RX21A グループ
温度センサを用いた周囲温度の算出例

要旨
本アプリケーションノートでは、RX21A グループの温度センサを使用して、周囲温度を算出する方法について説明します。

対象デバイス
・RX21A グループ 100 ピン版 ROM 容量：256KB～512KB
・RX21A グループ 80 ピン版 ROM 容量：256KB～512KB
・RX21A グループ 64 ピン版 ROM 容量：256KB～512KB

注: 対象デバイスは G バージョン(動作周囲温度：−40℃～+105℃)のみです。
目次

1. 仕様 .. 3

2. 動作確認条件 ... 5

3. 関連アプリケーションノート ... 5

4. ハードウェア説明 .. 6
 4.1 ハードウェア構成例 ... 6
 4.2 使用端子一覧 .. 6

5. ソフトウェア説明 ... 7
 5.1 動作概要 .. 7
 5.1.1 温度特性の計算式 .. 9
 5.2 ファイル構成 .. 11
 5.3 オプション設定メモリ .. 12
 5.4 定数一覧 ... 12
 5.5 変数一覧 ... 14
 5.6 関数一覧 ... 15
 5.7 関数仕様 ... 16
 5.8 フローチャート .. 20
 5.8.1 メイン処理 .. 20
 5.8.2 ポート初期設定 ... 21
 5.8.3 周辺機能初期設定 ... 21
 5.8.4 CMT 初期設定 ... 22
 5.8.5 IRQ 初期設定 ... 23
 5.8.6 7SEG 表示データの更新処理 ... 24
 5.8.7 7SEG セレクト出力切り替え処理 ... 25
 5.8.8 7SEG バー表示処理 ... 25
 5.8.9 コンペアマッチ割り込み処理 ... 26
 5.8.10 AD、温度センサ初期設定 ... 27
 5.8.11 A/D 変換状態取得 ... 28
 5.8.12 温度センサ測定結果取得 ... 28
 5.8.13 現在温度取得 ... 28
 5.8.14 温度センサキャリブレーション処理 ... 29
 5.8.15 温度センサ測定処理 ... 29
 5.8.16 現在温度算出処理 ... 30
 5.8.17 A/D 変換完了割り込み処理 ... 31

6. サンプルコード .. 32

7. 参考ドキュメント ... 32
1. 仕様

温度センサを使用して、MCUの周囲温度を測定します。周囲温度を測定し、7セグメントLED（以下、7SEG）に表示します。

MCUの周囲温度を測定するために、測定前に温度センサのキャリブレーションを実行します。本アプリケーションノートにおけるキャリブレーションとは、温度特性の計算式に必要な温度傾斜を算出することです。

RX21AのGバージョンには、工場出荷時にチップごとに測定された温度センサ校正データが格納されていきます。このデータと、ユーザが試行測定した温度から、温度傾斜を算出することができます。

本サンプルコードでは、試行測定する温度として、周囲温度25℃（以下、常温基準温度）の結果を計算に使用します。キャリブレーションの内容については5.1.1状態遷移と7SEGの表示のパターンで説明します。

表1.1に使用する周辺機能と用途を、図1.1に状態遷移と7SEGの表示を示します。

表1.1 使用する周辺機能と用途

<table>
<thead>
<tr>
<th>周辺機能</th>
<th>用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>10ビットA/Dコンバータ（以下、AD)</td>
<td>温度センサ出力測定用</td>
</tr>
<tr>
<td>温度センサ</td>
<td>MCUの周囲温度測定</td>
</tr>
<tr>
<td>コンペアマッチタイマ（CMT0。以下、CMT）</td>
<td>温度測定周期計測</td>
</tr>
<tr>
<td>外部端子割り込み（IRQ2。以下、IRQ）</td>
<td>常温基準温度（25℃）でキャリブレーションを実行するためのSW入力</td>
</tr>
<tr>
<td>I/Oポート</td>
<td>7SEG表示（温度測定結果の表示用）</td>
</tr>
</tbody>
</table>

R01AN1923JJ0100 Rev.1.00 Page 3 of 32
2014.09.01
<table>
<thead>
<tr>
<th>【状態】</th>
<th>【7SEG表示】</th>
</tr>
</thead>
<tbody>
<tr>
<td>リセット状態</td>
<td>7SEG全消灯</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>リセット解除</td>
<td></td>
</tr>
<tr>
<td>バー表示</td>
<td></td>
</tr>
<tr>
<td>キャリブレーション開始待ち</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>SW押下</td>
<td></td>
</tr>
<tr>
<td>温度の測定結果を10進数で表示</td>
<td></td>
</tr>
<tr>
<td>600ms周期で表示温度を更新</td>
<td> ~ </td>
</tr>
<tr>
<td>温度の測定結果が0℃未満の場合</td>
<td></td>
</tr>
<tr>
<td>温度の測定結果が100℃以上の場合</td>
<td></td>
</tr>
</tbody>
</table>

図 1.1 状態遷移と 7SEG の表示のパターン
2. 動作確認条件

本アプリケーションノートのサンプルコードは、下記の条件で動作を確認しています。

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>使用マイコン</td>
<td>R5F521A8BDFP (RX21A グループ)</td>
</tr>
<tr>
<td>動作周波数</td>
<td>メインクロック: 20MHz
システムクロック (ICLK): 20MHz
周辺モジュールクロック B (PCLKB): 20MHz
周辺モジュールクロック D (PCLKD): 2.5MHz</td>
</tr>
<tr>
<td>動作電圧</td>
<td>3.3V</td>
</tr>
<tr>
<td>統合開発環境</td>
<td>ルネサスエレクトロニクス製High-performance Embedded Workshop Version 4.09.01</td>
</tr>
<tr>
<td>C コンパイラ</td>
<td>ルネサスエレクトロニクス製C/C++ Compiler Package for RX Family V.1.02 Release 01</td>
</tr>
<tr>
<td>コンパイルオプション</td>
<td>-cpu=rx200 -output=obj="$(CONFIGDIR)$(FILELEAF).obj" -debug -nologo (統合開発環境のデフォルト設定を使用しています)</td>
</tr>
<tr>
<td>iodefine.h のバージョン</td>
<td>Version 1.1A</td>
</tr>
<tr>
<td>エンディアン</td>
<td>リトルエンディアン</td>
</tr>
<tr>
<td>動作モード</td>
<td>シングルチップモード</td>
</tr>
<tr>
<td>プロセッサモード</td>
<td>スーパバイザーモード</td>
</tr>
<tr>
<td>サンプルコードのバージョン</td>
<td>Version 1.00</td>
</tr>
</tbody>
</table>

3. 関連アプリケーションノート

本アプリケーションノートに関連するアプリケーションノートを以下に示します。併せて参照してください。

- RX21A グループ 初期設定例 Rev.1.10 (R01AN1486JJ)
- RX ファミリー ソフトウェアによるウェイト処理のコーディング例 Rev.1.00 (R01AN1852JJ)

上記アプリケーションノートの初期設定関数とソフトウェアによるウェイト処理を、本アプリケーションノートのサンプルコードで使用しています。Revは本アプリケーションノート作成時点のものです。最新版がある場合、最新版に差し替ええて使用してください。最新版はルネサスエレクトロニクスホームペー

ジで確認および入手してください。
4. ハードウェア説明

4.1 ハードウェア構成例

図 4.1 に接続例を示します。

![接続例図](image)

図 4.1 接続例

注1. アノードコモンの7SEGを例にしています。また、接続はダイナミック接続です。

4.2 使用端子一覧

表 4.1 に使用端子と機能を示します。

使用端子は 100 ピン版の製品を想定しています。100 ピン版未満の製品を使用する場合は、使用する製品に合わせて端子を選択してください。

表 4.1 使用端子と機能

<table>
<thead>
<tr>
<th>端子名</th>
<th>入出力</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>P32/IRQ2</td>
<td>入力</td>
<td>キャリブレーション実行 SW 入力</td>
</tr>
<tr>
<td>P20</td>
<td>出力</td>
<td>7SEG セグメント a 出力</td>
</tr>
<tr>
<td>P21</td>
<td>出力</td>
<td>7SEG セグメント b 出力</td>
</tr>
<tr>
<td>P22</td>
<td>出力</td>
<td>7SEG セグメント c 出力</td>
</tr>
<tr>
<td>P23</td>
<td>出力</td>
<td>7SEG セグメント d 出力</td>
</tr>
<tr>
<td>P24</td>
<td>出力</td>
<td>7SEG セグメント e 出力</td>
</tr>
<tr>
<td>P25</td>
<td>出力</td>
<td>7SEG セグメント f 出力</td>
</tr>
<tr>
<td>P26</td>
<td>出力</td>
<td>7SEG セグメント g 出力</td>
</tr>
<tr>
<td>PA0</td>
<td>出力</td>
<td>7SEG 1 桁目セレクト出力</td>
</tr>
<tr>
<td>PA1</td>
<td>出力</td>
<td>7SEG 2 桁目セレクト出力</td>
</tr>
</tbody>
</table>
5. ソフトウェア説明

5.1 動作概要

リセット解除後、I/O ポートと周辺機能の初期設定を行ってから、キャリブレーション待機の状態になります。この状態で IRQ2 割り込み要求が発生すると、キャリブレーションを実行します。キャリブレーションでは、常温基準温度の A/D 変換処理を行います。取得した A/D 変換値と温度センサ校正データの値から温度傾斜を算出します。

キャリブレーションが完了すると、引き続き A/D 変換が行われ、この A/D 変換値と温度傾斜から周囲温度を算出して 7SEG に表示します。

本アプリケーションノートでは 100ms ごとに 1 回 A/D 変換を行っています。また、A/D 変換値を平均化する手法として、6 回分の A/D 変換値を RAM に退避し、その合計値から最大値と最小値を引いた 4 回分の平均値を算出しています。

100ms ごとの A/D 変換開始動作には CMT の CMIO 割り込みを使用しています。CMT には 1ms 周期でコンペアマッチ割り込み要求が発生するように設定しており、コンペアマッチ割り込み要求が発生すると A/D 変換周期カウンタ変数(cnt_cycle)をカウントアップし、100ms を計測します。

図 5.1 に温度測定のタイミング図を示します。

CMT、AD、温度センサの設定を以下に示します。

\(<\text{CMT0}>\)

・カウントクロック : PCLKB の 8 分周
・コンペアマッチ割り込み周期 : 1ms

\(<\text{AD}>\)

・動作モード : シングルスキャンモード
・A/D 変換開始条件 : 同期トリガ(温度センサからのトリガ)
・サンプリングステート数 : 180 ステート(サンプリング時間:72μs)
・アナログ入力断線検出アシスト機能 : 使用しない
・A/D 変換値加算モード : 使用しない
・10 ビット A/D コンバータの自己診断機能 : 使用しない

\(<\text{温度センサ}>\)

・PGA ゲイン(注 1) : 2.7V \leq AVCC0 \leq 3.6V(注 2)
注1. PGA : Programable Gain Amplifier
注2. 使用するシステムに応じて定数の設定を変更してください。
温度センサを用いた周囲温度の算出例

図 5.1 温度測定のタイミング図

(1) リセット解除後、AD および温度センサの初期設定を行います。
(2) AD のモジュールストップ状態を解除した後、1μs 待ってから(注 1)キャリブレーション待ち状態に移行します。このとき、7SEG をバー表示にします。
(3) SW(IRQ2)に入力に立ち下がりエッジを検出したときに、CMT のカウントを開始します。
(4) コンペアマッチ割り込み要求が 1ms 周期で発生することで、A/D 変換周期カウンタ変数(cnt_cycle)をカウントアップします。
(5) A/D 変換周期カウンタ変数が 100(100ms)になったとき、PGAEN ビットに“1”を設定し、A/D 変換を開始します。
(6) A/D 変換を 6 回行い、それらの平均値を常温基準温度の A/D 変換値とし、温度傾斜を算出してキャリブレーションを終了します。
(7) 引き続き、A/D 変換周期カウンタ変数が 100(100ms)になったとき、PGAEN ビットに“1”を設定し、A/D 変換を開始します。
(8) 6 回 A/D 変換を行った後、平均値と温度傾斜から現在温度を算出し、7SEG に表示します。

注1. AD のモジュールストップ状態を解除した後は、1μs 待ってから A/D 変換を開始してください。
5.1.1 温度特性の計算式
本アプリケーションノートでは、温度センサ校正データレジスタ（TSCDRn (n=0,1,3)）に格納されている周囲温度 125℃（以下、高温基準温度）の温度センサ出力の A/D 変換値と、リセット解除後に測定した常温基準温度の A/D 変換値の 2 点を用いて、温度特性の計算式に必要な温度傾斜を算出しています。

TSCDRn (n=0,1,3) レジスタの詳細は、RX21A グループ ユーザーズマニュアル ハードウェア編（以下、UMH）を参照してください。

表 5.1 に TSCDRn (n=0,1,3) レジスタに格納されている温度センサ出力の A/D 変換値の測定条件を示します。

<table>
<thead>
<tr>
<th>レジスタ名</th>
<th>測定条件</th>
<th>測定温度（℃）</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSCDR0</td>
<td>AVCC0 と VREFH0 への印加電圧 (V)</td>
<td>125</td>
</tr>
<tr>
<td>TSCDR1</td>
<td>TSCR レジスタ PGAGAIN[1:0]ビット</td>
<td>01b</td>
</tr>
<tr>
<td>TSCDR3</td>
<td>TSCDR(n)：TSCDRn.TSCD[9:0]ビットの値 (n=0,1,3)</td>
<td>01b</td>
</tr>
</tbody>
</table>

AVCC0 と VREFH0 に、表 5.1 に記載している条件以外の電圧を印加する場合は、印加電圧に応じた A/D 変換値を算出する必要があります。この算出する A/D 変換値を CAL125 と定義します。

AVCC0 が 1.8V ≤ AVCC0 < 2.7V の場合は①の式で、2.7V ≤ AVCC0 ≤ 3.6V の場合は②の式で CAL125 を算出します。

① \[\text{CAL}_{125} = 1.8 / \text{VREFH0} \times \text{TSCDR}(0) \]

② \[\text{CAL}_{125} = 2.7 / \text{VREFH0} \times \text{TSCDR}(1) \] と \[\text{TSCDR}(3) \] と \[\text{VREFH0} \times \text{TSCDR}(1) \] の間で計算

\[\text{TSCDR}(n) = \text{TSCDRn.TSCD}[9:0] \text{ビットの値 (n=0,1,3)} \]

高温基準温度（125℃）の A/D 変換値：CAL125
常温基準温度（25℃）の A/D 変換値：CAL25 (リセット後の常温基準温度で測定した値)

温度傾斜 Slope = (CAL125 – CAL25) / (T1 – T2)

温度傾斜：Slope
高温基準温度（125℃）：T1
常温基準温度（25℃）：T2
高温基準温度（125℃）の A/D 変換値：CAL125
常温基準温度（25℃）の A/D 変換値：CAL25 (リセット後の常温基準温度で測定した値)

T1=125℃、T2=25℃のため
となります。
周囲温度は、以下の計算式で算出します。
測定温度：T(℃)
温度測定時の温度センサの A/D 変換値：CALS

\[T = T_2 + \frac{(CALS - CAL_{25})}{Slope} \]
\[= T_2 + \frac{(CALS - CAL_{25})}{((CAL_{125} - CAL_{25}) / (T_1 - T_2))} \]
\[= T_2 + (T_1 - T_2) \left(\frac{(CALS - CAL_{25})}{(CAL_{125} - CAL_{25})}\right) \]
\[= 25 + 100(\frac{(CALS - CAL_{25})}{(CAL_{125} - CAL_{25})}) \]

測定温度を小数点第一位まで測定したい場合は、温度データ (T1,T2) を 10 倍にして算出します。
測定温度：Ts (℃)

\[Ts = T \times 10 = (25 + 100(\frac{(CALS - CAL_{25})}{(CAL_{125} - CAL_{25})})) \times 10 \]
\[= (25 \times 10) + (100(\frac{(CALS - CAL_{25})}{(CAL_{125} - CAL_{25})}) \times 10) \]
\[= 250 + 1000(\frac{(CALS - CAL_{25})}{(CAL_{125} - CAL_{25})}) \]

なお、基本的な内容は UMH に記載していますので参照してください。
5.2 ファイル構成
表5.2にサンプルコードで使用するファイル、表5.3に標準インクルードファイルを、表5.4に参照する関連アプリケーションノートの関数と設定値を示します。なお、統合開発環境で自動生成されるファイルは除きます。

表5.2 サンプルコードで使用するファイル

<table>
<thead>
<tr>
<th>ファイル名</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>main.c</td>
<td>メイン処理</td>
</tr>
<tr>
<td>temps.c</td>
<td>温度センサ処理</td>
</tr>
<tr>
<td>temps.h</td>
<td>temps.cのヘッダファイル</td>
</tr>
</tbody>
</table>

表5.3 標準インクルードファイル

<table>
<thead>
<tr>
<th>ファイル名</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>stdbool.h</td>
<td>論理型および論理値に関するマクロを定義します。</td>
</tr>
<tr>
<td>stdint.h</td>
<td>指定した幅の整数型を宣言してマクロを定義します。</td>
</tr>
<tr>
<td>machine.h</td>
<td>RXファミリ用組み込み関数の形式を定義します。</td>
</tr>
</tbody>
</table>

表5.4 参照する関連アプリケーションノートの関数と設定値

(RX21Aグループ 初期設定例、RXファミリソフトウェアによるウェイト処理のコーディング例)

<table>
<thead>
<tr>
<th>ファイル名</th>
<th>関数</th>
<th>設定値</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_init_stop_module.c</td>
<td>R_INIT_StopModule()</td>
<td>-</td>
</tr>
<tr>
<td>r_init_stop_module.h</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>r_init_non_existent_port.c</td>
<td>R_INIT_NonExistentPort()</td>
<td>-</td>
</tr>
<tr>
<td>r_init_non_existent_port.h</td>
<td></td>
<td>100ピン版を指定</td>
</tr>
<tr>
<td>r_init_clock.c</td>
<td>R_INIT_Clock()</td>
<td>-</td>
</tr>
<tr>
<td>r_init_clock.h</td>
<td></td>
<td>クロックの選択例：No.5を指定。PCLKDの分周比を8分周に変更。</td>
</tr>
<tr>
<td>r_delay.c</td>
<td>R_DELAY_Us(unsigned long us, unsigned long khz)</td>
<td>ウェイト時間を設定</td>
</tr>
<tr>
<td>r_delay.h</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>
5.3 オプション設定メモリ
表5.5にサンプルコードで使用するオプション設定メモリの状態を示します。必要に応じて、お客様のシステムに最適な値を設定してください。

表5.5 サンプルコードで使用するオプション設定メモリ
<table>
<thead>
<tr>
<th>シンボル</th>
<th>アドレス</th>
<th>設定値</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFS0</td>
<td>FFFF FF8Fh～FFFh FF8Ch</td>
<td>FFFF FFFFh</td>
<td>リセット後、IWDTは停止</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>リセット後、WDTは停止</td>
</tr>
<tr>
<td>OFS1</td>
<td>FFFF FF8Fh～FFFh FF88h</td>
<td>FFFF FFFFh</td>
<td>リセット後、電圧監視0リセット無効</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>リセット後、HOCO発振が無効</td>
</tr>
<tr>
<td>MDES</td>
<td>FFFF FF83h～FFFh FF80h</td>
<td>FFFF FFFFh</td>
<td>リトルエンディアン</td>
</tr>
</tbody>
</table>

5.4 定数一覧
表5.6~表5.9にサンプルコードで使用する定数を示します。

表5.6 サンプルコードで使用する定数(main.c)
<table>
<thead>
<tr>
<th>定数名</th>
<th>設定値</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMT_CYCLE_MS</td>
<td>100</td>
<td>A/D変換周期(ms)</td>
</tr>
<tr>
<td>SEG_CYCLE_MS</td>
<td>8</td>
<td>7SEGセレクト出力切り替え周期(ms)</td>
</tr>
<tr>
<td>ONES_DIGIT</td>
<td>0</td>
<td>7SEG出力フラグの値</td>
</tr>
<tr>
<td>SEG_TBL_DASH</td>
<td>10</td>
<td>7SEG表示テーブルインデックス："－"</td>
</tr>
<tr>
<td>SEG_TBL_H</td>
<td>11</td>
<td>7SEG表示テーブルインデックス："H"</td>
</tr>
<tr>
<td>SEG_TBL_i</td>
<td>12</td>
<td>7SEG表示テーブルインデックス："i"</td>
</tr>
<tr>
<td>SEG_TBL_L</td>
<td>13</td>
<td>7SEG表示テーブルインデックス："L"</td>
</tr>
<tr>
<td>SEG_TBL_o</td>
<td>14</td>
<td>7SEG表示テーブルインデックス："o"</td>
</tr>
<tr>
<td>SEG_TBL_BLANK</td>
<td>15</td>
<td>7SEG表示テーブルインデックス：空白</td>
</tr>
</tbody>
</table>

表5.7 サンプルコードで使用する定数(temps.c)
<table>
<thead>
<tr>
<th>定数名</th>
<th>設定値</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH_REF_TEMP</td>
<td>125</td>
<td>高温基準温度(℃)</td>
</tr>
<tr>
<td>ADCONV_IN_OPERATION</td>
<td>0xFFFF</td>
<td>A/D変換実行中のA/D変換値(無効値)</td>
</tr>
<tr>
<td>SLOPE_COEFFICIENT_TEMP</td>
<td>(HIGH_REF_TEMP－ ORDINARY_REF_TEMP) * TEMP_ACCURACY</td>
<td>温度斜度</td>
</tr>
<tr>
<td>ORDINARY_REF_TEMP_IN_ACC</td>
<td>ORDINARY_REF_TEMP * TEMP_ACCURACY</td>
<td>常温基準温度(25℃)に温度計算精度を掛けた値</td>
</tr>
</tbody>
</table>
表 5.8 サンプルコードで使用する定数(temps.h)(ユーザ変更可)

<table>
<thead>
<tr>
<th>定数名</th>
<th>設定値</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEL_PGAGAIN</td>
<td>GAIN_RANGE1</td>
<td>PGA ゲイン選択（注 1）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GAIN_RANGE0 : 1.8V≤AVCC0<2.7V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GAIN_RANGE1 : 2.7V≤AVCC0≤3.6V</td>
</tr>
<tr>
<td>AVCC_VOLTAGE</td>
<td>3.3</td>
<td>AVCC0 端子への印加電圧（単位は[V]で指定。） (注 1)</td>
</tr>
<tr>
<td>VREF_VOLTAGE</td>
<td>3.3</td>
<td>VREFH0 端子への印加電圧（単位は[V]で指定。）</td>
</tr>
<tr>
<td>ORDINARY_REF_TEMP</td>
<td>25</td>
<td>常温基準温度(℃) (設定値が 25 であれば、25℃を常温基準温度とする。)</td>
</tr>
<tr>
<td>TEMP_ACCURACY</td>
<td>10</td>
<td>温度計算精度(倍率を設定。設定値を "10" と設定したときは、以下を考慮する。)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>設定したときは小数点 1 位まで。設定値を "100" と設定したときは小数点 2 位までを計算対象とする。10 の乗数以外も設定しないでください。</td>
</tr>
<tr>
<td>CNV_CNT_MAX</td>
<td>6</td>
<td>平均値サンプリング回数 (設定値が 6 であれば、6 回分の合計値から最大値と最小値を引いた 4 回分の平均値を AD 変換値とする。)</td>
</tr>
</tbody>
</table>

注 1. AVCC0 端子への印加電圧と PGA ゲインは、条件が一致するように設定してください。条件が一致しない場合、正しい計算結果が得られなくなります。

表 5.9 サンプルコードで使用する定数(temps.h)(ユーザ変更不可)

<table>
<thead>
<tr>
<th>定数名</th>
<th>設定値</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAIN_RANGE0</td>
<td>00h</td>
<td>PGA ゲイン : 1.8V≤AVCC0<2.7V</td>
</tr>
<tr>
<td>GAIN_RANGE1</td>
<td>01h</td>
<td>PGA ゲイン : 2.7V≤AVCC0≤3.6V</td>
</tr>
<tr>
<td>STA_AD_IDLE</td>
<td>0</td>
<td>A/D 変換状態 : 未動作</td>
</tr>
<tr>
<td>STA_AD_WAIT</td>
<td>1</td>
<td>A/D 変換状態 : A/D 変換完了待ち</td>
</tr>
<tr>
<td>STA_AD_FINISH</td>
<td>2</td>
<td>A/D 変換状態 : A/D 変換完了</td>
</tr>
<tr>
<td>TSCD0_VALUE</td>
<td>(TEMPSCONST.TSCD0.BIT.TS CD)</td>
<td>TSCD0 レジスタ値</td>
</tr>
<tr>
<td>TSCD1_VALUE</td>
<td>(TEMPSCONST.TSCD1.BIT.TS CD)</td>
<td>TSCD1 レジスタ値</td>
</tr>
<tr>
<td>TSCD3_VALUE</td>
<td>(TEMPSCONST.TSCD3.BIT.TS CD)</td>
<td>TSCD3 レジスタ値</td>
</tr>
<tr>
<td>HIGH_REF_POTENTIAL_VAL</td>
<td>(注 1)</td>
<td>高温基準温度(125℃)のA/D 変換値</td>
</tr>
</tbody>
</table>

注 1. 選択した PGA ゲインにより、設定値が異なります。以下に、選択した PGA ゲイン毎の設定値を示します。

GAIN_RANGE0 を選択:

\[(\text{uint16}_t) (1.8 / \text{VREF_VOLTAGE} \times \text{TSCD0}_VALUE)\]

GAIN_RANGE1 を選択:

\[(\text{uint16}_t) (2.7 / \text{VREF_VOLTAGE} \times \text{TSCD1}_VALUE) + ((3.3 / \text{VREF_VOLTAGE} \times \text{TSCD3}_VALUE) - (2.7 / \text{VREF_VOLTAGE} \times \text{TSCD1}_VALUE)) \times (\text{AVCC_VOLTAGE} - 2.7) / 0.6)\]
5.5 変数一覧
表5.10、表5.11にstatic型変数を、表5.12にconst型変数を示します。

表5.10 static型変数(main.c)

<table>
<thead>
<tr>
<th>型</th>
<th>変数名</th>
<th>内容</th>
<th>使用関数</th>
</tr>
</thead>
<tbody>
<tr>
<td>static volatile</td>
<td>cnt_cycle</td>
<td>A/D 変換周期カウンタ</td>
<td>Excep_CMT0_CMI0</td>
</tr>
<tr>
<td>uint16_t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>static volatile</td>
<td>cnt_led_cycle</td>
<td>7SEG セレクト出力切り替え周期カウンタ</td>
<td>Excep_CMT0_CMI0</td>
</tr>
<tr>
<td>uint16_t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>static uint8_t</td>
<td>digit_10</td>
<td>7SEG 2桁目の表示データ</td>
<td>disp_7seg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>disp_comswitch_7seg disp_bar_7seg</td>
</tr>
<tr>
<td>static uint8_t</td>
<td>digit_1</td>
<td>7SEG 1桁目の表示データ</td>
<td>disp_7seg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>disp_comswitch_7seg disp_bar_7seg</td>
</tr>
</tbody>
</table>

表5.11 static型変数(temps.c)

<table>
<thead>
<tr>
<th>型</th>
<th>変数名</th>
<th>内容</th>
<th>使用関数</th>
</tr>
</thead>
<tbody>
<tr>
<td>static int16_t</td>
<td>high_ref_potential</td>
<td>高温基準温度(125℃)のA/D 変換値(=CAL125)</td>
<td>temps_init temps_calibration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>static volatile</td>
<td>slope_potential</td>
<td>A/D 変換値傾斜</td>
<td>temps_calibration temps_calc</td>
</tr>
<tr>
<td>int16_t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>static volatile</td>
<td>ordinary_potential</td>
<td>常温基準温度(25℃)のA/D 変換値(=CAL25)</td>
<td>temps_calibration temps_calc</td>
</tr>
<tr>
<td>int16_t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>static volatile</td>
<td>ad_status</td>
<td>A/D 変換ステータス</td>
<td>main</td>
</tr>
<tr>
<td>uint8_t</td>
<td></td>
<td></td>
<td>temps_get_ad_status temps_calibration temps_measurement Excep_AD_ADI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>static volatile</td>
<td>now_temp</td>
<td>算出した現在温度</td>
<td>temps_get_now_temp Excep_AD_ADI</td>
</tr>
<tr>
<td>int16_t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>static volatile</td>
<td>now_potential</td>
<td>現在のA/D 変換値</td>
<td>temps_calibration Excep_AD_ADI</td>
</tr>
<tr>
<td>uint16_t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>static volatile</td>
<td>buf_ad_value[CN T_CNT_MAX]</td>
<td>A/D 変換値バッファ</td>
<td>Excep_AD_ADI</td>
</tr>
<tr>
<td>int16_t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>static volatile</td>
<td>ad_max_value</td>
<td>A/D 変換値最大値</td>
<td>Excep_AD_ADI</td>
</tr>
<tr>
<td>uint16_t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>static volatile</td>
<td>ad_min_value</td>
<td>A/D 変換値最小値</td>
<td>Excep_AD_ADI</td>
</tr>
<tr>
<td>uint16_t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>static volatile</td>
<td>ad_smp_cnt</td>
<td>A/D 変換値バッファのライトポインタ</td>
<td>Excep_AD_ADI</td>
</tr>
<tr>
<td>uint8_t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>static volatile</td>
<td>now_ad_value</td>
<td>A/D 変換値のノイズフィルタリング</td>
<td>temps_get_now_ad_value</td>
</tr>
<tr>
<td>uint16_t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>static volatile</td>
<td>ad_value[CN T_CNT_MAX]</td>
<td>A/D 変換値バッファ</td>
<td>Excep_AD_ADI</td>
</tr>
<tr>
<td>int16_t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>static volatile</td>
<td>ad_smp_cnt</td>
<td>A/D 変換値バッファのライトポインタ</td>
<td>Excep_AD_ADI</td>
</tr>
<tr>
<td>uint8_t</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表5.12 const型変数(main.c)

<table>
<thead>
<tr>
<th>型</th>
<th>変数名</th>
<th>内容</th>
<th>使用関数</th>
</tr>
</thead>
<tbody>
<tr>
<td>static const</td>
<td>seg_pattern_table</td>
<td>7SEG表示テーブル</td>
<td>disp_comswitch_7seg</td>
</tr>
<tr>
<td>uint8_t</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.6 関数一覧

表 5.13 に関数を示します。

<table>
<thead>
<tr>
<th>関数名</th>
<th>概要</th>
<th>記載ファイル</th>
</tr>
</thead>
<tbody>
<tr>
<td>main</td>
<td>メイン処理</td>
<td>main.c</td>
</tr>
<tr>
<td>port_init</td>
<td>ポート初期設定</td>
<td>main.c</td>
</tr>
<tr>
<td>peripheral_init</td>
<td>周辺機能初期設定</td>
<td>main.c</td>
</tr>
<tr>
<td>cmt_init</td>
<td>CMT 初期設定</td>
<td>main.c</td>
</tr>
<tr>
<td>irq_init</td>
<td>IRQ 初期設定</td>
<td>main.c</td>
</tr>
<tr>
<td>disp_7seg</td>
<td>7SEG 表示データの更新処理</td>
<td>main.c</td>
</tr>
<tr>
<td>disp_comswitch_7seg</td>
<td>7SEG セレクト出力切り替え処理</td>
<td>main.c</td>
</tr>
<tr>
<td>disp_bar_7seg</td>
<td>7SEG バー表示処理</td>
<td>main.c</td>
</tr>
<tr>
<td>Excep_CMT0_CMI0</td>
<td>コンペアマッチ割り込み処理</td>
<td>main.c</td>
</tr>
<tr>
<td>temps_init</td>
<td>AD、温度センサ初期設定</td>
<td>temps.c</td>
</tr>
<tr>
<td>temps_get_ad_status</td>
<td>A/D 変換状態取得</td>
<td>temps.c</td>
</tr>
<tr>
<td>temps_get_potential</td>
<td>温度センサ測定結果取得</td>
<td>temps.c</td>
</tr>
<tr>
<td>temps_get_now_temp</td>
<td>現在温度取得</td>
<td>temps.c</td>
</tr>
<tr>
<td>temps_calib</td>
<td>温度センサキャリブレーション処理</td>
<td>temps.c</td>
</tr>
<tr>
<td>temps_measurement</td>
<td>温度センサ測定処理</td>
<td>temps.c</td>
</tr>
<tr>
<td>temps_calc</td>
<td>現在温度算出処理</td>
<td>temps.c</td>
</tr>
<tr>
<td>Excep_AD_ADI</td>
<td>A/D 変換完了割り込み処理</td>
<td>temps.c</td>
</tr>
</tbody>
</table>
5.7 関数仕様
サンプルコードの関数仕様を示します。

<table>
<thead>
<tr>
<th>関数</th>
<th>概要</th>
<th>ヘッダ</th>
<th>宣言</th>
<th>説明</th>
<th>引数</th>
<th>リターン値</th>
</tr>
</thead>
<tbody>
<tr>
<td>main</td>
<td>メイン処理</td>
<td>なし</td>
<td>void main(void)</td>
<td>初期設定後、100ms ごとに温度センサ出力を A/D 変換し、算出した温度を 7SEG に表示します。</td>
<td>なし</td>
<td>なし</td>
</tr>
<tr>
<td>port_init</td>
<td>ボート初期設定</td>
<td>なし</td>
<td>static void port_init(void)</td>
<td>ボートの初期設定を行います。</td>
<td>なし</td>
<td>なし</td>
</tr>
<tr>
<td>peripheral_init</td>
<td>周辺機能初期設定</td>
<td>なし</td>
<td>static void peripheral_init(void)</td>
<td>使用する周辺機能の初期設定を行います。</td>
<td>なし</td>
<td>なし</td>
</tr>
<tr>
<td>cmt_init</td>
<td>CMT 初期設定</td>
<td>なし</td>
<td>static void cmt_init(void)</td>
<td>CMT0 の初期設定を行います。</td>
<td>なし</td>
<td>なし</td>
</tr>
<tr>
<td>irq_init</td>
<td>IRQ 初期設定</td>
<td>なし</td>
<td>static void irq_init(void)</td>
<td>IRQ2 の初期設定を行います。</td>
<td>なし</td>
<td>なし</td>
</tr>
</tbody>
</table>
disp_7seg

概要 | 7SEG表示データの更新処理
ヘッダ | なし
宣言 | static void disp_7seg(int16_t disp_data)
説明 | 引数で指定された値を7SEGに表示するデータとして設定します。
引数 | int16_t disp_data
 | : 7SEG表示
 | 0未満(マイナス値) : “Lo”表示
 | 100以上 : “Hi”表示
 | 上記以外 : 温度表示
リターン値 | なし

disp_comswitch_7seg

概要 | 7SEGセレクト出力切り替え処理
ヘッダ | なし
宣言 | static void disp_comswitch_7seg(void)
説明 | 出力する7SEGのセレクト信号を切り替えます。
引数 | なし
リターン値 | なし

disp_bar_7seg

概要 | 7SEGバー表示処理
ヘッダ | なし
宣言 | static void disp_bar_7seg(void)
説明 | バー(ダッシュ)を7SEGに表示します。
引数 | なし
リターン値 | なし

Excep_CMT0_CMI0

概要 | コンペアマッチ割り込み処理
ヘッダ | なし
宣言 | static void Excep_CMT0_CMI0(void)
説明 | 1ms周期の割り込み処理を行います。割り込み要求が発生すると、セレクト信号をアップします。100回(100ms)経過すると温度の測定を開始します。また、8回(8ms)経過すると出力する7SEGのセレクト信号を切り替えます。
引数 | なし
リターン値 | なし
temps_init

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>概要</td>
<td>AD、温度センサ初期設定</td>
</tr>
<tr>
<td>ヘッダ</td>
<td>temps.h</td>
</tr>
<tr>
<td>宣言</td>
<td>void temps_init(void)</td>
</tr>
<tr>
<td>説明</td>
<td>ADと温度センサの初期設定を行います。</td>
</tr>
<tr>
<td>引数</td>
<td>なし</td>
</tr>
<tr>
<td>リターン値</td>
<td>なし</td>
</tr>
</tbody>
</table>

temps_get_ad_status

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>概要</td>
<td>A/D変換状態取得</td>
</tr>
<tr>
<td>ヘッダ</td>
<td>temps.h</td>
</tr>
<tr>
<td>宣言</td>
<td>uint8_t temps_get_ad_status(void)</td>
</tr>
<tr>
<td>説明</td>
<td>現在のA/D変換状態を取得します。</td>
</tr>
<tr>
<td>引数</td>
<td>なし</td>
</tr>
<tr>
<td>リターン値</td>
<td>uint8_t</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STA_AD_IDLE</td>
<td>未動作</td>
</tr>
<tr>
<td>STA_AD_WAIT</td>
<td>A/D変換完了待ち</td>
</tr>
<tr>
<td>STA_AD_FINISH</td>
<td>A/D変換完了</td>
</tr>
</tbody>
</table>

temps_get_potential

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>概要</td>
<td>温度センサ測定結果取得</td>
</tr>
<tr>
<td>ヘッダ</td>
<td>なし</td>
</tr>
<tr>
<td>宣言</td>
<td>static uint16_t temps_get_potential(void)</td>
</tr>
<tr>
<td>説明</td>
<td>測定したA/D変換値を取得します。</td>
</tr>
<tr>
<td>引数</td>
<td>なし</td>
</tr>
<tr>
<td>リターン値</td>
<td>uint16_t</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ADCONV_IN_OPERATION</td>
<td>A/D変換動作中</td>
</tr>
<tr>
<td>ADCONV_IN_OPERATION以外</td>
<td>A/D変換値</td>
</tr>
</tbody>
</table>

temps_get_now_temp

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>概要</td>
<td>現在温度取得</td>
</tr>
<tr>
<td>ヘッダ</td>
<td>temps.h</td>
</tr>
<tr>
<td>宣言</td>
<td>int16_t temps_get_now_temp(void)</td>
</tr>
<tr>
<td>説明</td>
<td>現在の温度を取得します。</td>
</tr>
<tr>
<td>引数</td>
<td>なし</td>
</tr>
<tr>
<td>リターン値</td>
<td>int16_t</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>現在温度</td>
</tr>
</tbody>
</table>
temps_calibration

概 要	溫度センサキャリブレーション処理
頭 招	temps.h
宣 言	void temps_calibration(void)
説 明	常温基準温度の A/D 変換値を取得し、RAM に退避します。
引 数	なし
リターン値	なし

temps_measurement

概 要	溫度センサ測定処理
頭 招	temps.h
宣 言	void temps_measurement(void)
説 明	現在の温度の測定を開始します。
引 数	なし
リターン値	なし

temps_calc

概 要	現在温度算出処理
頭 招	なし
宣 言	static int16_t temps_calc(uint16_t w_now_potential)
説 明	引数の A/D 変換値から温度を算出します。
引 数	uint16_t w_now_potential : A/D 変換値
リターン値	int16_t : 現在温度(℃)

Excep_AD_ADI

概 要	A/D 変換完了割り込み処理
頭 招	なし
宣 言	static void Excep_AD_ADI(void)
説 明	A/D 変換完了時、A/D 変換値を RAM に退避します。6 回目の A/D 変換完了時には、その 6 回分の合計値から最大値と最小値を引いた 4 回分の平均を算出し、その平均値から温度を算出します。
引 数	なし
リターン値	なし
5.8 フローチャート

5.8.1 メイン処理

図5.2にメイン処理のフローチャートを示します。

図5.2 メイン処理
5.8.2 ポート初期設定
図5.3にポート初期設定のフローチャートを示します。

port_init

7SEG出力ポート設定
PORT2.PODRレジスタ ← 7Fh : P20～P26 : High
PORTA.PODRレジスタ ← 03h : PA0～PA1: High
PORT2.PDRレジスタ ← 7Fh : P20～P26 : 出力
PORTA.PDRレジスタ ← 03h : PA0～PA1: 出力

return

図5.3 ポート初期設定

5.8.3 周辺機能初期設定
図5.4に周辺機能初期設定のフローチャートを示します。

peripheral_init

CMT初期設定
cmt_init()

IRQ初期設定
irq_init()

return

図5.4 周辺機能初期設定
5.8.4 CMT 初期設定
図 5.5 に CMT 初期設定のフローチャートを示します。

![CMT 初期設定フローチャート](chart.png)

図 5.5 CMT 初期設定
5.8.5 IRQ 初期設定
図 5.6 に IRQ 初期設定のフローチャートを示します。

```
irq_init
割り込み禁止
IER08レジスタ
IEN2ビット ← 0 : IRQ2割り込み要求禁止
デジタルフィルタ無効
IRQFLTE0レジスタ
FLTEN2ビット ← 0 : デジタルフィルタ無効
デジタルフィルタ
サンプリングクロック設定
IRQFLTC0レジスタ
FCLKSEL2[1:0]ビット ← 11b : PCLK/64
P32ポートモードレジスタ設定
PORT3.PMRレジスタ
B2ビット ← 0 : 汎用入出力ポートとして使用
PFSWEビット書き込み許可
PWPRレジスタ
B0WIビット ← 0 : PFSWEビットへの書き込みを許可
PFSレジスタ書き込み許可
PWPRレジスタ
PFSWEビット ← 1 : PFSレジスタへの書き込みを許可
P32PFSレジスタ設定
P32PFSレジスタ
ISELビット ← 1 : IRQ2入力端子として使用する
PFSレジスタ書き込み禁止
PWPRレジスタ
PFSWEビット ← 0 : PFSレジスタへの書き込みを禁止
PFSWEビット書き込み禁止
PWPRレジスタ
B0WIビット ← 1 : PFSWEビットへの書き込みを禁止
IRQ検出設定
IRQCR2レジスタ
IRQMD[1:0]ビット ← 01b : 立ち下がりエッジ
割り込み要求クリア
IR066レジスタ
IRフラグ ← 0 : IRQ2割り込み要求なし
デジタルフィルタ有効
IRQFLTE0レジスタ
FLTEN2ビット ← 1 : デジタルフィルタ有効
return
```
5.8.6 7SEG表示データの更新処理

図5.7に7SEG表示データの更新処理のフローチャートを示します。

![フローチャート](image_url)

図5.7 7SEG表示データの更新処理
5.8.7 7SEG セレクト出力切り替え処理
図 5.8 に 7SEG セレクト出力切り替え処理のフローチャートを示します。

```
disp_comswitch_7seg

7SEG消灯
PORTA.PODRレジスタ ← 03h

7SEG出力フラグ切り替え
digit ← digit ^ 1

7SEG出力フラグが 0?
No (digit != 0)

Yes (digit == 0)

1桁目に表示するデータを算出
2桁目に表示するデータを算出

7SEGにデータを出力
PORTA.PODRレジスタ ← データ

7SEG点灯
PORTA.PODRレジスタ ← 02h : 1桁目点灯(digit == 0)
or 01h : 2桁目点灯(digit != 0)
```

図 5.8 7SEG セレクト出力切り替え処理

5.8.8 7SEG バー表示処理
図 5.9 に 7SEG バー表示処理のフローチャートを示します。

```
disp_bar_7seg

1桁目、2桁目に “-” のインデックスを設定
digit_10 ← SEG_TBL_DASH
digit_1 ← SEG_TBL_DASH

7SEG消灯
PORTA.PODRレジスタ ← 03h

7SEGにデータを出力
PORT2.PODRレジスタ ← “-” データ

7SEG点灯
PORTA.PODRレジスタ ← 00h
```

図 5.9 7SEG バー表示処理
5.8.9 コンペアマッチ割り込み処理

図5.10にコンペアマッチ割り込み処理のフローチャートを示します。

図5.10 コンペアマッチ割り込み処理
5.8.10 AD、温度センサ初期設定

図5.11にAD、温度センサ初期のフローチャートを示します。

<table>
<thead>
<tr>
<th>ステップ</th>
<th>命令</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>temps_init</td>
<td>IER0Cレジスタ IEN2ビット ← 0</td>
<td>: ADI割り込み要求禁止</td>
</tr>
<tr>
<td></td>
<td>PRCRレジスタ ← A502h PRC1ビット = 1</td>
<td>: 消費電力低減機能関連レジスタへの書き込み許可</td>
</tr>
<tr>
<td></td>
<td>MSTPCRAレジスタ MSTPA2ビット ← 0</td>
<td>: ADモジュール停止状態の解除</td>
</tr>
<tr>
<td></td>
<td>MSTPCRBレジスタ MSTPB8ビット ← 0</td>
<td>: 温度センサモジュール停止状態の解除</td>
</tr>
<tr>
<td></td>
<td>PRCRレジスタ ← A500h PRC1ビット = 0</td>
<td>: 消費電力低減機能関連レジスタへの書き込み禁止</td>
</tr>
<tr>
<td></td>
<td>1μs待ち R_DELAY_Us()</td>
<td></td>
</tr>
<tr>
<td></td>
<td>スキャンモード設定 ADFCSRレジスタ ← 0000h ADCSビット = 0</td>
<td>: シングルスキャンモード</td>
</tr>
<tr>
<td></td>
<td>A/D変換停止設定 ADANSAレジスタ ← 00h ANSA[6:0]ビット = 0</td>
<td>: AN0～AN6を変換対象から外す</td>
</tr>
<tr>
<td></td>
<td>温度センサ出力のA/D変換対象への選択 ADEXICRレジスタ ← 0100h TSSビット = 1</td>
<td>: 温度センサ出力をA/D変換する</td>
</tr>
<tr>
<td></td>
<td>サンプリングタイム設定 ADSSTRTレジスタ ← 180</td>
<td>: 180ステート(約72µs)</td>
</tr>
<tr>
<td></td>
<td>A/D変換開始トリガ設定 ADSTRGRレジスタ ← 0A00h TRSAA[4:0]ビット = 01010b</td>
<td>: 温度センサからのトリガ</td>
</tr>
<tr>
<td></td>
<td>温度センサからのA/Dコンバータ起動トリガ設定 ADCSRレジスタ TRGEビット ← 1 EXTRビット = 0</td>
<td>: 同期、非同期トリガによるA/D変換開始を許可</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TSCRレジスタ ← 01h (注1) PGAGAIN[1:0]ビット = 01b</td>
</tr>
<tr>
<td></td>
<td>温度センサ動作許可設定 TSCRレジスタ TSENビット ← 1</td>
<td>: 温度センサが動作</td>
</tr>
<tr>
<td></td>
<td>温度センサ起動時間 (80µs待ち R_DELAY_Us()</td>
<td></td>
</tr>
<tr>
<td></td>
<td>スキャン終了割り込み設定 ADCSRレジスタ ADIEビット ← 1</td>
<td>: スキャン終了後のADI割り込み発生の許可</td>
</tr>
<tr>
<td></td>
<td>割り込み要求クリア IRO96レジスタ IRフラグ ← 0</td>
<td>: ADI割り込み要求なし</td>
</tr>
<tr>
<td></td>
<td>割り込み許可設定 IPR98レジスタ IPR[3:0]ビット ← 0001b</td>
<td>: ADI割り込み優先レベル1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IERO0Cレジスタ IEN2ビット ← 1</td>
</tr>
<tr>
<td></td>
<td>高温基準温度の取得 high_ref_potential ← HIGH_REF_POTENTIAL_VAL (注2)</td>
<td></td>
</tr>
</tbody>
</table>

return

注1. 使用するシステムに応じて定数の設定を変更してください。
注2. 定数で選択したPGAゲインにより設定される値が異なります。
5.8.11 A/D 変換状態取得
図 5.12 に A/D 変換状態取得のフローチャートを示します。

![フローチャート](temps_get_ad_status)

図 5.12 A/D 変換状態取得

5.8.12 温度センサ測定結果取得
図 5.13 に温度センサ測定結果取得のフローチャートを示します。

![フローチャート](temps_get_potential)

図 5.13 温度センサ測定結果取得

5.8.13 現在温度取得
図 5.14 に現在温度取得のフローチャートを示します。

![フローチャート](temps_get_now_temp)

図 5.14 現在温度取得
5.8.14 温度センサキャリブレーション処理
図5.15に温度センサキャリブレーション処理のフローチャートを示します。

```
temps_calibration

温度センサキャリブレーション実行待ち
IR066.IRフラグ読み出し("1"になるまで待つ)

IRQ2割り込み要求クリア
IR066レジスタ
IRフラグ ← 0 : IRQ2割り込み要求なし

CMT0カウント開始
CMSTR0レジスタ
STR0ビット ← 1 : CMT0.CMCNTカウンタのカウント動作開始

A/D変換完了待ち

A/D変換状態に未動作を設定
ad_status ← STA_AD_IDLE

常温基準温度(25℃)のA/D変換値退避
ordinary_potential ← now_potential

A/D変換値傾斜をRAMに退避
slope_potential ← high_ref_potential - ordinary_potential

return
```

図5.15 温度センサキャリブレーション処理

5.8.15 温度センサ測定処理
図5.16に温度センサ測定処理のフローチャートを示します。

```
temps_measurement

AD、温度センサ初期設定
temps_init()

温度測定開始
TSCRレジスタ
PGAENビット ← 1 : PGAが動作

A/D変換状態をA/D変換完了待ちに変更
ad_status ← STA_AD_WAIT

return
```

図5.16 温度センサ測定処理
5.8.16 現在温度算出処理

図5.17に現在温度算出処理のフローチャートを示します。

```
temps_calc

現現在温度算出(注1)

return(w_now_temp)
```

[引数]
uint16_t w_now_potential : A/D変換値

注1. 計算式の詳細は「5.1.1温度特性の計算式」を参照してください。

図5.17 現在温度算出処理
5.8.17 A/D変換完了割り込み処理
図5.18にA/D変換完了割り込み処理のフローチャートを示します。
6. サンプルコード
サンプルコードは、ルネサス エレクトロニクスホームページから入手してください。

7. 参考ドキュメント
ユーザーズマニュアル：ハードウェア
RX21A グループ ユーザーズマニュアル ハードウェア編 Rev.1.00 （R01UH0025JJ）
（最新版をルネサス エレクトロニクスホームページから入手してください。）

テクニカルアップデート/テクニカルニュース
（最新の情報をルネサス エレクトロニクスホームページから入手してください。）

ユーザーズマニュアル：開発環境
RX ファミリ C/C++コンパイラパッケージ V.1.01 ユーザーズマニュアル Rev.1.00（R20UT0570JJ）
（最新版をルネサス エレクトロニクスホームページから入手してください。）

ホームページとサポート窓口
ルネサス エレクトロニクスホームページ
http://japan.renesas.com
お問合せ先
http://japan.renesas.com/contact/
<table>
<thead>
<tr>
<th>Rev.</th>
<th>発行日</th>
<th>改訂内容</th>
<th>ページ</th>
<th>ポイント</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>2014.09.01</td>
<td>—</td>
<td>初版発行</td>
<td></td>
</tr>
</tbody>
</table>

すべての商標および登録商標は、それぞれの所有者に帰属します。

A-1
製品ご使用上の注意事項

ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意事項については、本ドキュメントおよびテクニカルアップデートを参照してください。

1. 未使用端子の処理

【注意】未使用端子は、本文の「未使用端子の処理」に従って処理してください。

CMOS製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなっています。未使用端子を開放状態で動作させると、誘導現象により、LSI周辺のノイズが印加され、LSI内部で貫通電流が流れたり、入力信号と認識されて誤動作を起こす恐れがあります。未使用端子は、本文「未使用端子の処理」で説明する指示に従い処理してください。

2. 電源投入時の処置

【注意】電源投入時は、製品の状態は不定です。

電源投入時には、LSIの内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。外部リセット端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の状態は保証できません。

同様に、内蔵パワーオンリセット機能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。

3. リザーブアドレスのアクセス禁止

【注意】リザーブアドレスのアクセスを禁止します。

アドレス領域には、将来の機能拡張用に割り付けられているリザーブアドレスがあります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

4. クロックについて

【注意】リセット時は、クロックが安定した後、リセットを解除してください。

プログラム実行中のクロック切り替え時は、切り替え先クロックが安定した後に切り替えてください。

リセット時、外部発振子（または外部発振回路）を用いたクロックで動作を開始するシステムでは、クロックが十分安定した後、リセットを解除してください。また、プログラムの途中で外部発振子（または外部発振回路）を用いたクロックに切り替える場合は、切り替え先のクロックが十分安定してから切り替えてください。

5. 製品間の相違について

【注意】型名の異なる製品に変更する場合は、事前に問題なくことをご確認下さい。

同じグループのマイコンでも型名が違うと、内部メモリ、レイアウトパターンの相違などにより、特性が異なる場合があります。型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。
ご注意書き

1. 本書に記載された回路、ソフトウェアおよびこれに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器・システムの設計においては、回路、ソフトウェアおよびこれに関連する情報使用の際には、お客様の責任において行ってください。これらの使用に起因して、お客様または第三者に生じた損害に関し、当社は一切その責任を負いません。

2. 本書に記載されている情報は、正確を期すため作成したものです。誤りがないことを保証するものではありません。なお、本書に記載されている情報の誤りに起因する損害がお客様に生じた場合においても、当社は一切その責任を負いません。

3. 本書に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許権、著作権その他の知的財産権に対する侵害に関し、当社は、何らの責任を負わないであります。当社は、本書に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。

4. 当社製品を改造、変更、複製等しないでください。かかる改造、変更、複製等により生じた損害に関して、当社は一切その責任を負いません。

5. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、高品質水準は以下の通りに用意に製品が使用されることを意図しております。

| 標準水準 | コンピュータ、OA機器、通信機器、計測機器、AV機器、家電、工作機械、パーソナル機器、産業用ロボット等 |
| 高品質水準 | 搬送機器（自動車、電車、船舶等）、交通用信号機器、防災・防犯装置、各種安全装置等 |

当社製品は、直接生命・身体に危害を及ぼす可能性のある機器・システム（生命維持装置、人体に埋め込み使用するもの等）、もしくは重大な物的損害を発生させるおそれのある機器・システム（原子力発電システム、軍事機器等）に使用されることを意図しております。使用する場合には、たとえ、意図しない用途に当社製品を使用することによりお客様または第三者に損害が生じても、当社は一切その責任を負いません。なお、ご不明点がある場合は、当社営業にお問い合わせください。

6. 当社製品をご使用の際は、当社が指定する最大定格、動作電源電圧範囲、放熱特性等、実装条件その他の保証範囲内でご使用ください。当社保証範囲を超えて当社製品をご使用された場合の故障および事故につきましては、当社は一切その責任を負いません。

7. 当社は、当社製品の品質および信頼性の向上を努めていますが、半導体製品は元来の精度で故障が発生したり、使用条件によっては動作をしたりする場合があります。また、当社製品は製品発表数週間を経たもので、発売後既に使用されている第三者の使用条件や、ユーザーのシステム内での組み合わせにより、動作をしたりする場合があります。お客様の責任において、正常設計、設計変更設計、設計作成条件設計等の保証及び動作を停止または取扱向けの動作を停止する場合は、「外国為替及び外国貿易法」その他の関連法令を遵守し、かかる法令の定めるところにより必要な手続きを行ってください。なお、お客様の責任において使用される当社製品は、使用条件が保証条件を満たしていない場合でも、当社は一切その責任を負いません。

8. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業部までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制するRoHS指令、適用される環境関連法令を十分調査のうえ、かかる法令を遵守するようにご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は一切その責任を負いません。

9. 本書に記載されている当社製品および技術を国内外の法令および規則により製造、使用・販売を禁止されている機器・システムに使用することはできません。また、当社製品および技術は大量破壊兵器の開発等の目的、軍事利用の目的その他の軍事用途に使用しないでください。当社製品または技術を輸出する場合は、「外国為替及び外国貿易法」その他の関連法令を遵守し、かかる法令の定めるところにより必要な手続きを行ってください。

10. 本書の内容に基づき、本書のご注意書き等の条件に抵触して当社製品が使用され、その使用から損害が生じた場合、当社は何らの責任も負わず、お客様にてご負担して活きますのでご了承ください。

11. 本書の全部または一部を当社の書物による事前の承諾を得ることなく転載または複製することを禁じます。

注1. 本書において使用されている「当社」とは、ルネサスエレクトロニクス株式会社およびルネサスエレクトロニクス株式会社がその統括主の議決権の過半数を直接または間接に保有する会社をいいます。

注2. 本書において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。