDC Operating Clock (MTU)

Component Selection Selected Contents
Component PWM mode timer
Configuration name Config_MTU0_RdcClk
Operation PWM mode 1
Resource MTU0

Table 5-43 Case in Which the Frequency of the RDC Clock is 4 MHz and the Output Pin is MTIOC0A

Item Setting
Group: Setting the synchronous operation Setting not required.
Group: Setting the TCNT0 counter Set the following.

Counter clearing source TGRA0 compare match (TGRA0 is used as a cycle
register.)

Count clock PCLK
Group: Setting the external clock pins Setting not required.
Group: Setting the general registers Setting not required.
Group: Setting the output pins Set the following. Other settings are not required.

MTIOC0A pin The initial output value of the pin is 1. 1 is output at a
compare match.

Operation at TGRB compare match 0 is output from the MTIOC0A pin.
Group: Setting the PWM output Set the following. Other settings are not required.

PWM cycle 250 ns
Initial value of TGRA 29
Initial value of TGRB 14

Group: Setting the A/D conversion start triggers Setting not required.
Group: Setting the interrupts Setting not required.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 58 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5.3.6.2 Examples of SC Settings When Using the GPT
Table 5-44 Selecting the Component for Outputting the RDC Operating Clock (GPT)

Component Selection Selected Contents
Component General PWM timer
Configuration name Config_GPT0_RdcClk
Operation Saw-wave PWM mode
Resource GPT0

Table 5-45 Case in Which the Frequency of the RDC Clock is 4 MHz and the Output Pin is GTIOC0A

Item Setting
Group: Setting the counting mode Set the following.

Clock source PCLKA (120.000 MHz)
Timer operation cycle 250 ns
Cycle register value 29
Buffer operation Buffer operation is not performed.
Count direction Up-counting
Initial value of counter 0
To perform input capture when counting is stopped Setting not required.

Group: Setting the compare match registers and pins —
TAB: GTCCRA Set the following.

GTCCRA function Compare matches: 14
Buffer operation Buffer operation is not performed.
GTIOC0A pin function PWM output pin
Noise filter Setting not required.
Duty cycle of GTIOC0A pin output Determined by a compare match.
Negate control of GTIOC0A pin Disabled
Output level at starting or stopping of the counter 1 is output when started and 0 is output when stopped.
Output level at compare match 0 is output.
Output level at end of cycle 1 is output.
Output after release of duty cycle Setting not required.

TAB: GTCCRA input capture source Setting not required.
TAB: GTCCRB Set the following. Other settings are not required.

GTCCRB function Compare matches: 28*
TAB: GTCCRB input capture source Setting not required.
Group: Setting GTCCRC, GTCCRD, GTCCRE, and GTCCRF Set the following.

GTCCRC function Compare matches: 28*
GTCCRD function Compare matches: 28*
GTCCRE function Compare matches: 28*
GTCCRF function Compare matches: 28*

Group: Setting the count source Setting not required.
Group: Setting the stopping of output Setting not required.
Group: Setting the A/D conversion start request Setting not required.
Group: Setting the interrupts Setting not required.
Group: Setting the function of skipping interrupts and A/D

conversion start requests
Setting not required.

Group: Setting the extended function of interrupt skipping Setting not required.
Group: Setting the extended function of buffer transfer skipping Setting not required.

Note: * Set the maximum value because the initial value will generate an out-of-range error.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 59 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5.3.6.3 Examples of SC Settings When Using the TMR
Table 5-46 Selecting the Component for Outputting the RDC Operating Clock (TMR)

Component Selection Selected Contents
Component 8-bit timer
Configuration name Config_TMR0_RdcClk
Counting mode 8-bit counting mode
Resource TMR0

Table 5-47 Case in Which the Frequency of the RDC Clock is 4 MHz and the Output Pin is TMO0

Item Setting
Group: Setting the counting mode Set the following.

Clock source PCLK (60000.0 kHz)
Clearing of counter Cleared by compare match A
Value of compare match A 250 ns
A/D conversion start request for S12AD Do not make a setting.
Value of compare match B 125 ns

Group: Setting the TMO0 output Set the following.
Enabling the TMO0 output Enabled
Output level at compare match A 1 is output.
Output level at compare match B 0 is output.

Group: Setting the interrupts Setting not required.

5.3.6.4 Examples of SC Settings When Using the TPU
Table 5-48 Selecting the Component for Outputting the RDC Operating Clock (TPU)

Component Selection Selected Contents
Component PWM mode timer
Configuration name Config_TPU0_RdcClk
Operation PWM mode 1
Resource TPU0

Table 5-49 Case in Which the Frequency of the RDC Clock is 4 MHz and the Output Pin is TIOCA0

Item Setting
Group: Setting the synchronous operation Setting not required.
Group: Setting the TCNT0 counter Set the following.

Counter clearing source TGRA0 compare match (TGRA0 is used as a cycle register.)
Count clock PCLK

Group: Setting the general registers Setting not required.
Group: Setting the output pins Set the following. Other settings are not required.

TIOCA0 pin The initial output value of the pin is 1. 1 is output at a compare
match.

Operation at TGRB compare match 0 is output from the TIOCA0 pin.
Group: Setting the PWM output Set the following. Other settings are not required.

PWM cycle 250 ns
Initial value of TGRA 14
Initial value of TGRB 7

Group: Setting the A/D conversion start triggers Setting not required.
Group: Setting the interrupts Setting not required.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 60 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5.3.7 RDC Communications
The RSPI and SCI are the peripheral modules for assigning RDC communications. The following tables
show examples of setting the SC.

5.3.7.1 Examples of SC Settings When Using the RSPI (SSLA0 is Selected)
Table 5-50 Selecting the Component for RDC Communications (RSPI)

Component Selection Selected Contents
Component SPI operation mode (4-wire method)
Configuration name Config_RSPI0_RdcCom
Operation Master transmission/reception
Resource RSPI0

Table 5-51 Case in Which RDC Communications is Assigned to RSPI0 (1/2)

Item Setting
Group: Setting the transmit/receive buffers Set the following.

Buffer access width 16 bits
Group: Setting the parity bit Set the following.

Byte swapping Disabled
Parity bit The parity bit is not added to transmit data.

The parity bit is not checked in receive data.
Group: Setting the transfer rate Set the following.

Base bit rate 1000 kbps
Group: Setting the output timing Set the following.

Period from the beginning of SSL signal
assertion to RSPCK oscillation

1 RSPCK

Period from the transmission of a final RSPCK
edge to the negation of the SSL signal

1 RSPCK

Non-active period of the SSL signal after
termination of a serial transfer

1 RSPCK + 2 PCLK

Group: Setting the auto-stop function Set the following.
Enabling the auto-stop function Disabled (Do not make a setting.)

Group: Setting the pin control Set the following.
Idle value of MISO Low
SSLA0 pin Active low
SSLA1 pin Invalid (Clear the checkbox.)
SSLA2 pin Invalid (Clear the checkbox.)
SSLA3 pin Invalid (Clear the checkbox.)
RSPI pin control CMOS output
Loopback mode Normal mode

Group: Setting the data processing Set the following.
Transmit/receive data processing Processed by an interrupt service routine.

Group: Setting the interrupts Set the following.
Priority of SPTI0 Level 9
Priority of SPRI0 Level 9
Enabling the error interrupt Enabled
Priority of SPEI0 and SPII0 Level 9

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 61 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

Table 5-50 Case in Which RDC Communications is Assigned to RSPI0 (2/2)

Item Setting
Group: Setting the commands Set the following.
TAB: Command 0

Number of commands and number of frames Number of commands: 1, number of transfer
frames: 1

Data length 16 bits
Format MSB first
RSPCK phase Data variation on odd edge, data sampling on even

edge
RSPCK polarity RSPCK is high when idle
Bit rate Base bit rate
SSL signal assertion SSL0 (board-dependent)
SSL negation Negates all SSL signals upon completion of transfer
RSPCK delay 1 RSPCK
SSL negation delay 1 RSPCK
Next-access delay 1 RSPCK + 2 PCLK

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 62 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5.3.7.2 Examples of SC Settings When Using the SCI
Table 5-52 Selecting the Component for RDC Communications (SCI)

Component Selection Selected Contents
Component SPI clock synchronous operation mode (3-wire

method)
Configuration name Config_SCI0_RdcCom
Operation Master transmission/reception
Resource SCI0

Table 5-53 Case in Which RDC Communications is Assigned to SCI0

Item Setting
Group: Setting the data transfer direction Set the following.

LSB first or MSB first MSB first
Group: Setting the transmit/receive data level Set the following.

Standard or inverted Standard
Group: Setting the transfer rate Set the following.

Transfer clock Internal clock
Base bit rate 1000 kbps

Group: Setting the clock Set the following.
Clock delay and inversion of clock polarity Both are disabled. (Do not check the checkboxes.)

Group: Setting the data processing Set the following.
Transmit data processing Processed by an interrupt service routine.
Receive data processing Processed by an interrupt service routine.

Group: Setting the interrupts Set the following.
Priority of TXI0 Level 9
Priority of RXI0 Level 9
Enabling the receive error interrupt Enabled
Priority of TEII0 and ERII0 Level 9

Group: Setting the callback functions Set the following.
Transmission end, reception end, and error
detection

All callback functions are enabled. (Check the
checkboxes.)

The RDC chip select processing needs to be implemented at either of the following locations when the SCI
performs RDC communications. For examples of implementing the RDC chip select processing, see section
5.4.6, Function for SPI Transmission/Reception.

Chip selection is ON (active): Add to the transmission/reception start processing.
Chip selection is OFF (inactive): Add to the reception end processing.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 63 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5.4 Setting up Function Tables
Functions generated by the SC and created by the user need to be set to function tables in order to access
registers of the peripheral modules assigned to individual driver facilities. The following tables list the function
tables to be set to individual driver facilities.

Table 5-54 List of Function Tables Set to Driver Facilities (1/2)

Driver Facility
Function Table ESIG1 ESIG2_1 ESIG2_2 ESIG12 CSIG PHASE_A

Function for starting the
timer

√ √ √ √ √ √

Function for stopping
the timer

√ √ √ √ √ √

Function for acquiring
the counter value

∆ ∆ ∆ ∆ ∆ ×

Function for setting the
counter value

∆ ∆ ∆ ∆ ∆ ×

Function for acquiring
the duty value

× × × × ∆ ×

Function for setting the
duty value

× × × × ∆ ∆

Function for setting the
duty value
(phase A or B of one
timer)

× × × × × ×

Function for acquiring
the capture value

× × × × × ×

Function for acquiring
the port level

× × × × × ×

Function for SPI
transmission/reception
with RDC

× × × × × ×

√: Setting required (code generated by the SC), ∆: Setting required (code created by the user),
×: Setting not required.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 64 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

Table 5-55 List of Function Tables Set to Driver Facilities (2/2)

Driver Facility
Function Table PHASE_B PHASE_AB CAPTURE CSIG_UPD

_TIMER RDC_CLK RDC_COM

Function for starting the
timer

√ √ √ √ √ ×

Function for stopping
the timer

√ √ √ √ √ ×

Function for acquiring
the counter value

× × ∆ × × ×

Function for setting the
counter value

× × ∆ × × ×

Function for acquiring
the duty value

× × × ∆ × ×

Function for setting the
duty value

∆ × × ∆ × ×

Function for setting the
duty value
(phase A or B of one
timer)

× ∆ × × × ×

Function for acquiring
the capture value

× × ∆ × × ×

Function for acquiring
the port level

× × ∆ × × ×

Function for SPI
transmission/reception
with RDC

× × × × × √

√: Setting required (code generated by the SC), ∆: Setting required (code created by the user),
×: Setting not required.

The details of processing to be set in function tables are shown in the following pages.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 65 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5.4.1 Functions for Starting and Stopping the Timer
The functions for starting and stopping a module, which are generated by the SC, are set to function tables.

5.4.2 Functions for Acquiring and Setting the Counter Value
The functions for acquiring and setting the counter value are not generated by the SC and so the user has to
create them and set them to function tables.

The functions for acquiring and setting the counter value when using the MTU0 are shown below as
examples (angle error correction signal (CSig) is the facility example).

/* Function to get the counter value */
void R_Config_MTU0_Csig_GetTcnt (unsigned short *tcnt)
{
 *tcnt = MTU0.TCNT;
}

/* Function to set the counter value */
void R_Config_MTU0_Csig_SetTcnt (unsigned short tcnt)
{
 MTU0.TCNT = tcnt;
}

5.4.3 Functions for Acquiring and Setting the Duty Value
The functions for acquiring and setting the duty value are not generated by the SC and so the user has to
create them and set them to function tables.

The functions for acquiring and setting the duty value when using TGRA of the MTU0 as a general register
that can change the duty cycle of the output signal are shown below as examples (angle error correction
signal (CSig) is the facility example).

/* Function to get the duty value */
void R_Config_MTU0_Csig_GetDuty (unsigned short *duty)
{
 *duty = MTU0.TGRA;
}

/* Function to set the duty value */
void R_Config_MTU0_Csig_SetDuty (unsigned short duty)
{
 MTU0.TGRA = duty;
}

/* Function to set the duty value */
void R_Config_MTU0_Csig_SetDuty_2val (unsigned short ch, unsigned short duty)
{
 If (PHASE_CH_A == ch)
 {
 MTU0.TGRA = duty; /* Phase A signal duty setting */
 }
 else if (PHASE_CH_B == ch)
 {
 MTU0.TGRC = duty; /* Phase B signal duty setting */
 }
}

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 66 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5.4.4 Function for Acquiring the Capture Value
The function for acquiring the capture value is not generated by the SC and so the user has to create it and
set it to function tables.

The function for acquiring the capture value when using the MTU2 is shown below as an example.

/* Function to get the capture value */
void R_Config_MTU2_Cap_GetCapVal (unsigned short *current_angle_count)
{
 *current_angle_count= MTU2.TGRA;
}

5.4.5 Function for Acquiring the Port Level
The function for acquiring the port level is not generated by the SC and so the user has to create it and set it
to function tables.

The function for acquiring the level of the P00 port is shown below as an example.

/* Function to get the port level */
void R_Config_MTU2_Cap_GetPortLvl (unsigned char *port_level)
{
 *port_level = PORT0.PIDR.BIT.B0;
}

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 67 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5.4.6 Function for SPI Transmission/Reception
The function for transmission or reception by the RSPI or SCI, which is generated by the SC, is set to
function tables. When the function is created for the SCI, a chip select signal needs to be output using a
general port. Since the SCI uses the 8-bit communication format, the 16-bit communication format has to be
supported for achieving communications with the RDC. For code examples, see section 7.10.2.3, Example of
Using the SCI. The functions for transmission or reception by the RSPI and SCI are shown in the following
sub-sections as respective examples.

5.4.6.1 When Using the SCI
/* Transmission/reception start processing (code generated by the SC)*/
MD_STATUS R_Config_SCI1_RdcCom_SPI_Master_Send_Receive
(uint8_t * const tx_buf, uint16_t tx_num, uint8_t * const rx_buf, uint16_t
rx_num)
{
 MD_STATUS status = MD_OK;

 if (1U > tx_num)
 {
 status = MD_ARGERROR;
 }
 else
 {

 R_Config_SCI0_Start(); // Start SCI (requires to be added)

 g_sci0_tx_count = tx_num;
 gp_sci0_tx_address = tx_buf;
 gp_sci0_rx_address = rx_buf;
 g_sci0_rx_count = 0U;
 g_sci0_rx_length = rx_num;

 /* Set SMOSI0 pin */
 PORT2.PMR.BYTE |= 0x01U;

 /* Set low to CS port */
 PORT9.PODR.BIT.B2 = 0U; // Select chip: Chip ACTIVE (requires to be
added)

 /* Set TE, TIE, RE, RIE bits simultaneously */
 SCI0.SCR.BYTE |= 0xF0U;
 }

 return (status);
}

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 68 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

5.4.6.2 When Using the RSPI
/* Transmission/reception start processing (code generated by the SC)*/
MD_STATUS R_Config_RSPI0_RdcCom_Send_Receive
(uint16_t * const tx_buf, uint16_t tx_num, uint16_t * const rx_buf)
{
 MD_STATUS status = MD_OK;

 if (tx_num < 1U)
 {
 status = MD_ARGERROR;
 }
 else
 {
 R_Config_RSPI0_RSPI0_Start(); // Start RSPI (requires to be added)

 /* Initialize the global counters */
 gp_rspi0_tx_address = tx_buf;
 g_rspi0_tx_count = tx_num;
 gp_rspi0_rx_address = rx_buf;
 g_rspi0_rx_length = tx_num;
 g_rspi0_rx_count = 0U;

 /* Enable transmit interrupt */
 RSPI0.SPCR.BIT.SPTIE = 1U;

 /* Enable receive interrupt */
 RSPI0.SPCR.BIT.SPRIE = 1U;

 /* Enable error interrupt */
 RSPI0.SPCR.BIT.SPEIE = 1U;

 /* Enable RSPI function */
 RSPI0.SPCR.BIT.SPE = 1U;
 }

 return (status);
}

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 69 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

6. API Functions

6.1 List of API Functions
The driver provides API functions that can be called from the application or middleware. The following tables
list the API functions. For details of API functions, see section 6.2, Descriptions of API Functions.

Table 6-1 API Functions (r_rslv_api.h) (1/4)

File Name Category Interface Function Name Processing
r_rslv_api.h Initialization

System
information

R_RSLV_SetSystemInfo

Input: ST_SYSTEM_PARAM *rdc_sys_param /

System information

ST_USER_PERI_PARAM *user_peri_param /

Setting information of user peripheral module

Output: unsigned char result / Processing result

Selects system information, such as the timer counter

value to be used, from the information passed through

the argument.

R_RSLV_SetFuncTable

Input: unsigned char set_func, / Driver facility

FUNCTION_TABLE user_func_table /

Pointer to functions

Output: unsigned char result / Processing result

Sets the function pointer passed through the argument

to the function table.

R_RSLV_GetRdcDrvSettingInfo

Input: ST_RDC_DRV_SETTING_INFO

*rdc_setting_info /

Pointer to the setting information structure

Output: unsigned char result / Processing result

Obtains the excitation frequency and the maximum

value of the angle detection timer counter specified in

the RDC driver, sets the information in the pointer

variable argument, and reports it to the user.

R_RSLV_MTU_SyncStart

Input: unsigned char start_ch / MTU channel

Output: unsigned char result / Processing result

Writes the value passed through the argument to the

timer counter synchronous start register in the MTU to

simultaneously start the timer counters of the selected

channels of the MTU.

R_RSLV_GetDriverVer

Input: unsigned long *drv_ver /

Pointer to driver version storage buffer

Output: unsigned char result / Processing result

Acquires the RDC driver version information.

Angle error
correction
signal

R_RSLV_CSig_Start

Input: unsigned short phase_diff / Phase shift amount

unsigned short amp_level / Amplitude level

Output: unsigned char result / Processing result

Makes necessary preparations to start outputting the

angle error correction signal including calculation of

the angle error correction duty cycle.

R_RSLV_CSig_Stop

Input: None

Output: unsigned char result / Processing result

Stops outputting the angle error correction signal.

R_RSLV_INT_CSig_UpdatePwmDuty

Input: None

Output: unsigned char result / Processing result

Updates the PWM duty cycle of the angle error

correction signal.

R_RSLV_INT_CSig_SyncStart

Input: None

Output: unsigned char result / Processing result

Starts synchronization between the excitation signal

and angle error correction signal.

R_RSLV_GetCSigStatus

Input: unsigned char *status /

 Pointer to angle error correction signal output

 state to be acquired

Output: unsigned char result / Processing result

Acquires the output state of the angle error correction

signal.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 70 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

Table 6-1 API Functions (r_rslv_api.h) (2/4)

File Name Category Interface Function Name Processing

r_rslv_api.h Angle signal

input

R_RSLV_Capture_Start

Input: None

Output: unsigned char result / Processing result

Starts the angle detection timer.

R_RSLV_INT_GetCaptureCount

Input: None

Output: unsigned char result / Processing result

Acquires the angle detection value (current angle

count), calculates the difference from the previous

value, and then sets it in the variable.

R_RSLV_GetCaptureEdge

Input: unsigned char *cap_edge /

Capture port state

Output: unsigned char result / Processing result

Acquires the information to determine whether the

previous capture was made on a rising edge or a

falling edge.

R_RSLV_GetAngleCountFirstEdge

Input: unsigned short *angle_cnt / Angle

Output: unsigned char result / Processing result

Acquires the current angle count stored in the variable

(on a falling edge).

R_RSLV_GetAngleDifferenceFirstEdge

Input: unsigned short *angle_diff_cnt /

Angle difference

Output: unsigned char result / Processing result

Acquires the difference between the current angle and

the previous angle stored in the variable (on a falling

edge).

R_RSLV_GetAngleCountSecondEdge

Input: unsigned short *angle_cnt / Angle

Output: unsigned char result / Processing result

Acquires the current angle count stored in the variable

(on a rising edge).

R_RSLV_GetAngleDifferenceSecondEdge

Input: unsigned short *angle_diff_cnt /

Angle difference

Output: unsigned char result / Processing result

Acquires the difference between the current angle and

the previous angle stored in the variable (on a rising

edge).

Excitation

signal

R_RSLV_ESig_Start

Input: None

Output: unsigned char result / Processing result

Starts outputting the excitation signal.

R_RSLV_ESig_Stop

Input: None

Output: unsigned char result / Processing result

Stops outputting the excitation signal.

R_RSLV_EsigCapStartTiming

Input: unsigned short esig_start_tcnt /

ESIG timer counter value

unsigned short cap_start_tcnt /

Angle detection timer counter value

Output: unsigned char result / Processing result

Adjusts the timing to start outputting the excitation

signal and the timing to start the angle detection timer.

R_RSLV_INT_ESigCounter

Input: None

Output: unsigned char result / Processing result

Starts counting down by the wait timer in the automatic

calibration processing.

Phase
adjustment
signals

R_RSLV_Phase_AdjStart

Input: None

Output: unsigned char result / Processing result

Starts outputting the phase adjustment signals.

R_RSLV_Phase_AdjStop

Input: None

Output: unsigned char result / Processing result

Stops outputting the phase adjustment signals.

R_RSLV_Phase_AdjUpdateBuff

Input: unsigned short duty / Duty value

unsigned char ch / Selection of phase A or

phase B

Output: unsigned char result / Processing result

Sets the duty cycle of a phase adjustment signal in the

buffer.

R_RSLV_Phase_AdjUpdate

Input: None

Output: unsigned char result / Processing result

Sets the duty cycle of a phase adjustment signal in the

register.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 71 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

Table 6-1 API Functions (r_rslv_api.h) (3/4)

File Name Category Interface Function Name Processing

r_rslv_api.h Phase

adjustment

signals

R_RSLV_Phase_AdjReadBuff

Input: unsigned short *duty / Read duty value

unsigned char ch / Specification of phase A or

B to be read

Output: unsigned char result / Processing result

Reads the duty cycle of the phase adjustment signal

from the register.

RDC settings R_RSLV_Rdc_VariableInit

Input: unsigned char *u1_init_data /

RDC initialization command table

Output: unsigned char result / Processing result

Sets the initial values of RDC communications.

R_RSLV_Rdc_Init_Sequence

Input: unsigned short *init_status /

Communication state

Output: unsigned char result / Processing result

Makes initial settings of the RDC.

R_RSLV_Rdc_Communication

Input: None

Output: unsigned char result / Processing result

Handles communications with the RDC.

A communication sequence is provided and repeated

calls of this function cause progress through the

sequence.

R_RSLV_Rdc_RegWrite

Input: unsigned char *write_status / Write state

Output: unsigned char result / Processing result

Writes a value to the RDC register buffer variable.

R_RSLV_Rdc_RegRead

Input: unsigned char address / Read address

Output: unsigned char result / Processing result

Starts reading data from the RDC register.

Note: This function is a trigger to start reading.

R_RSLV_Rdc_ChkIfRun

Input: None

Output: unsigned char result / Processing result

Returns the RDC register access state as a return

value.

R_RSLV_Rdc_GetRegisterVal

Input: unsigned char *rd_data /

Data read from variable

unsigned char address / Read address

Output: unsigned char result / Processing result

Reads the RDC register value from the variable.

R_RSLV_Rdc_SetRegisterVal

Input: unsigned char wt_data /

Data written to variable

unsigned char address / Write address

Output: unsigned char result / Processing result

Writes the RDC register value to the variable.

R_RSLV_Rdc_CallComEndCb

Input: None

Output: unsigned char result / Processing result

Performs the callback processing for the RDC

communication transmit/receive end interrupt.

R_RSLV_Rdc_CallErrorCb

Input: None

Output: unsigned char result / Processing result

Performs the callback processing for the RDC

communication error interrupt.

R_RSLV_RdcCom_GetErrorInfo

Input: unsigned char *err_info /

RDC communication error information

Output: unsigned char result / Processing result

Acquires information about whether an RDC

communication error has occurred.

R_RSLV_Rdc_AlarmCancelStart

Input: None

Output: unsigned char result / Processing result

Starts the RDC alarm cancellation sequence.

R_RSLV_Rdc_AlarmCancel

Input: None

Output: unsigned char result / Processing result

Controls the RDC alarm cancellation sequence.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 72 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

Table 6-1 API Functions (r_rslv_api.h) (4/4)

File Name Category Interface Function Name Processing

r_rslv_api.h Automatic

calibration of

errors

R_RSLV_ADJST_GainPhase

Input: unsigned char u1_call_state /

Adjustment execution request

Output: st_adjst_gainphase_return_t / Processing

result

Performs resolver signal gain adjustment and resolver

signal phase adjustment.

R_RSLV_ADJST_Carrier

Input: st_adjst_carrier_arg_t arg_value /

Adjustment execution request

Output: st_adjst_carrier_return_t return_val /

Adjustment processing execution state or

processing result

Adjusts the angle error correction signal.

R_RSLV_ADJST_SetPtrFunc

Input: st_ptr_func_arg_t *ptr_arg /

Pointer to callback function

Output: None

Sets the pointer to the user-created callback function

and variables in the automatic calibration facility.

R_RSLV_ADJST_Ad_Processing

Input: None

Output: unsigned char gs_u1_ad_condition /

A/D conversion execution state

Returns 1 during A/D conversion of the monitoring

signal or returns 0 in other cases.

R_RSLV_ADJST_SetFilterDelay

Input: float bpf_delay_deg / phase delay by BPF

float csig_delay_deg /

phase delay by LPF for the angle error

correction signal

Output: unsigned char result / Processing result

Sets the phase delay by BPF and the phase delay by

LPF for the angle error correction signal.

Detection of

disconnection

R_RSLV_DiscDetection_Seq

Input: st_rdc_ddmnt_arg_t arg_value /

Disconnection detection parameter

Output: unsigned char return_valt / Operation state

Performs processing for the disconnection detection

sequence.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 73 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

6.2 Descriptions of API Functions
6.2.1 API Function for Setting up a Function Table

Item Description
Function
name

R_RSLV_SetFuncTable

Argument unsigned char set_func,
ST_FUNCTION_TABLE user_func_table

Driver facility to which a function table is set
Function table

Return
value

unsigned char Processing result

Function Sets up a function table to be used in the driver.
• Specifies a driver facility.
• Specifies a function table.

Remark ST_FUNCTION_TABLE is a structure. For details on setting up a function table, see section
5.4, Setting up Function Tables. For possible combinations of peripheral modules and driver
facilities, see section 5.2, List of Peripheral Modules Assigned to Driver Facilities
(Recommended).

6.2.2 API Function for Specifying System Information

Item Description
Function
name

R_RSLV_SetSystemInfo

Argument ST_SYSTEM_PARAM *rdc_sys_param,
ST_USER_PERI_PARAM *user_peri_param

System setting information
Count clock source of used peripheral
module

Return
value

unsigned char Processing result

Function Specifies the following system information.
• Frequency of the excitation signal
• Frequency of the output angle error correction signal
• Number of times the angle error correction duty cycle is to be updated
• Motor type
• Output mode of the MNTOUT pin of the RDC
• Count clock source (MHz) of the peripheral module assigned for outputting the excitation

signal
• Count clock source (MHz) of the peripheral module assigned for outputting the angle error

correction signal
• Count clock source (MHz) of the peripheral module assigned for inputting the angle signal
• Count clock source (MHz) of the peripheral module assigned for updating the duty cycle of

the angle error correction signal
• Count clock source (MHz) of the peripheral module assigned for outputting the phase

adjustment signal A
• Count clock source (MHz) of the peripheral module assigned for outputting the phase

adjustment signal B
Remark ST_SYSTEM_PARAM is a structure. For details of system information settings, see section

6.3.2, Structures for R_RSLV_SetSystemInfo.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 74 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

6.2.3 API Function for Acquiring the RDC Driver Setting Information
Item Description
Function
name

R_RSLV_GetRdcDrvSettingInfo

Argument ST_RDC_DRV_SETTING_INFO
*rdc_setting_info

Pointer to the driver setting information
structure

Return
value

unsigned char Processing result

Function Acquires information including counter values set in the driver.
• Frequency of the excitation signal
• Maximum value of the angle detection timer counter
• Motor type

Remark ST_RDC_DRV_SETTING_INFO is a structure. For details, see section 6.3.3, Structure for
R_RSLV_GetRdcDrvSettingInfo.

6.2.4 API Function for Controlling Synchronous Starting of the MTU3 Timer Channels

Item Description
Function
name

R_RSLV_MTU_SyncStart

Argument unsigned char start_ch Channels to be started simultaneously
(Multiple channels should be specified.)

Return
value

unsigned char Processing result

Function Simultaneously starts the specified channels of MTU3.
Remark If MTU3_0 is used to generate the angle error correction signal, do not start it and the angle

error correction signal timer simultaneously.

6.2.5 API Function for Acquiring the RDC Driver Version Information

Item Description
Function
name

R_RSLV_GetDriverVer

Argument unsigned long *drv_ver Pointer to the RDC driver version storage
buffer

Return
value

unsigned char Processing result

Function Sets the RDC driver version in the specified buffer.
Remark Example: When the value is 0x00010000, the RDC driver version is Rev. 1.00.00.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 75 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

6.2.6 API Function for Starting the Output of the Angle Error Correction Signal
Item Description
Function
name

R_RSLV_CSig_Start

Argument unsigned short phase_diff
unsigned short amp_level

Phase shift amount
Amplitude level

Return
value

unsigned char Processing result (the "normal end"
information is always returned)

Function Outputs the angle error correction signal according to the phase shift amount and amplitude
level specified by arguments.
For the ranges of setting values, see section 3.11.3, Adjustment of the Angle Error Correction
Signal.

Remark • This API function sets the output of the angle error correction signal according to the
arguments.
Before changing the settings, be sure to execute the R_RSLV_CSig_Stop function to stop
the signal.

6.2.7 API Function for Stopping the Output of the Angle Error Correction Signal

Item Description
Function
name

R_RSLV_CSig_Stop

Argument void
Return
value

unsigned char Processing result (the "normal end"
information is always returned)

Function Stops outputting the angle error correction signal.
Remark • Calling this API function immediately stops the signal output.

• To change the correction signal settings, call this API function in advance to stop the
signal output, and then execute the R_RSLV_CSig_Start function to re-set the correction
signal settings.

6.2.8 API Function for Updating the Duty Cycle of the Angle Error Correction Signal

Item Description
Function
name

R_RSLV_INT_CSig_UpdatePwmDuty

Argument void
Return
value

unsigned char Processing result

Function Updates the PWM duty cycle of the angle error correction signal. Call this API function from
the processing of the timer interrupt for updating the angle error correction duty cycle.

Remark

6.2.9 API Function for Synchronously Starting the Angle Error Correction Signal

Item Description
Function
name

R_RSLV_INT_CSig_SyncStart

Argument void
Return
value

unsigned char Processing result

Function Starts outputting the angle error correction signal in synchronization with the excitation signal.
Call this API function from the interrupt processing in synchronization with the excitation
signal.

Remark

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 76 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

6.2.10 API Function for Acquiring the Output State of the Angle Error Correction Signal
Item Description
Function
name

R_RSLV_GetCSigStatus

Argument unsigned char *status Output state of the angle error correction
signal

Return
value

unsigned char Processing result

Function Acquires the output state of the angle error correction signal.
E_OUTPUT_SIGNAL_OFF: Signal output is off.
E_OUTPUT_SIGNAL_ON: Signal output is on.
E_OUTPUT_SIGNAL_START: Start signal output.

Remark

6.2.11 API Function for Starting the Angle Detection Timer

Item Description
Function
name

R_RSLV_Capture_Start

Argument void
Return
value

unsigned char Processing result

Function Enables input capture facility interrupts and starts the timer.
Remark

6.2.12 API Function for Acquiring the Angle Detection Value

Item Description
Function
name

R_RSLV_INT_GetCaptureCount

Argument void
Return
value

unsigned char Processing result

Function Acquires the counter value detected by the input capture facility.
• The counter value can be acquired using the following API functions.

Current position (falling edge): R_RSLV_GetAngleCountFirstEdge
Difference between previous and current positions (between falling edges):
R_RSLV_GetAngleDifferenceFirstEdge
Current position (rising edge): R_RSLV_GetAngleCountSecondEdge
Difference between previous and current positions (between rising edges):
R_RSLV_GetAngleDifferenceSecondEdge

• Trigger edge information can be acquired using the following API function.
R_RSLV_GetCaptureEdge

Remark

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 77 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

6.2.13 API Function for Acquiring the Trigger Information of the Interrupt for Acquiring the
Angle Detection Value

Item Description
Function
name

R_RSLV_GetCaptureEdge

Argument unsigned char *cap_edge Variable to store angle detection trigger
information

Return
value

unsigned char Processing result

Function Acquires the trigger information of the interrupt generated by angle detection.
(Rising edge or falling edge can be determined according to the port level.)

Remark

6.2.14 API Function for Acquiring the Resolver Angle Count (Acquisition Trigger: Falling

Edge)
Item Description
Item Description
Function
name

R_RSLV_GetAngleCountFirstEdge Function name

Argument unsigned short *angle_cnt Argument
Return
value

unsigned char

Function • Acquires the counter value detected by the input capture facility.

6.2.15 API Function for Acquiring the Resolver Angle Difference Count (Acquisition Trigger:

Falling Edge)
Item Description
Function
name

R_RSLV_GetAngleDifferenceFirstEdge

Argument signed short *angle_diff_cnt Pointer to the difference value storage
Return
value

unsigned char Processing result

Function Acquires the difference between the previous captured counter value and the current
captured value.

Remark • The counter values detected on the falling edges of the angle signal are used for
calculation.

• Use the R_RSLV_INT_GetCaptureCount function to acquire the counter value.

6.2.16 API Function for Acquiring the Resolver Angle Count (Acquisition Trigger: Rising

Edge)
Item Description
Function
name

R_RSLV_GetAngleCountSecondEdge

Argument unsigned short *angle_cnt Pointer to the counter value storage
Return
value

unsigned char Processing result

Function Acquires the counter value detected by the input capture facility.
Remark • The counter value detected on the rising edge of the angle signal is acquired.

• Use the R_RSLV_INT_GetCaptureCount function to acquire the counter value.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 78 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

6.2.17 API Function for Acquiring the Resolver Angle Difference Count (Acquisition Trigger:
Rising Edge)

Item Description
Function
name

R_RSLV_GetAngleDifferenceSecondEdge

Argument signed short *angle_diff_cnt Pointer to the difference value storage
Return
value

unsigned char Processing result

Function Acquires the difference between the previous captured counter value and the current
captured value.

Remark • The counter values detected on the rising edges of the angle signal are used for
calculation.

• Use the R_RSLV_INT_GetCaptureCount function to acquire the counter value.

6.2.18 API Function for Starting the Output of the Excitation Signal

Item Description
Function
name

R_RSLV_ESig_Start

Argument void
Return
value

unsigned char Processing result

Function Starts outputting the excitation signal.
Remark

6.2.19 API Function for Stopping the Output of the Excitation Signal

Item Description
Function
name

R_RSLV_ESig_Stop

Argument void
Return
value

unsigned char Processing result

Function Stops outputting the excitation signal.
Remark When the excitation signal is stopped, the angle error correction signal and the angle

detection timer also stop.

6.2.20 API Function for Setting the Timing to Start the Excitation Signal Output

Item Description
Function
name

R_RSLV_ESigCapStartTiming

Argument unsigned short esig_start_tcnt
unsigned short cap_start_tcnt

Setting of the excitation signal output start
timing
Setting of the timing to start the angle
detection timer

Return
value

unsigned char Processing result

Function Sets the timing to start outputting the excitation signal and the timing to start the angle
detection timer.

Remark If the specified value is greater than the upper limit of the timing value, the upper limit value is
set and the "NG" information is returned as the processing result.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 79 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

6.2.21 API Function for Counting the Wait Time
Item Description
Function
name

R_RSLV_INT_ESigCounter

Argument void
Return
value

unsigned char Processing result

Function Starts counting down by the wait timer in the automatic calibration processing.
Remark Counting down is performed only in the automatic calibration processing.

6.2.22 API Function for Starting the Output of the Phase Adjustment Signals

Item Description
Function
name

R_RSLV_Phase_AdjStart

Argument void
Return
value

unsigned char Processing result

Function Starts outputting the phase adjustment signals.
Remark This API function starts the timers for the phase adjustment signals specified by F_PHASE_A

and F_PHASE_B.

6.2.23 API Function for Stopping the Output of the Phase Adjustment Signals

Item Description
Function
name

R_RSLV_Phase_AdjStop

Argument void
Return
value

unsigned char Processing result

Function Stops outputting the phase adjustment signals.
Remark

6.2.24 API Function for Setting the Phase Adjustment Signal Duty Cycle in the Buffer

Item Description
Function
name

R_RSLV_Phase_AdjUpdateBuff

Argument unsigned short duty
unsigned char ch

Duty value to be set
Selection of phase A or phase B
(0: Phase A, 1: Phase B)

Return
value

unsigned char Processing result

Function Sets the duty cycle of the phase adjustment signal in the buffer.
Remark

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 80 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

6.2.25 API Function for Setting the Phase Adjustment Signal Duty Cycle in the Register
Item Description
Function
name

R_RSLV_Phase_AdjUpdate

Argument void
Return
value

unsigned char Processing result

Function Sets the duty cycle of the phase adjustment signal in the register.
Remark This API function updates the duty value when the duty value set in the buffer differs from the

current duty value.

6.2.26 API Function for Reading the Phase Adjustment Signal Duty Cycle from the Buffer

Item Description
Function
name

R_RSLV_Phase_AdjReadBuff

Argument unsigned short *duty
unsigned char ch

Duty value of the phase adjustment signal
Selection of phase A or phase B
(0: Phase A, 1: Phase B)

Return
value

unsigned char Processing result

Function Reads the duty cycle of the phase adjustment signal from the storage buffer.
Remark

6.2.27 API Function for Setting RDC Initial Values

Item Description
Function
name

R_RSLV_Rdc_VariableInit

Argument unsigned char *u1_init_data Pointer to a set of data for initializing RDC
communications

Return
value

unsigned char Processing result

Function Sets data for initializing RDC communications.
Remark RDC registers to be initialized

PS1 (02h: Power-saving control register 1)
PS2 (04h: Power-saving control register 2)
PS3 (0Ah: Power-saving control register 3)
ALMOUT (16h: ALARM# output setting register)
GCGSL (2Eh: Differential amplification circuit gain selection register)
CSACTL (42h: Shunt current amplification circuit control register)

6.2.28 API Function for Executing the RDC Initialization Sequence

Item Description
Function
name

R_RSLV_Rdc_Init_Sequence

Argument unsigned short *init_status Initialization processing state ("processing in
progress" or "processing terminated")

Return
value

unsigned char Processing result

Function Executes the RDC initialization sequence.
Remark

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 81 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

6.2.29 API Function for Handling RDC Communications
Item Description
Function
name

R_RSLV_Rdc_Communication

Argument void
Return
value

unsigned char Processing result

Function Handles communications with the RDC.
The sequence of communications is made to progress through repeated calls of this API
function from the application.

Remark Call this API function periodically to control the sequence of communications.

6.2.30 API Function for Writing to an RDC Register

Item Description
Function
name

R_RSLV_Rdc_RegWrite

Argument unsigned char *write_status Write state
Return
value

unsigned char Processing result

Function Writes the value specified by an argument to the specified RDC register.
Remark

6.2.31 API Function for Reading from an RDC Register

Item Description
Function
name

R_RSLV_Rdc_RegRead

Argument unsigned char address RDC register address to be read
Return
value

unsigned char Processing result

Function Reads the RDC register value from the address specified by the argument and stores it in the
buffer.

Remark Use the R_RSLV_Rdc_GetRegisterVal function to acquire the read data.

6.2.32 API Function for Acquiring the RDC Register Access State

Item Description
Function
name

R_RSLV_Rdc_ChkIfRun

Argument void
Return
value

unsigned char Processing result

Function Returns the processing result regarding whether the RDC register was accessed (read or
written to).

Remark

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 82 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

6.2.33 API Function for Reading Data from the RDC Register Buffer
Item Description
Function
name

R_RSLV_Rdc_GetRegisterVal

Argument unsigned char *rd_data
unsigned char address

Pointer to the read data
RDC register address to be read

Return
value

unsigned char Processing result

Function Reads the buffer value of the RDC register address specified by an argument.
Remark

6.2.34 API Function for Writing Data to the RDC Register Buffer

Item Description
Function
name

R_RSLV_Rdc_SetRegisterVal

Argument unsigned char wt_data
unsigned char address

Data to be written
RDC register address to be written to

Return
value

unsigned char Processing result

Function Writes the specified data to the buffer for the RDC register at the address specified by an
argument.

Remark

6.2.35 API Function for Calling the Callback Processing for the RDC Communication

Transmit/Receive End Interrupt
Item Description
Function
name

R_RSLV_Rdc_CallComEndCb

Argument void
Return
value

unsigned char Processing result

Function Calls the transmit/receive end interrupt callback processing and terminates read or write
access from the driver to the RDC.

Remark Call this API function from the transmit interrupt processing or receive interrupt processing.

6.2.36 API Function for Calling the Callback Processing for the RDC Communication Error

Interrupt
Item Description
Function
name

R_RSLV_Rdc_CallErrorCb

Argument void
Return
value

unsigned char Processing result

Function Calls the error interrupt callback processing.
Remark

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 83 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

6.2.37 API Function for Reporting Errors in RDC Communications
Item Description
Function
name

R_RSLV_RdcCom_GetErrorInfo

Argument unsigned char *err_info Storage of RDC communication error
information

Return
value

unsigned char Processing result

Function Acquires error information in RDC communications.
RSLV_MD_OK: No error occurred.
RSLV_MD_ERROR: An error occurred.

Remark

6.2.38 API Function for Starting RDC Alarm Cancellation

Item Description
Function
name

R_RSLV_Rdc_AlarmCancelStart

Argument void
Return
value

unsigned char Processing result

Function Starts the processing for cancelling an alarm in the RDC.
Remark

6.2.39 API Function for Controlling the RDC Alarm Cancellation Sequence

Item Description
Function
name

R_RSLV_Rdc_AlarmCancel

Argument void
Return
value

unsigned char Processing result

Function Performs the sequence for cancelling the alarm detection state of the RDC.
Remark Call this API function periodically for sequence control.

6.2.40 API Function for Adjusting the Gain and Phase of the Resolver Signals

Item Description
Function
name

R_RSLV_ADJST_GainPhase

Argument unsigned char u1_call_state User-specified state
Selection of whether to perform or cancel the
gain and phase adjustment of the resolver
signals
0: Performed

(Constant: ADJST_USRREQ_RUN)
1: Cancelled

(Constant: ADJST_USRREQ_STOP)
Return
value

st_adjst_gainphase_return_t Processing result

Function Performs the sequence for adjusting the gain and phase of the resolver signals.
Remark st_adjst_gainphase_return_t is a structure. For details of the information regarding the end of

resolver signal gain and phase adjustment, the gain adjustment result, the phase adjustment
result, see section 6.3.4, Structure for R_RSLV_ADJST_GainPhase.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 84 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

6.2.41 API Function for Adjusting the Angle Error Correction Signal
Item Description
Function
name

R_RSLV_ADJST_Carrier

Argument st_adjst_carrier_arg_t arg_value User-specified state
Motor control information

Return
value

st_adjst_carrier_return_t Processing result

Function Performs the sequence for adjusting the angle error correction signal.
Remark st_adjst_carrier_arg_t and st_adjst_carrier_return_t are structures. For details of these

structures, see section 6.3.5, Structures for R_RSLV_ADJST_Carrier.

6.2.42 API Function for Setting the Pointer to the User-Created Callback Function

Item Description
Function
name

R_RSLV_ADJST_SetPtrFunc

Argument st_ptr_func_arg_t *ptr_arg Pointer to the user-created function
Return
value

unsigned char Processing result

Function Sets the pointer to the user-created callback function in the pointer variable used in the
automatic calibration processing.

Remark st_ptr_func_arg_t is a structure. For the setting of the callback function pointer, see section
6.3.6, Structure for R_RSLV_ADJST_SetPtrFunc.

6.2.43 API Function for Acquiring the A/D Conversion State

Item Description
Function
name

R_RSLV_ADJST_Ad_Processing

Argument void
Return
value

unsigned char Processing result (A/D conversion execution
state)

Function Returns the A/D conversion execution state. While A/D conversion is in progress, 1 is
returned. In other cases, 0 is returned.

Remark

6.2.44 API Function for Setting the Phase Delay

Item Description
Function
name

R_RSLV_ADJST_SetFilterDelay

Argument float bpf_delay_deg
float csig_delay_deg

phase delay by BPF [degree]
phase delay by LPF for the angle error
correction signal [degree]

Return
value

unsigned char Processing result

Function Sets the phase delay by BPF and the phase delay by LPF for the angle error correction
signal.

Remark When the user sets the phase delay values, call this function after calling
R_RSLV_SetSystemInfo.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 85 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

6.2.45 API Function for Detecting Disconnection
Item Description
Function
name

R_RSLV_DiscDetection_Seq

Argument st_rdc_ddmnt_arg_t arg_value Structure for processing detection of
disconnection

Return
value

unsigned char Processing result

Function Performs the sequence for detecting disconnection.
Remark st_rdc_ddmnt_arg_t is a structure. For details of the structure, see section 6.3.7, Structure for

R_RSLV_DiscDetection_Seq.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 86 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

6.3 Structures
The following API functions use respective structures. This section describes the structures for these API
functions.

• R_RSLV_SetFuncTable (section 6.2.1)
• R_RSLV_SetSystemInfo (section 6.2.2)
• R_RSLV_GetRdcDrvSettingInfo (section 6.2.3)
• R_RSLV_ADJST_GainPhase (section 6.2.40)
• R_RSLV_ADJST_Carrier (section 6.2.41)
• R_RSLV_ADJST_SetPtrFunc (section 6.2.42)
• R_RSLV_DiscDetection_Seq (section 6.2.45)

6.3.1 Structure for R_RSLV_SetFuncTable
The definitions of the set_func argument and the ST_FUNCTION_TABLE structure for the
R_RSLV_SetFuncTable API function are shown below.

API function: R_RSLV_SetFuncTable (unsigned char set_func,
ST_FUNCTION_TABLE user_func_table)

Table 6-2 Macro-Defined Names Specified in set_func of R_RSLV_SetFuncTable

Variable Name Type Description
Defined
Value Macro-Defined Name

set_func unsigned char Driver facility ESIG1 0 F_ESIG1

ESIG2_1 1 F_ESIG2_1

ESIG2_2 2 F_ESIG2_2

ESIG12 3 F_ESIG12

CSIG 4 F_CSIG

PHASE_A 5 F_PHASE_A

PHASE_B 6 F_PHASE_B

PHASE_AB 7 F_PHASE_AB

CAPTURE 8 F_CAPTURE

CSIG_UPD_TIMER 9 F_CSIG_UPD_TIMER

RDC_COM 10 F_RDC_COM

RDC_CLK 11 F_RDC_CLK

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 87 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

Table 6-3 Structure Definition for R_RSLV_SetFuncTable

Structure Member Name Type Description
Defined
Value

Macro-Defined
Name

ST_FUNCTION_

TABLE

(argument)

void (*Start)(unsigned char

u1_sync_start)

void Pointer to the function for

starting the timer

— — —

void (*Stop)(void) void Pointer to the function for

stopping the timer

— — —

void (*GetTcnt)(unsigned short *tcnt) void Pointer to the function for

acquiring the timer value

— — —

void (*SetTcnt)(unsigned short tcnt) void Pointer to the function for

setting the timer value

— — —

void (*GetDuty)(unsigned short *duty) void Pointer to the function for

acquiring the duty value

— — —

void (*SetDuty)(unsigned short duty) void Pointer to the function for

setting the duty value

— — —

void (*SetDuty_2val)(unsigned short ch,

unsigned short duty)

void Pointer to the function for

setting the duty value (for

PHASE_AB)

— — —

ST_FUNCTION_

TABLE

(argument)

void (*GetCaptureVal)(unsigned short

*capture_val)

void Pointer to the function for

acquiring the angle detection

value

— — —

void (*GetPortLevel)(unsigned char

*port_level)

void Pointer to the function for

acquiring the port level

— — —

void (*ComSendReceive)

(unsigned short *tx_buf,

unsigned short tx_num,

unsigned short *rx_buf)

void Pointer to the function for

starting RDC

transmission/reception

— — —

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 88 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

6.3.2 Structures for R_RSLV_SetSystemInfo
The structure definitions of the ST_SYSTEM_PARAM and ST_USER_PERI_PARAM arguments for the
R_RSLV_SetSystemInfo API function are shown below.

API function: R_RSLV_SetSystemInfo (ST_SYSTEM_PARAM *rdc_sys_param,
ST_USER_PERI_PARAM *user_peri_param)

Table 6-4 Structure Definitions for R_RSLV_SetSystemInfo

Structure Member Name Type Description
Defined
Value Macro-Defined Name

ST_SYSTEM_

PARAM

u1_esig_freq unsigned

char

Frequency of the

excitation signal

5 kHz 1 R_ESIG_SET_FREQ_5K

10 kHz 2 R_ESIG_SET_FREQ_10K

20 kHz 3 R_ESIG_SET_FREQ_20K

u1_csig_freq unsigned

char

Frequency of the

output angle error

correction signal

200 kHz 1 R_CSIG_SET_FREQ_200K

400 kHz 2 R_CSIG_SET_FREQ_400K

u1_csig_upd_duty_

cycle

unsigned

char

Number of update

times of the angle

error correction duty

cycle

Two times 1 R_CSIG_SET_DCNT_02

Four times 2 R_CSIG_SET_DCNT_04

u1_mtu3_sync_start unsigned

char

Excitation signal

timer and angle

detection timer start

flag

Synchronous

start*1

0 SYNCMD_ESIG_API

Synchronous

start*2

1 SYNCMD_OTHER_API

u1_motor_kind unsigned

char

Motor type BLDC type 1 MOTOR_BLDC

Stepper type 2 MOTOR_STM

u1_mntout_type unsigned

char

Output mode of the

MNTOUT pin of the

RDC

AC output 1 RSLV_MNTOUT_TYPE_AC

DC output 2 RSLV_MNTOUT_TYPE_DC

ST_USER_PERI_

PARAM

f_esig1_peri_clk_src float Count clock source of the peripheral

module assigned for outputting the

excitation signal

— —

f_csig_peri_clk_src float Count clock source of the peripheral

module assigned for outputting the

angle error correction signal

— —

f_capture_peri_clk_src float Count clock source of the peripheral

module assigned for inputting the angle

signal

— —

f_csig_upd_timer_peri_

clk_src

float Count clock source of the peripheral

module assigned for updating the duty

cycle of the angle error correction

signal

— —

f_phase1_peri_clk_src float Count clock source of the peripheral

module assigned for outputting the

phase adjustment signal A

— —

f_phase2_peri_clk_src float Count clock source of the peripheral

module assigned for outputting the

phase adjustment signal B

— —

Note 1. When SYNCMD_ESIG_API is specified, start counting by the timer for the excitation signal and the
timer for angle detection in the API function for starting the output of the excitation signal.

Note 2. When SYNCMD_OTHER_API is specified, call the API function for starting the angle detection
timer from the API function for controlling synchronous starting of the MTU3 timer channels or the
excitation signal interrupt processing and start counting.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 89 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

6.3.3 Structure for R_RSLV_GetRdcDrvSettingInfo
The structure definition of the ST_RDC_DRV_SETTING_INFO argument for the
R_RSLV_GetRdcDrvSettingInfo API function is shown below.

API function: R_RSLV_GetRdcDrvSettingInfo (ST_RDC_DRV_SETTING_INFO *rdc_setting_info)

Table 6-5 Structure Definition for R_RSLV_GetRdcDrvSettingInfo

Structure Member Name Type Description Remark

ST_RDC_DRV_SETTING_INFO f_esig_freq float Excitation signal frequency

5 kHz: 5000, 10 kHz: 10000, 20 kHz: 20000

u2_capture_cnt_max unsigned

short

Maximum value of the angle detection timer

counter

u1_motor_kind unsigned

char

Motor Type Defined

Value

Macro-Defined

Name

BLDC type 1 MOTOR_BLDC

Stepper type 2 MOTOR_STM

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 90 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

6.3.4 Structure for R_RSLV_ADJST_GainPhase
The structure definition of the st_adjst_gainphase_return_t return value for the R_RSLV_ADJST_GainPhase
API function is shown below.

API function: st_adjst_gainphase_return_t R_RSLV_ADJST_GainPhase (unsigned char
u1_call_state)

Table 6-6 Structure Definition for R_RSLV_ADJST_GainPhase (1/2)

Structure Member Name Type Description

Defined
Value Macro-Defined Name

st_adjst_gainphase_

return_t

(return value)

u1_adjst_state unsigned

char

Execution in progress Waiting for internal

processing

0 ADJST_APIINFO_RUN_MODE

Normal end Phase adjustment is

successfully completed.

1 ADJST_APIINFO_END_NORMAL

Gain adjustment:

Terminated with an

upper-limit amplification

error

When the adjustment result

does not fall within the

acceptable range even if the

upper-limit amplification value

of the resolver phase A signal

of the RDC is reached

3 ADJST_APIINFO_ERR_GAIN_HI_

LMT

Gain adjustment:

Terminated with a

lower-limit amplification

error

When the adjustment result

does not fall within the

acceptable range even if the

lower-limit amplification value

of the resolver phase A signal

of the RDC is reached

4 ADJST_APIINFO_ERR_GAIN_

LO_LMT

Gain adjustment:

Terminated with an

unstable gain error

When the adjustment result of

the resolver phase A signal of

the RDC does not fall within

the acceptable range

5 ADJST_APIINFO_ERR_GAIN_

SWAY

Phase adjustment:

Terminated with a

phase A upper-limit or

phase B lower-limit duty

value error

When the adjustment result

does not fall within the

acceptable range even if the

phase A upper-limit or phase

B lower-limit duty value is

reached

6 ADJST_APIINFO_ERR_PHASE_

AHI_BLO

Phase adjustment:

Terminated with a

phase A lower-limit or

phase B upper-limit

duty value error

When the adjustment result

does not fall within the

acceptable range even if the

phase A lower-limit or phase

B upper-limit duty value is

reached

7 ADJST_APIINFO_ERR_PHASE_

ALO_BHI

Phase adjustment:

Terminated with an

unstable phase error

When the phase B duty cycle

does not reach the upper-limit

or lower-limit value and the

adjustment result does not fall

within the acceptable range

8 ADJST_APIINFO_ERR_PHASE_

SWAY

Phase adjustment:

Terminated with a

phase adjustment error

When the difference between

phase A count and phase B

count exceeds the acceptable

adjustment range

9 ADJST_APIINFO_ERR_PHASE_

OUT_RANGE

Gain or phase

adjustment:

Terminated with an

RDC error

When acquisition of the

monitoring signal or phase A

or phase B count is not

successful

10 ADJST_APIINFO_ERR_RDC

Terminated by

cancellation

When execution is cancelled

by the u1_call_state setting

13 ADJST_APIINFO_END_USER_

STOP

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 91 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

Table 6-6 Structure Definition for R_RSLV_ADJST_GainPhase (2/2)

Structure Member Name Type Description

Defined
Value Macro-Defined Name

st_adjst_gainphase_

return_t

(return value)

u1_res_dlcgsl unsigned

char
u1_adjst_state =

"execution in progress

(0)"

— 0xFF —

u1_adjst_state =

"normal end (1)"
RDC register DLCGSL

adjustment result
0 to 31 —

u1_adjst_state =

"error (3 to 10, or 13)"
Value of the RDC register

DLCGSL specified by the

user before adjustment

— —

u2_res_a_duty unsigned

short
u1_adjst_state =

"execution in progress

(0)"

— 0xFFFF —

u1_adjst_state =

"normal end (1)"
Result of PWM duty cycle

adjustment for phase A [%]
5 to 90 —

u1_adjst_state =

"error (3 to 10, or 13)"
Phase A PWM duty cycle

specified by the user before

adjustment

— —

u2_res_b_duty unsigned

short

u1_adjst_state =

"execution in progress

(0)"

— 0xFFFF —

u1_adjst_state =

"normal end (1)"

Result of PWM duty cycle

adjustment for phase B [%]

5 to 90 —

u1_adjst_state =

"error (3 to 10, or 13)"

Phase B PWM duty cycle

specified by the user before

adjustment

— —

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 92 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

6.3.5 Structures for R_RSLV_ADJST_Carrier
The structure definitions of the st_adjst_carrier_return_t return value and the st_adjst_carrier_arg_t argument
for the R_RSLV_ADJST_Carrier API function are shown below.

API function: st_adjst_carrier_return_t R_RSLV_ADJST_Carrier (st_adjst_carrier_arg_t arg_value)

Table 6-7 Structure Definitions for R_RSLV_ADJST_Carrier

Structure

Member
Name Type Description

Defined
Value Macro-Defined Name

st_adjst_carrier_return_t

(return value)

adjst_state unsigned

char

Angle error correction

signal adjustment state

Execution in progress 0 ADJST_APIINFO_RUN_MODE

Normal end 1 ADJST_APIINFO_END_NORMAL

Waiting for control completion 2 ADJST_APIINFO_WAITING

Terminated with an angle

error correction error

11 ADJST_APIINFO_ERR_CARRIER

Terminated with a motor

rotation error

12 ADJST_APIINFO_ERR_MOTOR

Terminated by cancellation 13 ADJST_APIINFO_END_USER_

STOP

req_mtr_ctrl unsigned

char

Motor control request

for angle error

correction signal

adjustment

No control request 0 ADJST_APIREQ_NONE

Position control request 1 ADJST_APIREQ_POS_CTRL

Position control stop request 2 ADJST_APIREQ_POS_STOP

Speed control request 3 ADJST_APIREQ_SPD_CTRL

Speed control stop request 4 ADJST_APIREQ_SPD_STOP

mtr_ctrl_data unsigned

short

req_mtr_ctrl (1) Position control angle 0 to 360 —

req_mtr_ctrl (3) Speed data [rpm] — —

res_ccgsl unsigned

char

Adjustment result Adjustment in progress 0xFF —

Adjustment completed 0 to 5 —

Terminated with an error User-set

value

—

res_csig_shift unsigned

short

Adjustment result:

Phase shift amount

Adjustment in progress 0xFF —

Adjustment completed * —

Terminated with an error User-set

value

—

res_csig_amp unsigned

short

Adjustment result:

Amplitude value

Adjustment in progress 0xFF —

Adjustment completed

CSIG: 200 kHz

CSIG: 400 kHz

* —

Terminated with an error User-set

value

—

st_adjst_carrier_arg_t

(argument)

call_state unsigned

char

Execution or

cancellation of angle

error correction signal

adjustment

Execution continued 0 ADJST_USRREQ_RUN

Execution cancelled 1 ADJST_USRREQ_STOP

req_state unsigned

char

Motor control execution

state

Motor control completed 0 ADJST_USRINFO_COMPLETE

Motor control in progress 1 ADJST_USRINFO_PROCESSING

Note: * For the defined value, see section 3.11.3, Adjustment of the Angle Error Correction Signal.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 93 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

6.3.6 Structure for R_RSLV_ADJST_SetPtrFunc
The structure definition of the st_ptr_func_arg_t argument for the R_RSLV_ADJST_SetPtrFunc API function
is shown below.

API function: void R_RSLV_ADJST_SetPtrFunc (st_ptr_func_arg_t *ptr_arg)

Table 6-8 Structure Definition for R_RSLV_ADJST_SetPtrFunc

Structure Member Name Type Description

Defined
Value Macro-Defined Name

st_ptr_func_arg_t

(argument)

(*ad_data)(void); unsigned short Pointer to the function for referencing

A/D data

— — —

(*ad_ctrl)(unsigned char); void Pointer to the function for starting or

stopping A/D conversion

— — —

(*ad_peri_adjst)(void); void Pointer to the function for adjusting the

settings of the A/D converter

— — —

(*ad_peri_user)(void); void Pointer to the user-created function for

setting the AD converter

— — —

resolver_pole_num unsigned short Number of poles in the resolver of the

motor to be used

— — —

*mtr_speed float Pointer to the variable for referencing

the speed data

[rad/s] — —

req_speed unsigned short Reference speed of error when

automatic calibration is executed

[rpm] — —

6.3.7 Structure for R_RSLV_DiscDetection_Seq
The structure definition of the st_rdc_ddmnt_arg_t argument for the R_RSLV_DiscDetection_Seq API
function is shown below.

API function: unsigned char R_RSLV_DiscDetection_Seq (st_rdc_ddmnt_arg_t arg_value)

Table 6-9 Structure Definition for R_RSLV_DiscDetection_Seq

Structure

Member
Name Type Description

Defined
Value Macro-Defined Name

st_rdc_ddmnt_arg_t

(argument)

call_state unsigned char Disconnection detection

processing state

Execution in

progress

0 DDMNT_APIINFO_RUN_MODE

Disconnection

not detected

1 DDMNT_APIINFO_END_NOMAL

Disconnection

detected

2 DDMNT_APIINFO_ERR_DISCONNECT

Terminated by

cancellation

3 DDMNT_APIINFO_ENC_USER_STOP

wire_state unsigned char Resolver line state Normal 0 DDMNT_WIRE_STATE_NOMAL

Abnormal 1 DDMNT_WIRE_STATE_ABNOMAL

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 94 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7. Examples of Implementing API Functions
The following shows an example of a software architecture using this driver.

Signal output and
SPI communications

Int
Esig (MTU)

Int
ADC

Position
control

Speed
control

Current
control

Inverter
board Motor

Resolver

Int
Capture (MTU)

RDC

Main

RDC driver library

Initialization

Main loop

Interrupts

API calls
API callsAPI calls

Transition

Int: Interrupt processing
Esig: Excitation signal processing

Figure 7.1 Example of Software Architecture

The driver is initialized in the initialization processing. After that, the main loop calls API functions for the
execution of processing such as starting the generation of signals and the interrupt processing calls API
functions to acquire rotor positional information (input capture function) or to synchronize signals and so on.
Furthermore, this driver handles SPI communications with the RDC and the output of signals.

The following describes implementation of each processing.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 95 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.1 Preparation for the Use of Peripheral Modules
The user should create functions for setting up peripheral modules by using the SC. The SC can generate
functions for initializing peripheral modules and starting or stopping the timers in peripheral modules. The
user should also prepare the necessary additional functions that are not generated by the SC as user-
created code.

These functions for handling peripheral modules as well as the user-created code are prepared in the
sample code supplied together with this application note: use them as necessary.

7.1.1 SC Settings
Use the SC to set up the peripheral module assigned to each facility of the driver. For the recommended
settings of the assigned peripheral modules, see section 5, Settings for Peripheral Modules. When the SC is
used, the Config_(peri_func).c, Config_(peri_func)_user.c, and Config_(peri_func).h file are generated. For
the name of each file, see section 4.1, Folder and File Configuration.

7.1.2 User-Created Code
In addition to the code generated by the SC, the user should create the following functions for accessing
peripheral modules, which should be set in function tables.

• Function for acquiring the timer counter value
• Function for setting the timer counter value
• Function for acquiring the duty value
• Function for setting the duty value
• Function for acquiring the capture value
• Function for acquiring the port level

For the settings in function tables, see section 5.4, Setting up Function Tables.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 96 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.2 Initialization
7.2.1 Initialization of the MCU
The R_Systeminit function is automatically created when a code is generated by the SC and the functions for
initializing peripheral modules are included in this function. When the MCU is started, the R_Systeminit
function is called and the peripheral modules are initialized.

Function for initializing a peripheral module: R_Config_(peri_func)_Create()

7.2.2 Initialization of the Driver
To initialize the driver, the following settings are necessary after initialization of the MCU.

• System information
• Timer start timing for the excitation signal output and angle signal input
• Function tables
• Pointer to the callback function for automatic calibration
• Initial values of the RDC registers

See section 7.2.3.2, Initialization of the Driver, for the sample code.

Start (main)

API call for setting the pointer to the user-created
callback function

R_RSLV_ADJST_SetPtrFunc(argument);

Main loop

Initialization

API call for specifying system information
R_RSLV_SetSystemInfo(argument);

API call for setting the timing to start the excitation
signal output and angle signal input

R_RSLV_ESigCapStartTiming(argument);

API call for setting up a function table
R_RSLV_SetFuncTable(argument);

API call for setting RDC initial values
R_RSLV_Rdc_VariableInit(argument);

API call for executing the RDC initialization sequence
R_RSLV_Rdc_Init_Sequence(argument);

• •
• •

Figure 7.2 Initialization Flow

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 97 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.2.2.1 Specifying the System Information
Specify the system information, such as the excitation frequency, the angle error correction signal frequency,
the number of updates of the angle error correction signal, and the clock source for the peripheral module
assigned to each driver facility, and execute the API function for specifying the system information. To divide
the frequency of the clock for counting, specify the value of "clock source/divider value".

See section 7.2.3.2, Initialization of the Driver, for the sample code.

Processing for specifying system information

Argument settings for system information
u1_esig_freq = R_ESIG_SET_FREQ_5K;
u1_csig_freq = R_CSIG_SET_FREQ_200k;
u1_csig_upd_duty_cycle = R_CSIG_SET_DCNT_02;
u1_sync_start = MTU_SYNC_START_ENABLE;
u1_motor_kid = MOTOR_BLDC;
u1_mntout_type = RSLV_MNTOUT_TYPE_DC;

Argument settings for peripheral module information
f_esig1_peri_clk_src = 80.0f;
f_csig_peri_clk_src = 40.0f;
f_capture_peri_clk_src = 80.0f;
f_csig_upd_timer_peri_clk_src = 80.0f;
f_phase1_peri_clk_src = 40.0f;
f_phase2_peri_clk_src = 40.0f;

API call for specifying system information
R_RSLV_SetSystemInfo(argument)

To the processing for setting up function tables

System information settings

Figure 7.3 Processing for Specifying the System Information

7.2.2.2 Specifying the Timer Start Timing for the Excitation Signal Output and Angle Signal
Input

To specify the timing for starting the timers for the excitation signal output and angle signal input, use the API
function for setting the timing to start the excitation signal output. The sample code executes this function in
the driver initialization processing but it can be executed in any processing before starting the timers for the
excitation signal output and angle signal input.

See section 7.2.3.2, Initialization of the Driver, for the sample code.

API function: R_RSLV_ESigCapStartTiming(DEF_DELAY_ADJ_ESIG, DEF_SFT_ADJ_ESIG);

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 98 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.2.2.3 Setting up Function Tables
To set up a function table, specify the code generated by the SC or created by the user in the target table
and execute the API function for setting up a function table.

See section 7.2.3.2, Initialization of the Driver, for the sample code.

Processing for setting up a function table

 Argument settings for a function table
 /* Set function table for ESig */
 g_st_user_func_table.Start = &R_Config_MTU0_Start;
 g_st_user_func_table.Stop = &R_Config_MTU0_Stop;
 g_st_user_func_table.SetTcnt = &R_MTU0_SetTcnt_drv;
 g_st_user_func_table.GetTcnt = &R_MTU0_GetTcnt_drv;

API cal l for setting up a function table
R_RSLV_SetFuncTable(F_ESIG12, g_st_user_func_table);

To the processing for specifying the initial values of the RDC

Function table settings

Figure 7.4 Processing for Setting up a Function Table

7.2.2.4 Specifying the Pointer to the User-Created Callback Function
To specify the pointer to the callback function for automatic calibration, set the pointer to the A/D conversion
function for automatic calibration and the necessary values for the adjustment processing in the members of
a structure and execute the API function for specifying the pointer to the user-created callback function.

See section 7.2.3.2, Initialization of the Driver, for the sample code.

Processing for specifying the pointer to callback function
for automatic calibration

 Argument settings for po inter variables
 temp_arg.ad_data = R_S12AD_GetMntOut;
 temp_arg.ad_ctrl = R_S12AD_StartByAdjst;
 temp_arg.ad_peri_adjst = R_S12AD_ChgSettingForAdjst;
 temp_arg.ad_peri_user = R_S12AD_ResetSettigForNormal;
 temp_arg.resolver_pole_num = DEF_RESOLV_POLE_PAIR;
 temp_arg.mtr_speed = &g_f_app_speed_info;
 temp_arg.req_speed = com_f_spd_ref_adjust;

API call for specifying the pointer to the user-created
callback function

R_RSLV_ADJST_SetPtrFunc(&temp_arg);

To the main loop

Pointer setting for callback function for automatic
calibration

Figure 7.5 Processing for Initial Settings for Automatic Calibration (Function Pointer Setting)

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 99 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.2.2.5 Specifying the Initial Values of the RDC
To initialize the registers in the RDC, use the API function for setting the RDC initial values. The user should
specify the initial value of each register. For the registers to be set up, see section 6.2.27, API Function for
Setting RDC .

See section 7.2.3.2, Initialization of the Driver, for the sample code.

Processing for initializing the RDC Initialization of the RDC

API cal l for setting the RDC ini tial values
R_RSLV_Rdc_VariableInit((unsigned char*)s_u1_rdc_init_data);

API cal l for executing the RDC initialization sequence
R_RSLV_Rdc_Init_Sequence(&u2_rdc_result);

Main loop

:

:

API cal l for handl ing RDC communications
R_RSLV_Rdc_Communication();

Figure 7.6 Processing for Specifying the Initial Values of the RDC
After specifying the initial values of the RDC, call the API function for executing the RDC initialization
sequence in the main loop. The initialization state can be acquired through the argument of this API function;
continue the execution of this function until the sequence ends. As this API function executes RDC
communications, the API function for handling RDC communications should also be called in the main loop.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 100 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.2.3 Sample Code
7.2.3.1 Initialization of the MCU (Initialization of the Peripheral Modules)
The following shows an example of code for initializing the peripheral modules. This example uses the
initialization function R_Systeminit generated by the SC. When not using R_Systeminit, refer to the example
of migration in section 8.2.1, Initialization Processing of Peripheral Modules.

/***
* Function Name: R_Systeminit
* Description : This function initializes every configuration.
* Arguments : None
* Return Value : None
***/
void R_Systeminit(void)
{
 /* Enable writing to registers related to operating modes, LPC, CGC, and
software reset */
 SYSTEM.PRCR.WORD = 0xA50BU;

 /* Enable writing to MPC pin function control registers. */
 MPC.PWPR.BIT.B0WI = 0U;
 MPC.PWPR.BIT.PFSWE = 1U;

 /* Write 0 to the target bits in the POECR2 register. */
 POE.POECR2.WORD = 0x0000U;

 /* Initialize clock settings. */
 R_CGC_Create();

 /* Make peripheral module settings. */
 R_Config_RSPI0_RdcCom_Create();
 R_Config_TMR0_PhaseA_Create();
 R_Config_TMR3_RdcClk_Create();
 R_Config_TMR4_PhaseB_Create();
 R_Config_MTU2_Cap_Create();
 R_Config_CMT1_CsigUpdTim_Create();
 R_Config_MTU0_Csig_Create();
 R_Config_MTU9_Esig_Create();

 /* Make interrupt settings. */
 R_Interrupt_Create();

 /* Register undefined interrupt. */
 R_BSP_InterruptWrite(BSP_INT_SRC_UNDEFINED_INTERRUPT,(bsp_int_cb_t)

r_undefined_exception);

 /* Register group BL0 interrupt TEI5 (SCI5). */
 R_BSP_InterruptWrite(BSP_INT_SRC_BL0_SCI5_TEI5,(bsp_int_cb_t)

r_Config_SCI5_transmitend_interrupt);

 /* Register group BL0 interrupt ERI5 (SCI5). */
 R_BSP_InterruptWrite(BSP_INT_SRC_BL0_SCI5_ERI5,(bsp_int_cb_t)

r_Config_SCI5_receiveerror_interrupt);

 /* Register group BL0 interrupt TEI12 (SCI12). */
 R_BSP_InterruptWrite(BSP_INT_SRC_BL0_SCI12_TEI12,(bsp_int_cb_t)

r_Config_SCI12_transmitend_interrupt);

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 101 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

 /* Register group BL0 interrupt ERI12 (SCI12). */
 R_BSP_InterruptWrite(BSP_INT_SRC_BL0_SCI12_ERI12,(bsp_int_cb_t)

r_Config_SCI12_receiveerror_interrupt);

 /* Register group BL1 interrupt OEI2 (POE3). */
 R_BSP_InterruptWrite(BSP_INT_SRC_BL1_POE3_OEI2,(bsp_int_cb_t)

r_Config_POE_oei2_interrupt);

 /* Register group BL1 interrupt OEI3 (POE3). */
 R_BSP_InterruptWrite(BSP_INT_SRC_BL1_POE3_OEI3,(bsp_int_cb_t)

r_Config_POE_oei3_interrupt);

 /* Register group AL0 interrupt SPII0 (RSPI0). */
 R_BSP_InterruptWrite(BSP_INT_SRC_AL0_RSPI0_SPII0,(bsp_int_cb_t)

r_Config_RSPI0_idle_interrupt);

 /* Register group AL0 interrupt SPEI0 (RSPI0). */
 R_BSP_InterruptWrite(BSP_INT_SRC_AL0_RSPI0_SPEI0,(bsp_int_cb_t)

r_Config_RSPI0_error_interrupt);

 /* Disable writing to MPC pin function control registers. */
 MPC.PWPR.BIT.PFSWE = 0U;
 MPC.PWPR.BIT.B0WI = 1U;

 /* Enable protection. */
 SYSTEM.PRCR.WORD = 0xA500U;
}

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 102 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.2.3.2 Initialization of the Driver
The following shows an example of code for initializing the driver. Call this processing from the main loop.
For the example of the code (main loop) that calls this processing, see section 7.3.2, Sample Code.

/***
* Function Name : R_RSLVADP_Init
* Description : Resolver related processing initialization
* Arguments : None
* Return Value : None
**/
void R_RSLVADP_Init (void)
{

 /* Setting of function for resolver */
 RESOLVER_init_func(); // Specify the system information and function
tables.

 ///
 /// RDC initial value settings
 ///
 /* Initializes RDC register values. */
 R_RSLV_Rdc_VariableInit((unsigned char*)s_u1_rdc_init_data);

 /* Get resolver settings. */
 R_RSLV_GetRdcDrvSettingInfo(&st_drv_info);

}

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 103 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

The following shows an example of code for specifying the system information and function tables. Call this
processing from the main loop. This example calls the processing from the R_RSLVADP_Init() function
shown above.

/***
* Function Name : RESOLVER_init_func
* Description : Resolver driver system initialization
* Arguments : None
* Return Value : None
**/
static void RESOLVER_init_func(void)
{
 ST_SYSTEM_PARAM st_system_param;
 ST_USER_PERI_PARAM st_user_peri_param;

 /* Initialize GPIO to output a low level as the reset signal
and place the RDC in the reset state. */
 /* STM board uses P43 as RDC reset pin */
 PORT4.PODR.BIT.B3 = 0;
 PORT4.PDR.BIT.B3 = 1;

 ////////////////////////////////
 /// System information settings
 ////////////////////////////////
 /* Excitation signal (ESig) frequency 20 kHz */
 st_system_param.u1_esig_freq = R_ESIG_SET_FREQ_20K;
 /* Correction signal (CSig) frequency 200 kHz */
 st_system_param.u1_csig_freq = R_CSIG_SET_FREQ_200K;
 /* Update the duty cycle 2 times. */
 st_system_param.u1_csig_upd_duty_cycle = R_CSIG_SET_DCNT_02;
 /* Use MTU synchronous start. */
 st_system_param.u1_sync_start = SYNCMD_OTHER_API;
 /* Target motor is a STM motor. */
 st_system_param.u1_motor_kind = MOTOR_STM;
 /* RDC IC MNTOUT output method */
 st_system_param.u1_mntout_type = RSLV_MNTOUT_TYPE_AC;

 st_user_peri_param.f_esig1_peri_clk_src = 80.0f;
 st_user_peri_param.f_csig_peri_clk_src = 80.0f;
 st_user_peri_param.f_csig_upd_timer_peri_clk_src = 80.0f;
 st_user_peri_param.f_capture_peri_clk_src = 80.0f;
 st_user_peri_param.f_phase1_peri_clk_src = 40.0f;
 st_user_peri_param.f_phase2_peri_clk_src = 40.0f;

 R_RSLV_SetSystemInfo(&st_system_param, &st_user_peri_param);

 ///
 /// Settings of timer start timing for excitation signal output and angle

signal input
 ///
 /* Esig & Capture start timing*/
 R_RSLV_ESigCapStartTiming(DEF_DELAY_ADJ_ESIG, DEF_SFT_ADJ_ESIG);

 //
 /// Function table settings (excitation signal output)
 //

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 104 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

 /* Set up the function table for ESig. */
 g_st_user_func_table.Start = &R_Config_MTU9_Esig12_Start;
 g_st_user_func_table.Stop = &R_Config_MTU9_Esig12_Stop;
 g_st_user_func_table.SetTcnt = &R_Config_MTU9_Esig12_SetTcnt;
 g_st_user_func_table.GetTcnt = &R_Config_MTU9_Esig12_GetTcnt;
 R_RSLV_SetFuncTable(F_ESIG12, g_st_user_func_table);

 //
 /// Function table settings (angle error correction signal output)
 //
 /* Set up the function table for CSig. */
 g_st_user_func_table.Start = &R_Config_MTU0_Csig_Start;
 g_st_user_func_table.Stop = &R_Config_MTU0_Csig_Stop;
 g_st_user_func_table.SetTcnt = &R_Config_MTU0_Csig_SetTcnt;
 g_st_user_func_table.GetTcnt = &R_Config_MTU0_Csig_GetTcnt;
 g_st_user_func_table.SetDuty = &R_Config_MTU0_Csig_SetDuty;
 g_st_user_func_table.GetDuty = &R_Config_MTU0_Csig_GetDuty;
 R_RSLV_SetFuncTable(F_CSIG, g_st_user_func_table);

 ///
 /// Function table settings (angle signal input)
 ///
 /* Set up the function table for Capture. */
 g_st_user_func_table.Start = &R_Config_MTU2_Cap_Start;
 g_st_user_func_table.Stop = &R_Config_MTU2_Cap_Stop;
 g_st_user_func_table.SetTcnt = &R_Config_MTU2_SetTcnt;
 g_st_user_func_table.GetTcnt = &R_Config_MTU2_GetTcnt;
 g_st_user_func_table.GetCaptureValue = &R_Config_MTU2_GetCapVal;
 g_st_user_func_table.GetPortLevel = &R_Config_MTU2_GetPortLvl;
 R_RSLV_SetFuncTable(F_CAPTURE, g_st_user_func_table);

 ///
 /// Function table settings (RDC clock)
 ///
 /* Set up the function table for RDC IC clock. */
 g_st_user_func_table.Start = &R_Config_TMR3_RdcClk_Start;
 g_st_user_func_table.Stop = &R_Config_TMR3_RdcClk_Stop;
 R_RSLV_SetFuncTable(F_RDC_CLK, g_st_user_func_table);

 //
 /// Function table settings (phase adjustment signal output A)
 //
 /* Set up the function table for phase A/B. */
 g_st_user_func_table.Start = &R_Config_TMR0_PhaseA_Start;
 g_st_user_func_table.Stop = &R_Config_TMR0_PhaseA_Stop;
 g_st_user_func_table.SetDuty = &R_Config_TMR0_PhaseA_SetDuty;
 R_RSLV_SetFuncTable(F_PHASE_A, g_st_user_func_table);

 //
 /// Function table settings (phase adjustment signal output B)
 //
 /* Set up the function table for phase A/B. */
 g_st_user_func_table.Start = &R_Config_TMR4_PhaseB_Start;
 g_st_user_func_table.Stop = &R_Config_TMR4_PhaseB_Stop;
 g_st_user_func_table.SetDuty = &R_Config_TMR4_PhaseB_SetDuty;
 R_RSLV_SetFuncTable(F_PHASE_B, g_st_user_func_table);

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 105 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

 //
 /// Function table settings (Communications with RDC)
 //
 /* Set up the function table for phase B. */
 g_st_user_func_table.ComSendReceive =
 & R_Config_RSPI0_RdcCom_Send_Receive;
 R_RSLV_SetFuncTable(F_RDC_COM, g_st_user_func_table);

}

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 106 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

The following shows an example of code for specifying the pointer to the user-created callback function for
automatic calibration. Call this processing from the main loop.

For the example of the code (main loop) that calls this processing, see section 7.3.2, Sample Code.

/**
* Function Name: r_mtr_init_adjst_interface
* Description : Initialize interface functions and variables with library
* Arguments : void
* Return Value : void
***/
void r_mtr_init_adjst_interface(void)
{
 st_ptr_func_arg_t temp_arg;

 temp_arg.ad_data = R_S12AD_GetMntOut;
 temp_arg.ad_ctrl = R_S12AD_StartByAdjst;
 temp_arg.ad_peri_adjst = R_S12AD_ChgSettingForAdjst;
 temp_arg.ad_peri_user = R_S12AD_ResetSettigForNormal;
 temp_arg.resolver_pole_num = DEF_RESOLV_POLE_PAIR;
 temp_arg.mtr_speed = &(mtr_p[0]->spd_ctrl.f_speed);
 temp_arg.req_speed = com_f_spd_ref;

 R_RSLV_ADJST_SetPtrFunc(&temp_arg);
}

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 107 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

The following shows an example of code for the RDC initialization sequence. Call this processing from the
main loop.

/***
* Function Name : R_RSLVADP_MainLoopProcess
* Description : Resolver management process for main loop
* Arguments : None
* Return Value : None
***/
void R_RSLVADP_MainLoopProcess(void)
{
 uint16_t rdc_result = RSLV_MD_BUSY1;

 resolver_csig_ui();

 if (TRUE == com_u1_flg_rdc_sequence)
 {
 g_u1_flg_rdc_state_ready = FALSE;

 if(RDC_RESET_STATE_NON == g_u1_rdc_reset_wait_status)
 {
 write_rdc_reset_gpio(1);
 g_u1_rdc_reset_wait_status = RDC_RESET_STATE_ACT;
 g_u2_rdc_reset_wait_count = 0;
 }
 else if(RDC_RESET_STATE_ACT == g_u1_rdc_reset_wait_status)
 {
 if(PRV_RDC_SPI_WAIT < g_u2_rdc_reset_wait_count) /* Wait 1000 count
* 50[us] = 50[ms] */
 {
 g_u1_rdc_reset_wait_status = RDC_RESET_STATE_FIN;
 }
 }
 else if(RDC_RESET_STATE_FIN == g_u1_rdc_reset_wait_status)
 {
 R_RSLV_Rdc_Init_Sequence(&rdc_result);
 if (RSLV_MD_OK == rdc_result)
 {
 com_u1_flg_rdc_sequence = FALSE;
 g_u1_flg_rdc_state_ready = TRUE;
 /* Start of IRQ5 */
 R_ICU_Start_irq5();
 }
 }
 else
 {
 ;
 }
 }

 /* RDC SPI main function */
 R_RSLV_Rdc_Communication();

 /* Setting PWM duty of MTU3 channel 7 */
 R_RSLV_Phase_AdjUpdate();
}

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 108 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.3 Main Loop
7.3.1 Example of Implementation
Figure 7.7 shows an example of implementing the main loop.

Start (main)

Main loop

Main loop

Initialization of the driver*

Basic function processing
R__RSLVADP_MainLoopProcess();

Automatic calibration processing
rslv_calibration()

:

:

Figure 7.7 Example of Implementing the Main Loop
In the main loop, call the processing for communications with the RDC and the processing for updating the
duty cycles of the phase adjustment signals periodically. Furthermore, it is recommended that the processing
for detecting disconnection described in section 7.11, Detection of Disconnection from Resolver Sensor, be
also implemented. This sample code makes initial settings and updates the duty cycles of the phase
adjustment signals in the basic function processing. It also performs automatic adjustment of the gain and
phase of the resolver signals and automatic adjustment of the angle error correction signal in the automatic
calibration processing.

Note: * For initialization of the driver, see section 3.1, Initialization of the Driver.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 109 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.3.2 Sample Code
The following shows an example of the main function (main loop) code.

/**
* Function Name : main
* Description : Initialization and main routine
* Arguments : None
* Return Value : None
**/
void main(void)
{
 float f4_temp;
clrpsw_i(); /* Interrupt disabled */
 /* Initialize peripheral functions */
 // Initialize the MCU. See section 7.2.3.1, Initialization of the MCU

(Initialization of the Peripheral Modules).
 R_MTR_InitHardware()
 // Initialize the driver. See section 7.2.3.2, Initialization of the

Driver.
 R_RSLVADP_Init();

 /* Initialize ICS. */
 ics2_init((void*)dtc_table, ICS_SCI1_PD3_PD5, ICS_INT_LEVEL, ICS_BRR,

ICS_INT_MODE);

 /* Start of A/D converter */
 R_MTR_Start_s12ad();

 /* Start of CMT0 */
 R_MTR_Start_cmt0();

 /* Initialize private global variables. */
 variables_init();

 /* Execute reset event. */
 R_MTR_SR_Foc_ExecEvent(MTR_ID_A,MTR_EVENT_RESET);

setpsw_i(); /* Interrupt enabled */

 /* Start peripheral modules related to the resolver. The following must be

called after enabling interrupts. */
 // Start the output of the excitation signal. See section 7.4.2, Sample Code.
 R_RSLVADP_Start();
 // Specify the pointer to the user-created callback function. See section

7.2.3.2, Initialization of the Driver.
 mtr_init_adjst_interface();

 /*** Main routine ***/
 while (1)
 {
 /* User interface */
 ui_main();

 R_MTR_SR_Foc_GetSpeed(MTR_ID_A, &f4_temp, &g_f4_adjst_rslv_speed_rad);
 // Basic function processing: Communications with RDC (RDC initial

settings) and updating of the duty cycles of the phase adjustment
signals

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 110 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

 R_RSLVADP_MainLoopProcess();
 // Automatic calibration: adjustment of the gain and phase and

adjustment of the angle error correction signal
 rslv_calibration();
 /* Clear watch dog timer. */
 R_MTR_ClearWdt();
 }
} /* End of function main */

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 111 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.4 Output of the Excitation Signal
7.4.1 Example of Using API Functions
Figure 7.8 shows a block diagram of implementation by using API functions related to the output of the
excitation signal.

Int
CMT

Int
ADC

Position
control

Speed
control

Current
control

Inverter
board Motor

Resolver

Int
Capture(MTU)

RDC

Main

INT_GetCaptureCount

Output of excitation signal

Excitation signal (Esig)

Input capture timer

R_RSLV_ESig_Start
R_RSLV_MTU_SyncStart
(R_RSLV_Capture_Start)

Timing
adjustment

Angle signal

R_RSLV_ESigCapStartTiming

Int: Interrupt processing
CMT: Interval timer processing

Figure 7.8 Example of Implementation by Using API Functions Related to the Output
of the Excitation Signal

To start the output of the excitation signal, use the R_RSLV_ESig_Start function (section 6.2.18, API
Function for Starting the Output of the Excitation Signal).

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 112 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.4.2 Sample Code
The following shows sample code.

In this example, the timers for outputting the excitation signal and detecting the angle signal are started
simultaneously.

/***
* Function Name : R_RSLVADP_Start
* Description : Resolver start processing
* Arguments : None
* Return Value : None
***/
void R_RSLVADP_Start(void)
{
 /* Initialize resolver settings */
 R_RSLV_ESig_Start();
 R_RSLV_MTU_SyncStart(MTU_TCSYSTR_BIT_MTU9 | MTU_TCSYSTR_BIT_MTU2);

 /* Output the angle error correction signal (current default is "TRUE"). */
 if (TRUE == com_u1_flg_csig)
 {
 R_RSLV_CSig_Start(com_u2_csig_shiftnum, com_u2_csig_amplvl);
 }
 else
 {
 R_RSLV_CSig_Stop();
 }
 g_u1_flg_pre_csig = com_u1_flg_csig;
}

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 113 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.5 Output of the Phase Adjustment Signals
7.5.1 Example of Using API Functions
Figure 7.9 shows a block diagram of implementation by using API functions for outputting the phase
adjustment signals.

Int
Esig(MTU)

Int
ADC

Position
control

Speed
control

Current
control

Inverter
board Motor

Resolver

Int
Capture(MTU)

RDC

Main

Output of phase adjustment signals

Phase adjustment signals

R_RSLV_Phase_AdjStart
R_RSLV_Phase_AdjUpdateBuff
R_RSLV_Phase_AdjUpdate

Int: Interrupt processing
CMT: Interval timer processing

Figure 7.9 Example of Implementation by Using API Functions
for Outputting the Phase Adjustment Signals

To output the phase adjustment signals, use the API functions R_RSLV_Phase_AdjStart (section 6.2.22, API
Function for Starting the Output of the Phase Adjustment Signals), R_RSLV_Phase_AdjUpdateBuff (section
6.2.24, API Function for Setting the Phase Adjustment Signal Duty Cycle in the Buffer), and
R_RSLV_Phase_AdjUpdate (section 6.2.25, API Function for Setting the Phase Adjustment Signal Duty
Cycle in the Register).

After updating the duty cycle information in the driver by the R_RSLV_Phase_AdjUpdateBuff function,
execute the R_RSLV_Phase_AdjUpdate function to reflect the information in the duty output register. Then,
call the R_RSLV_Phase_AdjStart function to start the output of PWM signals.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 114 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.5.2 Sample Code
The following shows sample code.

7.5.2.1 Outputting the Phase Adjustment Signals
The following shows an example of implementing the output of the phase A signal with 65% duty cycle and the
phase B signal with 22% duty cycle in the main loop.

unsigned char u1_flg_phase_started = 0U; /* Phase adjustment signal start
flag */

void main(void)
{
 /* Initialization */

 /* Main loop */
 while (1)
 {
 /* Communications with RDC */

 /* Phase adjustment signal processing */
 if (0U == u1_flg_phase_started)
 {
 R_RSLV_Phase_AdjUpdateBuff(65, PHASE_CH_A);
 R_RSLV_Phase_AdjUpdateBuff(22, PHASE_CH_B);
 }

 R_RSLV_Phase_AdjUpdate(); /* Call R_RSLV_Phase_AdjUpdate

periodically.*/

 if (0U == u1_flg_phase_started)
 {
 R_RSLV_Phase_AdjStart();
 u1_flg_phase_started = 1U;
 }
 }
}

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 115 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.6 Output of the Angle Error Correction Signal
7.6.1 Example of Using API Functions
Figure 7.10 shows a block diagram of implementation by using API functions for outputting the angle error
correction signal.

Int
CMT

Int
ADC

Position
control

Speed
control

Current
control

Inverter
board Motor

Resolver

Int
Capture(MTU)

RDC

Main

Output of angle error correction signal

R_RSLV_INT_CSig_UpdatePwmDuty

Angle error correction signal (CSig)

R_RSLV_CSig_Start
R_RSLV_CSig_Stop

Int
CUT(CMT1)

Output start or stop request

Int: Interrupt processing
CMT: Interval timer processing
CUT: Timer for updating the angle error correction duty cycle

Int
ESig(MTU)

R_RSLV_INT_CSig_SyncStart

R_RSLV_GetCSigStatus

Output restart
information

Figure 7.10 Example of Implementation by Using API Functions
for Outputting the Angle Error Correction Signal

To output the angle error correction signal, use the API functions R_RSLV_CSig_Start (section 6.2.6, API
Function for Starting the Output of the Angle Error Correction Signal), R_RSLV_INT_CSig_SyncStart
(section 6.2.9, API Function for Synchronously Starting the Angle Error Correction Signal), and
R_RSLV_INT_CSig_UpdatePwmDuty (section 6.2.8, API Function for Updating the Duty Cycle of the Angle
Error Correction Signal).

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 116 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.6.2 Sample Code
The following shows sample code.

7.6.2.1 Starting and Stopping the Output of the Angle Error Correction Signal
Call this processing from the main loop.

/***
* Function Name : R_RSLVADP_Start
* Description : Resolver start processing
* Arguments : None
* Return Value : None
***/
void R_RSLVADP_Start(void)
{
 /* Initialize resolver settings. */
 R_RSLV_ESig_Start();
 R_RSLV_MTU_SyncStart(MTU_TCSYSTR_BIT_MTU9 | MTU_TCSYSTR_BIT_MTU2);

 /* Output the angle error correction signal (current default is "TRUE"). */
 if (TRUE == com_u1_flg_csig)
 {
 R_RSLV_CSig_Start(com_u2_csig_shiftnum, com_u2_csig_amplvl);
 }
 else
 {
 R_RSLV_CSig_Stop();
 }
 g_u1_flg_pre_csig = com_u1_flg_csig;
}

7.6.2.2 Interrupt Processing for Updating the PWM Duty Cycle
Call the following API function from the timer interrupt processing for updating the duty cycle of the angle
error correction signal.

#pragma interrupt (mtr_csig_interrupt(vect = VECT_RSLV_CSIG))
static void mtr_csig_interrupt(void)
{
setpsw_i(); /* Interrupt enabled */
 R_RSLV_INT_CSig_UpdatePwmDuty();
} /* End of function mtr_csig_interrupt */

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 117 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.6.2.3 Synchronous Start of the Angle Error Correction Signal
Call the following API function from the excitation interrupt processing.

#pragma interrupt (rslv_esig_interrupt(vect = VECT_RSLV_ESIG))
static void rslv_esig_interrupt(void)
{
setpsw_i();

 if(mtu9_interrupt_decimation_flag == 0)
 {
 R_RSLV_INT_CSig_SyncStart();
 mtu9_interrupt_decimation_flag ++;
 R_RSLV_INT_ESigCounter();
 }
 else
 {
 mtu9_interrupt_decimation_flag = 0;
 }

} /* End of function rslv_esig_interrupt */

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 118 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.7 Input of Angle Signal
7.7.1 Example of Using API Functions
Figure 7.11 shows a block diagram of implementation by using API functions for inputting the angle signal.

Int
CMT

Int
ADC

Position
control

Speed
control

Current
control

Inverter
board Motor

Resolver

Int
Capture(MTU)

RDC

Main

Input of angle signal

GetAngleCountFirstEdge
GetAngleDifferenceFirstEdge
GetAngleCountSecondEdge
GetAngleDifferenceSecondEdge

Int
Carrier

INT_GetCaptureCount

Position information acquisition

Angle signal

Position information

Int: Interrupt processing
CMT: Interval timer processing
Carrier: Interrupt processing at the trough of the carrier signal

Figure 7.11 Example of Implementation by Using API Functions for Inputting the Angle Signal
Use the FirstEdge API functions to acquire the counter value and counter difference information on the falling
edge of the angle signal. Use the SecondEdge API functions to acquire the values on the rising edge of the
angle signal.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 119 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.7.2 Sample Code
The following shows sample code.

7.7.2.1 Processing of Angle Signal Interrupt
Call the following API function from the input capture interrupt processing.

#pragma interrupt (rslv_capture_interrupt(vect = VECT_RSLV_CAPTURE))
static void rslv_capture_interrupt(void)
{
 R_RSLV_INT_GetCaptureCount();
} /* End of function rslv_capture_interrupt */

7.7.2.2 Acquiring the Position Information
The following shows an example of information acquisition in the interrupt processing at the trough of the
motor-driving PWM timer counter.

#pragma interrupt mtr_mtu3_tciv4_interrupt(vect=VECT(MTU4,TCIV4))
static void mtr_mtu3_tciv4_interrupt(void)
{
 uint16_t u2_angle_cnt;
 int16_t s2_angle_diff;

// Acquire the counter value at both the first and second edges.
// uint16_t s2_AngleDiffHi;
// uint16_t s2_AngleDiffLo;

setpsw_i(); /* Interrupt enabled *

 R_RSLV_GetAngleCountFirstEdge(&u2_angle_cnt);
 R_RSLV_GetAngleDifferenceFirstEdge(&s2_angle_diff);
 R_MTR_SR_Foc_SetAngleInfo(MTR_ID_A, u2_angle_cnt, s2_angle_diff);

// The following is an example of processing added to acquire the counter
value at both the first and second edges.
// /* Get angle count value of resolver. */
// if(RSLV_HIGH == R_RSLV_GetCaptureEdge())
// {
// R_RSLV_GetAngleCountFirstEdge(&g_st_foc.u2_rslv_angle_cnt);
// }
// else
// {
// R_RSLV_GetAngleCountSecondEdge(&g_st_foc.u2_rslv_angle_cnt);
// }
// R_RSLV_GetAngleDifferenceFirstEdge(&s2_AngleDiffHi);
// R_RSLV_GetAngleDifferenceSecondEdge(&s2_AngleDiffLo);
// g_st_foc.s2_angle_err_cnt = u2_AngleDiffHi + u2_AngleDiffLo;
// g_st_foc.s2_angle_err_cnt *= 0.5f;
//

 R_RSLVADP_IncreaseWaitTimer();

} /* End of function mtr_mtu3_tciv4_interrupt */

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 120 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.8 Automatic Adjustment of the Gain and Phase
7.8.1 Example of Using API Functions
Figure 7.12 shows a block diagram of implementation using the API functions for automatic adjustment of the
gain and phase.

Int
Esig(MTU)

Int
ADC

Position
control

Speed
control

Current
control

Inverter
board Motor

Resolver

Int
Capture(MTU)

RDC

Main

R_RSLV_ADJST_SetPtrFunc
R_RSLV_ADJST_GainPhase

INT_GetCaptureCount

Automatic adjustment

Monitoring signal

R_RSLV_INT_ESigCounter

Phase information

Wait timer

Int: Interrupt processing
CMT: Interval timer processing

Figure 7.12 Example of Implementation by Using API Functions
for Automatic Adjustment of the Gain and Phase

To execute the automatic adjustment of the gain and phase, use the API functions
R_RSLV_ADJST_SetPtrFunc (section 6.2.42, API Function for Setting the Pointer to the User-Created
Callback Function), R_RSLV_ADJST_GainPhase (section 6.2.40, API Function for Adjusting the Gain and
Phase of the Resolver Signals), and R_RSLV_INT_ESigCounter (section 6.2.21, API Function for Counting
the Wait Time).

R_RSLV_INT_GetCaptureCount (section 6.2.12, API Function for Acquiring the Angle Detection Value) is
used to acquire phase information during phase adjustment. Call this function from the input capture interrupt
processing.

R_RSLV_INT_ESigCounter is used as a wait timer in the adjustment processing. Call this function from the
excitation signal interrupt processing.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 121 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.8.2 Details of Gain and Phase Adjustment
Figure 7.13 shows an example of implementing adjustment of the gain and phase.

R_RSLV_ADJST_SetPtrFunc Settings for acquiring the
monitoring signal value

Adjustment start

R_RSLV_ADJST_GainPhase

u1_adjst_state ==
 ADJST_APIINFO_RUN_MODE?

Adjustment end

Yes

No

Periodic call until
the end of adjustment

Figure 7.13 Gain and Phase Adjustment Sequence

Adjustment of gain and phase uses the A/D converter to convert the monitoring signal output from the RDC.
Therefore, it is necessary to use the API function for setting the callback function to specify the information
on the A/D channel to which the monitoring signal is assigned for the driver. For details, see section 6.3.6,
Structure for R_RSLV_ADJST_SetPtrFunc.

Repeatedly call the API function R_RSLV_ADJST_GainPhase for adjusting the gain and phase of the
resolver signal until the adjustment is completed.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 122 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.8.2.1 Starting Adjustment
To start adjustment, call R_RSLV_ADJST_GainPhase with ADJST_USRREQ_RUN (0) set as the argument
of the API function.

7.8.2.2 Continuing Adjustment
The value of the member u1_adjst_state of the return value structure st_adjst_gainphase_return_t of
R_RSLV_ADJST_GainPhase being ADJST_APIINFO_RUN_MODE (0U) indicates that adjustment remains
in progress. As long as this is the case, repeatedly call R_RSLV_ADJST_GainPhase with
ADJST_USRREQ_RUN (0) set as the argument of the API function.

To suspend the adjustment process, call the API function with ADJST_USRREQ_STOP (1) set as the
argument.

Processing to return from the suspended state to the normal state is required, and this involves repeatedly
calling R_RSLV_ADJST_GainPhase until the return value u1_adjst_state becomes
ADJST_APIINFO_END_USER_STOP (13U).

7.8.2.3 Determining Completion of Adjustment
When u1_adjst_state is not ADJST_APIINFO_RUN_MODE (0U), adjustment is complete. Stop calling
R_RSLV_ADJST_GainPhase.

The adjustment completion state indicator is stored in u1_adjst_state. In the case of normal end
(ADJST_APIINFO_END_NORMAL (1U)), the result of adjustment is reflected in a member of the return
value structure st_adjst_gainphase_return_t.

The required information is modified within the adjustment processing according to the result of adjustment,
so there is no need to use API functions to re-make the settings and so on.

Table 7-1 lists the members of the return value structure st_adjst_gainphase_return_t. For details, see Table
6-7 Structure Definitions for R_RSLV_ADJST_Carrier.

Table 7-1 st_ptr_func_arg_t Structure Members

Member Name Type Description
u1_adjst_state unsigned char Gain and phase adjustment processing state and

processing completion state
u1_res_dlcgsl unsigned char Adjustment result value for the RDC register DLCGSL

(adjustment result value for the phase A gain)
u2_res_a_duty unsigned short Adjustment result duty value of the phase A adjustment

signal
u2_res_b_duty unsigned short Adjustment result duty value of the phase B adjustment

signal

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 123 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.8.3 Sample Code
The following shows sample code.

7.8.3.1 Call of API Function for Adjusting Gain and Phase
Repeatedly call the following processing from the main loop.

/***
* Function Name: mtr_rdc_AdjstGainPhaseProcess
* Description : Process for adjustment of RDC gain & phase parameters
* Arguments : req -
* Request of sequence continuation (0:Continue, 1:Halt)
* Return Value : Active status of process (1:Active, 0:Finished)
**/
uint8_t mtr_rdc_AdjstGainPhaseProcess(uint8_t req)
{
 uint8_t result = TRUE;

 /* Call gain & phase adjustment API function. */
 gp_api_ret = R_RSLV_ADJST_GainPhase(req);

 /* Processing branches according to the return value. */
 /* While the processing is in progress, continuation of processing is

reported. */
 switch (gp_api_ret.u1_adjst_state)
 {
 default:
 case ADJST_APIINFO_RUN_MODE:
 {
 result = TRUE;
 }
 break;

 case ADJST_APIINFO_END_NORMAL:
 case ADJST_APIINFO_ERR_GAIN_HI_LMT:
 case ADJST_APIINFO_ERR_GAIN_LO_LMT:
 case ADJST_APIINFO_ERR_GAIN_SWAY:
 case ADJST_APIINFO_ERR_PHASE_AHI_BLO:
 case ADJST_APIINFO_ERR_PHASE_ALO_BHI:
 case ADJST_APIINFO_ERR_PHASE_SWAY:
 case ADJST_APIINFO_ERR_MOTOR:
 case ADJST_APIINFO_END_USER_STOP:
 {
 result = FALSE;
 }
 break;
 }

 return (result);
}

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 124 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.9 Automatic Adjustment of the Angle Error Correction Signal
7.9.1 Example of Using API Functions
Figure 7.14 shows an example of implementation by using API functions for automatic adjustment of the
angle error correction signal.

Int
Esig(MTU)

Int
ADC

Position
control

Speed
control

Current
control

Inverter
board Motor

Resolver

Int
Capture(MTU)

RDC

Main

R_RSLV_ADJST_SetPtrFunc
R_RSLV_ADJST_Carrier

Automatic adjustment of angle error correction signal

Monitoring signal

Control request

R_RSLV_INT_ESigCounter
Wait timer

Int: Interrupt processing
CMT: Interval timer processing

Figure 7.14 Example of Implementation by Using API Functions for Automatic Adjustment
of the Angle Error Correction Signal

To automatically adjust the angle error correction signal, use the R_RSLV_ADJST_Carrier function (section
6.2.41, API Function for Adjusting the Angle Error Correction Signal).

The functionality of R_RSLV_INT_ESigCounter() is the same as that described in section 7.8, Automatic
Adjustment of the Gain and Phase.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 125 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.9.2 Details of Angle Error Correction Signal Adjustment
The motor must be controlled during adjustment of the angle error correction signal.

Figure 7.15 shows an example of implementing adjustment of the angle error correction signal.

R_RSLV_ADJST_SetPtrFunc Settings for acquiring the monitoring
signal value

Start of adjustment

R_RSLV_ADJST_Carrier

adjst_state

End of adjustment

ADJST_APIINFO_RUN_MODE

Others

Periodic call

ADJST_APIINFO_WAITING

Perform motor control processing

Figure 7.15 Angle Error Correction Signal Adjustment Sequence
The same processing is performed before the start of adjustment as that stated in section 7.8, Automatic
Adjustment of the Gain and Phase. Processing after that depends on the adjst_state value. When the
adjustment requires the application of motor control, the return value becomes ADJST_APIINFO_WAITING.

Figure 7.16 shows the sequence between the caller (application) and the driver from the start of adjustment
until the completion of adjustment.

Application Driver

(a) Adjustment start

(b) Position control request

(c) Position control completed

Repeated until data
for one turn of
resolver is acquired

(d) Position control stop request

(e) Position control stopped

(f) Speed control request

(g) Speed control completed

(h) Speed control stop request

Internal processing
continues until
adjustment is completed

(i) Speed control stopped

(j) Adjustment completion report

End End

Figure 7.16 Angle Error Correction Signal Adjustment Sequence

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 126 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

The following describes processing steps (a) to (j) of the sequence.

(a) Adjustment Start
To start adjustment, call R_RSLV_ADJST_Carrier with ADJST_USRREQ_RUN (0) set as the member
call_state of the structure argument st_adjst_carrier_arg_t for the API function. For details, see Table 6-8
Structure Definition for R_RSLV_ADJST_SetPtrFunc.

(b) Position Control Request
When adjustment starts, R_RSLV_ADJST_Carrier issues a position control request. This request is sent
through members adjst_state and req_mtr_ctrl of the return value structure st_adjst_carrier_return_t of
R_RSLV_ADJST_Carrier.

adjst_state = ADJST_APIINFO_WAITING (2)
req_mtr_ctrl = ADJST_APIREQ_POS_CTRL (1)
mtr_ctrl_data = 0 (beginning with a resolver angle of 0 degrees)

This adjustment processing requests the motor control settings as a return value as stated above, so start
position control in accord with the control setting.

When calling R_RSLV_ADJST_Carrier again while making the motor control settings, set
ADJST_USRINFO_PROCESSING (1) for the member req_state of the structure argument to notify the driver
that the setting is in progress in the user application.

(c) Position Control Completed
When the position control (to the requested specified angle) has been completed according to the position
control request, set ADJST_USRINFO_COMPLETE (0) for the member req_state of the structure argument.

After that, the driver starts acquisition of data. Upon completion of data acquisition, the driver requests
position control again. At this time, the requested position information mtr_ctrl_data will have been updated.
Apply position control again according to this position information. Repeat position control request and
position control completion steps until the driver has completed acquisition of the required data. When data
for one rotation of the resolver angle have been acquired, the processing proceeds to the step of position
control stop request.

(d) Position Control Stop Request
When all data have been acquired, R_RSLV_ADJST_Carrier issues a position control stop request.

adjst_state = ADJST_APIINFO_WAITING (2)
req_mtr_ctrl = ADJST_APIREQ_POS_STOP (2)

When the return values of the API function have been updated as shown above, stop position control. When
calling R_RSLV_ADJST_Carrier during position control stop processing, set
ADJST_USRINFO_PROCESSING (1) as the member req_state of the structure argument in the same way
as the step of position control request.

(e) Position Control Stopped
When the position control has been terminated, set ADJST_USRINFO_COMPLETE (0) as the member
req_state of the structure argument. The processing proceeds to the step of speed control request.

(f) Speed Control Request
R_RSLV_ADJST_Carrier issues a speed control request.

adjst_state = ADJST_APIINFO_WAITING (2)
req_mtr_ctrl = ADJST_APIREQ_SPD_CTRL (3)
mtr_ctrl_data = 1000 rpm

When the return values of the API function have been updated as shown above, start speed control.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 127 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

(g) Speed Control Completed
When the specified speed is reached, set ADJST_USRINFO_COMPLETE (0) for the member req_state of
the structure argument for R_RSLV_ADJST_Carrier as an indicator of completion.

At the start of speed control, the adjustment processing involves manipulating the adjustment parameters of
the angle error correction signal to make the adjustments. Call R_RSLV_ADJST_Carrier repeatedly until the
adjustment processing is completed. Upon completion of the adjustment process, the processing proceeds
to the step of speed control stop request.

(h) Speed Control Stop Request
After the adjustment has been completed, R_RSLV_ADJST_Carrier issues a request to stop speed control.

adjst_state = ADJST_APIINFO_WAITING (2)
req_mtr_ctrl = ADJST_APIREQ_SPD_STOP (4)

When the return values of the API function have been updated as shown above, stop the speed control.

(i) Speed Control Stopped
When the speed control has been stopped, set ADJST_USRINFO_COMPLETE (0) as the member req_state
of the structure argument for R_RSLV_ADJST_Carrier. The processing proceeds to the step of adjustment
completion report.

(j) Adjustment Completion Report
Upon completion of all processing for adjustment, completion of adjustment is reported by
R_RSLV_ADJST_Carrier.

When adjst_state is not ADJST_APIINFO_RUN_MODE (0) or ADJST_APIINFO_WAITING (2), adjustment is
complete.

For details of each return value, see Table 6-8 Structure Definition for R_RSLV_ADJST_SetPtrFunc.

When the return value is ADJST_APIINFO_END_NORMAL (1), the adjustment has been successfully
completed and the adjusted values are returned as the members res_XXXX of the return value structure.

The required information is modified within the adjustment processing according to the result of adjustment,
so there is no need to use API functions to re-make the settings and so on.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 128 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.9.3 Phase Delay by the Filter Circuit
In adjustment of the angle error correction signal, to correctly adjust the amount of phase shift for the angle
error correction signal input to the correction circuit, it is necessary to consider the phase delay caused by
the filter implemented in the circuit around the RDC-IC.

Figure 7.17 shows the circuit diagram around the angle error correction signal, including the filter circuits.

RDC-IC
Converter block

Phase
adjustment

circuit A
Synthesizer

circuit

Resolver

Angle signal

Monitoring
signal

Phase adjustment
signals

MCU

Differential
amplifier AFilterWaveform

shaping circuit

Differential
amplifier B

Phase
adjustment

circuit B

Monitoring circuit

Correction
circuit

Angle error
correction signal

BPF circuit

AOUT

LPF circuit
CC1 CC2

FAMPOUT

Figure 7.17 Circuit Diagram around the Angle Error Correction Signal

The following describes the phase delay caused by each filter circuit.

(a) Phase Delay Caused by the Band-pass Filter Circuit
A phase delay occurs due to the BPF circuit between AOUT and FAMPOUT in Figure 7.17.

(b) Phase Delay Caused by the LPF Circuit for the Angle Error Correction Signal
A phase delay occurs due to the LPF circuit between CC1 and CC2 in Figure 7.17.

The values of (a) and (b) are initialized according to the excitation signal frequency when the system
information is specified with R_RSLV_SetSystemInfo. The phase delay value calculated from the constant
examples of each component described in the Peripheral Components Selection Guide is set as the initial
value. For details on constant examples, see "Guide to Selecting Peripheral Components for Use with the
Resolver-to-Digital Converters" described in section 1.4, Related Documents.

If the user wants to change the phase delay value from the initial value, use
R_RSLV_ADJST_SetFilterDelay. Set the value of (a) to the first argument and the value of (b) to the second
argument. Call this function after calling R_RSLV_SetSystemInfo.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 129 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.9.4 Sample Code
The following shows sample code.

7.9.4.1 Periodic Call Processing
Call the following processing from the main loop.

/***
* Function Name: r_mtr_rdc_AdjstCarrierProcess
* Description : Process for adjustment of angle error correction signal
* Arguments : req -
* Request of sequence continuation (0:Continue, 1:Halt)
* Return Value : Active status of process (1:Active, 0:Finished)
***/
static uint8_t r_mtr_rdc_AdjstCarrierProcess(uint8_t req)
{
 uint8_t result = TRUE;

 cc_api_req.call_state = req;

 /* Call angle error adjustment API function. */
 cc_api_ret = R_RSLV_ADJST_Carrier (cc_api_req);

 /* The required control varies with the return value. */
 switch (cc_api_ret.adjst_state)
 {
 default:
 case ADJST_APIINFO_RUN_MODE:
 {
 result = TRUE; /* Continuation of execution is reported. */
 }
 break;

 /* Application of motor control is required. */
 case ADJST_APIINFO_WAITING:
 {
 /* Execute the motor control processing. */
 r_mtr_ctrl_posspd_for_ccadjust_seq();
 }
 break;

 case ADJST_APIINFO_END_NORMAL:
 case ADJST_APIINFO_ERR_CARRIER:
 case ADJST_APIINFO_ERR_MOTOR:
 case ADJST_APIINFO_END_USER_STOP:
 {
 result = FALSE; /* The end of execution is reported. */
 }
 break;
 }

 return (result);

}

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 130 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.10 Communications with RDC
7.10.1 Example of Using API Functions
Figure 7.18 shows a block diagram of implementation by using API functions for communications with the
RDC.

Int
Esig(MTU)

Int
ADC

Position
control

Speed
control

Current
control

Inverter
board Motor

Resolver

Int
Capture(MTU)

RDC

Main

Communications with RDC

Serial
communications

R_RSLV_Rdc_Communication

Int
RSPI or SCI

Start of
communications

R_RSLV_Rdc_RegWrite
R_RSLV_Rdc_RegRead

Operation
request

R_RSLV_Rdc_ChkIfRun
Monitoring
communications

Communication
process

Int: Interrupt processing
CMT: Interval timer processing

Figure 7.18 Example of Implementing Communications with RDC
An RSPI or SCI channel is used for communications with the RDC. The same API functions are used
regardless of the selected type of peripheral module. The R_RSLV_Rdc_Communication function (section
6.2.29, API Function for Handling RDC Communications) is used to handle communications processing.
Repeated calls of this API function are required to progress the sequence for communications, so
periodically call the function. To read data from the RDC, use R_RSLV_Rdc_RegRead (section 6.2.31, API
Function for Reading from an RDC Register). To write data to the RDC, use R_RSLV_Rdc_RegWrite (section
6.2.30, API Function for Writing to an RDC Register). The current communication state is returned by
R_RSLV_Rdc_ChkIfRun (section 6.2.32, API Function for Acquiring the RDC Register Access State). Do not
issue a read or write request during execution.

For the processing of communication interrupts, use the code generated by the SC when the RSPI is used
for communications. When the SCI is used, modify the code of transmit interrupt processing generated by
the SC so that 16-bit communications are supported because the SC does not generate code for the 16-bit
communication format. Refer to section 7.10.2.3, Example of Using the SCI, to implement the code for
supporting the 16-bit format.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 131 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.10.2 Sample Code
The following shows sample code.

7.10.2.1 Writing to an RDC Register
The following shows an example of code for writing to an RDC register.

main(void)
{
 while (1U)
 {
 if (TRUE == flg_write_req)
 {
 /* Write data to the RDC register buffer. */
 R_RSLV_Rdc_SetRegisterVal(rdc_write_data, rdc_address);
 /* Issue a write request. */
 R_RSLV_Rdc_RegWrite(&rdc_write_status);
 flg_write_req = FALSE;
 }
 /* Sequence of communications with the RDC */
 R_RSLV_Rdc_Communication();
 }
}

7.10.2.2 Reading from an RDC Register
The following shows an example of code for reading from an RDC register.

main(void)
{
 while (1U)
 {
 if (TRUE == flg_read_req)
 {
 /* Read data from an RDC register to the buffer. */
 R_RSLV_Rdc_RegRead(rdc_address);
 flg_read_req = FALSE;
 }
 /* Sequence of communications with the RDC */
 R_RSLV_Rdc_Communication();

 /* Get data from the RDC register buffer. */
 R_RSLV_Rdc_GetRegisterVal(&rdc_read_data, rdc_address);
 }
}

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 132 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.10.2.3 Example of Using the SCI
When using the SCI for communications, modify the transmit interrupt processing automatically generated by
the SC to support 16-bit communications. In the following example, a new function for 16-bit transmit
interrupt processing is created and added to the transmit interrupt processing in the code generated by the
SC.

/* Transmit interrupt processing (generated by the SC)*/
#pragma interrupt r_Config_SCI0_transmit_interrupt(vect=VECT(SCI0, TXI0))
static void r_Config_SCI0_transmit_interrupt(void)
{
 // Delete the following processing and call the function for 16-bit

transmit interrupt processing.
// if (0U < g_sci0_tx_)
// {
// SCI0.TD count R = *gp_sci0_tx_address;
// gp_sci0_tx_address++;
// g_sci0_tx_count--;
// }
// else
// {
// SCI0.SCR.BIT.TIE = 0U;
// SCI0.SCR.BIT.TEIE = 1U;
// }
 R_SCI0_Trans_Intr_Process(); // Add the new function. See the code for 16-bit

transmit interrupt processing shown later.
}

/* Receive interrupt processing (generated by the SC)*/
#pragma interrupt r_Config_SCI0_receive_interrupt(vect=VECT(SCI0, RXI0))
static void r_Config_SCI0_receive_interrupt(void)
{
 if (g_sci0_rx_length > g_sci0_rx_count)
 {
 *gp_sci0_rx_address = SCI0.RDR;
 gp_sci0_rx_address++;
 g_sci0_rx_count++;

 if (g_sci0_rx_length == g_sci0_rx_count)
 {
 SCI0.SCR.BIT.RIE = 0;

 /* Set the CS port to the high level.*/
 PORT9.PODR.BIT.B2 = 1U; // Chip select signal: Chip inactive (Add this

line.)

 /* Clear the TE and RE bits. */
 if((0U == SCI0.SCR.BIT.TIE) && (0U == SCI0.SCR.BIT.TEIE))
 {
 SCI0.SCR.BYTE &= 0xCFU;
 R_Config_SCI0_Stop(); // Place the SCI in the module stop state.

(Add this line.)
 }

 r_Config_SCI0_callback_receiveend();
 }
 else
 {

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 133 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

 R_SCI0_Trans_Intr_Process(); // Prepare for the next data reception. (Add
this line.)

 }
 }
}
/* Receive error interrupt processing (generated by the SC)*/
#pragma interrupt r_Config_SCI0_receiveerror_interrupt(vect=VECT(SCI0, ERI0))
void r_Config_SCI0_receiveerror_interrupt(void)
{
 uint8_t err_type;

 r_Config_SCI0_callback_receiveerror();

 /* Clear the overrun error flag. */
 err_type = SCI0.SSR.BYTE;
 err_type &= 0xDFU;
 err_type |= 0xC0U;
 SCI0.SSR.BYTE = err_type;
}

Create the following code even when the RSPI is used.

/* Transmit end callback processing (generated by the SC)*/
void r_Config_SCI1_callback_transmitend(void)
{
 /* Start user code for r_Config_SCI1_callback_transmitend. Do not edit
comment generated here. */
 R_RSLV_Rdc_CallComEndCb(); // Add the API function for communication end

callback processing.
 /* End user code. Do not edit comment generated here. */
}

/* Receive end callback processing (generated by the SC)*/
void r_Config_SCI1_callback_receiveend(void)
{
 /* Start user code for r_Config_SCI1_callback_receiveend. Do not edit
comment generated here. */
 R_RSLV_Rdc_CallComEndCb(); // Add the API function for communication end

callback processing.
 /* End user code. Do not edit comment generated here. */
}

/* Receive error callback processing (generated by the SC)*/
void r_Config_SCI1_callback_receiveerror(void)
{
 /* Start user code for r_Config_SCI1_callback_receiveerror. Do not edit
comment generated here. */
 R_RSLV_Rdc_CallErrorCb(); // Add the API function for receive error

callback processing.
 /* End user code. Do not edit comment generated here. */
}

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 134 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

/* Function for 16-bit transmit interrupt processing (user-created code) */
static void R_SCI0_Trans_Intr_Process(void)
{
 uint16_t com_data;

 if (0U == s_u1_pass_flg)
 {
 if (g_sci0_tx_count > 0U)
 {
 /* Determine whether to send the upper data or lower data */
 if (g_sci0_tx_count & 0x01)
 {
 com_data = *gp_sci0_tx_address & 0x00FF;
 }
 else
 {
 com_data = *gp_sci0_tx_address & 0xFF00;
 com_data >>= 8;
 s_u1_pass_flg = 1U;
 }
 /* Write data for transmission. */
 SCI0.TDR = com_data;
 g_sci0_tx_count--;
 }
 else
 {
 SCI0.SCR.BIT.TIE = 0U;
 SCI0.SCR.BIT.TEIE = 0U;
 }
 }
 else
 {
 s_u1_pass_flg = 0U;
 }

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 135 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.11 Detection of Disconnection from Resolver Sensor
7.11.1 Example of Using API Functions
Figure 7.19 shows a block diagram of implementation by using API functions for detection of disconnection
from the resolver sensor.

Int
Esig(MTU)

Int
ADC

Position
control

Speed
control

Current
control

Inverter
board Motor

Resolver

Int
Capture(MTU)

RDC

Main

Detection of disconnection

Detection of
disconnectionR_RSLV_ADJST_SetPtrFunc

R_RSLV_DiscDetection_Seq

Int: Interrupt processing
CMT: Interval timer processing

Figure 7.19 Example of Implementing Detection of Disconnection from the Resolver Sensor

To detect disconnection, use R_RSLV_ADJST_SetPtrFunc (section 6.2.42, API Function for Setting the
Pointer to the User-Created Callback Function) and R_RSLV_DiscDetection_Seq (section 6.2.45, API
Function for Detecting Disconnection). Repeated calls of the API function for detecting disconnection are
required to progress the sequence for detection of disconnection, so periodically call the function.

For how to use the API function for specifying the pointer to the user-created callback function, see section
7.8, Automatic Adjustment of the Gain and Phase.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 136 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

Figure 7.20 shows an example of implementing the processing for detecting disconnection.

R_RSLV_ADJST_SetPtrFunc Settings for acquiring the
monitoring signal value

An error occurred

R_RSLV_DiscDetection_Seq

Detection end

Periodic call

Initialization

R_RSLV_DiscDetection_Seq
wire_state =

DDMNT_WIRE_STATE_NORMAL
Data acquisition in normal state

Return value ==
DDMNT_APIINFO_RUN_MODE?

Return value ==
DDMNT_APIINFO_RUN_MODE?

R_RSLV_ADJST_SetPtrFunc

Periodic call

No

Yes

Settings for acquiring the
monitoring signal value (make
the settings again to make sure)

Yes

No

wire_state =
DDMNT_WIRE_STATE_ABNORMAL
Disconnection detection at an error

Figure 7.20 Example of Disconnection Detection Sequence
In detection of disconnection, the normal connection state is compared with the error connection state to
check the disconnection state of the resolver signal lines. For this reason, data in the normal connection
state must be acquired in advance.

To acquire data in the normal state, call the API function R_RSLV_DiscDetection_Seq with
DDMNT_WIRE_STATE_NORMAL (0U) set as the member wire_state of the structure argument
st_rdc_ddmnt_arg_t for the API function. For details, see section 6.3.7, Structure for
R_RSLV_DiscDetection_Seq. When the return value of this API function is not
DDMNT_APIINFO_RUN_MODE (detection of disconnection is in progress), data acquisition in the normal
state is complete.

Perform this processing for acquiring data in the normal state after the end of the initialization processes by
the RDC driver and before the start of normal operation.

If an error occurs in operation of the motor (such as failure to update position information at the time of speed
control), the disconnection detection processing is used to identify whether the error is due to disconnection
of a resolver signal. Therefore, apply disconnection detection processing as required (when an error occurs)
on the user side.

To check the disconnection state, call R_RSLV_DiscDetection_Seq with the arguments set as follows.

arg_value.call_state = DDMNT_USRREQ_RUN
arg_value.wire_state = DDMNT_WIRE_STATE_ABNORMAL

When the return value of this API function is not DDMNT_APIINFO_RUN_MODE (disconnection detection is
in progress), the processing is complete.

In either initialization processing or disconnection detection processing (at an error), call
R_RSLV_DiscDetection_Seq with the argument arg_value.call_state set to DDMNT_USRREQ_STOP to
suspend the processing.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 137 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.11.2 Sample Code
The following shows sample code.

7.11.2.1 Detection of Disconnection from the Resolver Sensor
The following shows an example of the processing for detecting disconnection.
r_mtr_DetectDisconnect_Seq() is called from the main loop.
/***
* Function Name: r_mtr_DetectDisconnect_Seq
* Description : Sequence to detect resolver disconnection
* Arguments : None
* Return Value : None
***/
/* State machine implementing detection of disconnection */
static void r_mtr_DetectDisconnect_Seq(void)
{
 st_rdc_ddmnt_arg_t temp_arg; /* Temporary variable for API arguments */
 unsigned char dd_ret = DDMNT_APIINFO_RUN_MODE; /* Variable for receiving

return value */

 /* A stop request is always made while detection is not being executed. */
 temp_arg.call_state = DDMNT_USRREQ_STOP;

 switch (s_u1_sts_ddcnct)
 {
 case STS_DDCNCT_NONE:
 default:
 /* Do nothing. */
 break;

 /* Start initialization. */
 case STS_DDCNCT_INIT_START:
 {
 /* Set interface functions */
 /*R_RSLV_ADJST_SetPtrFunc is called in this function. */
 r_mtr_init_ddiscnct_interface();
 SetDdiscnctStatus(STS_DDCNCT_INIT); /* State setting macro */
 }
 break;

 /* Periodic call for waiting for the completion of initialization */
 case STS_DDCNCT_INIT:
 {
 temp_arg.call_state = DDMNT_USRREQ_RUN;
 temp_arg.wire_state = DDMNT_WIRE_STATE_NORMAL;
 dd_ret = R_RSLV_DiscDetection_Seq(temp_arg);

 /* When the return value is not DDMNT_APIINFO_RUN_MODE,
 the processing is complete. */
 if (DDMNT_APIINFO_RUN_MODE != dd_ret)
 {
 SetDdiscnctStatus(STS_DDCNCT_INIT_FIN);
 }
 }
 break;

 /* Post-initialization processing */
case STS_DDCNCT_INIT_FIN:

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 138 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

 {
 /* Set interface functions for adjustment. */
 r_mtr_init_adjst_interface();
 /* All system initialization finished. */
 s_u1_flg_system_init_fin = TRUE;
 SetDdiscnctStatus(STS_DDCNCT_NONE);
 }
 break;

 /* Start detection of disconnection at an error. */
 case STS_DDCNCT_CONF_START:
 {
 /* Set SetPtrFunc again. */
 r_mtr_init_ddiscnct_interface();
 SetDdiscnctStatus(STS_DDCNCT_CONF);
 }
 break;

 /* Periodic call for waiting for detection of disconnection */
 case STS_DDCNCT_CONF:
 {
 temp_arg.call_state = DDMNT_USRREQ_RUN;
 temp_arg.wire_state = DDMNT_WIRE_STATE_ABNORMAL;
 dd_ret = R_RSLV_DiscDetection_Seq(temp_arg);

 /* In the case of normal termination, execution is ended
 without any further processing. */
 if (DDMNT_APIINFO_END_NORMAL == dd_ret)
 {
 SetDdiscnctStatus(STS_DDCNCT_CONF_FIN);
 }
 /* When disconnection is detected, the disconnection information

is set in the variable. */
 else if (DDMNT_APIINFO_ERR_DISCONNECT == dd_ret)
 {
 g_u2_err_status |= MTR_ERR_RSLV_DISCNCT;
 SetDdiscnctStatus(STS_DDCNCT_CONF_FIN);
 }
 /* Periodic call in the other cases */
 else
 {
 /* Do nothing. */
 }
 }
 break;

 /* Post-detection processing */
 case STS_DDCNCT_CONF_FIN:
 /* Set interface functions for adjustment again. */
 r_mtr_init_adjst_interface();
 SetDdiscnctStatus(STS_DDCNCT_NONE);
 break;
 }
} /* End of function r_mtr_DetectDisconnect_Seq() */

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 139 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.12 Cancelling an Alarm
7.12.1 Example of Using API Functions
Figure 7.21 shows a block diagram of implementation by using API functions for cancelling an alarm.

Int
CMT

Int
ADC

Position
control

Speed
control

Current
control

Inverter
board Motor

Resolver

Int
Capture(MTU)

RDC

Main

Canceling an alarm

R_RSLV_Rdc_AlarmCancel

SPI communications

Int
POE

R_RSLV_Rdc_AlarmCancelStart

Start of sequence

Int: Interrupt processing
CMT: Interval timer processing

Figure 7.21 Example of Implementing Processing to Cancel an Alarm
When the RDC detects an excessive temperature, the low level is output on the alarm signal pin. In general,
connect the alarm signal to a POE pin and stop the motor through forced shutdown.

To reset an alarm of the RDC, execute R_RSLV_Rdc_AlarmCancelStart (section 6.2.38, API Function for
Starting RDC Alarm Cancellation) to change the driver state to the alarm reset state, and then execute
R_RSLV_Rdc_AlarmCancel (section 6.2.39, API Function for Controlling the RDC Alarm Cancellation
Sequence).

The API function R_RSLV_Rdc_AlarmCancel for starting alarm cancellation internally takes the form of a
state machine, and so must be called periodically. R_RSLV_Rdc_AlarmCancel usually returns
RSLV_MD_BUSY1. When an alarm has successfully been cancelled, RSLV_MD_OK is returned. If an alarm
cannot be cancelled (continuous alarm state), RSLV_MD_ERROR is returned.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 140 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

7.12.2 Sample Code
The following shows sample code.

7.12.2.1 R_RSLV_Rdc_AlarmCancelStart
This API function can be called at any time after an alarm is generated. In the following example, this
function is called from the processing for the POE interrupt (POE1) generated by the ALARM signal.

#pragma interrupt r_mtr_rslv_foc_poe3_oei1_intr_example (vect=VECT(POE,OEI1))
void r_mtr_rslv_foc_poe3_oei1_intr_example(void)
{
 /* Post-POE processing */
 R_POE3_Stop();

 /* Start the alarm cancellation sequence. */
 R_RSLV_Rdc_AlarmCancelStart();
}

7.12.2.2 R_RSLV_Rdc_AlarmCancel
In the following example, this API function is called periodically in the main loop.

main(void)
{
while (1)

 {
 unsigned char ret;

 ret = R_RSLV_Rdc_AlarmCancel();

 if (RSLV_MD_OK == ret)
 {
 /* Processing for successful cancellation */
 }
 else if (RSLV_MD_ERROR == ret)
 {
 /* Processing for failure in cancellation */
 }
 }
}

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 141 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

8. Migration from Rev. 1.20 and Earlier Versions to Rev. 2.10
This section shows the procedure for migrating from Rev. 1.20 and earlier versions to Rev. 2.10 of the
RX24T-version resolver driver. The sample code used in migration examples is assumed to be
RX24T_MRSSK_STM_RSLV_FOC_CSP_RV120 (hereafter referred to as the STM-version sample code).

8.1 Changing the Configuration of Folders and Files
The necessary steps for migrating to Rev. 2.10 are to replace the library and header files of the resolver
driver and add the SC-generated code for peripheral modules.

8.1.1 Replacing the Library and Header Files and Adding the SC Code
Replace the library and header files of the resolver driver, which are located under rdc_driver_RX and shown
in the following figure. Create the src folder and copy the ¥smc_gen folder into it. For details on registering
files to a project, see section 8.1.2, Registering Files to a Project.

Figure 8.1 Replacing Files and Adding the SC Code

When generating code by the SC, the created code (SC code) is saved in the following folder.

¥smc_gen¥
 ¥Config_(peri_func)
 ¥general
 ¥r_bsp
 ¥r_config
 ¥r_pincfg

¥r_bsp, ¥r_config, and ¥r_pincfg are not used in this migration example. Register only ¥Config_(peri_func)
and ¥general to a project. The SC code needs to be partially modified. For details on modifying the SC code,
see section 8.2.2, Modifying the SC Code.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 142 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

8.1.2 Registering Files to a Project
After the files have been replaced and the SC code has been added, register each file to an IDE project as
shown in the following figure.

Figure 8.2 Registering Files to a Project

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 143 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

8.2 Modifying the Source Code
8.2.1 Initialization Processing of Peripheral Modules
Add the SC-generated functions for initializing the peripheral modules to R_MTR_InitHardware.

When code is generated by the SC, the initialization functions are called from R_Systeminit(). Here,
however, an example of using the function for initializing the motor control block is shown.

void R_MTR_InitHardware (void)
{

 /*=========================*/
 /* Initialize port */
 /*=========================*/
 mtr_init_port();

 /*=========================*/
 /* Initialize clock */
 /*=========================*/
 mtr_init_clock();

 /*========================*/
 /* Initialize WDT */
 /*========================*/
 mtr_init_wdt();

 /*========================*/
 /* Initialize CMT0 */
 /*========================*/
 mtr_init_cmt0();
 ・
 ・
 SYSTEM.PRCR.WORD = 0xA50FU;
 /* Enable writing to MPC pin function control registers */
 MPC.PWPR.BIT.B0WI = 0U;
 MPC.PWPR.BIT.PFSWE = 1U;

 R_Config_MTU9_Esig12_Create();
 R_Config_MTU0_Csig_Create ();
 R_Config_MTU2_Cap_Create ();
 R_Config_CMT1_CsigUpdTim_Create ();
 R_Config_TMR0_PhaseA_Create ();
 R_Config_TMR4_PhaseB_Create ();
 R_Config_TMR3_RdcClk_Create ();
 R_Config_RSPI0_RdcCom_Create ();

 /* Disable writing to MPC pin function control registers */
 MPC.PWPR.BIT.PFSWE = 0U;
 MPC.PWPR.BIT.B0WI = 1U;
 /* Enable protection */
 SYSTEM.PRCR.WORD = 0xA500U;
 ・
 ・

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 144 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

8.2.2 Modifying the SC Code
After registering the SC code to a project, modify the SC code as shown in the following.

8.2.2.1 Adding an Include Declaration to r_cg_userdefine.h

8.2.2.2 Adding User-Created Code to Each Config_(peri_func)_user.c File
Add the user-created code for function tables, according to section 5.4, Setting up Function Tables. Also,
add a prototype declaration to Config_(peri_func).h. The following code shows an example in which the
angle error correction signal is assigned to the MTU0.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 145 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

8.2.2.3 Porting Each Interrupt Processing of the Project before Migration to the Interrupt
Processing of the SC Code

When an interrupt setting is enabled by the SC, an interrupt processing function is automatically created.
Port the interrupt processing that was created before migration to the interrupt processing generated by the
SC. After that, delete the interrupt processing created before migration (enable the interrupt processing
function created in the SC code).

• Excitation signal interrupt
• Interrupt for updating the duty cycle of the angle error correction signal
• Interrupt for acquiring the angle detection value

Coding example: Interrupt for updating the duty cycle of the angle error correction signal

(Before migration)
r_mtr_interrupt.c
/***
* Function Name : mtr_csig_interrupt
* Description : CMI1 interrupt(Duty update of PWM for angle error correction)
* Arguments : None
* Return Value : None
***/
#pragma interrupt (mtr_csig_interrupt(vect = VECT_RSLV_CSIG))
static void mtr_csig_interrupt(void)
{
setpsw_i(); /* Interrupt enabled */
 R_RSLV_INT_CSig_UpdatePwmDuty();
} /* End of function mtr_csig_interrupt */

Config_CMT0.c:
#pragma interrupt r_Config_CMT0_cmi0_interrupt(vect=VECT(CMT0,CMI0))
static void r_Config_CMT0_cmi0_interrupt(void)
{
 /* Start user code for r_Config_CMT0_ cmi0_interrupt. Do not edit comment
generated here. */
 /* End user code. Do not edit comment generated here. */
}

(After migration)
r_mtr_interrupt.c
 Delete the whole function.
/***
* Function Name : mtr_csig_interrupt
* Description : CMI1 interrupt(Duty update of PWM for angle error correction)
* Arguments : None
* Return Value : None
***/
// #pragma interrupt (mtr_csig_interrupt(vect = VECT_RSLV_CSIG))
// static void mtr_csig_interrupt(void)
// {
// setpsw_i(); /* Interrupt enabled */
// R_RSLV_INT_CSig_UpdatePwmDuty(); // Deleted
//} /* End of function mtr_csig_interrupt */

Config_CMT0.c:
#pragma interrupt r_Config_CMT0_cmi0_interrupt(vect=VECT(CMT0,CMI0))
static void r_Config_CMT0_cmi0_interrupt(void)
{

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 146 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

 /* Start user code for r_Config_CMT0_ cmi0_interrupt. Do not edit comment
generated here. */
R_RSLV_INT_CSig_UpdatePwmDuty(); // Added

 /* End user code. Do not edit comment generated here. */
}

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 147 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

8.2.2.4 Modifying the Header File for Communication Peripheral Modules (RSPI and SCI)
Since definitions (e.g., uint16_t) are written in the prototype declaration of the SC-generated header file for
communication peripheral modules, including “r_cg_userdefine.h” is necessary.

8.2.2.5 Modifying r_cg_macrodriver.h
Since r_bsp is not used in this migration method, delete the #include line of platform.h from
r_cg_macrodriver.h. This step is unnecessary when r_bsp is used.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 148 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

8.2.3 Modifying the API Functions
When changing the resolver driver from Rev. 1.20 and earlier versions to Rev. 2.10, the implementation
method also has to be changed because the specifications of some API functions differ. The following table
lists the API functions that require change. For details on modification, see section 8.2.3.1, Deleting the
R_RSLV_CreatePeripheral API Function, and onwards.
Table 8-1 List of API Functions Requiring Modification

API Function Modification Modification Method
R_RSLV_CreatePeripheral(
 ST_INIT_REG_PARAM *rdc_init_param
)

Deletion Delete the code where this function is used.

R_RSLV_SetFuncTable(
 unsigned char set_func,
 FUNCTION_TABLE user_func_table
)

Addition Implement this function in the initialization processing.
Delete the R_RSLV_CreatePeripheral() setting in
RESOLVER_peripheral_init() and RDC_peripheral_init(), and at that
location write the processing for setting up a function table.

R_RSLV_SetSystemInfo(
 ST_SYSTEM_PARAM *rdc_sys_param
)

Change Change the function as follows:
R_RSLV_SetSystemInfo(
 ST_SYSTEM_PARAM *rdc_sys_param,
 ST_USER_PERI_PARAM *user_peri_param
)

R_RSLV_SetCaptureTiming(
 uint16_t tcnt
)

Change Replace these functions with the following function.
R_RSLV_ESigCapStartTiming (
 uint16_t esig_start_tcnt,
 uint16_t cap_start_tcnt
)

R_RSLV_EsigStartTiming(
 uint16_t tcnt
)

Change

R_RSLV_Rdc_RegWrite(
 uint8_t wt_data,
 uint8_t address,
 uint8_t *write_status
)

Change Change the calling function as follows:
R_RSLV_Rdc_RegWrite(
 unsigned char *write_status
)
In addition, change the calling method as follows:
(Before modification)
 R_RSLV_Rdc_SetRegisterVal (data1,address1);
 R_RSLV_Rdc_SetRegisterVal (data2,address2);
 R_RSLV_Rdc_RegWrite(data3,address3,&com_sts);
(After modification)
 R_RSLV_Rdc_SetRegisterVal (data1,address1);
 R_RSLV_Rdc_SetRegisterVal (data2,address2);
 R_RSLV_Rdc_SetRegisterVal (data3,address3);
 R_RSLV_Rdc_RegWrite(&com_sts);

R_RSLV_INT_RdcCom_Recv(void) Deletion Delete the code where this function is called.

R_RSLV_INT_RdcCom_Trans(void) Deletion Delete the code where this function is called.
R_RSLV_INT_RdcCom_Error(void) Deletion Delete the code where this function is called.
R_RSLV_INT_RdcCom_Idle(void) Deletion Delete the code where this function is called.
R_RSLV_SetFunctionPointer(
 UNSIGNED_CHAR_POINTER *func,
 unsigned char func_id
)

Deletion Delete the code where this function is called.

R_RSLV_Rdc_CallComEndCb(void) Addition Add this function to the transmit/receive end interrupt callback
processing.

R_RSLV_Rdc_CallErrorCb() Addition Add this function to the error interrupt callback processing.

R_RSLV_ADJST_SetPtrFunc(
 st_ptr_func_arg_t *ptr_arg
)

Change This function is changed so that the return value is returned.
Determine the return value as required.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 149 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

8.2.3.1 Deleting the R_RSLV_CreatePeripheral API Function
Since this API function for initializing the peripheral modules was deleted from Rev. 2.10, delete the code
where this function is used. The following function is used in the STM-version sample code.

• RESOLVER_peripheral_init(void)
• RDC_peripheral_init(void)

Example:
(Deleted)
 // MTU3_9 ESig12
// rdc_init_param.u1_sel_reg_type = T_MTU3_9;
// rdc_init_param.u1_sel_reg_func = F_ESIG12;
// rdc_init_param.u1_sel_int_flg = INT_ENABLE;
// rdc_init_param.u1_sel_int_priorty = 11;
// rdc_init_param.u1_capture_trig = CAPTURE_TRIG_NONE;
// rdc_init_param.u1_use_port1 = P_P21;
// rdc_init_param.u1_use_port2 = P_PE0;
// rdc_init_param.u1_use_port3 = 0xFF; // Not used
// rdc_init_param.u1_use_port4 = 0xFF; // Not used
// R_RSLV_CreatePeripheral(&rdc_init_param);

8.2.3.2 Adding the R_RSLV_SetFuncTable API Function
Add the processing to set up a function table at the locations where R_RSLV_CreatePeripheral was deleted.
The following function is used in the STM-version sample code, as in section 8.2.3.1.

• RESOLVER_peripheral_init(void)
• RDC_peripheral_init(void)

Example:
(Deleted)
 // MTU3_9 ESig12
// rdc_init_paramu1_sel_reg_type = T_MTU3_9;
// rdc_init_param.u1_sel_reg_func = F_ESIG12;
// rdc_init_param.u1_sel_int_flg = INT_ENABLE;/
// rdc_init_param.u1_sel_int_priorty = 11;
// rdc_init_param.u1_capture_trig = CAPTURE_TRIG_NONE;
// rdc_init_param.u1_use_port1 = P_P21;
// rdc_init_param.u1_use_port2 = P_PE0;
// rdc_init_param.u1_use_port3 = 0xFF; // Not used
// rdc_init_param.u1_use_port4 = 0xFF; // Not used
// R_RSLV_CreatePeripheral(&rdc_init_param);
(Added)
 /* Set up the function table for ESig */
 g_st_user_func_table.Start = &R_Config_MTU9_Esig_Start;
 g_st_user_func_table.Stop = &R_Config_MTU9_Esig_Stop;
 g_st_user_func_table.SetTcnt = &R_Config_MTU9_Esig_SetTcnt;
 g_st_user_func_table.GetTcnt = &R_Config_MTU9_Esig_GetTcnt;
 R_RSLV_SetFuncTable(F_ESIG12, g_st_user_func_table);

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 150 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

8.2.3.3 Changing the R_RSLV_SetSystemInfo API Function
Change the arguments (parameters) of R_RSLV_SetSystemInfo. For the arguments (parameters), see
section 6.3.2, Structures for R_RSLV_SetSystemInfo. The following function is where the STM-version
sample code has to be changed.

• RESOLVER_peripheral_init(void)
In this function, modify the code as follows:

(Before modification)
 /* RX24T 100 pins */
 st_system_param.u1_mcu_type = MCU_TYPE_R5F524TAADFP;
 /* Excitation signal (ESig) frequency 5 kHz */
 st_system_param.u1_esig_freq = R_ESIG_SET_FREQ_20K;
 /* Correction signal (CSig) frequency 400 kHz */
 st_system_param.u1_csig_freq = R_CSIG_SET_FREQ_200K;
 /* Update the duty cycle 2 times.*/
 st_system_param.u1_csig_upd_duty_cycle = R_CSIG_SET_DCNT_02;
 /* Use MTU synchronous start. */
 st_system_param.u1_mtu3_sync_start = MTU_SYNC_START_ENABLE;
 /* Target motor is a BLDC motor. */
 st_system_param.u1_motor_kind = MOTOR_STM;
 st_system_param.u1_extension_use = R_EXT_INACTIVE;
 R_RSLV_SetSystemInfo(&st_system_param);

(After modification)
 /* Excitation signal (ESig) frequency 20 kHz */
 st_system_param.u1_esig_freq = R_ESIG_SET_FREQ_20K;
 /* Correction signal (CSig) frequency 200 kHz */
 st_system_param.u1_csig_freq = R_CSIG_SET_FREQ_200K;
 /* Update the duty cycle 2 times.*/
 st_system_param.u1_csig_upd_duty_cycle = R_CSIG_SET_DCNT_02;
 /* Use MTU synchronous start. */
 st_system_param.u1_sync_start = SYNCMD_OTHER_API;
 /* Target motor is a STM motor. */
 st_system_param.u1_motor_kind = MOTOR_STM;
 /* RDC IC MNTOUT output method */
 st_system_param.u1_mntout_type = RSLV_MNTOUT_TYPE_AC;
 st_user_peri_param.f_esig1_peri_clk_src = 80.0f;
 st_user_peri_param.f_csig_peri_clk_src = 80.0f;
 st_user_peri_param.f_csig_upd_timer_peri_clk_src = 5.0f; // CMT:PCLKB/8
 st_user_peri_param.f_capture_peri_clk_src = 80.0f;
 st_user_peri_param.f_phase1_peri_clk_src = 40.0f;
 st_user_peri_param.f_phase2_peri_clk_src = 40.0f;
 R_RSLV_SetSystemInfo(&st_system_param, &st_user_peri_param);

8.2.3.4 Changing the R_RSLV_SetCaptureTiming and R_RSLV_EsigStartTiming API
Functions

Delete R_RSLV_SetCaptureTiming and R_RSLV_EsigStartTiming, and add R_RSLV_Set_EsigCapTiming
to an appropriate location. For details on how to use the API function, see section 6.2.20, API Function for
Setting the Timing to Start the Excitation Signal Output.

Modify the code as follows:

(Before modification)

 R_RSLV_SetCaptureTiming(DEF_SFT_ADJ_ESIG); /* Capture start timing */
 R_RSLV_ESigStartTiming(DEF_DELAY_ADJ_ESIG); /* Esig start timing*/

(After modification)
 R_RSLV_ESigCapStartTiming(DEF_DELAY_ADJ_ESIG, DEF_SFT_ADJ_ESIG); /* Esig &
Capture start timing*/

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 151 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

8.2.3.5 Changing the R_RSLV_Rdc_RegWrite API Function
Change the arguments of this function. For details on how to use the API function, see section 6.2.30, API
Function for Writing to an RDC Register. Also, change the method of calling the API function as shown
below.

(Before modification)
 R_RSLV_Rdc_SetRegisterVal (data1,address1);
 R_RSLV_Rdc_SetRegisterVal (data2,address2);
 R_RSLV_Rdc_RegWrite(data3,address3,&com_sts);
(After modification)
 R_RSLV_Rdc_SetRegisterVal (data1,address1);
 R_RSLV_Rdc_SetRegisterVal (data2,address2);
 R_RSLV_Rdc_SetRegisterVal (data3,address3);
 R_RSLV_Rdc_RegWrite(&com_sts);

8.2.3.6 Deleting the R_RSLV_INT_RdcCom_Recv API Function
This API function was deleted from Rev. 2.10 because a receive interrupt processing for SPI
communications is to be created by the SC. Therefore, use the receive interrupt processing that was
generated by the SC. For the receive interrupt processing generated by the SC, see the receive interrupt
processing (generated by the SC) in section 7.10.2.3, Example of Using the SCI.

8.2.3.7 Deleting the R_RSLV_INT_RdcCom_Trans API Function
This API function was deleted from Rev. 2.10 because a transmit interrupt processing for SPI
communications is to be created by the SC. Therefore, use the transmit interrupt processing that was
generated by the SC. For the transmit interrupt processing generated by the SC, see the transmit interrupt
processing (generated by the SC) in section 7.10.2.3, Example of Using the SCI.

8.2.3.8 Deleting the R_RSLV_INT_RdcCom_Error API Function
This API function was deleted from Rev. 2.10 because an error interrupt processing for SPI communications
is to be created by the SC. Therefore, use the error interrupt processing that was generated by the SC. For
the error interrupt processing generated by the SC, see the error interrupt processing (generated by the SC)
in section 7.10.2.3, Example of Using the SCI.

8.2.3.9 Deleting the R_RSLV_INT_RdcCom_Idle API Function
This API function was deleted from Rev. 2.10 because an idle interrupt processing for SPI communications is
to be created by the SC. Therefore, use the idle interrupt processing that was generated by the SC.
However, if an SCIx module is set by the SC, the idle interrupt processing is not created and so the only
change is that this API function was deleted.

8.2.3.10 Deleting the R_RSLV_SetFunctionPointer API Function
This API function was deleted from Rev. 2.10 because the chip select signal is to be output in the code
generated by the SC. Therefore, delete the code where this function is called.

8.2.3.11 Adding the R_RSLV_Rdc_CallComEndCb API Function
Call this API function from the callback functions (r_Config_(peri_func)_callback_transmitend() and
r_Config_(peri_func)_callback_ receiveend ()) for SPI communication end interrupts, which are generated by
the SC. For details, see the callback processing in section 7.10.2.3, Example of Using the SCI.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 152 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

8.2.3.12 Adding the R_RSLV_Rdc_CallErrorCb API Function
Call this API function from the callback function (r_Config_(peri_func)_callback_error()) for the SPI
communication error interrupt, which is generated by the SC. For details, see the callback processing in
section 7.10.2.3, Example of Using the SCI.

8.2.3.13 Modifying the R_RSLV_ADJST_SetPtrFunc API Function
This API function was modified so that the return value is returned. Handle the return value as required. For
details on how to use the API function, see section 6.2.42, API Function for Setting the Pointer to the User-
Created Callback Function.

8.2.4 Other Modifications
8.2.4.1 Interrupt
When an interrupt of each driver facility is enabled by the SC, an interrupt function is created. If the same
interrupt function has already been created, the recommended actions are to implement the processing in
the interrupt function that was generated by the SC and delete the former interrupt function.

8.2.4.2 Adding and Deleting Structures
In Rev. 2.10, ST_USER_PERI_PARAM has been added and ST_INIT_REG_PARAM has been deleted.
Modify the STM-version sample code as follows:

• RESOLVER_peripheral_init(void)
Delete the definition of ST_INIT_REG_PARAM and the code where it is used.

• RDC_peripheral_init(void)

Delete the definition of ST_INIT_REG_PARAM and the code where it is used.
Add the definition of ST_USER_PERI_PARAM, and then add ST_USER_PERI_PARAM to the
arguments of R_RSLV_SetSystemInfo().

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 153 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

9. Notes
Note the following when making initial settings.

9.1 Initial Setting Procedure
Follow the steps below to make initial settings.

1. Specify system information (R_RSLV_SetSystemInfo()).
2. Specify each function table (R_RSLV_SetFuncTable()).
3. Acquire RDC driver setting information (R_RSLV_GetRdcDrvSettingInfo()).
4. Make other settings.

Using a different procedure for settings might lead to timer values being other than as intended or abnormal
RDC driver setting information.

9.2 Assigning Multiple Driver Facilities to a Single Peripheral Module
Do not assign more than one driver facility to a single peripheral module. Doing so does not lead to a faulty
setting but only the last setting to have been made is effective.

Examples of setting: ESIG12 and CAPTURE are assigned to MTU3_9.
 RDC_CLK and PHASE_A are assigned to TMR0.

9.3 Assigning Multiple Peripheral Modules to a Single Driver Facility
Do not assign more than one peripheral module to a single driver facility. Doing so does not lead to a faulty
setting but only the last setting to have been made is effective.

Examples of setting: MTU3_0 and MTU3_9 are assigned to ESIG12.
 TMR0 and TMR1 are assigned to PHASE_A.

9.4 Initializing Variables for Communications with the RDC
Do not perform RDC communications processing before initialization of the communications variables for the
RDC (R_RSLV_Rdc_VariableInit). Doing so may lead to faulty settings in the RDC registers.

9.5 Specifying Peripheral Modules for Phase Adjustment Signals
Do not specify a single peripheral module for both phase adjustment signals (F_PHASE_A and
F_PHASE_B). Doing so does not lead to a faulty setting but the output phase adjustment signals will not be
correct.

Examples of setting: TMR0 is assigned to PHASE_A and PHASE_B.

9.6 Setting Timer Start Timing
Set the timing for starting the timers for output of the excitation signal and input of the angle signal before
starting the timers. Failure to do so may lead to a timer count error and an unexpected value of the angle
signal may be obtained.

9.7 Adjustment Operation
The adjustment facilities operate only while the basic facilities are operating. Do not start the adjustment

operation while the facilities described in sections 7.4 to 7.7 and 7.10 are stopped.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 154 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

9.8 Amount of Phase Shift for Angle Error Correction
If the amount of phase shift is set to a value close to 0, the phase of the angle error correction signal may not
change as specified. This is because the start of the timer for generating the duty cycle updating interrupt is
delayed due to the program processing time and interrupt disabled period when the API function for
synchronously starting the angle error correction signal (R_RSLV_INT_CSig_SyncStart) is executed in the
processing of the exciting signal interrupt. The updating of the duty cycle of the correction signal is also
delayed if a timer interrupt for updating the duty cycle of the angle error correction signal is generated while
the processing of another interrupt (such as angle detection interrupt) is in progress. This is because the duty
cycle updating interrupt is processed after the processing of the other interrupt generated first is completed.

Excitation signal

Excitation signal interrupt

Excitation signal
interrupt
processing

The timing of reflecting the setting is delayed and the desired
amount of shift for angle error correction signal cannot be obtained.

R_RSLV_INT_CSig_SyncStart

Excitation signal interrupt

Amount of shift: 980

Timer for updating
the duty cycle of
angle error correction
signal Timing for reflecting

the setting is
delayed.

Angle error correction
signal when the
amount of shift is 0

Desired angle error
correction signal

Actual output of
angle error
correction signal

Amount of shift is set to 980.
Amount of shift
specified by the
user 0

Duty cycle updated

Setting
reflected in the
system

0

980

Desired timing of updating
the duty cycle

Actual timing of updating the
duty cycle

Duty cycle updated

Figure 9.1 Mechanism of Incorrect Shift in Phase

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 155 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

To avoid this problem, make the following settings.

1. Set up the timer for starting the duty cycle updating interrupt for the angle error correction signal as
follows.

 Use an unused timer to generate interrupts with the same cycle as the excitation signal cycle
(hereafter, this timer is called the timer for starting the updating interrupt).

 Start counting in the timer for starting the updating interrupt within the excitation signal interrupt
processing.

In addition, make the following settings before starting counting.
• Specify an appropriate initial value in the timer for starting the updating interrupt so that the timer

generates an interrupt in synchronization with the excitation signal interrupt.
• Enable interrupts from the timer for starting the updating interrupt.
• Set the priory of the interrupt from the timer for starting the updating interrupt to a higher level than

those of the excitation signal interrupt, angle detection interrupt, and the interrupt for updating the
duty cycle of the angle error correction signal so that the interrupt from the timer for starting the
updating interrupt is processed before the other interrupts. In addition, enable nesting of excitation
signal interrupts.

 Make these settings while the angle error correction signal is stopped (for example, when the setting
of the angle error correction signal is modified).

2. Perform the following in the processing of the timer for starting the updating interrupt.
• Call R_RSLV_INT_CSig_SyncStart.
• Disable the timer for starting the updating interrupt.

These settings enable R_RSLV_INT_CSig_SyncStart to be executed with the correct timing even if the
amount of phase shift for the angle error correction signal is set to a value close to 0 (almost the same phase
as the excitation signal). The timing of duty cycle updating interrupts for the angle error correction signal is
also corrected. The following shows the operations with these settings.

Excitation signal

Excitation signal interrupt

Interrupt from the
timer for starting the
updating interrupt

Excitation signal interrupt

Excitation signal
interrupt processing

Excitation signal interrupt

A duty cycle updating interrupt for
the angle error correct ion signal can
be generated in synchronization with
the excitation signal interrupt.

Duty cycle updating
interrupt for angle
error correction signal

Call R_RSLV_INT_CSig_SyncStart.

The timer for starting duty cycle updating interrupts begins counting.
* Specify an appropriate value in the timer counter so that the timer

generates an interrupt in synchronization with the excitation signal
interrupt.

Figure 9.2 Example of Avoiding the Problem

9.9 Order of Function Table Settings
When F_ESIG2_1 and F_ESIG2_2 are used to output the excitation signal, specify the function table for
F_ESIG2_1 before that for F_ESIG2_2. Otherwise, the correct excitation signal is not output.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 156 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

9.10 Adjustment of the Angle Error Correction Signal
When using the angle error correction signal adjustment, set the number of updates of the angle error
correction duty cycle to 2 times. The phase shift amount of the angle error correction signal may not be
adjusted correctly.

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 157 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

10. Troubleshooting
This section provides examples of actions to be taken when resolver signals are not detectable. If you have
errors, identify the source of errors with reference to the flow in Figure 10.1.

Start troubleshooting

Has the source of errors been
identified?

Counter value errors
See section 10.1.

Rotation direction errors
See section 10.2.

Angle errors
See section 10.3.

End of troubleshooting

Yes

No

Detection of disconnection
from the resolver sensor
See section 10.4.

Figure 10.1 Overall Flow of Troubleshooting

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 158 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

10.1 Counter Value Errors
If a counter value error is found in the phase information in the MCU, identify the source of errors with
reference to the flow in Figure 10.2. For details of detection of disconnections from the resolver sensor, see
section 10.4, Detection of Disconnection from the Resolver Sensor.

Start

ALMST.BWCN

0

1

Disconnection detected

Check connections of the
resolver sensor.

No disconnection detected

Check the differential
amplification circuit gain
selection register.

GCGSL.GCG[1:0]

1

0

Set the
GCGSL.GCG[1:0] bits to 0.

Has the source of errors been
identified?

Yes

No

End

Alarm state register (ALMST)
Address: 12H

Differential amplification circuit gain
selection register (GCGSL)
Address: 2EH

Figure 10.2 Counter Value Errors

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 159 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

10.2 Rotation Direction Errors
If the direction of rotation is not as expected, or if the resolver is not rotating in accordance with the phase
information even though the resolver was physically rotated through one rotation of electrical angle, identify
the source of errors with reference to the flow in Figure 10.3.

Start

Incorrect direction of
rotation

One rotation of electrical
angle not detected 180° shift

The connections are sine
to cosine and cosine to
sine.

Connection of the resolver
signals is faulty.

The + and – connections
of the excitation, sine, or
cosine signal are reversed.

Check whether the
connections are sine to
cosine and cosine to sine.

Check the connections of
the resolver signals.

Correct the connection of
the resolver signals.

Has the source of errors been
identified?

Yes

No

End

Figure 10.3 Rotation Direction Errors

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 160 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

10.3 Angle Errors
If the phase information from the resolver differs from the expected angle, an abnormality may be present in
the signal waveform. In such cases, check the output waveform from the analog monitoring signals. To
output waveforms to the analog monitoring output, set the PSMON bit in power-saving control register 3
(PS3) to 1 and make the appropriate settings in the monitor output selection register (MNTSL).

Start

Is the MNTOUT signal
normal?*

Yes

No

Counter value errors
See section 10.1.

Check the setting for the
gain of differential
amplifiers.

Is the gain of differential
amplifiers correct?

Yes

No

Check the constants or values of
the following.
• Detection resistors connected

to the outputs of the resolver if
the resolver is of the current
detection type

• Excitation current circuit
• External filter circuit

Re-determine the gain of
differential amplifiers.

Has the source of errors been
identified?

Yes

No

End

Note: The examples of normal and
abnormal waveform are shown below.

Normal waveform Abnormal waveform

Figure 10.4 Angle Errors

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 161 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

10.4 Detection of Disconnection from the Resolver Sensor
The RAA3064002GFP and RAA3064003GFP only detect disconnection from the resolver sensor. After
disconnection is detected, handling such as the MCU applying control to stop the output of the excitation
actuating signal is required. For details on the settings for the detection of disconnection, see section 7.11,
Detection of Disconnection from Resolver Sensor.
The following describes the patterns that may lead to the detection of disconnection. How disconnection is
detected depends on the configuration of the resolver in use.

Figure 10.5 shows normal operation and Figures 10.6 to 10.8 show cases of the detection of disconnection
when the resolver is of the transformer type.

Excitation circuit

Excitation +

Excitation -

Detection circuit

Differential
amplifier A

Differential
amplifier B

VCC

GND

VCC

GND

Output voltage
from differential
amplifier A

Output voltage
from differential
amplifier B

1.2 Vpp

1.2 Vpp

Bias

Bias

MNTOUT pin DC 3.5 V

Figure 10.5 Normal State

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 162 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

Excitation +

Excitation -

Differential
amplifier A

Differential
amplifier B

VCC

GND

VCC

GND

Output voltage
from differential
amplifier A

Output voltage
from differential
amplifier B

Bias

Bias

Disconnected

No signal is present in either of
the differential amplifiers.
The bias voltage is only present.

Excitation circuit Detection circuit

MNTOUT pin DC 3.5 V
DC 2.5 V

Figure 10.6 Disconnection on the Excitation Side

Excitation +

Excitation -

Differential
amplifier A

Differential
amplifier B

VCC

GND

VCC

GND

Output voltage
from differential
amplifier A

Output voltage
from differential
amplifier B

Bias

Bias

Disconnected
VCC

GND

The output voltage becomes VCC
when no phase-A signal is present
due to + side disconnection
(or GND for - side disconnection).

0.5 Vpp

Excitation circuit Detection circuit

MNTOUT pin DC 3.5 V
DC 2.5 V

Figure 10.7 Disconnection on the SIN+ Side

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 163 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

Excitation +

Excitation -

Differential
amplifier A

Differential
amplifier B

VCC

GND

VCC

GND

Output voltage
from differential
amplifier A

Output voltage
from differential
amplifier B

Bias

Bias

Disconnected
VCC

GND
VCC

GND

Excitation circuit Detection circuit

The output voltage becomes VCC when
no phase-A signal is present due to + side
disconnection (or GND for - side
disconnection).

The output voltage becomes VCC when
no phase-B signal is present due to + side
disconnection (or GND for - side
disconnection).

MNTOUT pin DC 3.5 V
DC 2.5 V

Figure 10.8 Disconnection on the SIN+ and COS+ Sides

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 164 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

Figure 10.9 shows normal operation and Figures 10.10 to 10.13 show cases of the detection of
disconnection when the resolver is of the current-detection type.

Differential
amplifier A

Differential
amplifier B

Excitation +

Excitation -

Excitation circuit

Detection circuit

Output voltage
from differential
amplifier A

Output voltage
from differential
amplifier B

1.2 Vpp

1.2 Vpp

Bias

Bias

MNTOUT pin DC 3.3 V

Figure 10.9 Normal State

Differential
amplifier A

Differential
amplifier B

Excitation +

Excitation -

Output voltage
from differential
amplifier A

Output voltage
from differential
amplifier B

Bias

Bias

Disconnected

No signal is present in either of the
differential amplifiers.
The bias voltage is only present.

Excitation circuit
Detection circuit

MNTOUT pin DC 3.3 V
DC 2.5 V

Figure 10.10 Disconnection on the Excitation Side

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 165 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

Differential
amplifier A

Differential
amplifier B

Excitation +

Excitation -

Excitation circuit
Detection circuit

Output voltage
from differential
amplifier A

Output voltage
from differential
amplifier B

Bias

Bias

Disconnected

At least 1.25 Vpp

3.7 V

1.6 V

MNTOUT pin DC 3.3 V DC 3.8 V

Figure 10.11 Disconnection on the Negative Side of 0 Degrees

Differential
amplifier A

Differential
amplifier B

Excitation +

Excitation -

Excitation circuit
Detection circuit

Output voltage
from differential
amplifier A

Output voltage
from differential
amplifier B

Bias

Bias

Disconnected

No phase-A signal is present.
The bias voltage is only present.

MNTOUT pin DC 3.3 V DC 3.8 V

Figure 10.12 Disconnection on the Negative Side of 0 and 180 Degrees

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 166 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

Differential
amplifier A

Differential
amplifier B

Excitation +

Excitation -

Output voltage
from differential
amplifier A

Output voltage
from differential
amplifier B

Bias

Bias

Disconnected

At least 1.25 Vpp

3.7 V

1.3 V

At least 1.25 Vpp

3.7 V

1.3 V

MNTOUT pin DC 3.3 V

Figure 10.13 Disconnection on the Negative Side of 0 and 90 Degrees

RX23T, RX24T, RX66T, RX72M and RX72T Groups

R03AN0016EJ0110 Rev.1.10 Page 167 of 167
Feb.06.23

Using the Driver (Rev. 2.10) for
Resolver-to-Digital Converter Control

Revision History

Rev. Date
Description
Page Summary

1.00 Jan.29.21 — First edition issued
1.10 Feb.06.23 — Added RX72T to target MCU.

8 Updated the development environment versions in Table 1-1.
Updated the ROM and RAM size in Table 1-2.
Added “Guide to Selecting Peripheral Components for Use
with the Resolver-to-Digital Converters” to "1.4 Related
Documents".

26 Added description that refer to section 3.11, Automatic
Calibration of Errors for phase shift amount and amplitude
level value in Subsection 3.10.1, Starting the Output of the
Angle Error Correction Signal.

30 In Table 3-1, corrected source clock setting and specifiable
range of the amount of phase shift when using RX66T /
RX72T and assigning CMT.

31 Added section 3.11.3.1, Phase Delay by the Filter Circuit.
32 Added section 3.12, Timing Chart (Excitation Signal, Input of

the Angle Signal, and Angle Error Correction Signal).
69 Added R_RSLV_GetCSigStatus to Table 6-1.
72 Added R_RSLV_ADJST_SetFilterDelay to Table 6-1.
76 Added section 6.2.10, API Function for Acquiring the Output

State of the Angle Error Correction Signal.
84 Added section 6.2.44, API Function for Setting the Phase

Delay.
115 Added the example of Implementing R_RSLV_GetCSigStatus

to Figure 7.10.
128 Added section 7.9.3, Phase Delay by the Filter Circuit.
148 Removed R_RSLV_GetCSigStatus from Table 8-1.
152 Deleted section 8.2.3.13, Deleting the

R_RSLV_GetCSigStatus API Function.
156 Added section 9.10, Adjustment of the Angle Error Correction

Signal.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2023 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	Introduction
	Target Devices
	Contents
	1. Overview
	1.1 Functions of the Driver
	1.2 Development Environment
	1.3 Program Size
	1.4 Related Documents

	2. Overall Configuration
	2.1 System Configuration
	2.2 RDC Functions

	3. Functions
	3.1 Initialization of the Driver
	3.1.1 Initial Settings for the On-Chip Peripheral Modules by the SC
	3.1.2 Specifying System Information
	3.1.3 Setting up Function Tables
	3.1.4 Starting Peripheral Modules

	3.2 RDC Settings
	3.2.1 Initial Settings of the RDC

	3.3 Output of the RDC Operating Clock
	3.3.1 Starting the Output of the RDC Operating Clock

	3.4 Communications between the RDC and MCU
	3.4.1 Writing Data to an RDC Register
	3.4.2 Reading Data from an RDC Register
	3.4.3 Communications with the RDC

	3.5 Output of the Excitation Signal
	3.5.1 Excitation Signal Cycle Interrupt
	3.5.2 Starting the Output of the Excitation Signal
	3.5.3 Stopping the Output of the Excitation Signal
	3.5.4 Adjusting the Timing for Starting Output of the Excitation Signal

	3.6 Input of the Angle Signal
	3.6.1 Angle Signal Input Interrupt
	3.6.2 Starting the Input of the Angle Signal
	3.6.3 Stopping the Input of the Angle Signal
	3.6.4 Adjusting the Timing for Starting Input of the Angle Signal

	3.7 Detection of Disconnection from the Resolver Sensor
	3.7.1 Functions Used for Detecting Disconnection
	3.7.1.1 Communications with the RDC
	3.7.1.2 Measuring the RDC Monitoring Signal

	3.8 Alarm Cancellation
	3.9 Output of the Phase Adjustment Signals for the Resolver Signals
	3.9.1 Starting the Output of the Phase Adjustment Signals
	3.9.2 Stopping the Output of the Phase Adjustment Signals
	3.9.3 Setting the Duty Cycles of the Phase Adjustment Signals in the Buffers
	3.9.4 Setting the Duty Cycles of the Phase Adjustment Signals in the Registers
	3.9.5 Reading the Duty Cycles of the Phase Adjustment Signals from the Buffers

	3.10 Output of the Angle Error Correction Signal
	3.10.1 Starting the Output of the Angle Error Correction Signal
	3.10.2 Stopping the Output of the Angle Error Correction Signal
	3.10.3 Settings for Updating the Duty Cycle of the Angle Error Correction Signal
	3.10.4 Interrupt for Updating the Duty Cycle of the Angle Error Correction Signal

	3.11 Automatic Calibration of Errors
	3.11.1 Functions Used to Adjust Parameters
	3.11.2 Adjustment of Gain and Phase of Resolver Signals
	3.11.2.1 Resolver Signal Gain Adjustment
	3.11.2.2 Resolver Signal Phase Adjustment

	3.11.3 Adjustment of the Angle Error Correction Signal
	3.11.3.1 Phase Delay by the Filter Circuit

	3.12 Timing Chart (Excitation Signal, Input of the Angle Signal, and Angle Error Correction Signal)

	4. Software Configuration
	4.1 Folder and File Configuration

	5. Settings for Peripheral Modules
	5.1 List of Macro-Defined Names of Driver Facilities
	5.2 List of Peripheral Modules Assigned to Driver Facilities (Recommended)
	5.3 Setting Driver Facilities by the SC
	5.3.1 Output of the Excitation Signal
	5.3.1.1 Examples of SC Settings When Using the MTU
	5.3.1.2 Examples of SC Settings When Using the GPT
	5.3.1.3 Examples of SC Settings When Using the TPU

	5.3.2 Output of the Phase Adjustment Signals for the Resolver Signals
	5.3.2.1 Examples of SC Settings When Using the MTU
	5.3.2.2 Examples of SC Settings When Using the GPT
	5.3.2.3 Examples of SC Settings When Using the TMR
	5.3.2.4 Examples of SC Settings When Using the TPU

	5.3.3 Output of the Angle Error Correction Signal
	5.3.3.1 Examples of SC Settings When Using the MTU
	5.3.3.2 Examples of SC Settings When Using the GPT
	5.3.3.3 Examples of SC Settings When Using the TPU

	5.3.4 Interrupt for Updating the Duty Cycle of the Angle Error Correction Signal
	5.3.4.1 Examples of SC Settings When Using the MTU
	5.3.4.2 Examples of SC Settings When Using the GPT
	5.3.4.3 Examples of SC Settings When Using the TPU
	5.3.4.4 Examples of SC Settings When Using the CMT

	5.3.5 Input of the Angle Signal
	5.3.5.1 Examples of SC Settings When Using the MTU
	5.3.5.2 Examples of SC Settings When Using the GPT
	5.3.5.3 Examples of SC Settings When Using the TPU

	5.3.6 Output of the RDC Operating Clock
	5.3.6.1 Examples of SC Settings When Using the MTU
	5.3.6.2 Examples of SC Settings When Using the GPT
	5.3.6.3 Examples of SC Settings When Using the TMR
	5.3.6.4 Examples of SC Settings When Using the TPU

	5.3.7 RDC Communications
	5.3.7.1 Examples of SC Settings When Using the RSPI (SSLA0 is Selected)
	5.3.7.2 Examples of SC Settings When Using the SCI

	5.4 Setting up Function Tables
	5.4.1 Functions for Starting and Stopping the Timer
	5.4.2 Functions for Acquiring and Setting the Counter Value
	5.4.3 Functions for Acquiring and Setting the Duty Value
	5.4.4 Function for Acquiring the Capture Value
	5.4.5 Function for Acquiring the Port Level
	5.4.6 Function for SPI Transmission/Reception
	5.4.6.1 When Using the SCI
	5.4.6.2 When Using the RSPI

	6. API Functions
	6.1 List of API Functions
	6.2 Descriptions of API Functions
	6.2.1 API Function for Setting up a Function Table
	6.2.2 API Function for Specifying System Information
	6.2.3 API Function for Acquiring the RDC Driver Setting Information
	6.2.4 API Function for Controlling Synchronous Starting of the MTU3 Timer Channels
	6.2.5 API Function for Acquiring the RDC Driver Version Information
	6.2.6 API Function for Starting the Output of the Angle Error Correction Signal
	6.2.7 API Function for Stopping the Output of the Angle Error Correction Signal
	6.2.8 API Function for Updating the Duty Cycle of the Angle Error Correction Signal
	6.2.9 API Function for Synchronously Starting the Angle Error Correction Signal
	6.2.10 API Function for Acquiring the Output State of the Angle Error Correction Signal
	6.2.11 API Function for Starting the Angle Detection Timer
	6.2.12 API Function for Acquiring the Angle Detection Value
	6.2.13 API Function for Acquiring the Trigger Information of the Interrupt for Acquiring the Angle Detection Value
	6.2.14 API Function for Acquiring the Resolver Angle Count (Acquisition Trigger: Falling Edge)
	6.2.15 API Function for Acquiring the Resolver Angle Difference Count (Acquisition Trigger: Falling Edge)
	6.2.16 API Function for Acquiring the Resolver Angle Count (Acquisition Trigger: Rising Edge)
	6.2.17 API Function for Acquiring the Resolver Angle Difference Count (Acquisition Trigger: Rising Edge)
	6.2.18 API Function for Starting the Output of the Excitation Signal
	6.2.19 API Function for Stopping the Output of the Excitation Signal
	6.2.20 API Function for Setting the Timing to Start the Excitation Signal Output
	6.2.21 API Function for Counting the Wait Time
	6.2.22 API Function for Starting the Output of the Phase Adjustment Signals
	6.2.23 API Function for Stopping the Output of the Phase Adjustment Signals
	6.2.24 API Function for Setting the Phase Adjustment Signal Duty Cycle in the Buffer
	6.2.25 API Function for Setting the Phase Adjustment Signal Duty Cycle in the Register
	6.2.26 API Function for Reading the Phase Adjustment Signal Duty Cycle from the Buffer
	6.2.27 API Function for Setting RDC Initial Values
	6.2.28 API Function for Executing the RDC Initialization Sequence
	6.2.29 API Function for Handling RDC Communications
	6.2.30 API Function for Writing to an RDC Register
	6.2.31 API Function for Reading from an RDC Register
	6.2.32 API Function for Acquiring the RDC Register Access State
	6.2.33 API Function for Reading Data from the RDC Register Buffer
	6.2.34 API Function for Writing Data to the RDC Register Buffer
	6.2.35 API Function for Calling the Callback Processing for the RDC Communication Transmit/Receive End Interrupt
	6.2.36 API Function for Calling the Callback Processing for the RDC Communication Error Interrupt
	6.2.37 API Function for Reporting Errors in RDC Communications
	6.2.38 API Function for Starting RDC Alarm Cancellation
	6.2.39 API Function for Controlling the RDC Alarm Cancellation Sequence
	6.2.40 API Function for Adjusting the Gain and Phase of the Resolver Signals
	6.2.41 API Function for Adjusting the Angle Error Correction Signal
	6.2.42 API Function for Setting the Pointer to the User-Created Callback Function
	6.2.43 API Function for Acquiring the A/D Conversion State
	6.2.44 API Function for Setting the Phase Delay
	6.2.45 API Function for Detecting Disconnection

	6.3 Structures
	6.3.1 Structure for R_RSLV_SetFuncTable
	6.3.2 Structures for R_RSLV_SetSystemInfo
	6.3.3 Structure for R_RSLV_GetRdcDrvSettingInfo
	6.3.4 Structure for R_RSLV_ADJST_GainPhase
	6.3.5 Structures for R_RSLV_ADJST_Carrier
	6.3.6 Structure for R_RSLV_ADJST_SetPtrFunc
	6.3.7 Structure for R_RSLV_DiscDetection_Seq

	7. Examples of Implementing API Functions
	7.1 Preparation for the Use of Peripheral Modules
	7.1.1 SC Settings
	7.1.2 User-Created Code

	7.2 Initialization
	7.2.1 Initialization of the MCU
	7.2.2 Initialization of the Driver
	7.2.2.1 Specifying the System Information
	7.2.2.2 Specifying the Timer Start Timing for the Excitation Signal Output and Angle Signal Input
	7.2.2.3 Setting up Function Tables
	7.2.2.4 Specifying the Pointer to the User-Created Callback Function
	7.2.2.5 Specifying the Initial Values of the RDC

	7.2.3 Sample Code
	7.2.3.1 Initialization of the MCU (Initialization of the Peripheral Modules)
	7.2.3.2 Initialization of the Driver

	7.3 Main Loop
	7.3.1 Example of Implementation
	7.3.2 Sample Code

	7.4 Output of the Excitation Signal
	7.4.1 Example of Using API Functions
	7.4.2 Sample Code

	7.5 Output of the Phase Adjustment Signals
	7.5.1 Example of Using API Functions
	7.5.2 Sample Code
	7.5.2.1 Outputting the Phase Adjustment Signals

	7.6 Output of the Angle Error Correction Signal
	7.6.1 Example of Using API Functions
	7.6.2 Sample Code
	7.6.2.1 Starting and Stopping the Output of the Angle Error Correction Signal
	7.6.2.2 Interrupt Processing for Updating the PWM Duty Cycle
	7.6.2.3 Synchronous Start of the Angle Error Correction Signal

	7.7 Input of Angle Signal
	7.7.1 Example of Using API Functions
	7.7.2 Sample Code
	7.7.2.1 Processing of Angle Signal Interrupt
	7.7.2.2 Acquiring the Position Information

	7.8 Automatic Adjustment of the Gain and Phase
	7.8.1 Example of Using API Functions
	7.8.2 Details of Gain and Phase Adjustment
	7.8.2.1 Starting Adjustment
	7.8.2.2 Continuing Adjustment
	7.8.2.3 Determining Completion of Adjustment

	7.8.3 Sample Code
	7.8.3.1 Call of API Function for Adjusting Gain and Phase

	7.9 Automatic Adjustment of the Angle Error Correction Signal
	7.9.1 Example of Using API Functions
	7.9.2 Details of Angle Error Correction Signal Adjustment
	(a) Adjustment Start
	(b) Position Control Request
	(c) Position Control Completed
	(d) Position Control Stop Request
	(e) Position Control Stopped
	(f) Speed Control Request
	(g) Speed Control Completed
	(h) Speed Control Stop Request
	(i) Speed Control Stopped
	(j) Adjustment Completion Report

	7.9.3 Phase Delay by the Filter Circuit
	(a) Phase Delay Caused by the Band-pass Filter Circuit
	(b) Phase Delay Caused by the LPF Circuit for the Angle Error Correction Signal

	7.9.4 Sample Code
	7.9.4.1 Periodic Call Processing

	7.10 Communications with RDC
	7.10.1 Example of Using API Functions
	7.10.2 Sample Code
	7.10.2.1 Writing to an RDC Register
	7.10.2.2 Reading from an RDC Register
	7.10.2.3 Example of Using the SCI

	7.11 Detection of Disconnection from Resolver Sensor
	7.11.1 Example of Using API Functions
	7.11.2 Sample Code
	7.11.2.1 Detection of Disconnection from the Resolver Sensor

	7.12 Cancelling an Alarm
	7.12.1 Example of Using API Functions
	7.12.2 Sample Code
	7.12.2.1 R_RSLV_Rdc_AlarmCancelStart
	7.12.2.2 R_RSLV_Rdc_AlarmCancel

	8. Migration from Rev. 1.20 and Earlier Versions to Rev. 2.10
	8.1 Changing the Configuration of Folders and Files
	8.1.1 Replacing the Library and Header Files and Adding the SC Code
	8.1.2 Registering Files to a Project

	8.2 Modifying the Source Code
	8.2.1 Initialization Processing of Peripheral Modules
	8.2.2 Modifying the SC Code
	8.2.2.1 Adding an Include Declaration to r_cg_userdefine.h
	8.2.2.2 Adding User-Created Code to Each Config_(peri_func)_user.c File
	8.2.2.3 Porting Each Interrupt Processing of the Project before Migration to the Interrupt Processing of the SC Code
	8.2.2.4 Modifying the Header File for Communication Peripheral Modules (RSPI and SCI)
	8.2.2.5 Modifying r_cg_macrodriver.h

	8.2.3 Modifying the API Functions
	8.2.3.1 Deleting the R_RSLV_CreatePeripheral API Function
	8.2.3.2 Adding the R_RSLV_SetFuncTable API Function
	8.2.3.3 Changing the R_RSLV_SetSystemInfo API Function
	8.2.3.4 Changing the R_RSLV_SetCaptureTiming and R_RSLV_EsigStartTiming API Functions
	8.2.3.5 Changing the R_RSLV_Rdc_RegWrite API Function
	8.2.3.6 Deleting the R_RSLV_INT_RdcCom_Recv API Function
	8.2.3.7 Deleting the R_RSLV_INT_RdcCom_Trans API Function
	8.2.3.8 Deleting the R_RSLV_INT_RdcCom_Error API Function
	8.2.3.9 Deleting the R_RSLV_INT_RdcCom_Idle API Function
	8.2.3.10 Deleting the R_RSLV_SetFunctionPointer API Function
	8.2.3.11 Adding the R_RSLV_Rdc_CallComEndCb API Function
	8.2.3.12 Adding the R_RSLV_Rdc_CallErrorCb API Function
	8.2.3.13 Modifying the R_RSLV_ADJST_SetPtrFunc API Function

	8.2.4 Other Modifications
	8.2.4.1 Interrupt
	8.2.4.2 Adding and Deleting Structures

	9. Notes
	9.1 Initial Setting Procedure
	9.2 Assigning Multiple Driver Facilities to a Single Peripheral Module
	9.3 Assigning Multiple Peripheral Modules to a Single Driver Facility
	9.4 Initializing Variables for Communications with the RDC
	9.5 Specifying Peripheral Modules for Phase Adjustment Signals
	9.6 Setting Timer Start Timing
	9.7 Adjustment Operation
	9.8 Amount of Phase Shift for Angle Error Correction
	9.9 Order of Function Table Settings
	9.10 Adjustment of the Angle Error Correction Signal

	10. Troubleshooting
	10.1 Counter Value Errors
	10.2 Rotation Direction Errors
	10.3 Angle Errors
	10.4 Detection of Disconnection from the Resolver Sensor

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice
	Corporate Headquarters
	Contact information
	Trademarks

