RX ファミリ、SH ファミリ
HCAN2（SH ファミリ）と CAN（RX ファミリ）の相違点

要旨

本アプリケーションノートでは、SH ファミリが搭載しているコントローラエリアネットワーク（HCAN2）をご使用されているユーザに対し、RX ファミリへの移行を検討していただく際の CAN の相違点を記載した参考資料です。

本アプリケーションノートでは、対象デバイスに記載している製品の中から表 1 に示すグループの CAN を比較しています。表 1 に示すデバイス以外は、ユーザーズマニュアルをご確認ください。

また、RX200 シリーズに搭載されている RSCAN は、比較元である CAN とはソフトウェアの互換性が全くありませんので、本アプリケーションノートでは対象としておりません。RX ファミリにおける RSCAN と CAN の相違については 5. 関連ドキュメントをご確認ください。

表 1 CAN 仕様の比較対象デバイス

<table>
<thead>
<tr>
<th>比較対象</th>
<th>ファミリ</th>
<th>グループ</th>
<th>搭載 CAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>比較元</td>
<td>SH ファミリ</td>
<td>SH7047 グループ</td>
<td>HCAN2</td>
</tr>
<tr>
<td>比較先</td>
<td>RX ファミリ</td>
<td>RX65N、RX651 グループ</td>
<td>CAN</td>
</tr>
</tbody>
</table>

対象デバイス

下記のうち、CAN が搭載されている製品

HCAN2 搭載デバイス

SH7047 グループ

CAN 搭載デバイス

RX600 シリーズ、RX700 シリーズ
目次

1. 機能の相違... 3

2. レジスタの相違 .. 8
 2.1 レジスタ一覧... 8
 2.2 制御レジスタの詳細 ... 11
 2.3 ステータスフラグの詳細 ... 13
 2.4 ビットタイミングと転送速度設定の詳細 .. 15
 2.5 メールボックスの送受信設定の詳細 ... 16
 2.6 割り込み要因のステータスフラグの詳細 ... 19
 2.7 割り込み要因の要求を許可/禁止するフラグの詳細.. 22
 2.8 受信メッセージの Identifier によるフィルタリング設定の詳細 .. 25
 2.9 タイマ制御/タイムトリガの詳細 ... 26

3. メールボックスの相違 .. 28

4. その他の相違 .. 30
 4.1 スリープモードの設定手順 ... 30
 4.2 CAN リセットによる初期化 ... 31
 4.3 エンディアン .. 31

5. 関連ドキュメント .. 32

改訂記録 .. 33
RX ファミリ、SH ファミリ HCAN2（SH ファミリ）と CAN（RX ファミリ）の相違点

1. 機能の相違

以下に機能の相違を示します。いずれかのグループにしか存在しない、または両方のグループに存在するが相違点がある項目は赤字にしています。

表 2 SH7047（HCAN2）と RX65N（CAN）の機能の相違

<table>
<thead>
<tr>
<th>項目</th>
<th>SH7047（HCAN2）</th>
<th>RX65N（CAN）</th>
</tr>
</thead>
<tbody>
<tr>
<td>プロトコル</td>
<td>Bosch 2.0B active 対応（ISO11898-1 規格）</td>
<td></td>
</tr>
<tr>
<td>ビットレート</td>
<td>転送速度 最大 1Mbps</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ビットレート計算式</td>
<td></td>
</tr>
<tr>
<td></td>
<td>fCLK / ((BRP+1) × (1+TSEG1+TSEG2))</td>
<td>fCAN / ((BRP+1) × (1+TSEG1+TSEG2))</td>
</tr>
<tr>
<td></td>
<td>fCLK：システムクロック / 2</td>
<td>fCAN：周辺クロック or メインクロック</td>
</tr>
<tr>
<td></td>
<td>BRP：ポーレートプリスケーラ（設定値+1でfCLKを分周）</td>
<td>BRP：ポーレートプリスケーラ（設定値+1でfCANを分周）</td>
</tr>
<tr>
<td></td>
<td>TSEG1,2：タイムセグメント1,2</td>
<td>TSEG1,2：タイムセグメント1,2</td>
</tr>
<tr>
<td>チャネル</td>
<td>1チャネル</td>
<td>2チャネル</td>
</tr>
<tr>
<td>IDフォーマット</td>
<td>各メールボックス（MBx.IDEビット）で、標準IDか拡張IDかを選択</td>
<td>IDフォーマットモードビット（IDFM）で全メールボックスのIDフォーマットを指定</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IDフォーマットモードビット（IDFM）でミックスIDモードを選択した場合、各メールボックス（MBj.IDEビット）で、標準IDか拡張IDかを選択</td>
</tr>
<tr>
<td>メールボックス</td>
<td>バッファ構成 各チャネル32バッファ（受信専用×1、送信／受信設定可能×31）</td>
<td>各チャネル32バッファ（送信／受信設定可能×32）</td>
</tr>
<tr>
<td></td>
<td>FIFOメールボックスモード 無</td>
<td>送信／受信設定可能×24、送信用4段、受信用4段のFIFOとして設定可能</td>
</tr>
<tr>
<td>データ送信</td>
<td>送信優先順位の選択</td>
<td>送信優先順位の選択</td>
</tr>
<tr>
<td></td>
<td>メールボックス（パッファ）の番号順（降順）</td>
<td>メールボックス（パッファ）の番号順（昇順）</td>
</tr>
<tr>
<td></td>
<td>メッセージ優先順位（Identifier）の高い順</td>
<td>メッセージ優先順位（Identifier）の高い順</td>
</tr>
<tr>
<td></td>
<td>可能</td>
<td>可能</td>
</tr>
<tr>
<td></td>
<td>※レジスタの操作方法が異なります。2.5メールボックスの送受信設定の詳細を参照ください。</td>
<td></td>
</tr>
<tr>
<td>ワンショット送信機能</td>
<td>無</td>
<td>1回のみ送信（CANバスエラー、アービトラジョンロストの場合でも再送信なし）</td>
</tr>
<tr>
<td>項目</td>
<td>SH7047（HCAN2）</td>
<td>RX65N（CAN）</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>データ受信</td>
<td>データフレームとリモートフレーム受信</td>
<td>データフレームとリモートフレーム両方受信可能</td>
</tr>
<tr>
<td></td>
<td>データフレームとリモートフレームどちらかを選択</td>
<td>※FIFO メールボックスモードのとき、FIDCR0.RTR ビットと FIDCR1.RTR ビットの組み合わせにより両方受信可能</td>
</tr>
<tr>
<td>メッセージIDマスク機能</td>
<td>メールボックスごとに設定可能（メールボックス内にマスクの設定フィールドを持つ）</td>
<td>8 個のマスク設定可能（4 メールボックス単位）対象は全メールボックス</td>
</tr>
<tr>
<td>オーバライートモード（オーバーランモードの選択機能）</td>
<td>選択可能</td>
<td>1 回のみ受信（受信完了後は受信メールボックスとして動作しない）</td>
</tr>
<tr>
<td>ワンショット受信機能</td>
<td>無</td>
<td>有</td>
</tr>
<tr>
<td>送信割り込み</td>
<td>メッセージ送信完了割り込み</td>
<td>有</td>
</tr>
<tr>
<td></td>
<td>メッセージ送信取り消し完了割り込み</td>
<td>無 ※送信アボート完了フラグ（TRMABT）で確認可能</td>
</tr>
<tr>
<td></td>
<td>送信 FIFO 割り込み</td>
<td>有</td>
</tr>
<tr>
<td>受信割り込み</td>
<td>メッセージ受信割り込み</td>
<td>有</td>
</tr>
<tr>
<td></td>
<td>リモートフレーム受信割り込み</td>
<td>有 ※リモート送信要求ビット（RTR）でリモートフレームに設定したメールボックスは、リモートフレームを受信するとメッセージ受信割り込み要求が発生</td>
</tr>
<tr>
<td></td>
<td>受信 FIFO 割り込み</td>
<td>有</td>
</tr>
<tr>
<td>エラー割り込み</td>
<td>エラーパッシュプ割り込み（TEC≧128 または REC≧128）</td>
<td>有</td>
</tr>
<tr>
<td></td>
<td>バスオフ開始割り込み（TEC≧256）</td>
<td>有</td>
</tr>
<tr>
<td></td>
<td>バスオフ復帰割り込み（バスオフ状態から通常復帰（11 の連続するレセプスビットを 128 回検出））</td>
<td>有</td>
</tr>
<tr>
<td>項目</td>
<td>SH7047（HCAN2）</td>
<td>RX65N（CAN）</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>エラーワーニング割り込み（TEC≧96, REC≧96）</td>
<td>有</td>
<td>有（送信エラーと受信エラーを個別に割り込み発生）</td>
</tr>
<tr>
<td>オーバーロードフレーム送信割り込み</td>
<td>有</td>
<td></td>
</tr>
<tr>
<td>未読メッセージのオーバーライト割り込み</td>
<td>有</td>
<td>無※メッセージロストフラグ（MSGLOST）で確認可能</td>
</tr>
<tr>
<td>受信オーバーラン割り込み</td>
<td>有</td>
<td></td>
</tr>
<tr>
<td>バスロック割り込み（CANバス上に32の連続するドミナントビットを検出）</td>
<td>無</td>
<td>有</td>
</tr>
<tr>
<td>バスエラー割り込み（CANバス上にスタッフエラーやフォームエラーなどを検出）</td>
<td>無</td>
<td>有</td>
</tr>
<tr>
<td>その他の割り込み</td>
<td></td>
<td></td>
</tr>
<tr>
<td>リセット処理割り込み</td>
<td>ソフトウェアリセットまたはハードウェアリセットによるリセットモードへの遷移で割り込み発生</td>
<td>無※パワーオンリセット検出フラグ（PORF）やディープソフトウェアスタンバイリセットフラグ（DPSRSTF）でリセット種類を判別可能</td>
</tr>
<tr>
<td>ホールト割り込み</td>
<td>ホールトモードへの遷移で割り込み発生</td>
<td>無</td>
</tr>
<tr>
<td>スリープ割り込み</td>
<td>スリープモードへの遷移で割り込み発生</td>
<td>無</td>
</tr>
<tr>
<td>タイマコンペアマッチ割り込み</td>
<td>TCMR0、TCMR1のコンペアマッチで割り込み発生</td>
<td>無</td>
</tr>
<tr>
<td>タイマオーバーフロー割り込み</td>
<td>タイマ（TCNTR）のオーバーフローで割り込み発生</td>
<td>無</td>
</tr>
<tr>
<td>CANバス動作割り込み</td>
<td>スリープモード中にCANバス動作（ドミナントビット検出）による割り込み発生</td>
<td>無</td>
</tr>
<tr>
<td>ハードウェアリセット</td>
<td>初期化するレジスタ</td>
<td>メールボックスを除く全てのレジスタMKRk、FIDCR、MKIVLR、MIER、TPPCR、RFPCR、CSSR、AFSR、メールボックスを除く全てのレジスタ</td>
</tr>
<tr>
<td>リセット後の状態遷移</td>
<td>コンフィギュレーションモード（リセットモード）</td>
<td>スリープモード</td>
</tr>
<tr>
<td>リセット後の初期設定処理</td>
<td>コンフィギュレーションモード（リセットモード）で実施</td>
<td>スリープモードを解除し、リセットモードに遷移してから実施</td>
</tr>
<tr>
<td>項目</td>
<td>SH7047（HCAN2）</td>
<td>RX65N（CAN）</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>ソフトウェアリセット</td>
<td>初期化するレジスタ</td>
<td>TEC、REC （MCTL、STR、SLPSTビットとTFSTビットを除く）EIFR、RECR、TECR、TFCR、TSR、MSSR、MSMR、RFCR、TFCR、TCR、ECSR（EDPMビットを除く）</td>
</tr>
<tr>
<td>通常状態（エラーアクティブ、エラーパッシブ）</td>
<td>遷移方法</td>
<td>制御レジスタで遷移</td>
</tr>
<tr>
<td>バスオフ状態</td>
<td>遷移方法</td>
<td>送信エラーカウンタTEC≧256で遷移</td>
</tr>
<tr>
<td>徹底時のモード</td>
<td>バスオフ状態で11bitの連続するレセプションビットを128回検出し、エラーアクティブ状態に遷移</td>
<td>4種類の選択が可能 1)バスオフ状態で11bitの連続するレセプションビットを128回検出し、エラーアクティブ状態に遷移 2)バスオフ遷移時にHALTモードに移行（割り込みなし） 3)バスオフ復帰時にHALTモードに移行（割り込みあり） 4)バスオフ状態で手動（プログラム）によりエラーアクティブ状態かHALTモードに移行するかを選択</td>
</tr>
<tr>
<td>コンフィグレーションモード（リセットモード）</td>
<td>遷移方法</td>
<td>ハードウェアリセット後に遷移、または制御レジスタで遷移</td>
</tr>
<tr>
<td>スリープモード</td>
<td>遷移方法</td>
<td>制御レジスタで遷移</td>
</tr>
<tr>
<td>HALTモード</td>
<td>遷移方法</td>
<td>制御レジスタで遷移</td>
</tr>
<tr>
<td>エラー状態の監視</td>
<td>CANパスエラー状態のモニタリング</td>
<td>不可（専用フラグなし）</td>
</tr>
<tr>
<td>エラーカウンタの読み出し</td>
<td>受信および送信エラーカウンタの読み出し可能</td>
<td></td>
</tr>
<tr>
<td>項目</td>
<td>SH7047（HCAN2）</td>
<td>RX65N（CAN）</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>DTC/DMAC 転送機能</td>
<td>メッセージ受信により DTC 起動可能</td>
<td>無</td>
</tr>
<tr>
<td>タイムスタンプ機能</td>
<td>● 16 ビットカウンタによるタイムスタンプ機能</td>
<td>16 ビットカウンタによるタイムスタンプ機能</td>
</tr>
<tr>
<td></td>
<td>● ソースクロックの分周を最大 126 分周に設定可能</td>
<td>基準クロックは 1,2,4,8 ビットタイムから選択可能</td>
</tr>
<tr>
<td></td>
<td>● コンペアマッチによる割り込み</td>
<td></td>
</tr>
<tr>
<td></td>
<td>※不具合があるため使用不可</td>
<td></td>
</tr>
<tr>
<td>タイムトリガ機能</td>
<td>有</td>
<td>無</td>
</tr>
<tr>
<td></td>
<td>※不具合があるため使用不可</td>
<td></td>
</tr>
<tr>
<td>ソフトウェアサポートユニット</td>
<td>無</td>
<td>アクセプタンスフィルタサポート</td>
</tr>
<tr>
<td></td>
<td></td>
<td>メールボックス検索サポート</td>
</tr>
<tr>
<td></td>
<td></td>
<td>チャネル検索サポート</td>
</tr>
<tr>
<td>テスト制御</td>
<td>自己診断機能</td>
<td>制御レジスタの設定により以下のテストモードとして動作させることができる</td>
</tr>
<tr>
<td></td>
<td>制御レジスタの設定の組み合わせにより以下のテストモードとして動作させることができる</td>
<td>制御レジスタの設定により、以下のテストモードで動作させることができる</td>
</tr>
<tr>
<td></td>
<td>リスンオンリモード</td>
<td>リスンオンリモード</td>
</tr>
<tr>
<td></td>
<td>セルフテストモード 1 (外部ループバック)</td>
<td>セルフテストモード 0 (外部ループバック)</td>
</tr>
<tr>
<td></td>
<td>セルフテストモード 2 (内部ループバック)</td>
<td>セルフテストモード 1 (内部ループバック)</td>
</tr>
<tr>
<td></td>
<td>ライトエラーカウンタ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>エラーパッシブモード</td>
<td></td>
</tr>
<tr>
<td>モジュールストップ</td>
<td>有</td>
<td></td>
</tr>
<tr>
<td>モジュールストップレジスタによるクロック供給</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. レジスタの相違

以下にレジスタの相違を示します。いずれかのグループにしか存在しない、または両方のグループに存在するが相違点がある項目は赤字にしています。

2.1 レジスタ一覧

<table>
<thead>
<tr>
<th>項目</th>
<th>SH7047（HCAN2）</th>
<th>RX65N（CAN）</th>
</tr>
</thead>
<tbody>
<tr>
<td>制御レジスタ</td>
<td>マスタコントロールレジスタ (MCR)</td>
<td>制御レジスタ（CTRL）</td>
</tr>
<tr>
<td>ステータスフラグ</td>
<td>ジェネラルステータスレジスタ (GSR)</td>
<td>ステータスレジスタ（STR） エラー割り込み要因判定レジスタ（EIFR）</td>
</tr>
<tr>
<td>ビットタイミングと転送速度の設定</td>
<td>ビットタイミングコンフィギュレーションレジスタ 0、1 (HCAN2_BCR0、HCAN2_BCR1)</td>
<td>ビットコンフィグレーションレジスタ（BCR）</td>
</tr>
<tr>
<td>メールボックスの送受信設定</td>
<td>メールボックス（MB0〜MB31）のメッセージコントロールフィールド（MBx[4]〜[5]）のMBC[2:0]ビット</td>
<td>メッセージ制御レジスタ j (MCTLj) (j = 0 〜 31)のRECREQビット、TRMREQビット</td>
</tr>
<tr>
<td>送信待ち設定</td>
<td>送信待ちレジスタ 0、1 (TXPR0、TXPR1)</td>
<td>メッセージ制御レジスタ j (MCTLj) (j = 0 〜 31)のTRMREQビット</td>
</tr>
<tr>
<td>送信完了ステータスフラグ</td>
<td>送信アクノレッジレジスタ 0、1 (TXACK0、TXACK1)</td>
<td>メッセージ制御レジスタ j (MCTLj) (j = 0 〜 31)のSENTDATAビット</td>
</tr>
<tr>
<td>送信待ち取り消し設定</td>
<td>送信待ち取り消しレジスタ 0、1 (TXCR0、TXCR1)</td>
<td>メッセージ制御レジスタ j (MCTLj) (j = 0 〜 31)のTRMREQビット</td>
</tr>
<tr>
<td>送信メッセージ取り消し完了のステータスフラグ</td>
<td>取り消しアクノレッジレジスタ 0、1（ABACK0、ABACK1）</td>
<td>メッセージ制御レジスタ j (MCTLj) (j = 0 〜 31)のSENTDATAビット、TRMABTビット</td>
</tr>
<tr>
<td>受信完了ステータスフラグ</td>
<td>受信完了レジスタ 0、1 (RXPR0、RXPR1)</td>
<td>メッセージ制御レジスタ j (MCTLj) (j = 0 〜 31)のNEWDATAビット</td>
</tr>
<tr>
<td>リモートフレーム受信完了ステータスフラグ</td>
<td>リモートトリクエストレジスタ 0、1 (RFPR0、RFPR1)</td>
<td>-</td>
</tr>
<tr>
<td>割り込み要因のステータスフラグ</td>
<td>インタラプトトリクエストレジスタ (IRR) ※フラグエリアは“1”書き込み</td>
<td>メッセージ制御レジスタ j (MCTLj) (j = 0 〜 31)のRECREQビット、TRMREQビット エラー割り込み要因判定レジスタ（EIFR） ※フラグエリアは“0”書き込み</td>
</tr>
<tr>
<td>各メールボックス（バッファ）の割り込み要求を許可／禁止するフラグ</td>
<td>メールボックスインタラプトマスクレジスタ 0、1（MBIMR0、MBIMR1）</td>
<td>メールボックス割り込み許可レジスタ（MIER）</td>
</tr>
<tr>
<td>項目</td>
<td>SH7047（HCAN2）</td>
<td>RX65N（CAN）</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>各割り込み要因の要求を許可／禁止するフラグ</td>
<td>インタラプトマスクレジスタ（IMR）</td>
<td>割り込み要求許可レジスタ m（IERm） エラー割り込み許可レジスタ（EIER）</td>
</tr>
<tr>
<td>受信エラーカウンタ</td>
<td>受信エラーカウンタ（REC）</td>
<td>受信エラーカウンタレジスタ（RECR）</td>
</tr>
<tr>
<td>送信エラーカウンタ</td>
<td>送信エラーカウンタ（TEC）</td>
<td>送信エラーカウンタレジスタ（TECR）</td>
</tr>
<tr>
<td>オーバーライトステータスフラグ</td>
<td>未読メッセージステータスレジスタ 0、1（UMSR0、UMSR1）</td>
<td>メッセージ制御レジスタ j（MCTLj）（j = 0 ～ 31）のMSGLOSTビット</td>
</tr>
<tr>
<td>受信メッセージの Identifier によるフィルタリング設定</td>
<td>メールボックス（MB0～MB31）のローカルアクセプタンスフィルタマスクビット（STDID_LAFM[10:0]、EXTID_LAFM[17:0]）</td>
<td>マスクレジスタ k（MKRk）（k = 0 ～ 7） マスク無効レジスタ（MKIVLR）</td>
</tr>
<tr>
<td>メールボックス</td>
<td>メールボックス（MB0～MB31）</td>
<td>メールボックスレジスタ j（MBj）（j = 0 ～ 31）</td>
</tr>
<tr>
<td>モジュールストップ制御</td>
<td>モジュールスタンバイコントロールレジスタ 2（MSTCR2）</td>
<td>モジュールストップコントロールレジスタ B（MSTPCR） ※本レジスタの設定前にプロテクトレジスタ（PRCR）の設定が必要</td>
</tr>
<tr>
<td>FIFO 受信 ID 比較設定</td>
<td>-</td>
<td>FIFO 受信 ID 比較レジスタ 0、1（FIDCR0、FIDCR1）</td>
</tr>
<tr>
<td>受信 FIFO 許可／禁止設定</td>
<td>-</td>
<td>受信 FIFO 制御レジスタ（RFPCR）</td>
</tr>
<tr>
<td>受信 FIFO ポインタ制御設定</td>
<td>-</td>
<td>受信 FIFO ポインタ制御レジスタ（RFPCR）</td>
</tr>
<tr>
<td>送信 FIFO 制御設定</td>
<td>-</td>
<td>送信 FIFO 制御レジスタ（TFPCR）</td>
</tr>
<tr>
<td>メールボックス検索モード設定</td>
<td>-</td>
<td>メールボックスレジスタ（MB）</td>
</tr>
<tr>
<td>メールボックス検索ステータスレジスタ</td>
<td>-</td>
<td>メールボックスサーチモードレジスタ（CSSR）</td>
</tr>
<tr>
<td>チャネル検索モード設定</td>
<td>-</td>
<td>チャネルサーチサポートレジスタ（CSSR）</td>
</tr>
<tr>
<td>複数の受信 ID マスク機能のサポート</td>
<td>-</td>
<td>アクセプタンスフィルタサポートレジスタ（AFSR）</td>
</tr>
<tr>
<td>CAN バス上のエラーの発生モニタリング</td>
<td>-</td>
<td>エラーレコード格納レジスタ（ECSR）</td>
</tr>
<tr>
<td>CAN テストモード制御</td>
<td>マスタコントロールレジスタ（MCR）の TST0～TST7 ビット</td>
<td>テスト制御レジスタ（TCR）</td>
</tr>
<tr>
<td>タイマ制御</td>
<td>タイマコントロールレジスタ（TCSR）</td>
<td>タイマレジスタ（CTLR）の TSRCビット、TSPS[1:0]ビット ※カウンタのリセットとプリスケーラの選択のみ</td>
</tr>
<tr>
<td>タイマステータス</td>
<td>タイマステータスレジスタ（TSR）</td>
<td>-</td>
</tr>
<tr>
<td>タイマカウンタ</td>
<td>タイマカウンタレジスタ（TCNTR）</td>
<td>タイムスタンプレジスタ（TSR）</td>
</tr>
<tr>
<td>項目</td>
<td>SH7047（HCAN2）</td>
<td>RX65N（CAN）</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>タイマ（TCNTR）のローカルオフセット</td>
<td>ローカルオフセットレジスタ（LOSR）</td>
<td>-</td>
</tr>
<tr>
<td>インプットキャプチャ</td>
<td>インプットキャプチャレジスタ0、1（ICR0、HCAN2_ICR1）</td>
<td>-</td>
</tr>
<tr>
<td>タイマカウンタとのコンペアマッチ</td>
<td>タイマコンペアマッチレジスタ0、1（TCMR0、TCMR1）</td>
<td>-</td>
</tr>
</tbody>
</table>
2.2 制御レジスタの詳細

表 4 SH7047（HCAN2）とRX65N（CAN）の制御レジスタ（1/2）

<table>
<thead>
<tr>
<th>SH7047（HCAN2）</th>
<th>RX65N（CAN）</th>
</tr>
</thead>
<tbody>
<tr>
<td>機能</td>
<td>機能</td>
</tr>
<tr>
<td>マスタコントロールレジスタ（MCR）</td>
<td>制御レジスタ（CTRL）</td>
</tr>
</tbody>
</table>

| MCR0 | リセットリクエスト | CANM [1:0] | 0 0: 通常動作モード
| | 0: 通常動作モード（初期值） | 1 0: Halt モード
| | 1: リセットモード（初期値） | 1 1: リセットモード（強制移行）
| | 1: リセットモード（強制移行） | ※強制移行は送信終了を待たずに移行するモード |

| MCR1 | HCAN2ホールトモード | 0: 通常動作モード（初期値）
| | 1: ホールトモード | 0 0: 通常動作モード
| | | 1 0: リセットモード（初期値）
| | | 1 1: リセットモード（強制移行）
| | | ※強制移行は送信終了を待たずに移行するモード |

| MCR2 | メッセージ送信方式 | TPM | 0 0: メッセージ ID 優先
| | 0: メッセージ ID 優先（初期値） | 1 0: メッセージ ID 優先（降順）
| | 1: メールボックス番号優先（降順） | 1 0: メールボックス番号優先（初期値）
| | | 1 1: メールボックス番号優先（初期値）
| | | ※強制移行は送信終了を待たずに移行するモード |

| MCR5 | HCAN2スリープモード | 0: スリープモード解除
| | 0: スリープモード解除（初期値） | 1: スリープモード
| | 1: スリープモード | 0 0: スリープモード解除
| | | 1 0: スリープモード（初期値）
| | | 1 1: スリープモード（強制移行）
| | | ※強制移行は送信終了を待たずに移行するモード |

MCR7	HCAN2スリープモード解除	-
	0: CAN バス動作によるスリープモード解除を禁止（初期値）	-
	1: CAN バス動作によるスリープモード解除を許可	-

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0: 標準 ID モード（初期値）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1: 拡張 ID モード</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0: ミックス ID モード</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1: 設定禁止</td>
<td></td>
<td></td>
</tr>
<tr>
<td>※ミックス ID モードを選択した場合、各メールボックス（MBj.IDEビット）で、標準 ID か拡張 ID かを選択</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ID フォーマットモードビット：IDFM[1:0]
<table>
<thead>
<tr>
<th>SH7047 (HCAN2)</th>
<th>RX65N (CAN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>シンボル ビット名</td>
<td>機能</td>
</tr>
<tr>
<td>マスタコントロールレジスタ (MCR)</td>
<td>テスト制御レジスタ (TCR)</td>
</tr>
<tr>
<td>TST6</td>
<td>ライト CAN エラーカウンタ</td>
</tr>
<tr>
<td>TST5</td>
<td>Error Passive 強制移行</td>
</tr>
<tr>
<td>TST4</td>
<td>オートアクノリッジ モード</td>
</tr>
<tr>
<td>TST3</td>
<td>エラーカウンタディスエーブル</td>
</tr>
<tr>
<td>TST2</td>
<td>Rx インプットディスエーブル</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>TST1</td>
<td>Tx アウトプットディスエーブル</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>TST0</td>
<td>内部ループ イネーブル</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.3 ステータスフラグの詳細

<table>
<thead>
<tr>
<th>テーブル5</th>
<th>SH7047（HCAN2）とRX65N（CAN）のステータスフラグ</th>
</tr>
</thead>
<tbody>
<tr>
<td>シンボル</td>
<td>機能</td>
</tr>
<tr>
<td>GSR0</td>
<td>バスオフフラグ</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0: バスオフ状態ではない（初期値）</td>
</tr>
<tr>
<td></td>
<td>1: バスオフ状態（TEC ≥ 256 のとき）</td>
</tr>
<tr>
<td></td>
<td>[クリア条件]</td>
</tr>
<tr>
<td></td>
<td>バスオフ状態からの復帰</td>
</tr>
<tr>
<td>GSR1</td>
<td>送信/受信ウォーニングフラグ</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0: エラーワーニング未検出（初期値）</td>
</tr>
<tr>
<td></td>
<td>1: エラーワーニング検出（TEC ≥ 96 または REC ≥ 96 のとき）</td>
</tr>
<tr>
<td>GSR2</td>
<td>メッセージ送信ステータスフラグ</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0: 送信中</td>
</tr>
<tr>
<td></td>
<td>1: バスアイドル（初期値）</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>GSR3</td>
<td>リセットステータスビット</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0: 通常動作状態</td>
</tr>
<tr>
<td></td>
<td>1: コンフィギュレーションモード（リセットモード）（初期値）</td>
</tr>
<tr>
<td>GSR4</td>
<td>ホールド/スリープステータスビット</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0: ホールドモードまたはスリープモードではない（初期値）</td>
</tr>
<tr>
<td></td>
<td>1: ホールドモードまたはスリープモード</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0: CAN スリープモードではない（初期値）</td>
</tr>
<tr>
<td></td>
<td>1: CAN スリープモード</td>
</tr>
<tr>
<td>シンボル</td>
<td>ビット名</td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
</tr>
<tr>
<td>GSR5</td>
<td>エラーパッシブステータスビット</td>
</tr>
</tbody>
</table>
2.4 ビットタイミングと転送速度設定の詳細

<table>
<thead>
<tr>
<th>SH7047 (HCAN2)</th>
<th>RX65N (CAN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ビットタイミングコンフィギュレーションレジスタ1（HCAN2_BCR1）</td>
<td>ビットコンフィギュレーションレジスタ（BCR）</td>
</tr>
<tr>
<td>シンボル</td>
<td>ビット名</td>
</tr>
<tr>
<td>TSEG1[3:0]</td>
<td>タイムセグメント1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>TSEG2[2:0]</td>
<td>タイムセグメント2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>BSP</td>
<td>ビットサンプルポイント</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>SJW[1:0]</td>
<td>Re-Synchronization Jump Width</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ビットタイミングコンフィギュレーションレジスタ0（HCAN2_BCR0）</td>
<td>ビットコンフィギュレーションレジスタ（BCR）</td>
</tr>
<tr>
<td>BRP[7:0]</td>
<td>ボーレートブリスケーラ</td>
</tr>
</tbody>
</table>
2.5 メールボックスの送受信設定の詳細

表 7 SH7047（HCAN2）とRX65N（CAN）のメールボックスの送受信設定

<table>
<thead>
<tr>
<th></th>
<th>SH7047（HCAN2）</th>
<th>RX65N（CAN）</th>
</tr>
</thead>
<tbody>
<tr>
<td>シンボル</td>
<td>ビット名</td>
<td>機能</td>
</tr>
<tr>
<td>メールボックス (MB0～MB31)</td>
<td>メッセージ制御レジスタ j (MCTLj) (j = 0 ～ 31)</td>
<td>0: 送信メールボックスに設定しない（初期値） 1: 送信メールボックスに設定する※送信用と受信用の設定が分割</td>
</tr>
<tr>
<td>MBC [2:0]</td>
<td>メールボックスコフィギュレーション</td>
<td>表 8 を参照</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>送信待ちレジスタ 0, 1 (TXPR0, TXPR1)</td>
<td>メッセージ制御レジスタ j (MCTLj) (j = 0 ～ 31)</td>
<td>0: 送信メールボックスに設定しない（初期値） 1: 送信メールボックスに設定する※送信用と受信用の設定が分割</td>
</tr>
<tr>
<td>TXPR0 [15:1] TXPR1 [15:0]</td>
<td>送信待ちレジスタ</td>
<td>0: アイドル状態（初期値） 1: 送信待ち（CANパスアービトリション）※TXPR を 1 にするとき送信開始 ※メッセージの送信完了および取り消し完了後に自動的にクリアされる</td>
</tr>
<tr>
<td>送信アクノレッジレジスタ 0, 1 (TXACK0, TXACK1)</td>
<td>メッセージ制御レジスタ j (MCTLj) (j = 0 ～ 31)</td>
<td>0: 送信メールボックスに設定しない（初期値） 1: 送信メールボックスに設定する※TRMREQ を 1 にするとき送信開始※メッセージの送信完了でもクリアされない</td>
</tr>
<tr>
<td>TXACK0 [15:1] TXACK1 [15:0]</td>
<td>送信アクノレッジレジスタ</td>
<td>0: 送信中または送信していない（初期値） 1: 送信完了 [クリア条件] 1 書き込み</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RX ファミリ、SH ファミリ HCAN2（SH ファミリ）と CAN（RX ファミリ）の相違点

<table>
<thead>
<tr>
<th>シンボル</th>
<th>ビット名</th>
<th>機能</th>
<th>シンボル</th>
<th>ビット</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>手信待ち取り消しレジスタ 0, 1（TXCR0, TXCR1）</td>
<td>TXCRO [15:1]</td>
<td>手信待ち取り消しレジスタ</td>
<td>TRMREQ</td>
<td></td>
<td>送信メールボックス設定ビット</td>
</tr>
<tr>
<td></td>
<td>TXCR1 [15:0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>取り消しアクノレッジレジスタ 0, 1（ABACK0, ABACK1）</td>
<td>ABACK0 [15:1]</td>
<td>取り消しアクノレッジレジスタ</td>
<td>TRMABT</td>
<td></td>
<td>送信アポーティャット完了フラグ</td>
</tr>
<tr>
<td></td>
<td>ABACK1 [15:0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>受信完了レジスタ 0, 1（RXPR0, RXPR1）</td>
<td>RXPR0 [15:0]</td>
<td>受信完了レジスタ</td>
<td>NEWDATA</td>
<td></td>
<td>受信完了フラグ</td>
</tr>
<tr>
<td></td>
<td>RXPR1 [15:0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>リモートリクエストレジスタ 0, 1（RFPR0, RFPR1）</td>
<td>RFPR0 [15:0]</td>
<td>リモートリクエストレジスタ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RFPR1 [15:0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表 8 メールボックスコンフィギュレーション（MBC[2:0]）の設定

<table>
<thead>
<tr>
<th>b2 b0</th>
<th>データフレーム送信</th>
<th>リモートフレーム送信</th>
<th>データフレーム受信</th>
<th>リモートフレーム受信</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>許可</td>
<td>許可</td>
<td>禁止</td>
<td>禁止</td>
<td>メールボックス 0は使用不可能タイムトリガ送信は使用可能</td>
</tr>
<tr>
<td>001</td>
<td>許可</td>
<td>許可</td>
<td>禁止</td>
<td>許可</td>
<td>ATXで使用可能メールボックス 0は使用不可能LAFMは使用可能</td>
</tr>
<tr>
<td>010</td>
<td>禁止</td>
<td>禁止</td>
<td>許可</td>
<td>許可</td>
<td>メールボックス 0は使用可能LAFMは使用可能</td>
</tr>
<tr>
<td>011</td>
<td>設定禁止</td>
<td>設定禁止</td>
<td>設定禁止</td>
<td>設定禁止</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>禁止</td>
<td>許可</td>
<td>許可</td>
<td>許可</td>
<td>メールボックス 0は使用不可能LAFMは使用可能</td>
</tr>
<tr>
<td>101</td>
<td>禁止</td>
<td>許可</td>
<td>許可</td>
<td>禁止</td>
<td>メールボックス 0は使用不可能LAFMは使用可能</td>
</tr>
<tr>
<td>110</td>
<td>設定禁止</td>
<td>設定禁止</td>
<td>設定禁止</td>
<td>設定禁止</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>メールボックスインアクティブ（初期値）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.6 割り込み要因のステータスフラグの詳細

<table>
<thead>
<tr>
<th>シンボル</th>
<th>ビット名</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRR8</td>
<td>メールボックス空き割り込みフラグ</td>
</tr>
<tr>
<td>IRR1</td>
<td>受信メッセージ割り込みフラグ</td>
</tr>
<tr>
<td>IRR2</td>
<td>リモートフレームリクエスト割り込みフラグ</td>
</tr>
<tr>
<td>IRR12</td>
<td>バス動作割り込みフラグ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>0：送信中または送信していない（初期値）</td>
</tr>
<tr>
<td>1：送信完了または送信取り消し完了</td>
</tr>
<tr>
<td>［クリア条件］TXACK（送信アクノリッジレジスタ）とABACK（アボートアクノリッジレジスタ）のビットを全てクリアした場合</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>シンボル</th>
<th>ビット</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRR1</td>
<td>受信メッセージ割り込みフラグ</td>
</tr>
<tr>
<td>IRR2</td>
<td>リモートフレームリクエスト割り込みフラグ</td>
</tr>
<tr>
<td>IRR12</td>
<td>バス動作割り込みフラグ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>0：受信中または受信していない（初期値）</td>
</tr>
<tr>
<td>1：データフレーム受信完了</td>
</tr>
<tr>
<td>［クリア条件］メールボックスのRXPR（受信完了レジスタ）のビットをすべてクリアした場合</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>シンボル</th>
<th>ビット</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRR2</td>
<td>リモートフレームリクエスト割り込みフラグ</td>
</tr>
<tr>
<td>IRR12</td>
<td>バス動作割り込みフラグ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>0：受信中または受信していない（初期値）</td>
</tr>
<tr>
<td>1：データフレームおよびリモートフレーム受信完了</td>
</tr>
<tr>
<td>［クリア条件］メールボックスのRFPR（リモートフレーム受信完了レジスタ）のビットをすべてクリアした場合</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>シンボル</th>
<th>ビット</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>0：CANバスアイドル状態（初期値）</td>
</tr>
<tr>
<td>1：HCANスリープモード中にCANバスの動作あり</td>
</tr>
<tr>
<td>［クリア条件］1書き込み</td>
</tr>
</tbody>
</table>

表 9 SH7047（HCAN2）とRX65N（CAN）の割り込み要因のステータスフラグ
<table>
<thead>
<tr>
<th>シンボル</th>
<th>ビット名</th>
<th>機能</th>
<th>シンボル</th>
<th>ビット</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRR3</td>
<td>送信エラーワンニング割り込みフラグ</td>
<td>0: エラーワーニング未検出（初期値） 1: エラーワーニング検出（TEC≧96 のとき）</td>
<td>EWIF</td>
<td>0: エラーワーニング未検出（初期値） 1: エラーワーニング検出（TEC≧96 または REC≧96 のとき）</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[クリア条件] 1 書き込み</td>
<td></td>
<td>[クリア条件] 0 書き込み</td>
<td></td>
</tr>
<tr>
<td>IRR4</td>
<td>受信エラーワンニング割り込みフラグ</td>
<td>0: エラーワーニング未検出（初期値） 1: エラーワーニング検出（REC≧96 のとき）</td>
<td>EPIF</td>
<td>0: エラーパッシブ未検出（初期値） 1: エラーパッシブ検出（TEC≧128 または REC≧128 になったとき）</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[クリア条件] 1 書き込み</td>
<td></td>
<td>[クリア条件] 0 書き込み</td>
<td></td>
</tr>
<tr>
<td>IRR5</td>
<td>エラーパッシブ割り込みフラグ</td>
<td>0: エラーパッシブ未検出（初期値） 1: エラーパッシブ検出（TEC≧128 または REC≧128 になったとき）</td>
<td>BOEIF</td>
<td>0: オーバーロードフレーム送信未検出（初期値） 1: オーバーロードフレーム送信検出</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[クリア条件] 1 書き込み</td>
<td></td>
<td>[クリア条件] 0 書き込み</td>
<td></td>
</tr>
<tr>
<td>IRR6</td>
<td>バスオフ/バスオフからの復帰割り込みフラグ</td>
<td>0: バスオフ状態でない（初期値） 1: バスオフ状態（TEC≧256 のとき）、またはバスオフ状態で 11 レセッシブビットを 128 回受信</td>
<td>OLIF</td>
<td>0: オーバーロードフレーム送信未検出（初期値） 1: オーバーロードフレーム送信検出</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[クリア条件] 1 書き込み</td>
<td></td>
<td>[クリア条件] 0 書き込み</td>
<td></td>
</tr>
<tr>
<td>IRR7</td>
<td>オーバーロードフレーム割り込みフラグ</td>
<td>0: オーバーロードフレーム送信未検出（初期値） 1: オーバーロードフレーム送信検出</td>
<td></td>
<td>0: オーバーロードフレーム送信未検出（初期値） 1: オーバーロードフレーム送信検出</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[クリア条件] 1 書き込み</td>
<td></td>
<td>[クリア条件] 0 書き込み</td>
<td></td>
</tr>
<tr>
<td>シンボル</td>
<td>ビット名</td>
<td>機能</td>
<td>シンボル</td>
<td>ビット</td>
<td>機能</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>------</td>
<td>----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>IRR9</td>
<td>未読メッセージ割り込みフラグ</td>
<td>0: オーバーラン/オーバーライトなし（初期値） 1: 受信メッセージの廃棄/未読メッセージのオーバーライト [クリア条件] UMSR（未読メッセージステータスレジスタ）のすべてのビットがクリア</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRR13</td>
<td>タイマオーバーフロー割り込みフラグ</td>
<td>0: タイマオーバーフロー未発生 1: タイマオーバーフロー発生 [クリア条件] 1 書き込み</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRR14</td>
<td>タイマコンペアマッチ割り込みフラグ 0</td>
<td>0: TCMR0 のタイマコンペアマッチの未発生 1: TCMR0 のタイマコンペアマッチの発生（TCMR0=TCNTR） [クリア条件] 1 書き込み</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRR15</td>
<td>タイマコンペアマッチ割り込みフラグ 1</td>
<td>0: TCMR1 のタイマコンペアマッチの未発生 1: TCMR1 のタイマコンペアマッチの発生（TCMR1=TCNTR） [クリア条件] 1 書き込み</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRR0</td>
<td>リセット/ホールド/スリープ割り込みフラグ</td>
<td>0: モード遷移なし 1: リセットモードへの遷移、またはホールドモードへの遷移、またはスリープモードへの遷移 [クリア条件] 1 書き込み</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.7 割り込み要因の要求を許可/禁止するフラグの詳細

表 10 SH7047（HCAN2）とRX65N（CAN）の割り込み要因の要求を許可/禁止するフラグ

<table>
<thead>
<tr>
<th>シンボル</th>
<th>ビット名</th>
<th>機能</th>
<th>シンボル</th>
<th>ビット</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMR8</td>
<td>メールボックス空き割り込みマスク</td>
<td>0: 割り込み要求許可 1: 割り込み要求禁止（初期値）</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IMR1</td>
<td>受信メッセージ割り込みマスク</td>
<td>0: 割り込み要求許可 1: 割り込み要求禁止（初期値）</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IMR12</td>
<td>バス動作割り込みマスク</td>
<td>0: 割り込み要求許可 1: 割り込み要求禁止（初期値）</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IMR2</td>
<td>リモートフレームリクエスト割り込みマスク</td>
<td>0: 割り込み要求許可 1: 割り込み要求禁止（初期値）</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IMR13</td>
<td>タイマオーバーフロー割り込みマスク</td>
<td>0: 割り込み要求許可 1: 割り込み要求禁止（初期値）</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IMR14</td>
<td>タイマコンペアマッチ割り込み0マスク</td>
<td>0: 割り込み要求許可 1: 割り込み要求禁止（初期値）</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IMR15</td>
<td>タイマコンペアマッチ割り込み1マスク</td>
<td>0: 割り込み要求許可 1: 割り込み要求禁止（初期値）</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IMR0</td>
<td>リセット/ホールト/スリープ割り込みマスク</td>
<td>0: 割り込み要求許可 1: 割り込み要求禁止（初期値）</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
SH7047（HCAN2）とRX65N（CAN）の相違点

<table>
<thead>
<tr>
<th>シンボル</th>
<th>ビット名</th>
<th>機能</th>
<th>シンボル</th>
<th>ビット名</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMR3</td>
<td>送信エラーワーニングマスク</td>
<td>0：割り込み要求許可 1：割り込み要求禁止（初期値）</td>
<td>EWIE</td>
<td>エラーワーニング割り込み許可ビット</td>
<td></td>
</tr>
<tr>
<td>IMR4</td>
<td>受信エラーワーニング割り込みマスク</td>
<td>0：割り込み要求許可 1：割り込み要求禁止（初期値）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMR5</td>
<td>エラーパッシブ割り込みマスク</td>
<td>0：割り込み要求許可 1：割り込み要求禁止（初期値）</td>
<td>EPIE</td>
<td>エラーパッシブエントリ割り込み許可ビット</td>
<td></td>
</tr>
<tr>
<td>IMR6</td>
<td>バスオフ/バスオフ復帰割り込みマスク</td>
<td>0：割り込み要求許可 1：割り込み要求禁止（初期値）</td>
<td>BOEIE</td>
<td>バスオフ開始割り込み許可ビット</td>
<td></td>
</tr>
<tr>
<td>IMR7</td>
<td>オーバーロードフレーム割り込みマスク</td>
<td>0：割り込み要求許可 1：割り込み要求禁止（初期値）</td>
<td>OIE</td>
<td>オーバーロードフレーム送信割り込み許可ビット</td>
<td></td>
</tr>
<tr>
<td>IMR9</td>
<td>未読割り込みマスク</td>
<td>0：割り込み要求許可 1：割り込み要求禁止（初期値）</td>
<td>ORIE</td>
<td>オーバラン割り込み許可ビット</td>
<td></td>
</tr>
<tr>
<td>メールボックスインタラプトマスクレジスタ0、1（MBIMR0、MBIMR1）</td>
<td></td>
<td></td>
<td>メールボックス割り込み許可レジスタ（MIER）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MBIMR0 [15:0]</td>
<td>メールボックスインタラプトマスク</td>
<td>0：割り込み許可 1：割り込み禁止（初期値）</td>
<td>MB[31:0]</td>
<td>割り込み許可ビット</td>
<td>0：割り込み禁止（初期値） 1：割り込み許可</td>
</tr>
</tbody>
</table>
SH7047グループとRX65Nグループでは割り込みコントローラの仕様が異なります。RX65Nグループで割り込みを発生させる場合、割り込みコントローラで各割り込み許可/禁止の設定が必要です。割り込みコントローラの詳細は「RX65Nグループ、RX651グループ Users Manual Hardware編」(R01UH0590)を参照してください。

下記にRX65NグループのCAN割り込みの種類を示します。

[選択型割り込み B]
- CANi 受信完了割り込み（メールボックス0～31）[RXMi]
- CANi 送信完了割り込み（メールボックス0～31）[TXMi]
- CANi 受信FIFO割り込み[RXF]
- CANi 送信FIFO割り込み[TXF]

[グループ割り込み BE0]
- CANi エラー割り込み[ERS]
 （エラー割り込みの各要因）
 - バスエラー
 - エラーワーニング
 - エラーパッシブ
 - バスオフ開始
 - バスオフ復帰
 - 受信オーバーラン
 - オーバロードフレーム送信
 - バスロック
2.8 受信メッセージの Identifier によるフィルタリング設定の詳細

表 11 SH7047（HCAN2）と RX65N（CAN）の受信メッセージの Identifier によるフィルタリング設定

<table>
<thead>
<tr>
<th></th>
<th>SH7047（HCAN2）</th>
<th>RX65N（CAN）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>シンボル</td>
<td>ビット名</td>
</tr>
<tr>
<td>メールボックス（MB0～MB31）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STDID_LAFM [10:0]</td>
<td>スタンダードIDローカルアクセプタンスフィルタマスク</td>
<td>0：対応するビットは比較される 1：対応するビットは比較されない（初期値不定）</td>
</tr>
<tr>
<td>EXTID_LAFM [17:16]</td>
<td>拡張IDローカルアクセプタンスフィルタマスク</td>
<td>0：対応するビットは比較される 1：対応するビットは比較されない（初期値）</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- マスク無効レジスタ（MKIVLR）
2.9 タイマ制御/タイムトリガの詳細

表 12 SH7047（HCAN2）とRX65N（CAN）のタイムスタンプ/タイムトリガの詳細

<table>
<thead>
<tr>
<th>SH7047 (HCAN2)</th>
<th>RX65N (CAN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>シンボル</td>
<td>ビット名</td>
</tr>
<tr>
<td>タイムコントロールレジスタ (TCR)</td>
<td>制御レジスタ (CTLR)</td>
</tr>
<tr>
<td>TCR15</td>
<td>イネーブルタイマ</td>
</tr>
<tr>
<td>TCR14</td>
<td>ディスエーブル ICR0</td>
</tr>
<tr>
<td>TCR13</td>
<td>受信用タイムスタンプコントロール</td>
</tr>
<tr>
<td>TCR12</td>
<td>送信用タイムスタンプコントロール</td>
</tr>
<tr>
<td>TCR11</td>
<td>TCMR0 タイマクリアセットコントロール</td>
</tr>
</tbody>
</table>
RX ファミリ、SH ファミリ HCAN2（SH ファミリ）と CAN（RX ファミリ）の相違点

<table>
<thead>
<tr>
<th>シンボル</th>
<th>ビット名</th>
<th>機能</th>
<th>シンボル</th>
<th>ビット</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCR10</td>
<td>CCM タイマ クリアセッ トコント ロール</td>
<td>0：CAN-ID のコン ペアマッチでクリ アされない
1：CAN-ID のコン ペアマッチでクリ アし、ローカルオ フセットレジスタ (LOSR) の値を設 定</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TCR9</td>
<td>ICR0 自動ディスエー ブル</td>
<td>0：CAN-ID のコン ペアマッチで TCR14 をクリアし ない
1：CAN-ID のコン ペアマッチで TCR14 をクリア</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TPSC5〜 TPSC0</td>
<td>HCAN2 タイ マブリス ケーラ</td>
<td>分周比は 2× (設定 値 P+1)※初期値は 0 (1 分 周)</td>
<td>TSPS[1:0]</td>
<td>タイムスタ ンプブリス ケーラ選択 ビット</td>
<td>b1b0
00：1ビットタイ ムごと
01：2ビットタイ ムごと
10：4ビットタイ ムごと
11：8ビットタイ ムごと</td>
</tr>
</tbody>
</table>
3. メールボックスの相違

表13にRX65N（CAN）のメールボックス構成を、表14にSH7047（HCAN2）のメールボックス構成を示します。いずれかのグループにしか存在しない項目は赤字にしています。

<table>
<thead>
<tr>
<th>レジスタ名</th>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
<th>アクセスサイズ</th>
<th>フィールド</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBj (j=0〜31)</td>
<td>IDE</td>
<td>RTR</td>
<td>SID[10:6]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8/16/32</td>
<td>コントロール</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SID[5:0]</td>
<td>EID[17:16]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EID[15:8]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>データ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EID[7:0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8/16/32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>DLC[3:0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DATA0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8/16/32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DATA1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DATA2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8/16/32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DATA3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DATA4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DATA5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DATA6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8/16/32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DATA7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TSH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>タイムスタンプ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TSL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【注1】メールボックスレジスタMBj (j=0〜31)に16ビットでアクセスするときは偶数アドレス、32ビットでアクセスするときはアドレスの末尾が0h、4h、8h、Chのアドレスにアクセスしてください。

【注2】IDEビットは、CTRLRレジスタのIDFMビットがミックスIDモード（"10b"）のときに有効です。IDFMビットが"10b"以外のときはIDEビットに"0"を書いてください。また、読んだ場合、その値は"0"です。
表 14 SH7047（HCAN2）のメールボックス構成

<table>
<thead>
<tr>
<th>レジスタ名</th>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>B1</th>
<th>b0</th>
<th>アクセスサイズ(注)</th>
<th>フィールド</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBx (x = 0 〜 31)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>コントロール</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EXTID[15:8]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EXTID[7:0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CCM</td>
<td>TTE</td>
<td>NMC</td>
<td>ATX</td>
<td>DART</td>
<td>MBC[2:0]</td>
<td></td>
<td>8/16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PTE</td>
<td>TCT</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>DLC[3:0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>タイムスタンプ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MSG_DATA_0</td>
<td>データ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MSG_DATA_1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MSG_DATA_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MSG_DATA_3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MSG_DATA_4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MSG_DATA_5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MSG_DATA_6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MSG_DATA_7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LAFM0 / TTT[15:8]</td>
<td>LAFM / トリガタイム</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LAFM0 / TTT[7:0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LAFM1 / TTT[15:8]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LAFM1 / TTT[7:0]</td>
<td></td>
</tr>
</tbody>
</table>

【注】メールボックス（MBx）（x=0 〜 31）に 16 ビットでアクセスするときは、偶数アドレスにアクセスしてください。
4. その他の相違

4.1 スリープモードの設定手順

スリープモードへの設定手順やスリープモードからの復帰手順が異なります。以下に各デバイスのスリープモードへの設定手順を示します。詳細な差異は各デバイスのユーザーズマニュアルハードウェア編を確認してください。

図1 SH7047（HCAN2）とRX65N（CAN）のスリープモードへの設定手順
RX ファミリ、SH ファミリ HCAN2（SH ファミリ）と CAN（RX ファミリ）の相違点

4.2 CAN リセットによる初期化

CAN ソフトウェアリセット時のレジスタ初期化動作と遷移タイミングが異なります。表 15 に各デバイスのレジスタ初期化動作と遷移タイミングの差異を示します。

表 15 CAN ソフトウェアリセット時のレジスタ初期化動作と遷移タイミング

<table>
<thead>
<tr>
<th>項目</th>
<th>SH7047 （HCAN2）</th>
<th>RX65N （CAN）</th>
</tr>
</thead>
<tbody>
<tr>
<td>レジスタ初期化</td>
<td>TEC/REC レジスタのみ初期化</td>
<td>下記レジスタを初期化およびリセットモード中の初期化状態を維持</td>
</tr>
<tr>
<td></td>
<td>MCTLj, STR（SLPST フラグと TFST フラグを除く）、EIFR, RECR, TECR, TSR, MSSR, MSMR, RFCR, TFCR, TCR, ECSR（EDPM ビットを除く）</td>
<td></td>
</tr>
<tr>
<td>遷移タイミング</td>
<td>MCR0 ビットに“1”をセット後、メッセージを完全に終了するまで待って遷移</td>
<td>CTLR.CANM[1:0] ビットに“01b”をセット後、メッセージの送信終了を待って遷移（受信完了は待たない）</td>
</tr>
<tr>
<td></td>
<td>[強制移行]</td>
<td>CTLR.CANM[1:0] ビットに“11b”をセット直後にリセットモードに遷移</td>
</tr>
</tbody>
</table>

4.3 エンディアン

RX ファミリはリトルエンディアン、ビッグエンディアンの両方をサポートしています。SH ファミリはビッグエンディアンのみサポートしています。

RX ファミリのエンディアン設定に関する詳細は、RX ファミリの各デバイスのユーザーズマニュアルハードウェア編を確認してください。
5. 関連ドキュメント

以下に関連ドキュメントを示します。本アプリケーションノートと合わせてご参照ください。

- アプリケーションノート
 - RX ファミリ CAN の使い方（R01AN1448）
 - RX65N/RX651 グループ RX230/RX231 グループ RX65N グループと RX231 グループの相違点（R01AN3377）

- ユーザーズマニュアル
 - SH-2 SH7047 グループ ハードウェアマニュアル（RJJ09B0154）
 - RX65N グループ、RX651 グループ ユーザーズマニュアル ハードウェア編（R01UH0590）
RX ファミリ、SH ファミリ HCAN2（SH ファミリ）と CAN（RX ファミリ）の相違点

改訂記録

<table>
<thead>
<tr>
<th>Rev.</th>
<th>発行日</th>
<th>改訂内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Sep.30.19</td>
<td>新規作成</td>
</tr>
</tbody>
</table>
製品ご使用上の注意事項
ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意事項については、本ドキュメントおよびテクニカルアップデートを参照してください。

1. 静電気対策
CMOS製品の取り扱いの際は静電気防止を心がけてください。CMOS製品は強い静電気によってゲート絶縁破壊を生じることがあります。運搬や保存の際には、当社が出荷箱に使用している導電性のトレーヤマガジンケース、導電性の緩衝材、金属ケースなどを利用し、組み立て工程にはアースを施してください。プラスチック板上に放置したり、端子を触ったりしないでください。また、CMOS製品を実装したボードについても同様の扱いをしてください。

2. 電源投入時の処置
電源投入時は、製品の状態は不定です。電源投入時には、LSIの内部回路の状態は不確定であり、レジスタの設定または端子の状態は不定です。外部リセット端子でリセットする場合、電源投入からリセットが有効になるまでの期間、端子の状態は保証できません。同様に、内蔵パワーオンリセット機能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。

3. 電源オフ時における入力信号
当該製品の電源がオフ状態のときに、入力信号や入出カプルアップ電源を入れないでください。入力信号や入出カプルアップ電源からの電流注入により、誤動作を引き起こしたり、異常電流が流れ内部素子を劣化させたりする場合があります。資料中に「電源オフ時における入力信号」について記載のある製品は、その内容を守ってください。

4. 未使用端子の処理
未使用端子は、「未使用端子の処理」に従って処理してください。CMOS製品の入力端子のインピーダンスは、一般にハイインピーダンスとなっています。未使用端子を開放状態で動作させると、誘導現象により、LSI周辺のノイズが増加され、LSI内部で貫通電流が流れたり、入力信号と認識され誤動作を起こす恐れがあります。

5. クロックについて
リセット時は、クロックが安定した後、リセットを解除してください。プログラム実行中のクロック切り替え時は、切り替え直後からの安定が望ましい。リセット時には、外部発振子（または外部発振回路）を用いたクロックで動作を開始するシステムでは、クロックが十分安定した後に、リセットを解除してください。また、プログラムの途中で外部発振子（または外部発振回路）を用いたクロックに切り替える場合は、切り替え先のクロックが十分安定してから切り替えください。

6. 入力信号の印加波形
入力ノイズや反射波による波形歪みは誤動作の原因になりますので注意してください。CMOS製品の入力がノイズなどに起因して、VIL（Max.）からVNH（Min.）までの領域にとどまるような場合は、誤動作を引き起こす恐れがあります。入力レベルが固定の場合はもちろん、VIL（Max.）からVNH（Min.）までの領域で通過する移動領域中にチャタリングノイズなどが入らないように使用してください。

7. リザーブアドレス（予約領域）のアクセス禁止
リザーブアドレス（予約領域）のアクセスを禁止します。アドレス領域には、将来の機能拡張用に割り付けられているリザーブアドレス（予約領域）があります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

8. 製品間の相違について
型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。同じグループのマイコンでも型名が違うと、フラッシュメモリ、レイアウトパターンの相違などにより、電気的特性の範囲で、特性値、動作マージン、ノイズ耐量、ノイズ感度などが異なる場合があります。型名が違う製品に変更する場合は、個々の製品ごとにシステム評価試験を実施してください。
ご注意書き

1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器・システムの設計において、回路、ソフトウェアおよびこれらに関連する情報を利用される場合には、お客様の責任において行ってください。これらの使用に起因して生じた損害（お客様または第三者いずれに生じた損害も含みます。以下同じです。）に関し、当社は、一切その責任を負いません。

2. 当社製品、本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許権、著作権その他の知的財産権に対する侵害またはこれらに関する紛争について、当社は、一切その責任を負いません。

3. 本資料は、お客様の責任においてご覧になりご覧ください。お客様の機器・システムの設計において、当社製品の使用に起因して発生した損害に関し、当社は、一切その責任を負いません。

4. 当社製品の品質および信頼性の向上に努めていますが、半導体製品は混雑した状態で製造したり、使用条件によっては誤動作をしたりする場合があります。また、当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品および技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、それらの定めるところに従って必要な手続きを行ってください。

5. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたします。

6. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。

7. 本資料において使用されている「当社」および「当社製品」とは、上記で定義された当社の開発、製造製品をいいます。