

RX23E-A Group

Weight Measurement Example Using a Load Cell

Summary

This document describes a weight measurement example with a load cell, using RX23E-A.

RX23E-A contains an analog front-end (AFE) and a 24-bit Δ - Σ A/D converter (DSAD). Using the programmable gain instrumentation amplifier (PGA), etc., high-precision A/D conversion is performed on the output of the load cell to calculate the weight.

Weight of counterweight was measured with load cell, using Renesas Solution Starter Kit for RX23E-A and sample program included in this document. The error of measured value was divided by full scale of load cell output. The results are shown in below figure.

Weight Range: Weight Span: Weight measurement accuracy ^{note}, Linearity: Effective Resolution: Noise Free Resolution: 0g - 550g 550g within ±0.005%max.span (27.5mg equivalent) 21.0bit (36.2nVrms: 4.8mg equivalent) 18.4bit (234nV: 31.2mg equivalent)

Note: including counterweight error, non-linearity characteristic of load cell etc.

Target Device RX23E-A

Contents

1.	Overview	.3
2.	Related Documents	.3
3.	Environment for Operation Confirmation	.3
4.	Weight Measurement Method	.4
4.1	Load Cell	. 4
4.2	Weight Calculation Procedure	. 6
4.3	Calibration	. 6
4.4	Other Functions	. 7
4.4.1	Zero Reset	. 7
4.4.2	2 Linkage with the PC Tool Program	. 7
5.	Sample Program	.8
5.1	Overview of Operation	. 8
5.2	Peripheral Functions and Pins Used	. 9
5.2.1	AFE and DSAD0	10
5.2.2	2 SCI1, DMAC0, DMAC3, and CMT0	11
5.2.3		
5.2.4		
5.3	Communication Control	13
5.4	Program Configuration	15
5.4.1		
5.4.2	2 Macro Definitions	16
5.4.3	S Structure	16
5.4.4	Functions	17
6.	Importing a Project	20
6.1	Importing a Project into e ² studio	
6.2	Importing a Project into CS+	
7.	Measurement results with sample program	22
7.1	Memory Usage and Number of Execution Cycle	
7.1.1		
7.1.2		
7.1.3		
7.2	Weight Measurement	
7.2.1	-	
7.2.2		
Rev	ision history	25

1. Overview

This document describes a weight measurement example using a load cell, using RX23E-A. The sample program runs on the Renesas Solution Starter Kit for RX23E-A (RSSKRX23E-A) board, and the measurement results can be displayed with the PC tool program of RSSKRX23E-A.

The weight measurement system in this example is shown in Figure 1-1.

Figure 1-1 Weight Measurement System Example Using a Load Cell

- 2. Related Documents
- R01UH0801 RX23E-A Group User's Manual: Hardware
- R20UT4542 RSSKRX23E-A User's Manua
- R20AN0540 Application Notes RSSKRX23E-A PC Tool Program Operation Manua

3. Environment for Operation Confirmation

The environment for operation confirmation is given in Table 3-1.

Table 3-1 Environment for Operation Confirmation

Item	Description	
Board	RSSKRX23E-A board (RTK0ESXB10C00001BJ)	
MCU	RX23E-A (R5F523E6ADFL)	
	Power voltage (VCC, AVCC0): 5V	
	Operating frequency (ICLK): 32MHz	
	Peripheral operating frequency (PCLKB): 32MHz	
	DSAD operating frequency (f _{DR}): 4MHz	
	DSAD modulator clock frequency (f _{MOD}): 0.5MHz	
Load cell T&T CO., LTD. LT1-06G		
IDE	Renesas e ² studio V7.8.0	
	Renesas Smart Configurator plug-in V2.6.0	
Tool Chain	Renesas CC-RX V3.2.0	
Emulator E2 Emulator Lite		

4. Weight Measurement Method

A connection using the RSSKRX23E-A board is shown in Figure 4-1. In this example, a 4-wire load cell using a Wheatstone bridge is used.

Figure 4-1 Connecting the RSSKRX23E-A Board

4.1 Load Cell

The load cell used in this example outputs a weight as a voltage, using a Wheatstone bridge circuit. An excerpt of the specifications of the load cell used is listed in Table 4-1, and the weight vs. output voltage characteristics and the error range determined from the specifications if the applied voltage is 5 V are shown in Figure 4-2.

Table 4-1 Excerpt of the Load Cell LT1-06G Specifications

Item	Value
Recommended Excitation	12[V]
Maximum Excitation	18[V]
Rated Capacity	6[N] (≈0.6[kg])
Rated Output: R.O.	0.9±0.1[mV/V]
Zero Balance	4.0%R.O.

Figure 4-2 Weight vs. Output Voltage Characteristics (Applied Voltage 5 V) of the Load Cell LT1-06G

In this example, the voltage between the output pins of the load cell is A/D converted with the voltage supplied to the load cell as the reference voltage as shown in Figure 4-1.

If the output voltage of the load cell is non-linear in relation to the weight, the characteristic curve is divided into multiple regions and linear approximation, for example, is performed in each of the regions to increase the measurement precision, thereby matching the characteristic curve.

In this example, the region is regarded as a single linear characteristic without being divided, and the voltage is converted to weight with linear interpolation.

Assuming that voltage applied to the load cell is V_{cc} , the rated output is RO, and the rated load is M_{max} , the output voltage V for the weight M can be expressed with the formula below.

$$V = \mathrm{RO} \cdot V_{cc} \cdot \frac{M}{M_{max}}$$

From the formula above, the weight M for the output voltage V can be calculated with the linear equation below.

$$M = \alpha V + \beta, \qquad \begin{cases} \alpha = \frac{M_{max}}{\text{RO} \cdot V_{cc}} \\ \beta = 0 \end{cases}$$

For the output voltage of the load cell, an error occurs due to the rated output, zero balance, and so on. Thus, the coefficients α and β in the equation above are corrected with calibration.

Measurement conditions are listed in Table 4-2. If the oversampling ratio is not a power of two, the digital filter of the DSAD generates a gain of x1/2 to x1. The A/D conversion value is treated as having been multiplied by the above-mentioned gain.

Item	Condition	Remarks
PGA gain GPGA	x128	
DSAD reference voltage VREF	5V	Voltage applied to the load cell.
		(REF0P=AVCC0, REF0N=ACSS0)
Oversampling ratio OSR	50000	A/D conversion value output rate 10SPS
Digital filter gain G _{DF}	0.677626358	$G_{DF} = 1/2^{(Ceil(4\log_2 OSR) - 4\log_2 OSR)}$
DSAD output format	2's Complement	

Table 4-2 Load Cell Measurement Conditions

4.2 Weight Calculation Procedure

Conversion from A/D conversion value to weight is performed with the procedure below.

(1) Smoothing of the A/D conversion value

Variations in A/D conversion results due to noise, vibration, and other factors are removed with a filter, etc. In this example, a smoothing process is performed with an 8-sample moving average.

(2) Weight conversion

In the above-mentioned weight conversion formula, the voltage is replaced by the A/D conversion value for calculation. Assuming that the PGA gain is G_{PGA} , the digital filter gain is G_{DF} , the reference voltage of the DSAD is V_{REF} , and the A/D conversion value is DATA, the weight can be determined from the 24-bit resolution of the DSAD with the formula below.

$$\begin{split} M &= \alpha V + \beta \\ &= \alpha \cdot \frac{2V_{REF}}{2^{24} \cdot G_{PGA} \cdot G_{DF}} \cdot \text{DATA} + \beta \\ &= \alpha \cdot \frac{V_{REF}}{2^{23} \cdot G_{PGA} \cdot G_{DF}} \cdot \text{DATA} + \beta, \qquad V_{REF} = AVCC0 - AVSS0 \end{split}$$

From the formula above, the formula for calculating the weight from the A/D conversion value is defined as below.

$$M = \alpha V + \beta = a \cdot \text{DATA} + b, \qquad \begin{cases} a = \alpha \cdot \frac{V_{REF}}{2^{23} \cdot G_{PGA} \cdot G_{DF}} \\ b = \beta = 0 \end{cases}$$

4.3 Calibration

By correcting the coefficients a and b in the formula for conversion from A/D conversion value to weight for the error of the load cell, the measurement precision can be improved.

As an example, calibration can be performed with the procedure below, in the weight range corresponding to the conversion formula, from two types of reference weight, such as standard test weights, and their A/D conversion values.

- (1) Obtain the A/D conversion value DATA₁ for reference 1 weight M_1
- (2) Obtain the A/D conversion value $DATA_2$ for reference 2 weight M_2
- (3) Calculate the coefficients a and b of the line passing through (DATA₁, M₁) and (DATA₂, M₂) and apply them

$$\begin{cases} a = \frac{M_2 - M_1}{DATA_2 - DATA_1} \\ b = M_1 - a \cdot DATA_1 = M_2 - a \cdot DATA_2 \end{cases}$$

4.4 Other Functions

4.4.1 Zero Reset

By subtracting the reference measurement result to be assumed to be the zero weight from the weight conversion result, the measured weight is corrected.

The reference value is the value resulting from conducting measurement in the zero-weight state and converting the value to weight.

4.4.2 Linkage with the PC Tool Program

The sample program can communicate with the PC tool program of RSSKRX23E-A to display weight measurement results with the PC tool program.

For details about the communication specifications, refer to "RSSKRX23E-A PC Tool Program Operation Manual".

The communication commands supported in this example are listed in Table 4-3.

Command	Overview	Remarks	
Negotiation	Reads MCU endian information and MCU functions		
Read	Reads registers		
Run	Starts DSAD conversion operation		
Stop	Stops DSAD conversion operation		
TransmissionCh0	Transmits Ch0 data from the MCU	Transmits a weight [g] as a physical quantity.	

5. Sample Program

5.1 Overview of Operation

Figure 5-1 shows the process flow of this sample program.

The following provides an overview of each process.

• Initialization

The following are performed.

- If a connection is made to the PC tool program of RSSKRX23E-A, the initialization of the communication buffer and the start of SCI1 operation
- Start of the A/D conversion of DSAD0
- SW pressing judgment

Read SW1, and the input state is determined with two matches. When the pressing of SW1 is detected, a zero-reset request is set.

• Weight measurement

With the completion of the A/D conversion of DSAD0 as a trigger, calculates weight from the results of a moving averaged of the A/D conversion value.

• Zero reset

The zero-reset request with the pressing of SW1, current measured weight is assumed to be the zero weight.

Weight correction

A corrected weight is calculated from the measured weight and the zero weight.

• PC communication

A process of communication with the PC tool program of RSSKRX23E-A is performed to transmit measured weight.

While measured weight is being transmitted, LED1 is ON. For details, see 5.3.

5.2 Peripheral Functions and Pins Used

The peripheral functions used in this example are listed in Table 5-1, and the pins used are listed in Table 5-2. The conditions for setting each peripheral function are described together.

The settings for peripheral functions are generated by using the code generation function of Smart Configurator (referred to as SC in the remainder of this manual).

Peripheral function	Use		
AFE, DSAD0	A/D conversion of the load cell		
SCI1	1 UART communication with the PC tool program		
DMAC0	Data transfer with a receive data full interrupt of SCI1 as a trigger		
DMAC3 Data transfer with a transmit data empty interrupt of SCI1 as a trigge			
CMT0	Detection of a communication timeout of SCI1		
PH2	LED1 ON/OFF control		
P27	SW1 input		

. –

Table 5-2 Pins Used

Pin name	Input/Output	Use
P27	Input	SW1 input pin
PH2	Output	LED1 ON/OFF control
P26/TXD1	Output	UART1 transmit pin
P30/RXD1	Input	UART1 receive pin
P31/CTS1#	Input	CTS signal input pin
AINO	Input	Load cell - side input pin
AIN1	Input	Load cell + side input pin
REF0P	Input	Load cell measurement DSAD + side reference voltage (Connection to AVCC0 on the RSSK Board)
REFON	Input	Load cell measurement DSAD - side reference voltage (Connection to AVSS0 on the RSSK Board)

5.2.1 AFE and DSAD0

The conditions for setting AFE and DSAD0 based on the measurement conditions in Table 4-2 are listed in Table 5-3.

	Item	Setting		
Analog input channel setting		Channel 0: ValidChannels 1 to 5: Invalid		
ΔΣΑ/D opera	ting voltage select	3.6V-5.5V (high precision)		
$\Delta\Sigma A/D$ converter operating mode setting		Normal mode		
Operating clo	ock setting	PCLKB/8 4 MHz		
Start trigger s	source	Software trigger		
Interrupt sett	ing	Not used		
Inter-unit syn	chronous start setting	Disable synchronous start		
Abnormal vol disconnection	ltage and n detection Setting	Not used		
Channel 0	Analog input setting	 Positive input signal: AIN1 Negative input signal: AIN0 Reference voltage: REF0P/REF0N Disable + side reference voltage buffer Disable - side reference voltage buffer 		
	Amplifier setting	 Amplifier selection: PGA PGA gain setting: x128 		
	ΔΣΑ/D conversion setting	 A/D conversion mode: Normal operation Data format: Two's complement format Number of A/D conversions: 1 in immediate value mode Oversampling ratio: 50000 Offset correction: Not set (Use of the device default) Gain correction: Not set (Use of the device default) Use averaged data: Disabled 		
	Disconnection assist setting	Not permitted		

Table 5-3 AFE and DSAD0 Settings

5.2.2 SCI1, DMAC0, DMAC3, and CMT0

For communication with the PC tool program, SCI1 is used in asynchronous mode. To obtain receive data, DMAC0 is used, and to set transmit data, DMAC3 is used. To detect a communication timeout, CMT0 is used.

The conditions for setting each peripheral function are listed below.

Item	Setting
Serial communication method	Asynchronous communication
Start bit detection	Low level at RXD1 pin
Data bit length	8 bits
Parity setting	Prohibited
Stop bit setting	1 bit
Data transfer direction setting	LSB first
Transfer speed setting	Transfer clock: Internal clock
	Bit rate: 3Mbps
	Enable bit rate modulation function
	SCK1 pin function: Not use SCK1
Noise filter setting	Not use noise filter
Hardware flow control setting	CTS1#
Data processing setting	Transmit data processing: Process with DMAC3
	Receive data processing: Process with DMAC0
Interrupt setting	Not permit receive error interrupt
Callback function setting	None
Input/output pins	Output: TXD1 (P26)
	Input: RXD1 (P30)
	: CTS1 (P31)

Table	5-4	SCI1	Settings
abic	J-4	0011	oeunga

Table 5-5 DMAC Settings

		-	
Item	Setting		
Channel used	DMAC0	DMAC3	
DMA activation source	SCI1 (RXI1)	SCI1 (TXI1)	
Activation source flag control	Clear activation source flag	Clear activation source flag	
Transfer mode	Free running mode	Normal transfer	
Transfer data size	8bit	8bit	
Number of transfers/repeat size/block size	-	Set with software	
Source address	0008 A025h (SCI1.RDR)Address fixing	 Set with software Address increment Set an extended repeat area at the destination address Extended repeat area: Lower 12bits of the address (4KB) 	
Destination address	 Set with software Address increment Set an extended repeat area at the destination address Extended repeat area: Lower 9 bits of the address (512 bytes) 	 0008 A023h (SCI1.TDR) Address fixing 	
Interrupt setting	Not permitted	Not permitted	

Table 5-6 CMT0 Settings

Item	Setting
Clock setting	PCLKB/512
Compare match setting	Interval time: 1000ms
	Compare match interrupt (CMI0) enabled
	Level 0 (interrupt disabled)

5.2.3 PH2

By using PH2, LED1 is turned ON and OFF. While measurement results are being transmitted to the PC tool program, LED1 is ON.

The condition for setting PH2 is listed in Table 5-7.

Table 5-7 PH2 Setting

Item	Setting
PORTH	PH2: Output
	CMOS output
	Output 1

5.2.4 Port P27

Using port P27, the pressing of SW1 is detected. When the pressing of SW1 is detected, the zero weight is updated.

The condition for setting port P27 is listed in Table 5-8.

Table 5-8 Port P27 Setting

Item	Setting	
PORT2	P27: Input	
	Built-in pull-up OFF	

5.3 Communication Control

Based on the communication specifications of RSSKRX23R-A, processes with the PC tool program are performed.

A flow of communication processes is shown in Figure 5-2.

Figure 5-2 Communication Process Flow

The following provides an overview of each process.

Receive packet processing

Obtains a received packet from the receive ring buffer, and performs processing corresponding to a command in the packet, then creates and stores a reply packet in the transmit ring buffer. Table 5-9 lists the commands supported by this program and the processes corresponding to the commands. For an unsupported command, a NACK is returned.

If the reply packet cannot be stored in the transmit ring buffer, communication error processing is performed.

Command	Process
Negotiation	Return the software status with a reply packet
Read	Return the read value of the specified register with a reply packet
Run	Set the measurement result transmission enable flag and turn LED1 ON
Stop	Clear the measurement result transmission enable flag and turn LED1 OFF

• Measurement data packet creation

If the measurement result transmission enable flag is set and the measurement results are updated, a TransmissionCh0 reply packet is created from the measurement results and is stored in the transmit ring buffer.

If the reply packet cannot be stored in the transmit ring buffer, communication error processing is performed.

• Packet transmission processing

If data is not being transmitted and the transmit ring buffer contains un-transmitted data, transmission starts with DMAC3 and 1-second counting starts with CMT0 for timeout detection.

• Communication timeout processing

If transmission is completed, CMT0 for timeout detection is stopped.

If transmission is in progress, the timer is checked for a compare match, and if a compare match has occurred, this is judged as a timeout. If it is judged as a timeout, communication error processing is performed.

• Communication error processing

If the transmit packet cannot be stored in the transmit ring buffer or a communication timeout occurs, communication is stopped and the following processes are performed to make a reconnection possible.

- Stop SCI1 and DMAC3, which are used for transmission
- Clear the transmit buffer and the measurement result transmission enable flag
- Turn LED1 OFF

Each ring buffer used for transmission and reception is for DMAC transmission, therefore, their address is arranged in the alignment adjusted for each buffer size. In this program, section name is declared "B_DMAC_REPEAT_AREA_1", and arrangement is set based on the largest buffer size.

5.4 Program Configuration

5.4.1 File Configuration

Table	5-10	File	Configuration
1 GDIO	0.10	1 110	Configuration

Folder name, file name	Description
src	
- smc_gen	Smart Configurator generation
- general	
│	
Config_CMT0	
Config_DMAC0	
- Config_DMAC3	
Config_DSAD0	
- Config_SCI1	
- r_config	
L r_pincfg	
r_ring_buffer_control_api.c	Ring buffer control program
- r_ring_buffer_control_api.h	Ring buffer control API definition
- r_loadcell_gauge_api.c	Load cell calculation program
- r_loadcell_gauge_api.h	Load cell calculation API definition
- r_sensor_common_api.c	Moving average processing function
├ r_sensor_common_api.h	Moving average processing function API definition
- r_communication_control_api.c	Communication control program
r_communication_control_api.h	Communication control API definition
^L main.c	Main processing

5.4.2 Macro Definitions

Definition name	Туре	Initial value	Description
D_PRV_PC_TOOL_USE	bool	1	Communication with the PC tool program
			is
			0: Not used
			1: Used
D_PRV_SAMPLE_NUM	size_t	8	Number of samples for a moving average

Table 5-11 main.c Definitions

Table 5-12 r_strain_gauge_api.h Definitions

Definition name	Туре	Initial value	Description	
D_LC_PGA_GAIN	float	128.0F	Gain of PGA for load cell measurement	
			Gpga [x]	
D_LC_CODE_FS	uint32_t	16777216	2 ²⁴	
D_LC_DF_GAIN	float	0.677626F	Digital filter gain GDF	
D_LC_VREF	float	5.0F	DSAD reference voltage V _{REF}	
D_LC_VCC	float	5.0F	Load cell applied voltage Vcc	
D_LC_RO	float	0.0009F	Rated output RO [V/V]	
D_LC_MMAX	float	600.0F	Rated load M _{MAX} [g]	
D_LC_COEFFICIENT_A	float	(D_LC_MMAX *	Coefficient a for conversion from A/D	
		D_LC_VREF * 2) /	value to weight [g]	
		(D_LC_RO *	M_{max} $2V_{REF}$	
		D_LC_VCC *	$\overline{\text{RO} \cdot V_{cc}} \cdot \overline{2^{24} \cdot G_{PGA} \cdot G_{DF}}$	
		D_LC_CODE_FS *		
		D_LC_PGA_GAIN *		
		D_LC_DF_GAIN)		
D_LC_COEFFICIENT_B	float	0.0F	Coefficient b	

5.4.3 Structure

	Table 5-13 r	ring buffer	r control a	api.h Structure
--	--------------	-------------	-------------	-----------------

Structure	st_ring_buf_t		
type name			
Member	Туре	Name	Description
variable	uint8_t *	p_buf	Pointer to the ring buffer
	size_t	length	Ring buffer length
	uint32_t	r_index	Read index
	uint32_t	w_index	Write index

5.4.4 Functions

	Return value		Argument			
Function name/Overview	Type void	Value	I/O	Type	Variable name	Description
main function	Volu	-		Volu	-	-
stop_operation Stop DMAC/SCI, initializes the ring buffer and turns LED1 OFF	void	-	I	st_ring_buf_t *	ary	Pointer to the ring buffer
analysis_packet	size_t	Reply data length	Ι	uint8_t const	recv_pck[]	Receive packet storage array
According to the receive			0	uint8_t	send_pck[]	Reply packet storage array
packet, executes the command and stores a reply packet.				bool *	p_tx_flag	Pointer to the measurement result transmission enable flag
For the Run/Stop commands, updates the measurement result transmission enable flag.						
sw_check	bool *	SW1	I/O	void	-	-
Detects the pressing of SW1		true: Pressing false: Other than pressing				

Table 5-14 main.c Functions

Table 5-15 r_communication_control_api Function

	Retur	n value		Argument				
					Variable			
Function name/Overview	Туре	Value	I/O	Туре	name	Description		
R_COMM_GetPaket	size_t	Packet	Ι	st_ring_buf_t *	r_buf	Pointer to the receive ring buffer		
Reads a single packet from the receive ring buffer.		length [Bytes]	0	uint8_t	r_packet[]	Receive packet storage array		

Table 5-16 r_ring_buffer_control_api Functions

Function name/Overview	Retur	n value			Argume	nt
					Variable	
	Туре	Value	I/O	Туре	name	Description
R_RINGBUF_GetData	size_t	Number	Ι	st_ring_buf_t *	ary	Pointer to the ring buffer
Reads a specified number of		of bytes	0	uint8_t	data[]	Data storage array
bytes from the ring buffer		to read	Ι	size_t	len	Number of bytes to read
			I	bool	index_update	Index update flag
						true: Update
						false: Not update
R_RINGBUF_SetData	size_t	Number	0	st_ring_buf_t *	ary	Pointer to the ring buffer
Writes a specified number of		of bytes	Ι	uint8_t	data[]	Data storage array
bytes to the ring buffer		to write	Ι	size_t	len	Number of bytes to write
R_RINGBUF_GetDataLength	size_t	Number	I	st_ring_buf_t *	ary	Pointer to the ring buffer
Reads a specified number of		of bytes				
bytes stored in the ring buffer		stored				
R_RINGBUF_SetDataIndex	uint32_t	Index	0	st_ring_buf_t *	ary	Pointer to the ring buffer
Updates the index of the ring		value	Ι	uint16_t	value	Index value
buffer			I	uint8_t	select	Target index
						0: Read, 1: Write

			A menu una a sa t						
	Return value		Argument						
					Variable				
Function name/Overview	Туре	Value	I/O	Туре	name	Description			
R_CALC_MovingAverage	float	Moving average	I	float	input	Input value (A/D conversion value)			
		result		float	array	Previous value array			
			I	size_t	size	Number of elements of the previous			
						value array			
			I	Int32_t	w_index	Pointer to the number-of-inputs			
				*		storage variable			

Table 5-17 r_sensor_common_api Function

Table 5-18 r_loadcell_gauge_api Function

		Return value		Argument				
					Variable			
Function name/Overview	Туре	Value	I/O	Туре	name	Description		
R_LC_DsadToWeight	float	Measured weight [g]	I	float	dsad	A/D average value		
Converts an A/D value to a weight			I	float	coef_a	Coefficient a		
			I	float	coef_b	Coefficient b		

Table 5-19 Config_CMT0 User Defined Functions

	Return value		Argument				
Function name/Overview	Туре	Value	I/O	Туре	Variable name	Description	
R_CMT0_IsTimeout	bool	false: Counting	Ι	bool	flag	Stop of counting	
Returns information as to whether		true: Timeout				false: Continuation	
a timeout has occurred						true: Stop	
R_CMT0_CntClear	void	-	-	void	-		
Clears the compare match							
timer/counter of CMT0							

Table 5-20 Config_DMAC0 User Defined Functions

	Return value			Argument				
Function name/Overview	Туре	Value	I/O	Туре	Variable name	Description		
R_DMAC0_SetDestAddr Sets the DMDAR of DMAC0	void	-	I	void *	p_addr	destination address		
R_DMAC0_GetDestAddr Returns the DMDAR of DMAC0 (macro function)	void *	DMAC0.DMDAR	-	void	-	-		

Table 5-21 Config_DMAC3 User Defined Functions

	Return value			Argument			
					Variable		
Function name/Overview	Туре	Value	I/O	Туре	name	Description	
R_DMAC3_SetSrcAddr	void	-	I	void *	p_addr	source address	
Sets the DMSAR of DMAC3							
R_DMAC3_SetTxCnt	void	-	I	uint32_t	cnt	transfer count	
Sets the DMCRA of DMAC3							

Table 5-22 Config_DSAD0 User Defined Functions

		Return value			Argument			
					Variable			
Function name/Overview	Туре	Value	I/O	Туре	name	Description		
R_DSAD0_IsConversionEnd	bool	false: Conversion	-	void	-	-		
Return the AD conversion status of		true: Conversion end						
DSAD0								
R_DSAD0_ClearIrFlag	void	-	-	void	-	-		
Clears the IR flag of DSAD0								

Table 5-23 Config_PORT User Defined Functions

	Return value		Argument			
					Variable	
Function name/Overview	Туре	Value	I/O	Туре	name	Description
R_LED1_On	void	-	-	void	-	-
Turns LED1 ON (macro function)						
R_LED1_Off	void	-	-	void	-	-
Turns LED1 OFF (macro function)						

Table 5-24 Config_SCI1 User Defined Functions

	Return value			Argument				
					Variable			
Function name/Overview	Туре	Value	I/O	Туре	name	Description		
R_SCI1_lsTransferEnd	bool	false: Transferring	-	void	-	-		
returns the transfer status of SCI1		true: Transfer end						
R_SCI1_SendStart	MD_STATUS	MD_OK	-	void	-	-		
start transmission of SCI1								
R_SCI1_SendStop	MD_STATUS	MD_OK	-	void	-	-		
stop transmission of SCI1								
R_SCI1_ReceiveStart	MD_STATUS	MD_OK	-	void	-	-		
starts receiving of SCI1.								

6. Importing a Project

After importing the sample project, make sure to confirm build and debugger setting.

6.1 Importing a Project into e² studio

Follow the steps below to import your project into e^2 studio. Pictures may be different depending on the version of e^2 studio to be used.

Figure 6-1 Importing a Project into e² studio

6.2 Importing a Project into CS+

Follow the steps below to import your project into CS+. Pictures may be different depending on the version of CS+ to be used.

Figure 6-2 Importing a Project into CS+

7. Measurement results with sample program

7.1 Memory Usage and Number of Execution Cycle

7.1.1 Build Conditions

In "3 Environment for Operation Confirmation", build conditions for sample program is shown in Table 7-1. This setting is default setting when project is generated except for memory allocation to support the PC tool.

Table 7-1 Build Conditions

	item	setting
Compiler	PC tool incompatible	-isa=rxv2 -utf8 -nomessage -output=obj -debug -outcode=utf8 -nologo
	PC tool compatible	add to the above
		-define=D_PRV_PC_TOOL_USE=1
Linker		-noprelink -output="rx23ea_loadcell.abs" -form=absolute
		-nomessage -vect=_undefined_interrupt_source_isr
		-list=rx23ea_loadcell.map -nooptimize
		-rom=D=R,D_1=R_1,D_2=R_2 -nologo
	Additional Section	-start=B_DMAC_REPEAT_AREA_1/02000

7.1.2 Memory Usage

The amount of memory usage of sample program is shown in Table 7-2.

Table 7-2 Amount of Memory Usage	Table	7-2 Amoun	t of Memory	Usage
----------------------------------	-------	-----------	-------------	-------

item		size	[byte]	Remarks
		PC tool incompatible	PC tool compatible	
ROM		8351	8805	
	Code	6565	7019	
	Data	1786	1786	
RAM		7061 (2069)	12183 (7191)	Note
	Data	1941	7063	
	Stack	5120 (128)	5120 (128)	Note

Note: RAM usage for stack is shown in "()".

7.1.3 The number of Execution cycle

The number of execution cycles and processing load for each block in "Figure 5-1 Weight Measurement Process Flow" is shown in Table 7-3.

ltem	Number of Execution Cycle (Execution time@ICLK=32MHz)	Process load [%]	Condition
Temperature measurement	155cycle (4.84usec)	0.005	Acquisition of A/D conversion value to temperature calculation
Communication control	351cycle (10.97usec)	0.011	Maximum number of processing cycles in normal operation

Table 7-3 Number of implementation cycle

Note: Process load is calculated by the execution time in the DSAD output cycle (100msec).

7.2 Weight Measurement

Results of weight measurement by load cell LT1-06G shown in Table 4-1 are described in this section by using RSSKRX23E-A board and sample program.

7.2.1 Measurement Condition

System configuration of weight measurement is shown in Figure 7-1. Equipment used in the measurement is shown in Table 7-4. Also, combination of counterweights for measurement weight and weight tolerance is shown in table 7-5 and 7-6. Calibration was carried out for two kinds of weight, which are 0g (no load) and 550g, following "4.3 Calibration".

Figure 7-1 Configuration of Weight Measurement by Load Cell

Table 7-4 Equipment Used in Weight Measurement by Load Cell

Item	Model	Manufacturer
DC Power Supply	PCR1000MS	KIKUSUI ELECTRONICS CORPORATION
Counterweight	738-65-53-04	Tokyo Garasu Kikai Co., Ltd.

Table 7-5 Combination of Counterweights for Weight Settings

Weight Setting					Com	bination of Counterweight
50g	50g	x1				
100g	100g	x1				
150g	50g	x1	100g	x1		
200g	200g	x1				
250g	50g	x1	200g	x1		
300g	100g	x1	200g	x1		
350g	50g	x1	100g	x1	200g	x1
400g	200g	x2				
450g	50g	x1	200g	x2		
500g	500g	x1				
550g	50g	x1	500g	x1		

Table 7-6 Weight Tolerance

Weight of counterweight	Weight Tolerance
50g	±30mg
100g	±30mg
200g	±50mg
500g	±100mg

7.2.2 Measurement Results

Error of measurement value is acquired from the weight measurement result. The result calculated by dividing the error by full scale 550g of load cell output is shown in Figure 7-2. The measurement weight is within the counterweight tolerance range, which shows RX23E-A is sufficient measurement accuracy.

Figure 7-2 Weight Measurement Error (Environment Temperature: 25°C)

Histogram of 0g weight measurement value of 1000 samples without moving average is shown in Figure 7-3. The weight is 4.82mg at rms value, and 31.2mg at P-P value. Since the load cell's voltage sensitivity to weight is 7.5V/g, input conversion voltage is 36.2nV at rms value and 234nV at P-P value. Effective resolution and noise free resolution calculated from the above-mentioned result are shown below. Although noise of load cell was added to input conversion noise of typ. 33nVrms with RX23E-A setting 10SPS and 128times PGA gain, RX23E-A is shown to be capable of highly accurate weight measurement.

Effective resolution:	21.0bit (36.2nVrms: 4.8mg equivalent)
Noise free resolution:	18.4bit (234nV: 31.2mg equivalent)

Figure 7-3 Histogram of Measurement Value at Weight 0g (no load)

Revision history

		Description		
Rev.	Date	Page	Summary	
1.00	Nov.29.19	-	First release	
1.10	July 20.20	p.3	Table 3-1: Update of IDE and Tool Chain	
		p.10	Table 5-3: Update of the Smart Configurator setting	
		p.22	Table 7-1,Table 7-2,Table 7-3: Modification due to the update of IDE and Tool Chain.	
			Others: correction of the written error and addition of the description	

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <u>www.renesas.com/contact/</u>.