

Example of 4-20mA transmitter using built-in D/A converter

Introduction

This document describes an example of output the results of measuring the thermocouple's temperature or voltage as a 4-20mA signal using the Renesas microcontroller RX23E-B.

The 4-20mA current transmitter is adopted in many sensing systems as part of the standard specifications. The circuit configuration and connections are simple, and the wiring and connections are minimal. This makes it advantageous for long-distance communication because it uses current-based communication.

The RX23E-B is equipped with an analog front-end (AFE) suitable for high-precision measurement with various sensors and a high-speed 24-bit delta-sigma (Δ - Σ) A/D converter (DSAD) with a maximum output of 125kSPS. It is also equipped with a 16-bit D/A converter (R16DA), and achieves a 4-20mA current output function by outputting voltage with high-resolution to the current output circuit.

Using the Renesas Solution Starter Kit for the RX23E-B and the sample program in this document, a board was placed in a thermostatic chamber at set temperatures of -25°C, 25°C, and 85°C. The output current for the current setting value was measured at each temperature with a multimeter. The results are shown in the following figure. The error is expressed as a percentage of the full scale (%FS), which is the difference between the output current and the set current divided by a 16mA span of 4mA to 20mA. From the measurement results, it was confirmed that the output current error was less than 0.1% FS.

The following table shows the current settling time when the output current is changed from 4mA to 20mA and the processing time from when the A/D value is obtained to when the output voltage at the DA0 pin changes. It is confirmed that the 95% settling time is dominated by the output stage filter circuit's response time of 1.3ms and that the MCU processing time of 20 μ s has almost no effect.

Figure Current Output Accuracy Evaluation Results

Table Settling time and response time

Item	Measurement
95% settling time	1.3ms
DA0 pin output response time	20µs

Device

RX23E-B (R5F523E6LDFP)

Contents

1. Overview	4
2. Environment for Operation Confirmation	7
3. Related Documents	7
4. 4-20m A Communication	8
4.1 Hardware Configuration	8
4.1.1 4-20m A Transmitter	8
4.1.2 Temperature Measurement Circuit	9
4.1.3 Voltage Measurement Circuit	9
4.2 Temperature Measurement	
4.2.1 Thermocouple	
4.2.2 Resistance Temperature Detector (RTD)	
4.2.3 A/D Conversion of the Thermocouple and the RTD	
4.2.4 Temperature Calculation	14
4.3 Voltage Measurement	
4.3.1 A/D Conversion of Input Voltage	
4.3.2 Voltage Calculation	
4.4 DSAD Calibration	17
4.5 Current Output	
4.5.1 Current Output Procedure	
4.5.2 Current Output Calibration	19
5. Sample Program	20
5.1 Overview	
5.2 MCU Functions and Settings	23
5.2.1 Temperature and Voltage Measurement	25
5.2.2 Communication	27
5.2.3 4-20mA Current Output	
5.2.4 LEDs and Switches	
5.2.5 E2 Data Flash	29
5.3 Program Configuration	
5.3.1 Source File Configuration	
5.3.2 Macro Definitions	31
5.3.3 Structures and Unions	
5.3.4 Functions	
6. Importing a Project	46
6.1 Importing a Project into e2 studio	
6.2 Importing a Project into CS+	47

Example of 4-20mA transmitter using built-in D/A converter

7		40
7. Measurem	ent Results with Sample Program	
7.1 Memory U	sage and Number of Execution Cycles	48
7.1.1 Build Cor	nditions	48
7.1.2 Memory	Usage	48
7.1.3 Number	of Execution Cycles and Processing Time	49
7.2 Current O	utput Accuracy Evaluation	50
7.2.1 Configura	ation of Current Output Accuracy Evaluation	50
7.2.2 Current C	Dutput Accuracy Evaluation Results	51
7.3 Current O	utput Evaluation during Temperature Measurement	52
7.3.1 Configura	ation of Current Output Evaluation during Temperature Measurement	52
7.3.2 Results of	of Current Output Evaluation during Temperature Measurement	53
7.4 Response	Characteristics Evaluation	54
7.4.1 Configura	ation of Response Characteristics Evaluation	54
7.4.2 Response	Characteristics Evaluation Results	55
Revision Histor	У	

1. Overview

This document describes an example where the Renesas microcontroller RX23E-B is used to output the results of measuring the temperature or voltage from each A/D value obtained with a Δ - Σ A/D converter (DSAD) as a 4-20mA signal using a 16-bit D/A converter (R16DA). The sample program runs on the Renesas Solution Starter Kit for the RX23E-B board (RSSKRX23E-B), and the operating conditions are set, and the measured temperature or voltage is displayed on the CH0 and the 4-20mA output current settings are displayed on the CH1 during measurement on the Application tab of the QE for AFE.

The system used in this example is shown in Figure 1-1, and the operation settings that can be adjusted are shown in Figure 1-2, Table 1-1, and Table 1-3.

Figure 1-1 Example of the 4-20mA Communication System

Figure 1-2 Screenshot of the Application Tab in the QE for AFE

Bold: Default value

Table 1-1 Operation Settings (1/2)

Item Operations		Operations	Remarks	
Measurement target		RSSKRX23E-B: SW3-1	To be reflected at the start of A/D	
selecti	on	OFF: Temperature measurement	conversion	
		ON: Voltage measurement		
Param	eter	RSSKRX23E-B: SW2		
initializ	ation	Press until LED0 is ON at reset		
Start/S	stop of	QE for AFE	LED0 is OFF during A/D conversion.	
measu	rement			
Ter (SV	Temperature	QE for AFE: Value1	Valid only during standby (when LED0	
N3-	measurement	300, 150 [ms]	is ON)	
-1: -1:	cycle			
OF tr	Range of	QE for AFE: Button2, Value2	Valid only during standby (when LED0	
₽ F) T	current output	Press Button2. After LED3 turns ON, set		
lea	during	value2 to specify the lower limit	Default: -40°C to 160°C	
sur	temperature	temperature.		
em	measurement	specify the upper limit temperature		
len	Thormosouplo		Valid only during standby (when LEDO	
	voltage	OE for AEE: Value3	is ON)	
	calibration	Specify input voltage 1 in Value3	LEDO is OFF during A/D conversion	
	Sansration	While LED2 is blinking specify input	When an abnormal termination occurs	
		voltage 2 in Value3	LED2 will blink five times.	
	Resistance	RSSKRX23E-B SW3-1: OFF	Valid only during standby (when LED0	
	temperature	QE for AFE: Button3 Value3	is ON)	
	detector	Press Button3 After I ED2 turns ON	LED0 and LED2 are OFF during A/D	
	resistance	specify input resistance 1 in Value3.	conversion.	
	calibration	While LED2 is blinking, to specify input	When an abnormal termination occurs,	
		resistance 2 in Value3.	LED2 will blink five times.	
(S) Vo	Voltage	RSSKRX23E-B SW3-1: ON	Valid only during standby (when LED0	
lta W3	calibration	QE for AFE: Value3	is ON)	
ge :		Specify input voltage 1 in Value3.	LED0 is OFF during A/D conversion.	
ON DE		While LED2 is blinking, to specify input	When an abnormal termination occurs,	
J)		voltage 2 in Value3.	LED2 will blink five times.	
ırer				
ne				
nt				

Table 1-2 Operation Settings (2/2)

Bold: Default value

ltem		Operations	Remarks
Cu	Alarm current	QE for AFE: Button1	
rre	selection	Use buttons to select the alarm current.	
nt c		3.2, 22.8 , 24.0 [mA]	
outp	Output current	QE for AFE: Value4	Valid only during standby (when
out	specification		LED0 is ON)
			When an abnormal termination
			occurs, LED3 will blink five times.
	Output current	QE for AFE: Button4, Value4	Valid only during standby (when
	calibration	Press Button4. After LED3 turns ON, set	LED0 is ON)
		Value4 to 20mA to specify the current	When an abnormal termination
		measurement value and then change	occurs, LED3 will blink five times.
		Value4 to 4mA to specify the current	
		measurement value.	
	Output current	-	DAC output 0 during measurement or
	fault		output current calculation error when
			output current is specified, LED0
			blinks during error

Table 1-3 Changeable Items in the Register Settings

ltem		Settings	Remarks
Temperature	Thermocouple input PGA gain	PGA gain setting for CH0	Invalid during calibration
measurement	Resistance temperature detector input PGA gain	PGA gain setting for CH1	
Voltage	PGA	Set each item for CH2	Invalid during calibration
measurement	OSR1 ^{Note2}		Initial value at reset start
	OSR2		

Notes: 1. The settings for the MRm, CRm, OSRm, and SGCRm registers for temperature measurement are configured to the hold values of the program (Table 5-8) at the start of measurement. If any changes are made that are not specifically listed in this table, the system will not function correctly or operate as intended.

2. The OSR1 setting value for voltage measurement should be 160 or higher. Setting it to a value below 160 will result in communication errors in the QE for AFE.

Parameters listed in Table 1-4 maintain their changes using the E2 data flash.

Table 1-4 Retention Parameters

Item	No. of items or sets stored	Details
Temperature measurement cycle selection	1	
Temperature measurement DSAD0 parameter	2 sets	Every temperature
		measurement cycle
Range of current output reflection during	1 set	
temperature measurement		
Average count during DSAD0 calibration	1	
DAC output setting value conversion coefficient	1 set	
4-20mA alarm output selection	1	

Note: For details, refer to the description of the structure st_e2df_data_t in Table 5-23.

2. Environment for Operation Confirmation

Table 2-1 Environment for Operation Confirmation

Item	Description
Board	RSSKRX23E-B board (RTK0ES1001C00001BJ)
MCU	RX23E-B (R5F523E6LDFP)
	Power voltage (VCC, AVCC0): 5V
	Operating frequency (ICLK): 32MHz
	Peripheral operating frequency (PCLKB, PCLKC):32 MHz
	DSAD0 operating frequency (fop): 16MHz
	DSAD0 modulator clock frequency (f _{MOD}): 4MHz
Thermocouple	XE-3505-001 (Labfacility Limited)
Resistance temperature	PTS060301B100RP100 (Mounted on the board)
detector	
Thermocouple calibrator	CA320 (Yokogawa Test & Measurement Corporation)
Host	Renesas QE for AFE V2.1.1
IDE	Renesas e2 Studio Version 2023-04
	Renesas RX Smart Configurator V23.4.0
Tool Chain	Renesas CC-RX V3.05.00
Emulator	Renesas E2 emulator Lite

3. Related Documents

- R01UH0972 RX23E-B Group User's Manual: Hardware
- R12UZ0108 RSSKRX23E-B User's Manual
- R01AN6364 RX23E-B Group RSSKRX23E-B Board Control Program

4. 4-20m A Communication

4.1 Hardware Configuration

4.1.1 4-20m A Transmitter

The configuration of the 4-20mA transmitter using the RSSKRX23E-B board is shown in Figure 4-1. Table 4-1 shows the changes made to the parts of the RSSKRX23E-B to achieve the 4-20mA transmitter configuration. Table 4-2 lists the jumper settings.

In Figure 4-1, the relationship between the output voltage and the output current of the D/A converter can be expressed with the following formula:

$$I_{out} = \frac{R_{282}}{R_{283}R_{286}} \left\{ \frac{1}{R_{276} + R_{277}} (R_{276}V_{DA0} + R_{277}V_{2.5VREF}) \right\}$$

Figure 4-1 RSSKRX23E-B: 4-20mA Transmitter Configuration

Table 4-1 Changes Made to the RSSKRX23E-B Board for Use of the 4-20mA Transmitter

Circuit reference number	Before	After
R274	DNF	ΟΩ
R275	0Ω	DNF
J3	DNF	M20-9990445 from Harwin, Inc.

Table 4-2 Jumper Settings for the RSSKRX23E-B Board for Use of the 4-20mA Transmitter

Function	Symbol	Connection	Setting
Digital power selection (VCC)	JP1	7-8	Use Vd for VCC.
Analog power selection (AVCC0)	JP2	1-2 (JP2-1)	Use 5VCC for AVCC0.
R16DA reference power selection (VREFH)	JP4	1-2	Select AVCC0 for VREFH.

RX23E-B Group Example of 4-20mA transmitter using built-in D/A converter

4.1.2 Temperature Measurement Circuit

Refer to the following sections of the "RSSKRX23E-B User's Manual".

- 2.4.2 Thermocouple Measurement Circuit
- 2.4.3 Onboard RTD-based reference junction compensation circuit

4.1.3 Voltage Measurement Circuit

The voltage measurement circuit is shown in Figure 4-2.

Figure 4-2 RSSKRX23E-B: Voltage Measurement Circuit

RX23E-B Group Example of 4-20mA transmitter using built-in D/A converter

4.2 **Temperature Measurement**

Temperature measurement is performed with a thermocouple, and the temperature measured with the resistance temperature detector (RTD) mounted on the RSSKRX23E-B board is used as the reference junction temperature.

Figure 4-3 shows the procedure for calculating the temperature measured with the thermocouple from the obtained A/D conversion values of the thermocouple and the RTD. Note that the moving average number is set to 1 to disable the moving average.

Figure 4-3 Method used to Calculate the Temperature

4.2.1 Thermocouple

Tabel 4-3 shows the thermocouple specifications used in this example, and Table 4-4 shows the thermocouple calibrator specifications.

	Tabel 4-3	Excerpt of	of the	XE-3505-001	S	pecifications
--	-----------	------------	--------	-------------	---	---------------

Item	Description
Туре	К
Tolerance	IEC-584-2 Class 1
Temperature range	-75°C to +250°C
Output voltage range	-2,755µV to 10,153µV (junction reference Temperature: 0°C)

Table 4-4 Excerpt of the CA320 Specifications

Item		Description	
Output Type Setting		К	
Output $-200.0^{\circ}C \leq t < 0.0^{\circ}C$		0.7 + t x 0.4%	
Tolerance	$0.0^{\circ}C \leq t < +500.0^{\circ}C$	0.7	
Note	$+500.0^{\circ}C \le t \le +1372.0^{\circ}C$	0.7 + (t -500) x 0.03%	
Compatibility Standard		IEC60584-1	
Temperature Range		-200.0°C to +1372.0°C	
Output voltage Range		-5,891µV to 54,886µV (-200.0°C \leq t \leq +1372.0°C)	
		(Junction reference temperature: 0°C)	

Note: When using terminal B (banana terminal) and reference contact compensation by external RJ sensor (sold separately)

The characteristics of the output voltage of the thermocouple at different temperatures are shown in Figure 4-4.

Figure 4-4 Temperature Characteristics of a Type K Thermocouple (from IEC 60584-1)

The thermocouple has a non-linear thermoelectromotive force in relation to temperature, so a table that defines the thermoelectromotive force in relation to the temperature is used to convert the temperature. This example refers to using the type K thermoelectromotive force reference table as defined by the IEC 60584-1 standard as well as using a thermoelectromotive force table with 1°C intervals for measuring temperatures from -270°C to 1372°C.

Since thermocouples do not stabilize their potential in the floating state, the AFE bias voltage output is enabled to stabilize the potential.

The conditions for measuring the thermocouple electromotive force in this example are listed in Table 4-5.

Item	Condition	Remarks
Bias voltage	2.5V	RX23E-B VBIAS is applied to the low side.
DSAD0 reference voltage VREF0	2.5V	The internal VREF output is used.
PGA gain GPGA0	x128	Thermoelectromotive force of 19531.25µV or less ^{Note}

Table 4-5 Thermocouple Measurement Conditions

Note: If the thermoelectromotive force exceeds 19531.25µV, the PGA gain must be reduced.

4.2.2 Resistance Temperature Detector (RTD)

In this example, the 4-wire RTD, PTS060301B100RP100 mounted on the RSSKRX23E-B board is used. An excerpt of the PTS060301B100RP100 specifications is given in Table 4-6, and the characteristics of the resistance value in relation to temperature are shown in Figure 4-5.

Table 4-6 Exce	rpt of the PT	S060301B10	0RP100 S	pecifications
----------------	---------------	------------	----------	---------------

Item	Description
Tolerance Class	F0.3
Resistance values R0 at 0 °C	100Ω
Operating temperature range	-55°C to +155°C
Register value range (Board constraints)	84.271Ω (-40°C) to 132.803Ω (85°C)
Measurement current Imeas. (DC) ^{Note}	0.1mA to 0.50mA

Note: Constant current when the self-heating effect is less than 0.1°C.

Figure 4-5 Pt100: Temperature vs. Resistance Value (from IEC 60751)

This example conducts ratiometric measurement. By applying a constant current to the series connection of the RTD and the reference resistance R_{REF} , and voltage of the RTD is A/D converted with the voltage across R_{REF} as reference voltage V_{REF1} .

The resistance value of the RTD is calculated from the A/D conversion value, and the resistance value is converted to the temperature. The resistance value of the RTD is non-linear in relation to temperature, so the resistance value is converted to a temperature by using a table that defines the resistance value in relation to the temperature. In this example, a table of resistance values in 1°C increments in a range of -50°C to 95°C is created from the formula used to calculate the reference resistance value of the Pt100 in IEC 60751.

The RTD measurement conditions in this example are listed in Table 4-7.

able 4-7 RTD Measurement Conditions			
Item	Condition	Remarks	
Measurement temperature range	-50°C to 95°C		
Excitation current I _{EXC}	500µA		
PGA gain GPGA1	x32		
Reference resistance value RREF	5.1kΩ		
DSAD reference voltage V _{REF1}	2.55V	The voltage applied to R_{REF} is assumed to be the A/D conversion reference voltage. $V_{REF1} = I_{EXC} \times R_{REF} = 2.55V$ A reference buffer is used because R_{REF} impedance is high.	

Table 4-7 RTD Measurement Conditions

RX23E-B Group Example of 4-20mA transmitter using built-in D/A converter

4.2.3 A/D Conversion of the Thermocouple and the RTD

The thermocouple is assigned to CH0 and the RTD is assigned to CH1. Each voltage is obtained through A/D conversion by using a DSAD0 channel scan. In this example, the measurement cycles of 150ms and 300ms are preset. Figure 4-6 shows the A/D conversion sequence for the thermocouple and the RTD, and Table 4-8 lists the A/D conversion conditions for a measurement cycle of 150ms. Digital filter gain is corrected to 1 by Sinc Filter gain correction.

Each A/D conversion value is obtained by detecting the A/D conversion end interrupt flag ADI0 of DSAD0. If the channel of the obtained A/D value is CH1, this indicates that a pair of A/D values has been obtained, and the processing to calculate the temperature is performed.

Figure 4-6 Sequence of A/D Conversion for Measuring Temperatures

Table 4-8 DSAD0 Conversion Co	onditions of Temperature Measurement (150ms Cycle)
	Modulator clock frequency EMOD: 4MHz

Item	Item			Setting	Remarks	
			CH0: Thermocouple	CH1: RTD		
Setting	Setting Input pin		+	AIN11	AIN5	
			-	AIN10	AIN4	
	PGA gain			x128	x32	G _{PGAm} , m=0, 1
	Reference	e voltage		REFOUT/AVSS0	REF0P/REF0N	$V_{REF0} = 5V$
	OSR			256		
		OSR2		292		
		Total OSR		74752		= OSR1 x OSR2
	Digital	Туре		SINC4 + SINC4		
	filter Gain correction		ection	1.181567267		1/G _{DFm} , m=0, 1
Channe	l scan cycle)		150.0105ms		= S2 x 2
	Settling Time 1: S1		75.00552ms			
	Settling Time 2: S2		75.00525ms			
Temper	ature meas	urement ra	te	6.666200033SPS		

Note: For details about settling time, refer to "36.3.7.2 Settling Time in the RX23E-B Group User's Manual: Hardware".

RX23E-B Group Example of 4-20mA transmitter using built-in D/A converter

4.2.4 Temperature Calculation

The measurement temperature is calculated using the procedure shown in Figure 4-3 with reference junction compensation from each A/D conversion value of the thermocouple and the RTD and the noise is reduced with the moving average filter.

- (1) Thermocouple reference junction temperature measurement with the RTD
 - (a) Calculation of the RTD resistance value

The resistance value R_{RTD} of the RTD is determined from the A/D conversion value DATA_{RTD} of the RTD. Assuming that the set gain of the PGA is G_{PGA1}, the resolution of the DSAD0 is 24 bits, and the reference resistance value is R_{REF} , R_{RTD} can be calculated with the following formula:

$$R_{RTD} = \frac{2 \cdot R_{REF}}{2^{24} \cdot G_{PGA1}} \cdot DATA_{RTD} = \frac{R_{REF}}{2^{23} \cdot G_{PGA1}} \cdot DATA_{RTD}$$

(b) Calculation of the thermocouple's reference junction temperature

The (temperatures, resistance values) before and after the resistance value of the RTD R_{RTD} are obtained from the Temperature vs. Resistance table for the RTD. From the obtained results, the temperature T_{RTD} equivalent to the resistance value R_{RTD} is determined with linear interpolation. Assuming that the resistance value is R and the temperature is T and since the ratios of the distances from point a to measurement point c (T_{RTD} , R_{RTD}) on the T-axis and the R-axis to the distances between two points a (T_{1} , R_{1}) and b (T_{2} , R_{2}) on the T-axis and the R-axis in the obtained table are the same, the relationship can be expressed with the following formula:

$$\frac{R_{RTD} - R_1}{R_2 - R_1} = \frac{T_{RTD} - T_1}{T_2 - T_1} = \alpha$$

This formula is rearranged so that the temperature T_{RTD} for the resistance value R_{RTD} can be calculated with the following formula:

$$T_{RTD} = T_1 + \alpha (T_2 - T_1) = T_1 + \frac{R_{RTD} - R_1}{R_2 - R_1} \cdot (T_2 - T_1)$$

(2) Temperature calculation with thermocouple measurement

(a) Calculation of the thermocouple's thermoelectromotive force of the reference junction By assuming that the temperature T_{RTD} measured with the RTD is the reference junction temperature of the thermocouple, the (temperatures, thermoelectromotive forces) before and after the temperature T_{RTD} are obtained from the Temperature vs. Thermoelectromotive force table, and the thermoelectromotive force V_{RJC} equivalent to T_{RTD} is determined with linear interpolation. Assuming that the temperature is T and the thermoelectromotive force is V, the thermoelectromotive force V_{RJC} for T_{RTD} on the line segment passing through two points (T_1 , V_1) and (T_2 , V_2) in the obtained table can be calculated with the following formula in accordance with the linear interpolation formula:

$$V_{RJC} = V_1 + \frac{T_{RTD} - T_1}{T_2 - T_1} \cdot (V_2 - V_1)$$

(b) Calculation of the thermocouple's thermoelectromotive force of the temperature measuring junction The thermoelectromotive force V_{MJ} of the temperature measuring junction is determined from the A/D conversion value DATA_{TC} of the thermocouple. Assuming that the set gain of the PGA is G_{PGA0}, the full scale of the A/D conversion value is 2²⁴, and the reference voltage of the DSAD0 is V_{REF0}, the thermoelectromotive force of the temperature measuring junction (V_{MJ}) can be calculated with the following formula:

$$V_{MJ} = \frac{2 \cdot V_{REF0}}{2^{24} \cdot G_{PGA0}} \cdot DATA_{MJ} = \frac{V_{REF0}}{2^{23} \cdot G_{PGA0}} \cdot DATA_{MJ}$$

(c) Calculation of the thermocouple thermoelectromotive force for a reference junction temperature of 0°C The reference junction thermoelectromotive force V_{RJC} is added to the thermoelectromotive force of the temperature measuring junction V_{MJ} to calculate the thermocouple's thermoelectromotive force V_{ACT} for the zero junction.

$$V_{ACT} = V_{MI} + V_{RIC}$$

(d) Temperature conversion

The values (temperatures and electromotive forces) before and after the thermoelectromotive force V_{ACT} are obtained from the temperature vs. thermoelectromotive force table. From the obtained results, the temperature T_{ACT} equivalent to V_{ACT} is determined with linear interpolation. Assuming that the temperature is T and the thermoelectromotive force is V, the temperature T_{ACT} for the thermoelectromotive force V_{ACT} on the line segment passing through two points (T_1 , V_1) and (T_2 , V_2) in the obtained table can be calculated with the following formula in accordance with the linear interpolation formula:

$$T_{ACT} = T_1 + \frac{V_{ACT} - V_1}{V_2 - V_1} \cdot (T_2 - T_1)$$

4.3 Voltage Measurement

The procedure for voltage calculation is shown in Figure 4-7. Note that the moving average number is set to 1 so the moving average is invalid.

Figure 4-7 Method Used to Calculate Voltage

4.3.1 A/D Conversion of Input Voltage

The A/D conversion of the pin input voltage is performed using the DSAD0. In this example, the A/D conversion of the input voltage is performed by setting CH2 of the DSAD0. A/D conversion conditions are shown in Table 4-9. Digital filter gain is corrected to 1 by Sinc Filter gain correction.

Table 4-9 DSAD0 Conversion Conditions for Voltage Measurement

				-	Modulator clock frequency: F _{MOD} = 4 MHz
ltem				CH2	Remarks
Setting	Input pin		+	HVAIN3	
			-	HVAIN2	
	PGA gain		x1	G _{PGA2} = 0.1 because of the use of HVAIN	
	Reference vo	oltage		REFOUT/AVSS0	V _{REF2} = 2.5V
	OSR OSR1 OSR2		256		
				16	
		Overall OS	SR	4096	= OSR1 x OSR2
	Digital filter Type Gain			SINC4 + SINC4	
				1.0	1/GdF2
		correction			
Data rat	e			976.5625SPS	= F_{MOD} / (OSR1 x OSR2)

4.3.2 Voltage Calculation

The pin input voltage is calculated from the A/D conversion results.

Assuming that the set gain of the PGA is G_{PGA2} , the full scale of the A/D conversion value is 2^{24} , and the DSAD0 reference voltage is V_{REF2} , the pin input voltage (V) for the A/D conversion result (DATA) is calculated with the following formula:

$$V = \frac{2 \cdot V_{REF2}}{2^{24} \cdot G_{PGA2}} \cdot DATA$$

4.4 DSAD Calibration

A/D conversion accuracy can be increased with offset/gain correction of the DSAD. In this example, the offset and gain correction values are calculated from the results of A/D conversion for two types of expected values in accordance with the method in "36.4.6 Calculation of Calibration Coefficients for Offset Error and Gain Error in the RX23E-B Group User's Manual: Hardware" and are set in DSAD0. The specifications of the expected values for each calibration target are given in Table 4-10.

Table 4-10 Specifications of Expected Values for Calibration Targets

Target	Expected value	A/D expected value	Remarks
Thermocouple	Voltage V _{IN} [V]	$DATA_{EXP} = V_{IN} \cdot G_{PGA} \cdot (2^{23}/V_{REF})$	Use a thermocouple
input			calibrator.
Resistance	Resistance value R [Ω]	$DATA_{EXP} = R \cdot G_{PGA} \cdot (2^{23}/R_{REF})$	Use an RTD calibrator.
temperature			
detector input			
Voltage input	Voltage V _{IN} [V]	$DATA_{EXP} = V_{IN} \cdot G_{PGA} \cdot (2^{23}/V_{REF})$	

Note: G_{PGA}: PGA gain. In the case of HVAIN pin input, 0.1 x PGA gain

VREF: DSAD0 reference voltage (= 2.5V)

R_{REF}: Reference resistance value (= $5.1k\Omega$)

The calibration procedure is as described below.

- (1) Offset correction
 - (a) Start setting

Set each of the offset correction and gain correction registers for channel n as a calibration target as follows:

OFCRn = 0x0000000 GCRn = 0x00400000

(b) Obtaining the A/D value of calibration input 1

Apply the input signal REF₁ for calibration and obtain A/D conversion value DATA₁. Here, to improve calibration accuracy, take the average of a predetermined number of samples.

(c) Offset calculation and setting

Determine the A/D expected value $DATA_{EXP1}$ for REF₁ with the formula in Table 4-10, calculate the offset from the obtained $DATA_1$ with the following formula, and set it in OFCRn.

$$OFCR_n = DATA_1 - DATA_{EXP1}$$

(2) Gain correction

(a) Obtaining the A/D value of calibration input 2

Apply the input signal REF₂ for calibration and obtain A/D conversion value DATA₂. As with offset correction, to improve calibration accuracy, take the average of a predetermined number of samples.

(b) Gain correction value calculation and setting

Determine the A/D expected value DATA_{EXP2} for REF₂ with the formula in Table 4-10, calculate the gain correction value from the obtained A/D value DATA₂ with the following formula, and set it in GCRn.

$$GCR_n = 2^{22} \cdot \frac{DATA_{EXP2}}{DATA_2}$$

4.5 Current Output

In this example, a predetermined measurement range of 4mA to 20mA is assigned to each measurement result, as indicated in Table 4-11, and output.

Table 4-11 4-20mA Outpu	It Specifications

Item		Setting	Description		
		Temperature	Voltage measurement		
Output current range		3.8 to 20.5 [mA]			
Output-compliant		-40°C to 150°C (default)	PGA x1	±10.0V	The measurement range
measurement range			PGA x2	±5.0V	of 4mA to 20mA is
M _{min} to M _{max}			PGA x4	±2.5V	assigned.
Alarm	rm Current Selection fro		and 24.0 [mA]		
output	Condition	dition Output if an A/D conversion error continues for approximately 1 second.			
		Cleared approximately 1 second after the A/D conversion error is resolved.			

4.5.1 Current Output Procedure

Figure 4-8 shows how the current is output.

Figure 4-8 Method of Setting the Output within 4-20mA

(1) Conversion of the measurement value to an output current value

Assign the measurement range so that I_{min} is 4mA and I_{max} is 20mA. Calculate the current equivalent to the measurement value. If the calculated current exceeds the output range, the minimum or maximum value of the output current range is assumed.

$$I_{out} = \begin{cases} (M - M_{max}) \cdot \frac{(I_{min} - I_{max})}{(M_{max} - M_{min})} + I_{min} \\ I_{LIMITmin}: I_{out} < I_{LIMITmin} \\ I_{LIMITmax}: I_{out} > I_{LIMITmax} \end{cases}$$

(2) Conversion of the current value to a DAC setting value

Convert the current value I_{out} to the DAC setting value DATA from the DAC output value conversion coefficients a and b, a DAC resolution of 16 bits, and the DAC reference voltage V_{REFH} with the following formula:

$$DATA = \frac{2^{16}}{V_{REFH}} \cdot \frac{I_{out} - b}{a}$$

Example of 4-20mA transmitter using built-in D/A converter

The initial value of the DAC output value conversion coefficients are defined from the circuit constant in Figure 4-1 and the reference voltage $V_{2.5VREF}$ of the 4-20mA output circuit as shown in the following formula:

$$I_{out} = \frac{R_{282}}{R_{283}R_{286}} \left(\frac{1}{R_{276} + R_{277}} (R_{276}V_{DA0} + R_{277}V_{2.5VREF}) \right)$$
$$= \frac{R_{282}}{R_{283}R_{286}} \left(\frac{1}{R_{276} + R_{277}} \left(R_{276}V_{REFH} \frac{DATA}{2^{16}} + R_{277}V_{2.5VREF} \right) \right)$$

$$DATA = \frac{2^{16}}{V_{REFH}} \cdot \frac{I_{out} - \frac{R_{282}R_{277}V_{2.5VREF}}{R_{283}R_{286}(R_{276} + R_{277})}}{\frac{R_{282}R_{276}}{R_{283}R_{286}(R_{276} + R_{277})}} = \frac{2^{16}}{V_{REFH}} \cdot \frac{I_{out} - b}{a}, \qquad \begin{cases} a = \frac{R_{282}R_{276}}{R_{283}R_{286}(R_{276} + R_{277})} \\ b = \frac{R_{282}R_{277}V_{2.5VREF}}{R_{283}R_{286}(R_{276} + R_{277})} \end{cases}$$

4.5.2 Current Output Calibration

RX23E-B Group

By adjusting the DAC output value conversion coefficient to an appropriate value through calibration, current output errors caused by variations in circuit constants and other errors can be reduced.

In this example, based on the output current measurement value for the DAC output setting value, calibration is performed with the following procedure.

(1) Measurement of reference current output 1

Convert the reference output current I_{REF1} (20mA) with the present DAC output value conversion coefficients, set the resulting value DATA₁ in DAC, and measure the actual output current I_1 .

(2) Measurement of reference current output 2

Convert the reference output current I_{REF2} (4mA) with the present DAC output value conversion coefficients, set the resulting value DATA₂ in DAC, and measure the actual output current I_2 .

(3) Calculation of the DAC output value conversion coefficient

Calculate the conversion coefficient based on the DAC setting value DATA_n (where n = 1 or 2) and the actual output current measurement value I_n. The DAC output voltage V_n for the DAC setting value DATAn can be expressed from the DAC reference voltage V_{REFH} and the DAC resolution of 16 bits with the following formula:

$$V_n = \frac{V_{REFH}}{2^{16}} \cdot DATA_n$$

Calculate the coefficient from the measured current I_n and the DAC output voltage V_n with the following formula:

$$\begin{cases} a = \frac{I_1 - I_2}{V_1 - V_2} = \frac{I_1 - I_2}{\frac{V_{REFH}}{2^{16}} (DATA_1 - DATA_2)} \\ b = I_1 - aV_1 = I_2 - aV_2 \end{cases}$$

5. Sample Program

5.1 Overview

Figure 5-1 shows the process flow of this sample program.

Figure 5-1 General Flow

This program specifies the operation with the member opemode of the s_qe_info structure variable. Operating modes are listed in Table 5-1.

able 3-1 Operating modes			
Name	Description		
E_IDLE	Standby		
E_MES_TEMP	Temperature measurement		
E_MES_VOLT	Voltage measurement		
E_CAL_TC	Thermocouple voltage input calibration		
E_CAL_RTD	Resistance temperature detector input calibration		
E_CAL_VOLT	Voltage input calibration		
E_CAL_DAC0	Current output calibration		
E_CAL_DAC1			
E_CAL_DAC2			

Table 5-1 Operating Modes

The following sections provide overviews of each process.

- Initialization process
 - Measurement condition parameters are loaded.
 Measurement condition parameters stored in the E2 data flash are loaded.
 If SW2 is held down, the default values will be loaded.
 If the offset correction value and the gain correction value of the loaded parameters are defaults, these values will be changed to device-unique values.
 - DAC output starts.

DAC output is performed with the initial value set to 4mA.

- The communication process for the QE for AFE development tool starts.
 Various parameters for QE for AFE communication are initialized to start reception.
- Turning LEDs ON LED0 and LED1, which indicate the end of the initialization process, are turned ON.
- A/D value obtainment process

When the conversion end (ADI0) of the DSAD is detected, A/D conversion results are obtained and stored in the A/D value storage array.

If the obtained A/D conversion results contain conversion errors, the error occurrences will be recorded.

• Measurement and DSAD calibration process

The PE0 output, which indicates the start of this process, is inverted, and the obtained A/D value is processed with the opemode during the A/D conversion start and stop processes.

— opemode: E_MES_TEMP

The temperature is calculated from CH0 and CH1 A/D conversion results and stored as part of measurement results.

- opemode: E_MES_VOLT
- The voltage is calculated from CH2 A/D conversion results and stored as part of measurement results. — opemode: E_CAL_TC, E_CAL_RTD, E_CAL_VOLT

The calibration process is performed on the DSAD0 channel specified in the operating mode.

• 4-20mA output process

The measurement results or alarm output is reflected in the output of DAC.

If an error in the obtained A/D conversion results continues for approximately one second, the selected alarm current will be output. If the error clearing continues for approximately one second, the current calculated from the measurement results will be output.

RX23E-B Group Example of 4-20mA transmitter using built-in D/A converter

- QE for AFE's receive/transmit packet process
 Processes packets from QE for AFE and transmits the measurement values and output current setting values during measurement, using the API of the QE communication module. If a transmission timeout is detected, the communication process will be reset.
 The processes for the user operations listed in Table 1-1 will be performed with the individual user functions of the QE for AFE communication module. For details about the QE for AFE communication module, refer to the Application Note "RX23E-B Group RSSKRX23E-B Board Control Program".
- Parameter change request process

Changes to the following parameters for measurement conditions, which may be specified from the QE for AFE, are processed.

- Temperature measurement rate selection
- Temperature range specification
- Alarm current selection
- Output current specification
- Change to DSAD0 setting
- Measurement and calibration start and end setting Sets measurement conditions and A/D conversion is started or stopped in accordance with the new "opemode" when "opemode" is changed,.
 - E_IDLE
 - A/D conversion is stopped, and LED0 is turned ON.
 - E_CAL_DAC0, E_CAL_DAC1, E_CAL_DAC1
 - Current calibration is processed based on "4.5.2 Current Output Calibration"
 - E_MES_TEMP, E_MES_VOLT, E_CAL_TC, E_CAL_RTD, E_CAL_VOLT
 The DSAD0 settings for each measurement or calibration, then A/D conversion are started.
- E2 data flash storage process

If "opemode" does not change from E_IDLE, the E2 data flash storage parameters are updated if the measurement condition parameters are changed.

5.2 MCU Functions and Settings

The peripheral functions used in this example are listed in Table 5-2, and the pins used are listed in Table 5-3. Clock settings are listed in Table 5-4.

The settings for peripheral functions are generated by using the code generation function of the Smart Configurator. The settings for peripheral functions are shown in the following table and categorized by their respective uses.

Table 5-2 Peripheral Functions

Peripheral function	Use
AFE/DSAD0	A/D conversion of input signals, supply of BIAS to the thermocouple, and
	supply of excitation current to the resistance temperature detector
R16DA	4-20mA current output
SCI1	Communication with the QE for AFE
DMAC0	Reception of packets from the QE for AFE
DMAC1	Transmission of packets to the QE for AFE
CMT0	Detection of errors in the transmission of packets to the QE for AFE
CMT1	LED blinking cycle
P70 – P73	LED ON/OFF control
PE1 – PE4	Get Switch State
E2DataFlash	Saving of retention parameters

Table 5-3	Pins Used		
Pin No.	Name	I/O	Use
1	DA0	0	DA output
5	P73	0	LED3
6	P72		LED2
7	P71		LED1
8	P70		LED0
13	XTAL	0	Crystal oscillator
15	EXTAL	I	
28	P30/RXD1	I	UART1 reception
30	P26/TXD1	0	UART1 transmission
39	P15/CTS1#	Ι	UART1 CTS input
62	PE4	Ι	SW3-2
63	PE3		SW3-1
64	PE2		SW2
65	PE1		SW1
66	PE0	0	Notification of the end of the A/D value obtainment process for
			measurement and DSAD calibration
74	REFOUT	0	Internal VREF output
80	REF0N	Ι	Input of DSAD0 reference voltage for measurement of the resistance
81	REF0P		temperature detector
82	AIN4		Input pin on the negative voltage side of the resistance temperature detector
83	AIN5		Input pin on the positive voltage side of the resistance temperature detector
87	AIN9	0	Output pin for the measurement of the excitation current of the resistance temperature
88	AIN10	I/O	Input pin on the negative voltage side of the thermocouple, bias voltage
89	AIN11	Ι	Input pin on the positive voltage side of the thermocouple
93	HVAIN2	I	Input pin on the negative voltage side for voltage measurement
94	HVAIN3		Input pin on the positive voltage side for voltage measurement

Table 5-4 Clock Configuration

Item		Setting		
Clock used		Main clock		
	Oscillation source	Resonator		
	Frequency	8MHz		
	Wait time	8192 (2048µs)		
PLL circuit	Frequency Division	x1/2		
	Frequency Multiplication	x8		
SCKCR (FCLK)		x1 (32MHz)		
SCKCR (ICLK)		x1 (32MHz)		
SCKCR (PCLKA)		x1 (32MHz)		
SCKCR (PCLKB)		x1 (32MHz)		
SCKCR (PCLKC)		x1 (32MHz)		
SCKCR (PCLKD)		x1 (32MHz)		

RX23E-B Group Example of 4-20mA transmitter using built-in D/A converter

5.2.1 Temperature and Voltage Measurement

AFE and DSAD0 are used for measurement. In addition, PE0 is used to output the toggle signal for notifying of the end of A/D value obtainment for the measurement and the DSAD calibration process. The following tables list the settings for each peripheral function.

Table 5-5 Settings for AFE

Item		Setting	
Bias output	Enable bias voltage output	Enable	
setting	AIN2 pin output	Disable	
	AIN10 pin output	Enable	
Excitation current	Enable excitation current output	Enable	
output setting	Operation mode	Two-channel output mode	
	Excitation current	500µA	
	IEXC0 output pin	Output disabled	
	IEXC0 disconnection detection assist	Not used	
	IEXC1 output pin	AIN9	
	IEXC1 disconnection detection assist	Not used	
Low level voltage detection setting		Not used	
Low-side switch set	ting	Not used	

Table 5-6 Settings for Ports

Item	Setting
Port selection	PORTE
Used port	PE0
Setting	Out
	CMOS output
	Output 1

Table 5-7 Settings for the DSAD0

Continuous scan mode

Item		Setting			
Measuring ta	easuring target			Voltage	
Analog input c	Analog input channel setting		0 1 2		
Operation cloc	ck setting	PCLK/2 (16MHz)			
Conversion sta	art trigger source	Software trigger			
Interrupt	Enable $\Delta\Sigma A/D$ conversion	Enable, Priority: L	evel 0 (Disabled)		
setting	completion interrupt (ADI0)				
	Enable $\Delta\Sigma A/D$ conversion scan	Disable			
	completion interrupt (SCANEND0)				
	Enable $\Delta\Sigma A/D$ channel change	Disable			
	Interrupt (CHCHG0)				
Voltage fault a	Ind disconnection setting	Not used	· · ·· ·=		
Analog input	Positive input signal	AIN11	AIN5	HVAIN3	
setting	Negative input signal	AIN10	AIN4	HVAIN2	
	Reference input	REFOUT	REF0P	REFOUT	
		/AVSS0	/REF0N	/AVSS0	
	Positive reference voltage buffer	-	Enable	-	
	Negative reference voltage buffer	-	Enable	-	
Amplifier	Amplifier selection	PGA			
setting	PGA gain setting	x128	x32	x1	
ΔΣΑ/D	A/D conversion mode	Normal operation			
conversion	Data format	Two's complement	nt		
setting	A/D conversion number	1			
	First stage oversampling ratio	Table 5-8		256	
	Second stage oversampling ratio	16		16	
	Set offset calibration value	Not used	Not used		
	Set gain calibration value	Not used			
Disconnect de	tection assist setting	Disable			
Digital filter	Sinc filter select	Sinc4 + Sinc4			
setting	Set sinc filter gain calibration	Enable			
	Sinc filter gain calibration value	Table 5-8		1	

Table 5-8 DSAD0 settings for Temperature Measurement

Bold: Default

ltem			Setting			
[[Measurement cycle	300 (ms)		150 (ms)	
		Analog input channel	0	1	0	1
ΔΣA/D conversion	First stage overs	sampling ratio	256		256	
setting	Second stage oversampling ratio		585		292	
Digital filter setting	Sinc filter gain ca	1.173508866		1.181567267		
			0x004B1AC4		0x004B9ECC	

5.2.2 Communication

SCI1, DMAC0, DMAC1, and CMT0) are used for communication with the QE for AFE. The following tables list the settings for each peripheral function.

Table 5-9 Settings for the SCI1

Asynchronous Mode Work mode: Transmission/Reception

Item		Setting		
Start bit edge detection setting		Falling edge on the RXD1 pin		
Data length settin	g	8 bits		
Parity setting		None		
Stop bit length se	tting	1 bit		
Transfer direction	setting	LSB-first		
Transfer rate	Transfer clock	Internal clock		
setting	Bit rate	4Mbps		
	Enable modulation duty correction	Not used		
	SCK1 pin function	SCK1 is not used		
Noise filter setting	l	Not used		
Hardware flow co	ntrol setting	CTS1#		
Data handling	Transfer data handling	Data handled by the DMAC		
setting	Receive data handling	Data handled by the DMAC		
Interrupt setting	Enable reception error interrupt (ERI1)	Not used		
	TXI1, RXI1, TEI1, ERI1 priority	Level 0 (disabled)		
Callback function	setting	Not used		

Table 5-10 Settings for the DMAC

Item		Setting			
		DMAC0	DMAC1		
Transfer	Activation source	SCI1 (RXI1)	SCI1 (TXI1)		
setting	Activation source flag control	Clear interrupt flag of the activation source			
	Transfer mode	Free running mode	Normal mode		
	Transfer data size	8 bits			
	Transfer count / Repeat size / Block size	-	(Set on execution)		
Source	Source address	0x0008A025(SCI1.RDR)	(Set on execution)		
address		Fixed	Incremented		
setting	Specify the transfer source	-	Enable		
	as extended repeat area				
	Extended repeat area		Lower 9 bits of the address		
			(512 bytes)		
Destination	Destination address	(Set by the program)	0x0008A023(SCI1.TDR)		
address		Incremented	Fixed		
setting	Specify the transfer	Enable	-		
	destination as extended				
	repeat area				
	Extended repeat area	Lower 9 bits of the address			
		(512 bytes)			
Interrupt sett	ing	Not used			

Table 5-11 Settings for the CMT0

Example of 4-20mA transmitter using built-in D/A converter

Item		Setting	
Count clock setting		PCLKB/512	
Compare match	Interval value	1000ms	
setting	Compare match interrupt (CMI0)	Enable	
		Priority: Level 0 (disabled)	

5.2.3 4-20mA Current Output

The R16DA is used to set the current output to 4-20mA.

Table 5-12 Settings for the DA

Item		Setting
D/A channel0 setting	Use DA0.	Used
	Buffer amplifier output pull-Down	Used
Analog output impedance setting		Analog output pin is a pulled down by 1-k Ω resistor.
D/A A/D synchronous se	etting	Not used

5.2.4 LEDs and Switches

P70 to P73 are used to turn LEDs ON and OFF, and CMT1 is used for the blinking cycle. PE1 to PE4 are used to obtain the states of switches, SW1, SW2, and SW3.

Port settings are listed in Table 5-13, and settings for CMT1 are listed in Table 5-14.

Table 5-13 Settings for Ports

Item	Setting							
Port selection	PORT7				PORTE			
Used port	P70	P71	P72	P73	PE1	PE2	PE3	PE4
Setting	Out				In			
	CMOS OL	utput						
	Output 1							

Table 5-14 Settings for CMT1

Item		Setting
Count clock setting		PCLK/512
Compare match Interval value		250ms
setting	Compare match interrupt (CMI1)	Enable
		Priority: Level 0 (disabled)

5.2.5 E2 Data Flash

The E2 data flash is used to retain setting parameters. The FIT flash module is used to access the E2 data flash.

Table 5-15 Settings for the FIT Flash Module

Item	Setting
Parameter check	Enable parameter checks
Enable code flash programming	Only data flash
Enable BGO/Non-blocking data flash operation	Forces data flash API function to block until completed.
Enable BGO/Non-blocking code flash operation	Forces ROM API function to block until completed.
Enable code flash self-programming	Programming code flash while executing in RAM.

5.3 **Program Configuration**

5.3.1 Source File Configuration

Table 5-16 File Configuration

Folder name, file name	Description
src	
∣ ⊢ smc_gen	Generated by Smart Configurator
│	
│	
│	
│	
│	
│	
│	
│	
│	
│	
│	
│	
│	
│ └ r_pincfg	
├ r_4_20ma_cfg.h	Definition of initial values
⊢ main.c	Main function
_	Various calculations
_	
_	Conversion process for 4-20mA output current
_	
├ r_crnt_cfg.h	
_	LED operation
_	
_	QE for AFE communication module
_	
r_qe_api.h	
├ r_qe_cfg.h	
├ r_qe_cfg_typedef.h	
_	
_	
├ r_ring_buffer_control_api.c	
├ r_ring_buffer_control_api.h	
_	Conversion process for the resistance temperature detector's
_ ⊢ r_rtd_api.c	temperature
r_rtd_cfg.h	
r_thermocouple_api.h	Conversion process for the thermocouple's temperature
├ r_thermocouple_api.c	
├ r_thermocouple_cfg.h	
⊢ r_voltage_api.h	Conversion process for voltage measurement
⊢ r_voltage_api.c	
└─ r_voltage_cfg.h	

5.3.2 Macro Definitions

Table 5-17 r_4_20mA_cfg.h Definitions

Definition name	Value	Description
D_CFG_MES_TEMP_RATE_INDEX	1	Initial value of temperature measurement cycle
		selection
		0: 300ms
		1: 150ms
D_CFG_CRNT_ALERT_INDEX	1	4-20mA alarm output selection initial value
D_CFG_CRNT_ALERT_TIME_SEC	1.0	4-20mA alarm output time constant
D_CFG_CAL_AVERAGE_NUM	128	Initial value for the average count for DSAD
		calibration
D_CFG_CAL_DELAY	5.0F	DSAD calibration start delay time [s]
D_CFG_TEMP_MOVINGAVERAGE_	1	Initial value for the temperature measurement
NUM		moving average number
D_CFG_VOLT_MOVINGAVERAGE_	1	Initial value for the voltage measurement moving
NUM		average number
D_CFG_XCRM_ERROR_VALUE	0x08000000	GCRm and OFCRm error values for initialization
D_CFG_TEMP_DSAD_PRM_	Refer to	Initial value for the temperature measurement
DEFAULT_300MS	Table 5-8.	DSAD0 parameter
D_CFG_TEMP_DSAD_PRM_		
DEFAULT_150MS		
D_CFG_TEMP_RANGE_MIN	-40.0f	Lower limit for current output reflection during
		temperature measurement [°C]
D_CFG_TEMP_RANGE_MAX	160.0f	Upper limit for current output reflection during
		temperature measurement [°C]
D_CAL_AVERAGE_NUM_MIN	1	Minimum value for the calibration average count
D_CAL_AVERAGE_NUM_MAX	512	Maximum value for the calibration average count
D_MOVINGAVERAGE_NUM_MIN	1	Minimum value for the moving average number
D_MOVINGAVERAGE_NUM_MAX	128	Maximum value for the moving average number

Table 5-18 r_crnt_cfg.h Definitions

Definition name	Value	Description
D_CRNT_CFG_ALERT_INDEXES	3	Number of 4-20mA alarm output
		selections
D_CRNT_CFG_AEERT_CURRENT_0	3.2f	4-20mA alarm output current 0 [mA]
D_CRNT_CFG_AEERT_CURRENT_1	22.8f	4-20mA alarm output current 1 [mA]
D_CRNT_CFG_AEERT_CURRENT_2	24.0f	4-20mA alarm output current 2 [mA]
D_CRNT_CFG_DACVREF	5.0F	DAC reference voltage [V]
D_CRNT_CFG_RESOLUTION	16	Number of DAC bits
D_CRNT_CFG_DAC_ERROR_VALUE	0	DAC output setting value in the event
		of an error
D_CRNT_CFG_R276	36.0	4-20mA output circuit constant [kΩ]
D_CRNT_CFG_R277	10.0	
D_CRNT_CFG_R282	1.0	
D_CRNT_CFG_R283	1.8	
D_CRNT_CFG_R286	0.1	
D_CRNT_CFG_VREF	2.5	4-20mA output circuit reference
		voltage V _{2.5VREF} [V]
D_CRNT_CFG_COEF_A_DEFAULT	Refer to	Initial value for the conversion
D_CRNT_CFG_COEF_B_DEFAULT	"4.5.1Current Output	coefficient of the DAC output setting
	Procedure".	value

Table 5-19 r_rtd_cfg.h Definitions

Definition name	Value	Description
D_RTD_CFG_TYPE	1	Resistance temperature detector
		selection
		1: 4-wire
		2: 3-wire
D_RTD_CFG_RREF	5100.0	R _{REF} resistance value [Ω]
D_RTD_CFG_DSADRES	24	Resolution of A/D converter [bits]
D_RTD_CFG_OFFSET	0.0F	Resistance temperature detector's
		resistance value offset [Ω]

Table 5-20 r_thermocouple_cfg.h Definitions

Definition name	Value	Description
D_TC_CFG_VREF	2.5F	A/D conversion reference voltage [V]
D_TC_CFG_DSADRES	24	Resolution of A/D converter [bits]

Table 5-21 r_voltage_cfg.h Definitions

Definition name	Value	Description
D_VOLTAGE_CFG_VREF	2.5F	A/D conversion reference voltage (V)
D_VOLTAGE_CFG_DSADRES	24	Resolution of A/D converter [bits]

Definition nome	Value	Description
		Description Transmit ring buffer size (butes)
D_QE_CFG_TX_RINGBUF_SIZE	5120	Passive ring buffer size [bytes]
D_QE_CFG_RX_RINGBUF_SIZE	5120	Receive ring builer size [bytes]
D_QE_CFG_FORMAT_REV	3	Communication specifications revision
D_QE_CFG_READ	1	Register read permission
	1	Register write permission
D_QE_CFG_USER_VAL0	1	User Value use setting
D_QE_CFG_USER_VAL1	1	U: Non-use
D_QE_CFG_USER_VAL2	1	1: Use
D_QE_CFG_USER_VAL3	1	-
D_QE_CFG_USER_VAL4	0	
D_QE_CFG_USER_VAL5	0	
D_QE_CFG_USER_VAL6	0	
D_QE_CFG_USER_VAL7	0	
D_QE_CFG_EX_SPS	1	SPS information support
		0: No
		1: Yes
D_QE_CFG_EX_USER_BTN0	1	User Button use setting
D_QE_CFG_EX_USER_BTN1	1	0: Non-use
D_QE_CFG_EX_USER_BTN2	1	1: Use
D_QE_CFG_EX_USER_BTN3	1	
D_QE_CFG_EX_USER_BTN4	0	
D_QE_CFG_EX_USER_BTN5	0	
D_QE_CFG_EX_USER_BTN6	0	
D QE CFG EX USER BTN7	0	
D QE CFG CH0	0x3	Data transmission CH use setting
D QE CFG CH1	0x3	0x3: Measurement value
D QE CFG CH2	0x0	transmission
D QE CFG CH3	0x0	0x0: Non-use
D QE CFG CH4	0x0	
D QE CFG CH5	0x0	
D QE CFG CH6	0x0	
D QE CFG CH7	0x0	-
D QE CEG CH8	0x0	-
D QE CEG CH9	0x0	-
$D_{\text{OE}} \subset CEG \subset CH10$	0x0	-
$D_{\text{OE}} \subset CEG \subset CH11$	0x0	-
$D_{\text{OE}} \subset CEG \subset CH12$	0x0	
	"BX22E B 4 20mA	Brogram information
	Transmitter"	Frogram mornation
D_QE_CFG_TXERRCHK_EN	1	Transmission error detection valid
D_QE_CFG_TIMEOUT	0	An error is detected with a timeout.
D_QE_CFG_SCI	1	SCI number used for communication
D_QE_CFG_DMAC_RX	0	Reception process DMAC channel
D_QE_CFG_DMAC_TX	1	Transmission process DMAC channel
D QE CFG CMT	0	CMT number for timeout detection

5.3.3 Structures and Unions

Table 5-23 main.c List

Structure typ	e name	st_e2df_data_t			
Description		Measurement condition parameters to store in the data flash			in the data flash
Member	Туре	Name			Description
	uint32_t		temp_index_rate		Temperature measurement cycle selection
	st_dsad0)_prm_t	temp_dsad [D_MES_TEMP_INDEXES][2]		Temperature measurement DSAD0 parameter array
	st_crnt_r	ange_t	temp_range		Range of current output reflection during temperature measurement
	uint32_t		calibration_average	e_num	A/D value average count for calibration
	st_crnt_c	coef_t	crnt_coef		DAC output setting value conversion coefficients
	uint32_t		alert_index		4-20mA alarm output selection
Structure type name st_calibra		tion_data_t			
Description	ription DSAD ca		bration parameter		
Member	Туре		Name	Description	
	float		ref[2]	Measurement values (Two points)	
	float		val[2]	Obtained A	/D values (Two points)
	st_dsad0_prm_t *		p_dsad_prm	Pointer to the DSAD0 parameter for temperatumeasurement	
	uint32_t target Channe		Channel nu	mber of DSAD0	
Union type na	Union type name st_alert_data_t				
Description		4-20mA alert detection parameter			
Member	Type N		Name	Description	
	uint32_t		err_count	Consecutive error count	
	uint32_t		alert_count	Consecutive	e alert output count
	uint32_t		alert_threshold	Consecutive error count for alert output	

Table 5-24 r_calc_api.h List

Structure typ	e name	st_calc_m	calc_moveavg_data_t		
Description		Moving average process parameter			
Member	Туре		Name	Description	
	int32_t		count	Number of obtained data items	
	float		sumdata	Total sum of obtained data	
	float *		p_deldata	Pointer to the storage array for obtained data	
	int32_t		avgnum	Moving average number	
Structure type name st_calc_average		/erage_data_t			
Description	Description Average process parameter		rocess parameter		
Member	Туре		Name	Description	
	uint32_t		num	Average number	
	uint32_t		count	Number of obtained data items	
	float		sum	Total sum of obtained data	

Table 5-25 r_c	ble 5-25 r_crnt_api.h List				
Structure typ	ucture type name st_crnt_range_t				
Description Measurement value range					
Member	Туре		Name	Description	
	float		min	Measurement range lower limit value	
	float		max	Measurement range upper limit value	
Structure typ	e name	st_crnt_cc	pef_t		
Description Conversion coefficient for the DAC output value			output value		
Member	Туре		Name	Description	
	float		а	Coefficient a (slope)	
	float		b	Coefficient b (intercept)	
Structure typ	e name	st_crnt_ca	Ildata_t		
Description Calibration parameter for the conversion coefficient of the DAC output		ersion coefficient of the DAC output value			
Member	er Type		Name	Description	
	uint16_t		val[2]	DAC setting value (Two points)	
	float		current[2]	Measurement current value (Two points)	

Table 5-26 r_qe_cfg_typedef.h User Extensions

Enumeration type name e_processing_mode_t		cessing_mode_t		
Descriptio	Description Internal process mode		al process mode	
Member	Name		Value	Description
	E_MES_TEMP		0	Temperature measurement
	E_MES_VOLT E_CAL_TC E_CAL_RTD		1	Voltage measurement
			4	Thermocouple's input calibration
			5	Resistance temperature detector's input calibration
	E_CAL_VOLT		6	Voltage input calibration
	E_CAL_DAC0		8	Current output calibration STEP0
	E_CAL_DAC1		9	Current output calibration STEP1
	E_CAL_DAC2		10	Current output calibration STEP2
	E_IDLE		-1	Standby
	E_INITIAL		E_IDLE	Initial mode
Structure t	ype name	st_qe_api_t		
Descriptio	n	QE for	AFE communication	on module parameter (only user extensions)
Member	Туре		Name	Description
	e_processing_mo	ode_t	opemode	Internal process mode
	float *		p_dsad_cal_ref0	Pointer to the calibration measurement value0
	float		user_value[2]	QE for AFE: Valuen receive value
	float		sps_temp	Temperature measurement rate
	float		sps_volt	Voltage measurement rate
	union		user_flags	User-defined flag
	uint8_t		flags	8-bit flag
	struct uint8_t:1 uint8_t:1 uint8_t:1		bit	Assignment of each bit of the flag
			temp_rate_index	Request to change the temperature measurement rate
			temp_range	Request to change the temperature range
			alert	Request to change the selection of the 4-20mA alarm output current
	uint8_t:1		write_reg	Request to change the register setting
	uint8_t:1		out_current	Request for the specification of the 4-20mA output current

Structure type name		st_dsad0_prm_t			
Description		DSAD0 se	DSAD0 setting parameter		
Member	Туре		Name	Description	
	uint8_t		pga	CRm register GAIN bit setting value	
	uint32_t		osr	OSRm register setting value	
	uint32_t		sgcr	SGCRm register setting value	
	uint32_t		gcr	GCRm register setting value	
	uint32_t		ofcr	OFCRm register setting value	

Table 5-27 Config_DSAD0.h User Definitions

5.3.4 Functions

Table 5-28 main.c							
Function name	main	main					
Description	Main	function					
Argument	I/O	Туре		Name	Description		
	-	void		-	-		
Return value	0	void		-			

Table 5-29 r_crnt_api

Function name	R_CRNT_ValToCurrent				
Description	Calcu	ulates the output current va	lue correspoi	nding to the measurement value for the	
	meas	surement value range. If the	e current valu	e exceeds the limit current, returns the	
A			N	Description	
Argument	1/0	Type	Name	Description	
	<u> </u>	float	val	Measurement value	
	<u> </u>	_const st_crnt_range_t *	pRange	Pointer to the measurement value range	
	0	float *	pRslt	Pointer to the storage location of the	
				current value [mA]	
Return value	0	bool	true: Norma	al termination	
	false: Limited to current value				
Function name	R_CRNT_CurrentToDAC				
Description	Converts the current value to the DAC setting value, returns				
	D_CRNT_CFG_DAC_ERROR_VALUE if failure.				
Argument	I/O	Туре	Name	Description	
	I	float	Val	Current value [mA]	
	1	const st crnt coef t*	pCoef	Pointer to the DAC output value	
				conversion coefficients	
	0	uint16 t*	pRslt	Pointer to the storage location of the	
		_	-	DAC output value	
Return value	0	bool	true: Succe	ess	
		false: Failure		re	
Function name	R CI	RNT CalcCoef	1		
Description	Calcu	ulates the conversion coeffi	cients of the	DAC output value from the calibration	
••••	parameter.				
Argument	I/O	Туре	Name	Description	
	I	st_crnt_caldata_t *	pCalData	Pointer to the calibration parameters	
	0	st crnt coef t *	pCoef	Pointer to the conversion coefficient of	
			-	the DAC output value	
Return value	0	bool	true: Succe	ess	
			false: Failure		

Table 5-30 r_calc_	api				
Function name	R_C/	ALC_MovingAverage			
Description	Calc	ulates the average value for a	specified moving av	/erage count.	
Argument	I/O	Туре	Name	Description	
	I	const float	data	Input value	
	I/O	st_calc_moveavg_data_t *	p_cal_moveavg	Pointer to the moving	
				averaging parameters	
Return value	0	float	Moving average v	/alue	
Function name	R_C	ALC_MovingAverageReset			
Description	Rese	Resets the moving averaging parameters.			
Argument	I/O	Туре	Name	Description	
	I/O	st_calc_moveavg_data_t *	p_cal_moveavg	Pointer to the moving averaging parameters	
	Ι	int32_t	average_num	Moving average number	
Return value	-	void	-		
Function name	R_C	ALC_Average			
Description	Calc	ulates the average value for a	specified average of	ount.	
Argument	I/O	Туре	Name	Description	
	I	float	input	Input value	
	I/O	st_calc_average_data_t *	average	Pointer to the averaging parameters	
	0	float *	result	Pointer to the averaging result storage destination	
Return value	O bool true: Averaging completed		ompleted ted		
Function name	R C	ALC AverageInit			
Description	Initia	lizes the averaging parameter	s		
Argument	I/O		Name	Description	
, a gamont	1/0	st calc average data t*	average	Pointer to the averaging	
				parameters	
	I	uint32_t	num	Average count	
Return value	-	void	-	· · · · · ·	
Function name	RC	ALC BinarySearch	1		
Description	determine the index of the table corresponding to the maximum value that is less than				
-	or eq	ual to the specified value usin	g a binary search.		
Argument	I/O	Туре	Name	Description	
	I	const float *	p_data_table	Pointer to the search ascending table	
	Ι	uint16	table_size	Number of table elements	
	I	float	data	Specified value	
Return value	0	uint16_t	Index value		
Function name	R_C	ALC_Lerp			
Description	Determines y for x on the straight line that passes through two points (x0, y0) and (x1,y1).				
Argument	I/O	Туре	Name	Description	
	I	float	x0	x0 value	
	Ι	float	y0	y0 value	
	Ι	float	x1	x1 value	
	Ι	float	y1	y1 value	
	Ι	float	X	x value	
Return value	0	float	v value		

Table 5-31 r_led_ap	oi					
Function name	R_LE	R_LED_ON				
Description	Specifies an LED to be turned ON, turned OFF, or to blink.					
Argument	I/O	Туре	Name	Description		
	I	uint32_t	led	LED number: 0 to 3		
	I	bool	flag	true: ON		
				false: OFF		
	I	int32_t	count	Number of blinks		
				0: No blinking		
				>0: Blinking count		
				 -1: Blinking without a specified count 		
Return value	-	void	-			
Function name	R_LE	ED_BlinkControl				
Description	LED	blinking process				
Argument	I/O	Туре	Name	Description		
	-	void	-	-		
Return value	-	void	-			
Function name	R_LED_IsBlink					
Description	Acquires whether LED is blinking.					
Argument	I/O	Туре	Name	Description		
	I	uint32_t	led	LED number: 0 to 3		
Return value	0	bool	true: Blinking			
			false: Not blinking			

Table 5-32 r_rtd_api

Function name	R_R	R_RTD_DsadToTemp				
Description	Calc	ulates the temperate	ure from the <i>i</i>	A/D value of the DSAD0.		
Argument	I/O	Туре	Name	Description		
	I	float	dsad	A/D value		
	0	float	gain	PGA gain		
Return value	0	float	Resistance temperature detector's temperature [°C]			
Function name	R_RTD_ResistanceToDSAD					
Description	Calculates the A/D value of the DSAD0 from the resistance value of the resistance temperature detector.					
Argument	I/O	Туре	Name	Description		
	I	float	resistance	Resistance value [Ω]		
	I	float	gain	PGA gain		
Return value	0	float	A/D value			

Table 5-33 r_therm	ocoup	le_api			
Function name	R_T	R_TC_TempToEmf			
Description	Calculates the thermoelectromotive force of the thermocouple from the temperature.				
Argument	I/O	Туре	Name Description		
	I	float	temp	Temperature [°C]	
Return value	0	float	Thermoelectrom	notive force [µV]	
Function name	R_TC_EmfToTemp				
Description	Calculates the temperature from the thermoelectromotive force of the thermocouple.				
Argument	I/O	Туре	Name	Description	
	I	float	emf	Thermoelectromotive force [µV]	
Return value	0	O float Temperature [°C]			
Function name	R_TC_DsadToEmf				
Description	Calc	ulates the thermoelect	romotive force from	m the A/D value of the DSAD0.	
Argument	I/O	Туре	Name	Description	
	I	float	dsad	A/D value	
	I	float	gain	PGA gain	
Return value	0	float	Thermoelectrom	notive force [µV]	
Function name	R_TC_VoltageToDSAD				
Description	Calc	ulates the A/D value of	the DSAD0 from	the voltage.	
Argument	I/O	Туре	Name	Description	
	Ι	float	voltage	Voltage [V]	
	Ι	float	gain	PGA gain	
Return value	0	float	A/D value		

Table 5-34 r voltage api

Function name	R_V	R_VOLTAGE_DsadToVoltage				
Description	Calc	Calculates the voltage from the A/D value of the DSAD0.				
Argument	I/O	Туре	Name	Description		
	I	float	dsad	A/D value		
	0	float	gain	PGA gain		
Return value	0	float	Voltage [V]			
Function name	R_VOLTAGE_VoltageToDSAD					
Description	Calc	ulates the A/D value of	the DSAD0 fror	n the resistance value of the resistance		
	temperature detector.					
Argument	I/O	Туре	Name	Description		
	I	float	voltage	Voltage [V]		
	I	float	gain	PGA gain		
Return value	0	float	A/D value	•		

Only user processes are listed.

Table 5-35 r_qe_api_user.c User-Defined Processes

Function name r_QE_NegotiationUser Description Turns off LED1 **Function name** r QE WriteUser Accepts if opemode is E IDLE and sets flags.write reg Description Function name r QE RunUser Accepts if opemode is E IDLE and *pdsad cal ref0 is NaN, and sets opemode to Description E_MES_TEMP or E_MES_VOLT based on the states of SW3-1. **Function name** r_QE_StopUser accepts If opemode is E MES TEMP or E MES VOLT, and sets opemode to Description E IDLE. r_QE_UserValueUser Note **Function name** Judges whether to accept the request for each User Value No., and if accepting it, Description sets opemode or sets the corresponding flag, and stores the received value in user value. r_QE_ExSpsInfoUser **Function name** Description Creates sps information from sps_temp or sps_volt based on the states of SW3-1. r_QE_ExUseButtonStatusUser Note Function name Judges whether to accept the request for each Button No., and if accepting it, sets Description the corresponding flag. Function name r_QE_ResetUser Sets opemode to E IDLE and turns LED1 ON. Description

Note: For details on corresponding QE for AFE functions, refer to Table 1-1 and Table 1-2.

Table 5-36 Config_CMT1 User-Defined Functions

Function name	R_C	R_CMT1_IsCompareMatch				
Description	Dete	Detects a CMT1 compare match.				
Argument	I/O	Туре	Name Description			
	-	void	-	-		
Return value	0	bool	true: Compare match detected			
			false: Compare match not detected			
	R_CMT1_IsCount					
Function name	R_C	MT1_IsCount				
Function name Description	R_C Obta	MT1_IsCount ins the operating state	of CMT1 (macro fu	nction).		
Function name Description Argument	R_C Obta	MT1_IsCount ins the operating state Type	of CMT1 (macro fu Name	nction). Description		
Function name Description Argument	R_CI Obta I/O -	MT1_IsCount ins the operating state Type void	of CMT1 (macro fu Name -	nction). Description -		
Function name Description Argument Return value	R_C I Obta I/O - O	MT1_IsCount ins the operating state Type void bool	of CMT1 (macro fu Name - true: Counting	nction). Description -		

Table 5-37 Config	J_DSAD0 User-Defined Functions (1/3)				
Function name	R_Co	R_Config_DSAD0_CHnEN			
Description	Spec	ifies A/D conversion	channel.		
Argument	I/O	Туре	Name	Description	
	I	uint8_t	channel	Specify the channel to enable with each	
				corresponding bit.	
				1: Enabled	
				0: Disabled	
Return value	-	void	-		
Function name	R_Co	onfig_DSAD0_SetPa	aram		
Description	Sets	parameters for a spe	cified channel.		
Argument	I/O	Туре	Name	Description	
	I	uint32_t	ch	Channel to set parameter	
	I	st_dsad0_prm_t *	prm	Pointer to the DSAD0 setting parameters	
Return value	-	void	-		
Function name	R_Co	onfig_DSAD0_SetO	FCR		
Description	Sets	a value for the OFCF	Rm register of a	specified channel.	
Argument	I/O	Туре	Name	Description	
	I	uint32_t	ch	Channel to set a value	
	I	int32_t	ofs	Setting value	
Return value	0	bool	true: Success		
			false: Failure. The setting value is out of range.		
Function name	R_Config_DSAD0_SetGCR				
Description	Sets	a value for the GCRr	n register of a s	pecified channel.	
Argument	I/O	Туре	Name	Description	
		uint32_t	ch	Channel to set a value	
		uint32_t	gcr	Setting value	
Return value	0	bool	true: Success		
			false: Failure.	The setting value is out of range.	
Function name	R_DS	SAD0_IsADI			
Description	Dete	cts ADI0.			
Argument	I/O	Туре	Name	Description	
	-	void	-	-	
Return value	-	void	-		
Function name	R_DS	SAD0_GetMaxVolta	ge		
Description	Calcu	ulates the maximum r	measurable inpu	it voltage from the PGA gain.	
Argument	I/O	Туре	Name	Description	
	I	float	gain	PGA gain	
Return value	0	float	Maximum mea	asurable input voltage [V]	
Function name	R_DS	SAD0_GetMultiScan	Rate		
Description	Calcu	ulates the channel sc	an rate of specif	fied multiple channels.	
Argument	I/O	Туре	Name	Description	
	Ι	uint8_t	channel	Specify the target channel with the	
		_		corresponding bit.	
				1: Valid	
				0: Invalid	
Return value	0	float	Scan rate per	Sec	

RX23E-B	Group
---------	-------

Table 5-38 Config	_DSAI	D0 User-Defined Fur	nctions (2/3)		
Function name	R_D	SAD0_PGAToGain			
Description	Calculates the PGA gain from the CRm.GAIN setting value.				
Argument	I/O	Туре	Name	Description	
	I	uint8_t	pga	CRm.GAIN setting value	
Return value	0	float	PGA gain		
Function name	R_D	SAD0_GetPGAGain			
Description	Calcu	ulates the PGA gain o	of a specified ch	annel.	
Argument	I/O	Туре	Name	Description	
	I	uint32_t	ch	Channel to obtain the value	
Return value	0	float	PGA gain		
Function name	R_D	SAD0_CalcGCR			
Description	Calcu and t	ulates the gain correct he A/D conversion re	tion value of the sults and sets it	e GCRm register from the A/D expected value	
Argument	I/O	Туре	Name	Description	
_	I	float	val	Obtained A/D value	
	I	float	ref	Expected A/D value	
	I	uint32_t *	gcr	Pointer to set the gain correction value	
Return value	0	bool	true: Success	•	
			false: Failure. The calculation results are out of range.		
Function name	R_D	SAD0_GetOSRValue	9		
Description	Obta	ins the oversampling	ratio of a specif	ied channel.	
Argument	I/O	Туре	Name	Description	
	I	uint32_t	ch	Channel to obtain the value	
Return value	0	uint32_t	Oversampling ratio		
Function name	R_D	SAD0_GetGAIN			
Description	Obta	ins the CRm.GAIN se	etting value of a	specified channel (macro function).	
Argument	I/O	Туре	Name	Description	
	I	uint32_t	ch	Channel to obtain the value	
Return value	0	uint8_t	CRm.GAIN se	tting value of the specified channel	
Function name	R_D	SAD0_GetOFCR			
Description	Obta	ins the OFCRm regis	ter setting value	e of a specified channel (macro function).	
Argument	I/O	Туре	Name	Description	
	I	uint32_t	ch	Channel to obtain the value	
Return value	0	int32_t	OFCRm regist	er setting value of the specified channel	
Function name	R_DSAD0_GetGCR				
Description	Obtains the GCRm register setting value of a specified channel (macro function).				
Argument	I/O	Туре	Name Description		
	I	uint32_t	ch	Channel to obtain the value	
Return value	0	int32_t	GCRm registe	r setting value of the specified channel	
Function name	R_D	SAD0_GetGCRAddr	,		
Description	Obta	ins the GCR register	address of a sp	ecified channel (macro function).	
Argument	I/O	Туре	Name	Description	
	I	uint32_t	ch	Channel to obtain the value	
Return value	0	int32_t	GCR register address		

Table 5-39 Config_DSAD0 User-Defined Functions (3/3)					
Function name	R_D	R_DSAD0_ConvSignedValue			
Description	Obta	ins the signed A/D va	alue from the DR	register value (macro function).	
Argument	I/O	Туре	Name	Description	
	-	uint32_t	val	DR register value	
Return value	0	int32_t	Signed A/D value		
Function name	R_DSAD0_GetChannel				
Description	Obtains channel information from the DR register value (macro function).				
Argument	I/O	Туре	Name Description		
	I	uint32_t	val	DR register obtainment value	
Return value	0	uint32_t	Channel information		
Function name	R_DSAD0_GetErrorFlags				
Description	Extracts the ERR and OVF flags from the DR register value (macro function).				
Argument	I/O	Туре	Name Description		
	I	uint32_t	val	DR register obtainment value	
Return value	0	uint32 t	ERR and OVF flags		

Table 5-40 Config_l	PORT	User-Defined Function	ons		
Function name	R_Config_PORT_LED0_ON				
	R_Config_PORT_LED1_ON				
	R_Config_PORT_LED2_ON				
	R_Co	onfig_PORT_LED3_0)N		
Description	Turns	s each LED ON and O	FF.		
Argument	I/O	Туре	Name	Description	
	-	bool	flag	true: ON	
				false: OFF	
Return value	-	void	-		
Function name	R_Co	onfig_PORT_LED0_B	link		
	R_Co	onfig_PORT_LED1_B	link		
	R_Co	onfig_PORT_LED2_B	link		
	R_Co	onfig_PORT_LED3_B	link		
Description	Inver	ts the ON/OFF state o	f each LED.	,	
Argument	I/O	Туре	Name	Description	
	-	void	-	-	
Return value	-	void	-		
Function name	R_PORT_LED0_ISON				
	R_PORT_LED1_ISON				
	R_PORT_LED2_ISON				
	R_PO	ORT_LED3_ISON			
Description	Obta	ins the ON/OFF states	of each LED.	T	
Argument	I/O	Туре	Name	Description	
	-	void	-	-	
Return value	0	bool	true: ON		
			false: OFF		
Function name	R_P	ORT_GetSW1_ON			
	R_PORT_GetSW2_ON R_PORT_GetSW3_1_ON R_PORT_GetSW3_2_ON				
Description	Obta	ins the states of each s	switch.	T	
Argument	I/O	Туре	Name	Description	
	-	void	-	-	
Return value	0	bool	true: Pressing		
			false: Releasing		

6. Importing a Project

After importing the sample project, make sure to confirm build and debugger setting.

6.1 Importing a Project into e2 studio

Follow the steps below to import your project into e^2 studio. Pictures may be different depending on the version of e^2 studio to be used.

e² workspace - C/C++ - e² studio	
Eile Edit Source Refactor Navigate Search Project	it X
Open File <u>.</u>	Select
Open Projects from File System	- Create new projects from an archive file or directory.
Close Ctri+W Close All Ctrl+Shift+W	Select an import wizard:
Start the e ² studio and	select type filter text
menu [<u>F</u> ile] >> [<u>I</u> mport	.]. ↓ Archine File
Revert	C Existing Projects into Workspace
M <u>ov</u> e	HEW Project Select [Existing Projects into Workspace].
Rename F2 Refresh F5	e Preferences
Convert Line Delimiters To >	pi pi Pi Pi Rename & Import Existing C/C++ Project into Workspace Pi Renesas CS+ Project for CA78K0R, CA78K0 Pi
Dint Ctrl+P	Renesas CS+ Project for CC-RX and CC-RL
Switch <u>W</u> orkspace 田明	a > So Code Generator
Import	
Export	
P <u>r</u> operties Alt+Enter	st
E <u>x</u> it	
Ci Import	— 🗆 X
Import Projec	ts
Select a direct	by to search for existing Eclipse projects.
directory:].	we file:
Projects:	(e.g. rx23eb_4_20ma)
r01an3	956_rxv2 (C:\u00e4download\u00e4an-r01an3956jj01)0-rxv2-dsp\u00e4r01ar Select All
	Deselect All
<	> Refresh
Options	
Searc <u>h</u> for ☑ <u>C</u> opy proje	nested projects
Hide proje	cts that already exist in the workspace
Working sets	
Select [Add project to	c <u>t</u> to working sets Ne <u>w</u>
working sets] when using	: Select.
the working sets.	
?	< Back Next > Finish Cancel

Figure 6-1 Importing a Project into e² studio

6.2 Importing a Project into CS+

Follow the steps below to import your project into CS+. Pictures may be different depending on the version of CS+ to be used.

Figure 6-2 Importing a Project into CS+

7. Measurement Results with Sample Program

7.1 Memory Usage and Number of Execution Cycles

7.1.1 Build Conditions

The build conditions for the sample program are listed in Table 7-1.

Table 7-1 Build Conditions

Item	Setting
Compiler	-isa=rxv2 -utf8 -nomessage -output=obj -obj_path=\${workspace_loc:/\${ProjName}/\${ConfigName}} -debug -outcode=utf8 -listfile="\$(dir \$@)\\$(basename \$(notdir \$<)).lst" -show=source,conditionals,definitions,expansions -nologo
Linker	-noprelink -output="rx23eb_4_20ma.abs" -form=absolute -nomessage -vect=_undefined_interrupt_source_isr -list=rx23eb_4_20ma.map -show=all -nooptimize -rom=D=R,D_1=R_1,D_2=R_2 -cpu=RAM=00000000-00007fff,FIX=00080000-00083fff, FIX=00086000-00087fff,FIX=00088000-0008dfff,FIX=00090000-0009ffff, FIX=000a0000-000bffff,FIX=0008000-0008ffff,ROM=00100000-00101fff, FIX=007fc000-007fc4ff,FIX=007ffc00-007fffff,ROM=fffc0000-ffffffff -nologo
Section	SU,SI,B_1,R_1,B_2,R_2,B,R/04,B_DMAC_REPEAT_AREA_1/04000, C_DATAFLASH/0100000,PResetPRG,C_1,C_2,C,C\$*,D*,W*,L, P/0FFFC0000,EXCEPTVECT/0FFFFF80,RESETVECT/0FFFFFFC

Note: Include paths are omitted except those for user settings of the compiler settings.

7.1.2 Memory Usage

The amount of memory usage of the sample program is shown in Table 7-2.

Table 7-2 Amount of Memory Usage

Item		Size [byte]	Remarks
ROM		22953	
	Code	13634	
	Data	9319	
E2 Data	aFlashROM	108	
RAM		14543 (10395)	Note
	Data	9423	
	Stack	5120 (972)	Note

Note: RAM usage shown in parentheses "()" is calculated from stack usage.

7.1.3 Number of Execution Cycles and Processing Time

The number of CPU execution cycles and other items during temperature measurement and during voltage measurement are shown in Table 7-3 and Table 7-4, respectively.

Table 7-3 Execution Cycles, Execution Time, and Processing Load (temperature measurement)

ICLK=32 MHz

Item	Execution cycles	Process	Condition
	(Execution time)	load [%]	
A/D value acquisition process	42cycle (1.31µs)	0.0017	On CH1 obtained
Measurement process	360cycle (11.25µs)	0.0150	
4-20mA output process	325cycle (10.16µs)	0.0135	Normal output
QE for AFE communication processing	430cycle (13.44µs)	0.0179	Sending measured values
Others	477cycle (14.91µs)	0.0199	
Total	1634cycle (51.06µs)	0.0681	

DSAD0 conversion period: 75.00525ms

Note: The processing load is calculated with the execution time in the conversion period of the DSAD0.

Table 7-4 Execution Cycles, Execution Time, and Processing Load (voltage measurement)

ICLK=32 MHz DSAD conversion period: 1.024ms **Execution cycles** Process Condition Item load [%] (Execution time) A/D value acquisition process 46cycle (1.40µs) 0.1404 Measurement process 72cycle (2.25µs) 0.2197 Normal output Sending measured values 4-20mA output process 325cycle (10.16µs) 0.9918 QE for AFE communication processing 430cycle (13.44µs) 1.3123 Others 477cycle (14.91µs) 1.4557 2.6642 Total 873cycle (27.28µs)

Note: The processing load is calculated with the execution time in the conversion period of the DSAD0.

7.2 Current Output Accuracy Evaluation

7.2.1 Configuration of Current Output Accuracy Evaluation

The configuration of current output evaluation is shown in Figure 7-1, and the equipment used in measurement is listed in Table 7-5. In Figure 7-1, the output current is measured with a multimeter. A voltage conversion resistor R_d (250 Ω) is inserted between the low side of the multimeter and AVSS0.

Figure 7-1 Configuration of Current Output Accuracy Evaluation

Equipment used	Model	Manufacturer
DC Power Supply1	PA14A1	ShibaSoku Co., Ltd.
DC Power Supply2	PA36-1.5AD	TEXIO TECHNOLOGY CORPORATION.
Multimeter1	34401A	Keysight Technologies
Thermostatic Chamber	SU-241	ESPEC CORP.

Table 7-5 Equipment Used in Current Output Accuracy Evaluation

7.2.2 Current Output Accuracy Evaluation Results

The board was placed in a thermostatic chamber at set temperatures of -25°C, 25°C, and 85°C. Under each temperature condition, Figure 7-2 shows the measurement current error err between the output current I_{out} measured with a multimeter and the current I_{ref} set in 2mA increments from 4mA to 20mA.

The measurement current error err is the difference between the set current and the measured current divided by 16 mA, the current output range of 4 mA-20 mA, as shown in the equation below, and is expressed as an error (%FS) relative to full scale.

$$err = (I_{out} - I_{ref}) \cdot \frac{100}{16} \ [\%FS]$$

In measurement, current output calibration was conducted only once when the set temperature of the thermostatic chamber was 25°C.

From the measurement results, it was confirmed that the output current error was less than 0.1%FS.

Figure 7-2 Current Output Accuracy Evaluation Results

7.3 Current Output Evaluation during Temperature Measurement

7.3.1 Configuration of Current Output Evaluation during Temperature Measurement

The configuration of current output evaluation during temperature measurement is shown in Figure 7-3, and the equipment used in measurement is listed in Table 7-6. In Figure 7-3, the 4-20mA output current I_{out} is measured with a multimeter. The thermocouple to be measured is thermally coupled to a 4-wire RTD for reference temperature measurement and placed in a thermostatic chamber. The 4-wire RTD for reference temperature measurement is measured with a multimeter.

Figure 7-3 Configuration of Current Output Evaluation during Temperature Measurement

Table 7-6 Equipment Used in (Current Output Evaluation during	Temperature Measurement
-------------------------------	----------------------------------	--------------------------------

Item	Model	Manufacturer
DC Power Supply1	PA14A1	ShibaSoku Co., Ltd.
DC Power Supply2	PA36-2A	TEXIO TECHNOLOGY CORPORATION.
Multimeter1	34401A	Keysight Technologies
Multimeter2	34461A	Keysight Technologies
Thermostatic Chamber	SU-241	ESPEC CORP.

7.3.2 Results of Current Output Evaluation during Temperature Measurement

The temperature inside the thermostatic chamber at each set temperature is measured with a thermocouple, the temperature measurement result is output to a 4-20 mA output current, the output current I_{out} at that time is measured with a multimeter, and the measured current value is converted to a measured temperature. The measured temperature error *err* or each thermostatic chamber setting temperature is shown in Figure 7-4.

The measurement temperature error err is calculated by the difference between the measured temperature T_{out} converted from the output current value and the measured temperature T_{ref} of the 4-wire RTD for reference temperature measurement measured by the multimeter, as shown in the equation below.

As an index of accuracy, the value obtained by adding the tolerance of the K-type thermocouple used for measurement and the tolerance of the on-board 4-wire RTD for reference junction compensation is shown by the gray dotted line.

 $err = \left(T_{out} - T_{ref}\right) [^{\circ}C]$

From Figure 7-4, it was confirmed that the temperature error was within the accuracy of the thermocouple calibrator. The thermocouple measurement is calibrated once with the voltage corresponding to the thermal electromotive force (emf) at two points (-40°C and 160°C), and the on-board 4-wire RTD for reference junction compensation measurement is calibrated once with the resistance corresponding to two points (0°C and 85°C).

Figure 7-4 Results of Current Output Evaluation during Temperature Measurement

7.4 **Response Characteristics Evaluation**

7.4.1 Configuration of Response Characteristics Evaluation

The configuration for response characteristic evaluation is shown in Figure 7-5 and the equipment used for the measurements is shown in Table 7-7.In Figure 7-3, an oscilloscope is used to measure the output current I_{out} , the DA0 output V_{DA0} , and the test toggle signal output V_{toggle} that toggles when the A/D value acquisition is completed, and the time from the completion of A/D value acquisition until the output current value reaches the target value and the time until the output current value begins to change. The time from the completion of A/D value acquisition until the output current value reaches the target value and the time until the DA0 pin voltage begins to change.

Figure 7-5 Configuration of Response Characteristics Evaluation

Table 7-7 Equipment Used in Response Characteristics Evaluation				
Item	Model	Manufacturer		
DC Power Supply1	PA14A1	ShibaSoku Co., Ltd.		
DC Power Supply2	PA36-1.5AD	TEXIO TECHNOLOGY CORPORATION.		
Oscilloscope	DL9505L	Yokogawa Test & Measurement Corporation		
Current Probe	701932	Yokogawa Test & Measurement Corporation		

Table 7-7 Equipment Used in F	Response Characte	eristics Evaluation

CA320

Thermocouple Calibrator

Yokogawa Test & Measurement Corporation

7.4.2 Response Characteristics Evaluation Results

The output of the thermocouple calibrator was set so that the output current varied from 4mA to 20mA, and the current waveform at that time was measured with an oscilloscope. The current response waveform is shown in Figure 7-6, the DA0 output reflection time in Figure 7-7, and a summary of the results in Table 7-8.

From Figure 7-6, it can be confirmed that the 95% settling time of the current conversion circuit is approximately 1.3ms, and since the 95% settling time of the 4-20mA output stage filter circuit consisting of R276, R277, R278, and C131 is approximately 1.3ms, this response is dependent on the filter time constant of the 4-20mA output current circuit. This response is dependent on the filter time constant of the 4-20mA output current circuit. This response is dependent on the filter time constant of the 4-20mA output current circuit. This response is dependent on the filter time constant of the 4-20mA output current circuit. Also, from Figure 7-7, it can be confirmed that the MCU processing has little effect on the response time, which is approximately 20µs from the acquisition of the A/D value to the occurrence of the DA0 voltage change.

Figure 7-6 Waveform of Current Response

Figure 7-7 Waveform of DA0 output reflection time

Table 7-8 Settling Time and Response Time

Item	Measurement
95% settling time	1.3ms
DA0 pin output response time	20µs

Revision History

Rev.	Date	Description		
		Page	Summary	
1.00	Oct.25.23	-	First release	

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal is produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable. 6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.)

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality." The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
 Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
- Electronics products. (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.