
 APPLICATION NOTE

R01AN2537EJ0102 Rev.1.02 Page 1 of 41
Mar 31, 2017

RX113 Group
On-chip Flash Memory Programming Solution using USB Memory
RX Driver Package Application
Introduction
This document is an application note of the on-chip flash memory programming solution using USB Memory.

This application note includes the main program that writes the program stored in the USB memory into the RX113 on-
chip flash memory and execute it.

The main program of the application note is used in combination with FAT file system, USB driver, Flash memory
module included in the RX110, RX111, RX113, RX231 Group RX Driver Package.

Target Device
RX113 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate.

Related Documents
• Firmware Integration Technology User’s Manual (R01AN1833EU)
• RX Family Board Support Package Module Using Firmware Integration Technology (R01AN1685EU)
• RX Family Adding Firmware Integration Technology Modules to Projects (R01AN1723EU)
• RX Family Adding Firmware Integration Technology Modules to CubeSuite+ Projects (R01AN1826EJ)

R01AN2537EJ0102
Rev.1.02

Mar 31, 2017

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 2 of 41
Mar 31, 2017

Contents

1. Overview .. 3
1.1 This Application Note .. 3
1.2 Operating Environment ... 3
1.3 Module Structure ... 4
1.4 File Structure ... 5

2. Acquiring a Development Environment ... 6
2.1 Acquire and install e2 studio .. 6
2.2 Acquire a Compiler Package ... 6

3. Building a Project ... 7
3.1 Create a Workspace ... 7
3.2 Create a Project .. 8
3.3 Import a Project ... 10
3.4 Modify Configuration ... 15

3.4.1 Change Configuration ... 15
3.4.2 Change Project Setting ... 17

4. Verify Operation ... 20
4.1 Build the Project .. 20
4.2 Prepare for Debugging .. 22

4.2.1 Configure Hardware .. 22
4.2.2 Set up the RSK ... 23
4.2.3 Prepare USB Memory ... 24

4.3 Debug the Project ... 25

5. Application overview ... 29
5.1 Memory structure .. 30

6. Main Program Specifications .. 31
6.1 Files ... 31
6.2 Modules ... 32
6.3 Flowcharts ... 33

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 3 of 41
Mar 31, 2017

1. Overview
1.1 This Application Note
This application note describes the procedure for main program evaluation by combining the Board Support Package
(referred to as “BSP”), Flash memory (referred to as “Flash API”), USB driver (Host Mass Storage Class Driver “USB
HMSC” and “Basic Firmware”), M3S-TFAT-Tiny FAT file system (referred to as “TFAT”) of Firmware Integration
Technology (referred to as “FIT”) modules included in the RX110, RX111, RX113, RX231 Group RX Driver Package.

This application note operates on the Renesas Starter Kit for RX113 (referred to as “RSK” in the remainder of this
document)

The program (Sample program) executed after the programming is also available. The sample program is stored in the
“demo” folder in each project.

1.2 Operating Environment
The table below lists the operating environment of the main program and the sample program.

Table 1-1 Operating Environment

Items Contents
Microcontroller RX113 Group
Evaluation board Renesas Starter Kit for RX113 (Part No.: R0K505113S000BE)
Integrated development
environment (IDE)

e2 studio, V4.1.0 or later

C Compiler RX Family C/C++ Compiler Package V2.03.00 or later
Emulator E1
Endian Little endian
RX Driver Package RX110, RX111, RX113, RX231 Group RX Driver Package Ver.1.01

(R01AN2670EJ)*
Note:* Operation of this application note has been verified when the modules in the RX Driver Package

mentioned above are incorporated. If any of the modules used in this application note are replaced with
a different module, the user must verify the operation.

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 4 of 41
Mar 31, 2017

1.3 Module Structure
Figure 1-1 shows Module structure of the main program, and Table 1-2 Modules lists the FIT modules to be included
in the main program. Some modules are included in the sample program.

Figure 1-1 Module Structure

Table 1-2 Modules

Type Module FIT Module Name Rev.
BSP Board Support Package (BSP) r_bsp 3.01
Middleware M3S-TFAT-Tiny FAT file system (TFAT) r_tfat_rx 3.02
 M3S-TFAT-Tiny Memory Driver Interface r_tfat_driver_rx 1.02
Device Driver USB Basic Firmware r_usb_basic 1.01
 USB Host Mass Storage Class (USB HMSC) r_usb_hmsc 1.01
 LCD controller/driver (LCDC) r_lcdc_rx 1.00

Flash memory (Flash API) r_flash_rx 1.30
Application Main program FIT module r_flash_writer_rx113 1.00

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 5 of 41
Mar 31, 2017

1.4 File Structure
Figure 1-2 shows the file structure used in this application note.

Figure 1-2 File Structure

When the ZIP file provided with this application note is decompressed, a folder with the same name is created, and the
various folders and files are created within that folder

The “workspace” folder is the project to build “On-chip Flash Memory Programming application using the USB
memory”. To use the e2 studio, import the project into the workspace.

Documents that describe using the FIT modules in various development environments are included in the
reference_documents folder. The document “Adding Firmware Integration Technology Modules to Projects”
(R01AN1723EU) describes the method for including the FIT modules, as a FIT plugin, in an e2 studio project. The
document “Adding Firmware Integration Technology Modules to CS+ Projects” (R01AN1826EJ) describes the method
for including the FIT modules in a CubeSuite+ project.

ZIP file provided with this Application Note
(an_r01an2537ejxxxx_rx.zip)

an_r01an2537ejxxxx_rx_apl_fit

workspace

HardwareDebu
g

Application Note
(r01an2537ej0100_rx11

3.pdf)
(This document)

reference_docum
ents

.settings

Adding Firmware
Integration
Technology
Modules to

Projects
(r01an1723euxxxx

_rx.pdf)

Adding Firmware
Integration

Technology Modules
to CS+ Projects

(r01an1826ejxxxx_r
x.pdf)

This Application Note project
(r_flash_writer_rx113)

Project settings
files

(.project and
other files)

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 6 of 41
Mar 31, 2017

2. Acquiring a Development Environment
2.1 Acquire and install e2 studio
Access the following URL and download the e2 studio.

http://japan.renesas.com/e2studio_download

This document requires you to use e2 studio V4.1.0 or later. If the version older than V4.1.0 is used, some functions of
the e2 studio may not be available. For download, obtain the latest version of the e2 studio on the website

2.2 Acquire a Compiler Package
Access the following URL and download the RX Family C/C++ Compiler Package.

http://japan.renesas.com/e2studio_download

http://japan.renesas.com/e2studio_download
http://japan.renesas.com/e2studio_download
http://japan.renesas.com/e2studio_download
http://japan.renesas.com/e2studio_download

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 7 of 41
Mar 31, 2017

3. Building a Project
This application note includes environment-built project. The procedure to import a Project using e2 studio Smart
browser is described below.

3.1 Create a Workspace
1. Start e2 studio.

2. Enter an arbitrary workspace folder in the displayed dialog box and click [OK].

3. When the following window is displayed, click [Workbench].

Enter a workspace
folder.

Click [OK].

Click [Workbench].

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 8 of 41
Mar 31, 2017

3.2 Create a Project
When using the Smart browser function, the target project or file needs to be selected. To use this function, create the
project that specified the target device (Note 1).

Note 1: The project to be created here is a dummy to use the Smart browser.

1. Click [File (F)], [New (N)], then [C Project] to create new C project. Start [Create New project wizard].

2. Input any project name and select [Renesas RXC Toolchain]. Click [Next (N)].

Click here.

Select “Renesas RXC
Toolchain”.

Click here.

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 9 of 41
Mar 31, 2017

3. Set Select Target to R5F51138AxFP for RX113 100 Pin device. For other items, any setting is OK. When the
setting is completed, click [Finish(F)].

4. Click [OK].

R5F51138AxFP

Click here.

Click here.

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 10 of 41
Mar 31, 2017

3.3 Import a Project
Import the project of Main program in the workspace created.

This application note includes the projects that select a file by;

• Project that selects a file by switch

1. Select the project created in ”3.2 Create a Project” from Project explorer.

2. Click on [Renesas Views]  [e2 Solution Tool kit]  [Smart browser] to start the Smart browser.

3. Click on the [Application Note] on the [Smart browser] tabbed page.

Select project.

Click here.

Click here.

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 11 of 41
Mar 31, 2017

4. Click [Update].

5. Select the application note and right-click. Then, click on [Sample code(Project import)] in the context menu.
(Note 1).

Note 1: If authentication by My Renesas has never been performed, ”My Renesas” dialog opens when downloading

the file. Enter your mail address and password registered in the Renesas website.

Click here.

Click here.

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 12 of 41
Mar 31, 2017

6. Click [Agree].

7. Save the application note.

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 13 of 41
Mar 31, 2017

8. Select the project to be imported, and click [Finish(F)].

This application note includes the following projects.
Project name Contents

r_flash_writer_rx113_switch Project that selects a file by switch

Click here.

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 14 of 41
Mar 31, 2017

9. Delete the project (shown as “sample” here) created to use the Smart browser as this is not required.

Right click here.

Click here.

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 15 of 41
Mar 31, 2017

3.4 Modify Configuration
In this project, the configuration file setting and project setting for each FIT module are changed to configure the
application. The detail is shown as follows.

Refer to this information when building new project. To use the project imported, go to “4. Verify Operation”.

3.4.1 Change Configuration
The configuration files for each FIT module configuring this application require modification.

Refer to the manuals and other files in the doc folder for each FIT module for details on the items and the settings in the
configuration files.

The places to be changed in the configuration files are shown below.

(1) Change the number of drives for USB Mini

Change the number of drives for USB Mini defined by r_tfat_driver_rx configuration file as follows.

(2) Change the device allocation

Allocate the device to the drive number. In this sample, drive 0 is allocated to USB Mini.

/* Number of logical drives to be used.
 Setting to 0 : unused memory
 other : number of logical drives
 (USB and SDHI can be used together.)
*/
#define TFAT_USB_DRIVE_NUM (0)
#define TFAT_SDHI_DRIVE_NUM (0)
#define TFAT_USB_MINI_DRIVE_NUM (1)

【r_config/r_tfat_driver_rx_config.h】

#define TFAT_DRIVE_ALLOC_NUM_0 TFAT_CTRL_USB_MINI
#define TFAT_DRIVE_ALLOC_NUM_1 NULL
#define TFAT_DRIVE_ALLOC_NUM_2 NULL
#define TFAT_DRIVE_ALLOC_NUM_3 NULL
#define TFAT_DRIVE_ALLOC_NUM_4 NULL
#define TFAT_DRIVE_ALLOC_NUM_5 NULL
#define TFAT_DRIVE_ALLOC_NUM_6 NULL
#define TFAT DRIVE ALLOC NUM 7 NULL

【r_config/r_tfat_driver_rx_config.h】

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 16 of 41
Mar 31, 2017

(3) Change DTC transfer setting

The following DTC definition is described in r_usb_basic_mini_config.h.

Enable the ”USB_NOUSE” definition, as DTC transfer is not performed in the sample.

(4) Change TFAT setting

TFAT definition is described in r_usb_hmsc_mini_config.h. To use TFAT, enable the following macro.

(5) Change Flash API setting

To program code flash, enable the following macro.

/* DTC DEFINE */
 #define DTC_USE_PIPE_NUM USB_NOUSE
 //#define DTC_USE_PIPE_NUM USB_PIPE1
 //#define DTC_USE_PIPE_NUM USB_PIPE2
 //#define DTC_USE_PIPE_NUM USB_PIPE3
 //#define DTC_USE_PIPE_NUM USB_PIPE4
 //#define DTC_USE_PIPE_NUM USB_PIPE5

【r config/r usb basic mini config.h】

 #define USB_TFAT_USE_PP
【r config/r usb hmsc mini config.h】

 #define FLASH_CFG_CODE_FLASH_ENABLE (1)
【r config/r flash rx config.h】

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 17 of 41
Mar 31, 2017

3.4.2 Change Project Setting
The contents changed from default setting of the project setting is shown. To check the project setting, use the following
procedure.

1. Select the project for the e² studio and right-click. Then, click [Property (R)].

Click here.

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 18 of 41
Mar 31, 2017

2. Click on [C/C++ Build], and [Setting].

 Project setting of the main program
The main program setting is changed from default setting to the contents listed in Table 3-1 Changed build setting
Modules for building, and in Table 3-2 Changed debug setting for debugging

Table 3-1 Changed build setting Modules

Items Changed contents Description

Compiler
- Object

Check “Generate debug information” Outputs the debug information required when
debugging.

Assembler
- Object

Check “Generate debug information” Outputs the debug information to a
relocatable file.

Linker
- Input

Add "${workspace_loc:/${ProjName}/
r_tfat_rx/lib/tfat_rx200_little.lib}" (Note)

Requires the setting when using TFAT.
(required when using TFAT)

Linker
- Section

Remove PResetPRG and PIntPRG from
section definition (Note)

Requires the setting when using BSP
(required when using FIT)

 Change P Section to P* Section (Note) Requires the setting when using BSP
(required when using FIT)

 Add RPFRAM Section after R Section
(Note)

Requires the setting of the area Flash API
uses (required when using Flash API)

Linker
- Output

Map from ROM to RAM
Add PFRAM=RPFRAM to the section
(Note)

Requires the setting of the area Flash API
uses (required when using Flash API)

Note The setting change is required when creating the project that includes each FIT module for BSP, TFAT,
and Flash API. For the setting, refer to the manuals, etc. in the doc folder of each FIT module.

Click here.

Click here.

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 19 of 41
Mar 31, 2017

Table 3-2 Changed debug setting

Items Changed contents Description
Debugger
 - Debug tool setting

Change “Re-write the on-chip
program ROM” to “Yes”

Required when debugging the program re-
writing on-chip flash memory.

 Project setting of the sample program
The changed contents from default setting when building is listed in .

Table 3-3 Changed build setting (sample)

Items Changed contents Description
Linker
- Section

Remove PResetPRG and PIntPRG
from section definition (Note)

Requires the setting when using BSP
(required when using FIT)

 Change P Section to P* Section (Note) Requires the setting when using BSP
(required when using FIT)

 Change the address of C_1 section to
“0xFFFF 0000”

Define start address to program

 Change the address of FIXEDVECT
section to “0xFFFF BF80”

Define start address of fixed vector table

Linker
- Output

Change output file/type to “Binary via
absolute”

Set the file type to write in the USB memory

Note The setting change is required when creating the project that includes each BSP FIT module. For the
setting, refer to the manuals, etc. in the doc folder of each BSP FIT module.

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 20 of 41
Mar 31, 2017

4. Verify Operation
4.1 Build the Project
Use the following procedure to build the project and generate a load module.

1. Click the project to build from the Project Explorer.

2. Click Build project from the Project menu.

Click here.

Click here.

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 21 of 41
Mar 31, 2017

3. When “Build complete” is displayed on the Console panel, the build will have completed.

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 22 of 41
Mar 31, 2017

4.2 Prepare for Debugging
4.2.1 Configure Hardware
The evaluation board must be configured before starting debugging.

A table of the required equipment and its configuration are shown below.

Table 4-1 Hardware Configuration

Device Supplementary Information
Development PC
RSK Evaluation board
E1 Emulator Included in Renesas Starter Kit for RX113
USB memory Memory that is formatted as either FAT or FAT32.

Figure 4-1 Operating environment example

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 23 of 41
Mar 31, 2017

4.2.2 Set up the RSK
The RSK settings required to operate the main program are shown below.

Set the USB mode (Host/Peripheral). Set jumper J12 to match the setting of USB_FUNCSEL_PP in
r_usb_basic_mini_config.h.

Table 4-2 Jumper Settings

Devices Jumper Setting contents
When use USB in host mode.
(USB_FUNCSEL_PP = USB_HOST_PP)

J12 Short 1 to 2.
(*selected this time)

When use USB in peripheral mode.
(USB_FUNCSEL_PP = USB_PERI_PP)

J12 Short 2 to 3.

Note: The image and the actual configuration will be different.

Figure 4-2 RSK Jumper Locations

Jumper J12

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 24 of 41
Mar 31, 2017

4.2.3 Prepare USB Memory
Store the binary file of the sample program on the USB memory.

Open the demo folder in the project of the main program, and decompress the sample1.zip file and save it into the
desired location (folder). Copy the sample.bin file in the decompressed sample/release folder to the USB memory.

Copy the
sample1.bin file

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 25 of 41
Mar 31, 2017

4.3 Debug the Project
Use the following procedure to start debugging the project.

1. Connect the development PC to the E1 emulator with a USB cable, and connect E1 emulator to the RSK with user

system interface cable.

2. Connect the RSK to the adapter and turn on the power.

3. Click on [Debug Configurations] in the e2 studio Run menu.

Click here.

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 26 of 41
Mar 31, 2017

4. Click on [r_flash_writer_rx113.x] under [Renesas GDB Hardware Debugging].

5. Click on [Debug Tool setting]  [System]  [Re-write the on-chip program ROM] and select [Yes], then, click

on [Debug].

Select
[r_flash_writer_RX113.x]

Click on [Debug]

Select [Debug Tool
setting] [System] [Re-
write the on-chip program
ROM] and select [Yes]

Select [Debugger]

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 27 of 41
Mar 31, 2017

6. When the following message is displayed, click [Yes].

7. When the load module download completes, a Debug perspective opens.

8. Click [Resume] on the toolbar. The program will be executed and a break will occur at the start of the main

function.

Click here

Click here.

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 28 of 41
Mar 31, 2017

9. After the break at the start of the main function, click [Resume] on the tool bar again.

Connect the USB memory.
Data will be read from the USB memory automatically and written to the flash.
If the MCU is restarted and the value displayed on the LCD is counted up as shown in the image below, then it
means that the program has completed successfully.

This value is counted up

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 29 of 41
Mar 31, 2017

5. Application overview
The sample program counts up the value displayed on the 7 segment display of the RSK RX113 LCD every 1 second. It
only requires the on-board memory of the MCU for its operation and no other memory is required.

The memory settings are configured to suit the ROM and RAM capacities of RSK RX113 in the sample program.

1. Initializes the LCD driver.

2. Displays “SAMPL” on the display part of the LCD.

3. Performs 1-second wait processing.

4. Displays a counted-up value (0000 to 9999) on the 7 segment display of the LCD.

5. Repeats step 3 and 4.

Note: This sample program has been created for evaluating the main program operation. Therefore the program operates
on memory areas that are not used by the main program.

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 30 of 41
Mar 31, 2017

5.1 Memory structure
It shows RX113 MCU memory map on the RSKRX113 used in this application.

Figure 5-1 Memory map

0000 0000h

0008 0000h

FFFF FFFFh

内蔵RAM

メインプログラム
起動情報ROM

0010 0000h

周辺I/Oレジスタ

0010 2000h

E2データフラッシュ

FFF8 0000h

FFFF C000h

FFFF 0000h

メインプログラム
ROM

サンプルプログラム
ROM

予約領域

サンプルプログラム
起動情報ROM

0001 0000h

予約領域

FFFF 8000h

注1.本メモリ構成は、RSKRX231に搭載しているRX231マイコンのメモリ構成です。

使用CPU 型番及びメインプログラムサイズによりセクションアドレスが異なります。

また、ユーザシステムにより修正が必要になります。

Note 1 : The memory structure is for RX113 MCU in the RSKRX113.
 Section address is different depending on the CPU model and main program size used.
 Also, modification is required depending on the user system.

On-chip RAM

Reserved address

Peripheral I/O register

E2 DataFlash

Reserved address

Main program

ROM

Main program

Start information ROM

Sample program

ROM
Sample program

Start information ROM

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 31 of 41
Mar 31, 2017

6. Main Program Specifications
6.1 Files
The main program is included in the program. The source files of the main program is included in the src folder.

The main program FIT module name is “r_flash_writer_rx113”. The source files are included in src folder.

The file structure of the FIT modules and the main program files are listed below.

The main program files are listed in Table 6-1 , and the FIT modules used are listed in Table 6-2 .

Table 6-1 Main Program Files

Folder File Description

src

main.c Source file of main processing
r_rsk_extention_lcd.c Source file of LCD driver application processing
r_rsk_flashdriver.c Source file of flash processing
r_rsk_keydriver.c Source file of key input processing
r_rsk_keydriver.h Header file of key input processing
r_rsk_lcddriver.c Source file of LCD driver call processing
r_rsk_lcddriver.h Header file of LCD driver call processing
r_rsk_leddriver.c Source file of the LED initialization
r_rsk_leddriver.h Header file of the LED initialization
r_usb_hmsc_apl.c Source file of total control processing
r_usb_hmsc_apl.h Header file of USB driver call processing

Table 6-2 FIT modules used

Folder name Contents
r_bsp Board Support Package (BSP) file group
r_config FIT module config file
r_flash_rx Flash memory (Flash API) file group
r_lcdc_rx LCD Controller/Driver (LCDC) file group
r_tfat_driver_rx M3S-TFAT-Tiny Memory driver interface file group
r_tfat_rx M3S-TFAT-Tiny FAT file system (TFAT) file group
r_usb_basic_mini USB Basic Firmware file group
r_usb_hmsc_mini USB Host Mass Storage Class (USB HMSC) file group

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 32 of 41
Mar 31, 2017

6.2 Modules
The following table lists the modules.

Table 6-3 Modules

File Module Description

main.c main
Main processing in the main program
Processing to open the flash driver and call for the
usb_main function.

r_usb_hmsc_api.c

usb_main Initializations and total control processing
usb_hmsc_driver HMSC driver task processing
msc_detach_device Processing for disconnecting the USB
msc_connect_wait Wait processing for connecting the USB device

msc_drive Processing for connecting the USB device and
mounting the TFAT file system

msc_data_ready Processing for dummy state before read state

msc_data_read Processing for reading from the USB memory and
writing to the flash

usb_hsmpl_device_state USB driver callback processing
msc_configured Processing for notifying of USB connection
msc_drive_complete Processing for notifying of completion of USB connection
msc_detach Processing for notifying of USB disconnection
usb_mcu_init USB port initialization

usb_board_init LED and LCD initializations and processing for
enabling USB interrupts.

usb_driver_init USB driver initialization
apl_init Control table initialization
msc_registration Processing for registering the USB callback function
msc_event_set Event setting processing
msc_event_get Processing for detecting a switch input and obtaining an event
msc_led_control LED control processing

r_rsk_leddriver.c
usb_cpu_LedInitial LED initialization
usb_cpu_led_set_bit LED individual control processing
usb_cpu_led_set_data LED whole control processing

r_rsk_extention_lcd.c

Init_Extension_LCD LCD port initialization
usb_lcd_print_14seg_string Processing for turning on 14 segments
usb_lcd_print_u7seg_digit Processing for displaying on 7 segments (upper part)
usb_lcd_print_c7seg_digit Processing for displaying on 7 segments (middle part)
dfw_lcd_ascii_calc Processing for ASCII character conversion

r_rsk_lcddriver.c
usb_cpu_LcdInitial LCD module initialization
usb_cpu_LcdDisp LCD display processing
string_length_count Processing for the number of strings information

r_rsk_flashdriver.c SAMPLE_FLASH_Write Flash erase/program processing

r_rsk_keydriver.c

usb_cpu_key_read Chattering elimination processing
usb_cpu_sw_data Processing for detecting a switch input
usb_cpu_sw1_data Switch 1 input
usb_cpu_sw2_data Switch 2 input
usb_cpu_sw3_data Switch 3 input

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 33 of 41
Mar 31, 2017

6.3 Flowcharts
(1) Main processing

This is the main function which is firstly called from the startup routine of the board support package (BSP).

The function performs flash open processing and calls the usb_main function.

Although an infinite loop is performed in the usb_main function, an infinite loop is also performed in the end of this
function.

Figure 6-1 Main processing

(2) Main processing of USB

This is main processing which performs various initializations and controls states of processing order.

Figure 6-2 Main processing of USB (1)

main

R_FLASH_Open

usb_main

Flash open processing

Main program

Sample code
processing

FIT module API

Infinite loop stop

usb_main

usb_board_init

USB port initialization

LED, LCD, and USB initializations

Sample code
processing

usb_driver_init USB driver start-up processing

USB_RSK_LCD_DISPLAY

apl_init

usb_mcu_init

A

Control table initialization

LCD display processing

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 34 of 41
Mar 31, 2017

Figure 6-3 Main processing of USB (2)

(3) Port initialization of USB driver

This performs initial port setting for the USB driver.

Figure 6-4 Port initialization of USB driver

Sample code
processing

msc_detach_device

msc_data_read

msc_data_ready

msc_drive

msc_connect_wait

usb_hmsc_driver

A

STATE_DETACH?

STATE_DATA_READ?

STATE_DATA_READY?

STATE_ATTACH?

STATE_DRIVE?

USB_RSK_LCD_DISPLAY

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

lcd_update?

Yes

No

usb_mcu_init

USB port initialization

Sample code
processing

FIT module API

return

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 35 of 41
Mar 31, 2017

(4) Initialization of LCD driver, LED driver and USB driver

This initializes the LCD, LED, and USB drivers.

Figure 6-5 Initialization of LCD driver, LED driver and USB driver

(5) USB driver initialization

This is processing for starting up the USB driver.

Figure 6-6 USB driver initialization

usb_board_init

USB_RSK_LCD_INIT

Sample code
processing

FIT module API

return

usb_cpu_target_init

USB_RSK_LED_INIT

LCD initialization

LED initialization

USB initialization

usb_driver_init

msc_registration

Sample code

FIT module API

return

R_usb_hstd_
ChangeDeviceState

USB module open function

Requests for changing the state of the connected device.

HCD task start-up function

R_USB_Open

R_usb_hstd_
HcdOpen

R_usb_hstd_
ChangeDeviceState

R_usb_hmsc_driver_
start

Requests for changing the state of the connected device.

Registers the USB callback function.

Dummy function

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 36 of 41
Mar 31, 2017

(6) Control table Initialization

This initializes the control table.

Figure 6-7 Control table initialization

(7) Registration of class driver

This registers the class driver.

Figure 6-8 Registration of class driver

apl_init

Control table initialization

Sample code
processing

FIT module API

return

msc_registration

Preparation for class driver
information

R_usb_hstd_DriverRegistration Registers the host class driver.

return

Sample code
processing

FIT module API

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 37 of 41
Mar 31, 2017

(8) USB HMSC driver task

This is processing for the USB HMSC driver task.

Figure 6-9 USB HMSC driver task

usb_hmsc_driver Sample code
processing

FIT module API

return

R_usb_hstd_
HcdTask

Controls the processing request.

Verifies if task processing presents.

HCD task

R_usb_cstd_
Scheduler

R_usb_hstd_
MgrTask

R_usb_hmsc_
StrgDriveTask

R_usb_hmsc_Task

STRG driver task

MGR task

Host mass storage class task

USB_FLGSET？

Yes

No

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 38 of 41
Mar 31, 2017

(9) Wait for USB device detection

This is the function to wait for USB device connection.

Figure 6-10 Wait for USB device detection

(10) USB device connection, and TFAT file system mount

This reads the USB drive information and mounts the TFAT file system.

Figure 6-11 USB device connection, and TFAT file system mount

usb_hmsc_driver Sample code
processing

FIT module API

return

R_usb_hmsc_SetDevSts

Obtains an event

Verifies if the USB is connected.

Specifies the HMSCD operating state.

msc_event_get

Updating the control table

EVENT_CONFIGERD?

Yes

No

msc_drive Sample code
processing

FIT module API

return

R_usb_hmsc_
StrgDriveSearch

Obtains an event.

Reads the partition
information and search
the drive.

msc_event_get

Updating the control table

EVENT_DRIVE?

Yes

No
EVENT_DRIVE_COMPLETE?

Yes

No

Updating the control table

R_tfat_f_mount Mounts the TFAT
file system.

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 39 of 41
Mar 31, 2017

(11) Setting before read state

This is the dummy control function.

Figure 6-12 Setting before read state

(12) Data read from USB memory, and data write to flash memory

This reads the data from the USB memory and writes the data to the flash.

Figure 6-13 Data read from USB memory, and data write to Flash memory

msc_data_ready

Updating the control table

Sample code
processing

FIT module API

return

msc_data_read Sample code
processing

FIT module API

return

R_tfat_f_stat

Obtains an event.

Obtains the file status.

msc_event_get

EVENT_READ_START?

Yes

No

R_tfat_f_open

R_tfat_f_lseek

R_tfat_f_read

SAMPLE_FLASH_Write

R_tfat_f_close

Updating the control table

Opens the file.

Moves the file pointer.

Reads the data.

Closes the file.

Erases and writes the flash.

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 40 of 41
Mar 31, 2017

(13) USB disconnection

This disconnects the USB device and starts up the sample program.

Figure 6-14 USB disconnection

msc_detach_device

Restart

Sample code
processing

FIT module API

return

R_usb_hmsc_
DriveClose

Specifies the HMSCD operating status.

Releases the drive.

R_usb_hmsc_
SetDevSts

Changes the start-up information and starts up sample.bin.

Method for Restarting

Changed temporarily

Starts up from the address specified with the reset vector table

Main start-up
information ROM

0xFFFFC000
Sample start-up
information ROM

0xFFFFFFFF

Obtains the address information of the reset vector table

0xFFF800000xFFF80000

0xFFFFC000

0xFFFFFFFF

Sample start-up
information ROM

Main start-up
information ROM

RX113 Group On-chip Flash Memory Programming Solution using USB Memory RX
Driver Package Application

R01AN2537EJ0102 Rev.1.02 Page 41 of 41
Mar 31, 2017

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

Revision History

Rev. Date
Description

Page Summary
1.02 Mar 31, 2017 - First edition issued

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with

an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
LSI, an associated shoot-through current flows internally, and malfunctions occur due to the
false recognition of the pin state as an input signal become possible. Unused pins should be
handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of
pins are not guaranteed from the moment when power is supplied until the reset process is
completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset
function are not guaranteed from the moment when power is supplied until the power reaches
the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not

access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become
stable. When switching the clock signal during program execution, wait until the target clock signal
has stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock
signal. Moreover, when switching to a clock signal produced with an external resonator (or by
an external oscillator) while program execution is in progress, wait until the target clock signal is
stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of an MPU or MCU in the same group but having a different part number

may differ in terms of the internal memory capacity, layout pattern, and other factors, which can
affect the ranges of electrical characteristics, such as characteristic values, operating margins,
immunity to noise, and amount of radiated noise. When changing to a product with a different
part number, implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages

incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas

Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them

against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and

software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty

for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and

regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all

these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction,

such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development,

design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics

products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting,

selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the

countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice,

and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2017 Renesas Electronics Corporation. All rights reserved.
Colophon 6.0

(Rev.3.0-1 November 2016)

http://www.renesas.com
http://www.renesas.com/

	1. Overview
	1.1 This Application Note
	1.2 Operating Environment
	1.3 Module Structure
	1.4 File Structure

	2. Acquiring a Development Environment
	2.1 Acquire and install e2 studio
	2.2 Acquire a Compiler Package

	3. Building a Project
	3.1 Create a Workspace
	3.2 Create a Project
	3.3 Import a Project
	3.4 Modify Configuration
	3.4.1 Change Configuration
	(1) Change the number of drives for USB Mini
	(2) Change the device allocation
	(3) Change DTC transfer setting
	(4) Change TFAT setting
	(5) Change Flash API setting

	3.4.2 Change Project Setting

	4. Verify Operation
	4.1 Build the Project
	4.2 Prepare for Debugging
	4.2.1 Configure Hardware
	4.2.2 Set up the RSK
	4.2.3 Prepare USB Memory

	4.3 Debug the Project

	5. Application overview
	5.1 Memory structure

	6. Main Program Specifications
	6.1 Files
	6.2 Modules
	6.3 Flowcharts
	(1) Main processing
	(2) Main processing of USB
	(3) Port initialization of USB driver
	(4) Initialization of LCD driver, LED driver and USB driver
	(5) USB driver initialization
	(6) Control table Initialization
	(7) Registration of class driver
	(8) USB HMSC driver task
	(9) Wait for USB device detection
	(10) USB device connection, and TFAT file system mount
	(11) Setting before read state
	(12) Data read from USB memory, and data write to flash memory
	(13) USB disconnection

	General Precautions in the Handling of MPU/MCU Products

