
 APPLICATION NOTE

R01AN3361EJ0100 Rev.1.00 Page 1 of 41

Aug 10, 2016

RX Family

RAM Soft Error Diagnosis Example

Introduction

This document explains a static RAM soft error diagnosis based on a doubly RAM access method and a bit operation.

Target Device

This example supports the following device.

- RX64M Group

- RX71M Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making

modifications to comply with the alternate MCU.

R01AN3361EJ0100
Rev.1.00

Aug 10, 2016

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 2 of 41

Aug 10, 2016

Contents

1. Overview ... 4

1.1 RAM Soft Error Diagnosis Example .. 4

1.2 Related documents ... 4

1.3 Hardware Structure ... 5

1.4 Software Structure .. 5

1.5 File Structure ... 6

1.6 Outline of Functions .. 7

2. Functional Information ... 8

2.1 Hardware Requirements ... 8

2.2 Hardware Resource Requirements ... 8

2.3 Software Requirements ... 8

2.4 Limitations ... 8

2.5 Supported Toolchains ... 8

2.6 Header Files .. 8

2.7 Integer Types .. 8

2.8 Configuration Overview ... 9

2.9 Data Structures ... 10

2.10 Return Values.. 11

3. Specification of This Example ... 12

3.1 Environment and Execution .. 12

3.2 Operation Sequence ... 13

3.3 Reducing Biased Data .. 15

3.4 Performance of Safety Data Access (Measurement Example) .. 16

3.5 Software Operation Flow ... 17

3.6 Board Setting... 24

4. API Functions .. 25

4.1 FlashInit () ... 25

4.2 load_seed () .. 26

4.3 upd_seed () ... 27

4.4 crt_bitpat () .. 28

4.5 load_bitpat () ... 29

4.6 upd_bitpat () .. 30

4.7 ers_bitpat () ... 31

4.8 exec_bitop ().. 32

4.9 RAM_Init () .. 34

4.10 RAM_Write ()... 35

4.11 RAM_SafetyWrite () .. 37

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 3 of 41

Aug 10, 2016

4.12 RAM_Read () .. 39

4.13 RAM_SafetyRead () .. 40

5. Reference Documents... 41

Website and Support ... 41

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 4 of 41

Aug 10, 2016

1. Overview

Recently, a soft error of the static RAM (hereafter, SRAM) has become an un-negligible problem proportional to

increasing memory capacity and more detailed process scale. The soft error induces inversing bit values of the SRAM

memory and is probabilistic phenomena due to alpha particles included as the impurity of package and neutron beams

radiated from the cosmic rays.

This document explains the SRAM soft error diagnosis based on a doubly RAM access method (hereafter, double RAM

operation [1]) and a bit operation. The bit operation is executed a user’s safety data with random (or sequential,

constant) bit pattern stored on the Data Flash Memory. Thereafter, those operated data are written in the double RAM

area. The bit operation to which applied is exclusive OR makes balance the number of 0’s and 1’s [2]. As the result, it

can be easy to detect 0 or 1 fixed error and enhanced the error detection rate. The bit pattern itself is also applied to the

double RAM method for safety viewpoint when it is updated.

This example is released to the project form using plural firmware integration technology (FIT) modules.

1.1 RAM Soft Error Diagnosis Example

This example is implemented in a project and used as the application example of SRAM soft error diagnosis using

plural FIT modules.

1.2 Related documents

[1] Functional safety of electrical/electronic/programmable electronic safety-related systems, IEC61508, Edition 2.0,

Apr, 2010

[2] Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor

Devices, JESD89A, Oct 2006, JEDEC Solid State Technology Association.

[3] RX Family Board Support Package Module Using Firmware Integration Technology, Rev.3.31, Document No.

R01AN1685EJ0331, May 19, 2016

[4] RX Family Flash Module Using Firmware Integration Technology, Rev.1.60, Document No. R01AN2184EU0160,

Nov 17, 2015

[5] RX Family Open Source FAT File System [M3S-TFAT-Tiny] Module Firmware Integration Technology, Rev.3.02,

Document No. R20AN0038EJ0302, Mar 01, 2015

[6] Renesas USB MCU USB Basic Host and Peripheral Driver Using Firmware Integration Technology, Rev.1.11,

Document No. R01AN2025EJ0111, Sep 30, 2015

[7] Renesas USB MCU USB Host Mass Storage Class Driver (HMSC) Using Firmware Integration Technology,

Rev.1.11, Document No. R01AN2026EJ0111, Sep 30, 2015

[8] RX64M Group Renesas Starter Kit+ User’s Manual For e
2
 studio, Rev. 1.10, Document No. R20UT2593EG0110,

Jun 25, 2015

[9] RX71M Group Renesas Starter Kit+ User’s Manual, Rev. 1.00, Document No. R20UT3217EG0100, Jan 23, 2015

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 5 of 41

Aug 10, 2016

1.3 Hardware Structure

This example uses the RAM and Data Flash Memory peripheral modules of the RX64M/71M. As for the RAM, the

without ECC error area is only target of this sample and with ECC area is out of scope.

In detail, please refer to RX64M/71M Group User’s Manual: Hardware.

1.4 Software Structure

This sample is operations example of the application and middleware layer using the plural FIT modules whose

common initial setting are supplied by a Board Support Package [3]. Figure 1.1 shows the typical structure and

functional overview of the software. The application manages the operation sequence composed of the Data Flash

access, the RAM without ECC part access, the double RAM operation and USB memory access storage system. The

double RAM with bit operation (db_ram.c) creates/update/erases an initial value to create random number (hereafter,

seed) and a bit pattern, does the bit operation to user data with bit pattern, does the double RAM operation, reads/writes

non safety data, and reads/writes safety data. The flash driver (Flash API) [4] erases/writes the seed and the bit pattern

from/to the Data Flash. The FAT file system (M3S-TFAT-Tiny) [5] manages the data
1
 in the USB memory as the file

using the USB Host driver
2
. The USB Host driver [6], [7] accesses the USB memory as the logical block unit.

1
 Assume the safe data transferred from the USB memory is guaranteed

2
Diagnosis of the USB Host driver is out of scope

Figure 1.1 Software structure of this sample

RAM without ECCHardware

Driver

Middleware

Application

USB

USB Host Driver

Mount USB memory

Read user data

Write user data

Detect USB memory

USB connector

FAT (M3S-TFS-Tiny)

Open/close file

Read file

Write file

RAM access & double RAM operation Flash access Storage system Sample application

USB memory

(store user data)

Data Flash

Flash Driver (Flash API)

FCU load

Erase Data Flash

Blank check Data Flash

Program Data Flash

Double RAM with bit operation (db_ram_if.c)

Create/update/erase seed, Create/update/erase bit pattern,

Bit operation, Double RAM operation,

Read/write non safety data, Read/write safety data

Manage operation sequence

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 6 of 41

Aug 10, 2016

1.5 File Structure

This sample codes are stored the “demo_src” and lower hierarchical folders. Figure 1.2 shows the source and header file

structures of this sample. The two set samples of non safety and safety data are stored in the USB memory. As for the

detailed information of the FIT based modules (BSP, Flash Driver, FAT file system and USB Drivers), please refer to

the documentation of the each FIT module.

Figure 1.2 File structure of this example

demo_src: main operation

| sample_main.c

| sample_main.h

|

+ --- db_ram: Double RAM with bit operation

| db_ram.c

| db_ram.h

|

+ --- tfat_if: File system IF to USB driver

| file_if.c

| file_if.h

| r_data_file.c

| r_data_file.h

| r_tfat_drv_if.c ;USB driver interface

|

+ --- usb_if: USB Host memory access control

| r_usb_hmsc_defep.c

| usb_memory_access.c

|

+ --- usr: LED control

| led.c

| led.h

|

+ --- usb_memory_sample: Sample of USB memory data

| + --- set1, set2 ; two set samples

| + --- NON: SRC_X.txt ; Non safety data file (X = 1,2,3)

| + --- SAFE: SRC_X.txt ; Safety data file (X = 0,1,2,3,4,5,6,7)

r_bsp: BSP (Board Support Package) FIT module

r_config: configuration setting of FIT modules

| r_bsp_config.h

| r_bsp_interrupt_config.h

| r_flash_rx_config.h

| r_usb_basic_config.h

| r_usb_hmsc_config.h

r_flash_rx: Flash Driver (Flash API) FIT module

r_tfat_rx: FAT file system (M3S-TFS-Tiny) FIT module

| r_tfat_lib.h ;FAT library header file

| + --- lib: FAT library stored folder

| r_mw_version.h ; middleware version information

| r_stdint.h ; integer type definition

| tfat_rx600_big.lib ; big endian

| tfat_rx600_little.lib ; little endian

|

r_usb_basic: USB driver (USB basic operation) FIT module

r_usb_hmsc: USB driver (Host Mass Storage Class) FIT module

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 7 of 41

Aug 10, 2016

1.6 Outline of Functions

The functions of application layer shows Table 1.1 and the API functions related to the double RAM with bit operation

shows Table 1.2.

Table 1.1 Functions of application layer

Item Contents

main() Main operation of this project.

led_init() Initialize user LED.

led_ctrl() Update user LED pattern.

prm_init() Initialize operation parameter.

usb_memory_start() USB memory task start.

Sample_Task() Sample application task.

file_start() USB memory start.

file_read() File reading operation.

file_write() File writing operation.

file_stop() File finalizing and operation result save operation.

file_err() File error retrieval operation.

Table 1.2 API functions (Double RAM with bit operation)

Item Contents

FlashInit() Initialize flash driver (flash API).

load_seed() Load seed from data flash.

upd_seed() Update seed to data flash.

crt_bitpat() Create bit pattern data.

load_bitpat() Load bit pattern from data flash with double RAM operation.

upd_bitpat() Update bit pattern to data flash with double RAM operation.

ers_bitpat() Erase bit pattern from data flash.

exec_bitop() Execute bit operation.

RAM_Init() Initialize RAM.

RAM_Write() Write non safety data to RAM.

RAM_SafetyWrite() Write safety data to RAM.

RAM_Read() Read non safety data from RAM.

RAM_SafetyRead() Read safety data from RAM.

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 8 of 41

Aug 10, 2016

2. Functional Information

This example is developed by the following principles.

2.1 Hardware Requirements

This example requires your MCU supports the following feature:

 RAM
1

 Data Flash

 USB

1
without ECC error correction only use.

2.2 Hardware Resource Requirements

This section details the hardware peripherals that this example requires. Unless explicitly stated, these resources must

be reserved for the following driver, and the user cannot use them.

2.2.1 RAM

This example uses the SRAM without ECC error correction to store non safety data and bit operated safety data.

2.2.2 Data Flash

This example uses the Data Flash to store the seed and the bit pattern.

2.2.3 USB Channel

This example uses the USB 2.0 FS Host/Function Module to read test data from the USB memory and write operation

result data to the USB memory.

2.3 Software Requirements

This example depends on the following packages (FIT modules):

 r_bsp

 r_flash_rx

 r_tfat_rx

 r_usb_basic

 r_usb_hmsc

2.4 Limitations

There are following limitations in this example:

 Diagnosis of USB driver is out of scope in this example.

 Assumption the safe data transferred from USB is guaranteed.

2.5 Supported Toolchains

This example is tested and works with the following toolchain:

 Renesas RX Toolchain v2.04.01

2.6 Header Files

Each function call is accessed by including a single file, sample_main.h, led.h, file_if.h, r_usb_basic_if.h db_ram.h or

r_frash_rx_if.h which is supplied with this project code.

2.7 Integer Types

This project uses ANSI C99. These types are defined in stdint.h.

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 9 of 41

Aug 10, 2016

2.8 Configuration Overview

The configuration options in this project are specified in sample_main.h, db_ram.h and r_data_file.h. The option names

and setting values are listed in the table below.

Configuration options

#define NUM_REQ

- Default value = 8

Specify the total number of safety data record (equal to double RAM

operation times).

- Set 1 to 8 in this example.

#define MAX_DAT_SIZE

- Default value = 16*1024

Maximum size of testdata file.

- Set 16*1024 (=16KB) in this example.
#define READ_DIR_NON

- Default value "NON"
String of no safety test data directory.

#define READ_DIR_SAFE

- Default value "SAFE"
String of safety test data directory.

#define READ_FILE

- Default value "SRC"

The header string of test data file name.

This string is concatenated the file number assigned access area and

the file extension equal to “.txt”.

Ex. “SRC_0.txt”, “SRC_1.txt”, , “SRC_7.txt”
#define WRITE_DIR_NCMP

- Default value "NCMP"
String of no safety operated data directory.

#define WRITE_DIR_SCMP

- Default value "SCMP"
String of safety operated data directory.

#define RESULT_FILE

- Default value “RESULT"

Specify the file name of the operation result file to indicate safety data

file size, raw record area begin address and inverted record area begin

address.

This string is concatenated to the file extension equal to “.txt”.

Ex. “RESULT.txt”

#define UPD_NXT_SEED

- undefined

Update seed value for next operation or not?

- If defined, update the seed value for next operation after current

operation completed.

#define FORCE_ERASE_BPAT

- undefined

Erase saved bit pattern from the data flash or not?

- If defined, forcing erase the bit pattern from the data flash after

current operation completed.
#define BIT_PAT_MODE

#define BIT_PAT_RAN (0)

#define BIT_PAT_SEQ (1)

#define BIT_PAT_CNT (2)

- Default value = 0

Specify the bit pattern setting.

- When this is set to 0, the bit pattern is random pattern.

- When this is set to 1, the bit pattern is sequential pattern.

- When this is set to 2, the bit pattern is constant.

#define CONST_PAT

- Default value = 0x00

Set constant data pattern.

This setting is only relevant, if the bit pattern is constant

(=”BIT_PAT_CNT”).
#define SEED_BLOCK_ADDR

- Default value = 0x00100000

(FLASH_DF_BLOCK_0)
Set the seed value stored address.

#define NUM_BIT_SEG

- Default value = 8

Set number of bit pattern segment.

Please set this default value in this version.

#define BIT_SEG_SIZE

- Default value = 1024

Set bit pattern segment size.

Please set this default value in this version.

#define NUM_NON_BLK

- Default value = 3

Set number of no safety areas.

Please set this default value in this version.

#define NON1_AREA_SIZE

- Default value = 16*1024 (16KB)

Set size of no safety data area No.1.

Please set this default value in this version.

#define NON2_AREA_SIZE

- Default value = 16*1024 (16KB)

Set size of no safety data area No.2.

Please set this default value in this version.

#define NON3_AREA_SIZE

- Default value = 16*1024 (16KB)

Set size of no safety data area No.3.

Please set this default value in this version.

#define NUM_RAW_REC

- Default value = 8

Set number of raw record for safety data.

Please set this default value in this version.

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 10 of 41

Aug 10, 2016

Configuration options

#define NUM_INV_REC

- Default value = 8

Set number of invert record for safety data.

Please set this default value in this version.

#define RAW_REC_SIZE

- Default value = 1024 (1KB)

Set size of raw record for safety data.

Please set this default value in this version.

#define INV_REC_SIZE

- Default value = 1024 (1KB)

Set size of invert record for safety data.

Please set this default value in this version.
#define KND_BIT_OP

#define OP_NONE (0)

#define OP_EXOR (1)

- Default value = 1 (OP_EXOR)

Specify the kind of bit operation.

- When this is set to 0, no bit operation is executed.

- When this is set to 1, exclusive or operation is executed.

#define FILESIZE

- Default value = 2048

Specify the FAT file system data buffer size

- Set 2048 in this sample.

2.9 Data Structures

This section details the data structures that are used with the functions of this example. Those data structures in this

project are located in sample_main.h and db_ram.h as the prototype declaration.

/* USB access state */

typedef enum

{

APL_START = 0, /* Operation start state */

APL_NREAD, /* Non safety data read state */

APL_NRAM, /* Non safety data RAM access state */

APL_NWRITE, /* Non safety data write state */

APL_SREAD, /* Safety data read state */

APL_SRAM, /* Safety data RAM access state */

APL_SWRITE, /* Safety data write state */

APL_STOP, /* Operation stop state */

} APLState;

/* Kind of RAM area */

typedef enum

{

AREA_NON1 = 0, /* Non safety data area No.1 */

AREA_NON2, /* Non safety data area No.2 */

AREA_NON3, /* Non safety data area No.3 */

AREA_SAFE, /* Safety data area */

} RAMArea;

/* Data access information structure */

typedef struct

{

uint16_t size; /* Data size */

 int8_t *src; /* Address of read data from USB */

int8_t *dst; /* Address of write data to USB */

int8_t area; /* Kind of RAM area */

} ACCInfo;

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 11 of 41

Aug 10, 2016

/* Bit pattern segment address */

const flash_block_address_t bp_addr[NUM_BIT_SEG] =

{ /* Refer to "r_flash_rx/src/targets/rx64m/r_flash_rx64m.h or

rx71m/r_flash_rx71m.h". */

 FLASH_DF_BLOCK_384, /* 0x00106000 to 0x001063FF (1KB) */

 FLASH_DF_BLOCK_400, /* 0x00106400 to 0x001067FF (1KB) */

 FLASH_DF_BLOCK_416, /* 0x00106800 to 0x00106BFF (1KB) */

 FLASH_DF_BLOCK_432, /* 0x00106C00 to 0x00106FFF (1KB) */

 FLASH_DF_BLOCK_448, /* 0x00107000 to 0x001073FF (1KB) */

 FLASH_DF_BLOCK_464, /* 0x00107400 to 0x001077FF (1KB) */

 FLASH_DF_BLOCK_480, /* 0x00107800 to 0x00107BFF (1KB) */

 FLASH_DF_BLOCK_496, /* 0x00107C00 to 0x00107FFF (1KB) */

};

/* Bit pattern for double RAM segment address */

const flash_block_address_t bpc_addr[NUM_BIT_SEG] =

{ /* Refer to "r_flash_rx/src/targets/rx64m/r_flash_rx64m.h or

rx71m/r_flash_rx71m.h". */

 FLASH_DF_BLOCK_512, /* 0x00108000 to 0x001083FF (1KB) */

 FLASH_DF_BLOCK_528, /* 0x00108400 to 0x001087FF (1KB) */

 FLASH_DF_BLOCK_544, /* 0x00108800 to 0x00108BFF (1KB) */

 FLASH_DF_BLOCK_560, /* 0x00108C00 to 0x00108FFF (1KB) */

 FLASH_DF_BLOCK_576, /* 0x00109000 to 0x001093FF (1KB) */

 FLASH_DF_BLOCK_592, /* 0x00109400 to 0x001097FF (1KB) */

 FLASH_DF_BLOCK_608, /* 0x00109800 to 0x00109BFF (1KB) */

 FLASH_DF_BLOCK_624, /* 0x00109C00 to 0x00109FFF (1KB) */

};

2.10 Return Values

This section describes return values of the functions of this example. Those return values in the test project are located

in db_ram.h and file_if.h as the prototype declarations.

/* Double RAM operation return value */

typedef enum

{

 DBRAM_ERR_FLERASE = -8, /* Flash erase error */

 DBRAM_ERR_FLWRITE = -7, /* Flash write error */

 DBRAM_ERR_FLVERIFY = -6, /* Flash verify error */

 DBRAM_ERR_FLDBRAM = -5, /* Flash double RAM error */

 DBRAM_ERR_PARAM = -4, /* Parameter error */

 DBRAM_ERR_BOP = -3, /* Bit operation error */

 DBRAM_ERR_CMP = -2, /* Double RAM compare error */

 DBRAM_ERR = -1, /* General error */

 DBRAM_OK = 0,

} dbram_t;

/* File access return value */

typedef enum

{

 FLIF_ERR = -1, /* General error */

 FLIF_OK = 0,

} flif_t;

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 12 of 41

Aug 10, 2016

3. Specification of This Example

3.1 Environment and Execution

Execution of this example needs a RX64M/71M RSK boards
1
 and a USB memory.

The outline of the execution sequence is following.

 Write the project execution code to the code Flash of in the RX64M/71M RSK board (hereafter, RSK board).

 Insert the USB memory to the USB port in the RSK board. The USB memory stores the test data composed of the

not safety data and safety ones to/from which wrote/read RAM without ECC. In case of safety data, double Ram

with bit operation is applied.

 The test data sample is prepared in the project and it is stored the demo_src/usb_memory_sample/set1 or set2

folder. You can use it copying it to root layer of the USB memory.

 Power on the RSK board.

 When the RSK board finishes the initialization and start process of FAT file system and USB driver, creation to bit

pattern data, updating bit pattern with double RAM operation, and loading seed value, the user LED composed of

LED3, LED2, LED1 and LED0 shows the “1” pattern (LED3: OFF, LED2: OFF, LED1: OFF, LED0: ON).

 Push the SW1 switch of the RSK board and starts the operation described in the Section 3.2.

 When the double RAM operation of the safety data to each area is completed, the user LED shows the last access

record number from “0” to “7”. As for the detail of RAM area, please refer to the Section 3.2.

 Push the SW2 switch of the RSK board and starts the double RAM operation to next area.

 When the operation finished without any error, the user LED shows the all-on pattern (LED3: ON, LED2: ON,

LED1: ON, LED0: ON).

 If any error detected during the operation, the user LED shows the following pattern depend on the error.

Flash access error – LED3: ON, LED2: OFF, LED1: OFF, LED0: OFF. (“8” pattern)

Safety access error – LED3: ON, LED2: OFF, LED1: OFF, LED0: ON. (“9” pattern)

Not safety access error – LED3: ON, LED2: OFF, LED1: ON, LED0: OFF. (“A” pattern)

Seed creation error – LED3: ON, LED2: OFF, LED1: ON, LED0: ON. (“B” pattern)

Bit pattern erasing error – LED3: ON, LED2: ON, LED1: OFF, LED0: OFF. (“C” pattern)

1
Product name is a Renesas Starter Kit+ for RX64M [8] or a Renesas Starter Kit+ for RX71M [9].

Figure 3.1 shows the environments of this example.

Figure 3.1 Environment

USB

Host

USB memory

Data

Flash

Non safe

data folder

Safe

data folder
d

d

CPU

RX64M/71M RSK board

demo_src/usb_memory_sample/set1 or set2

d

Copy sample test data

User LED

Result

file

Block (1)

8KBNon safe

parameter

SW1SW2

RAM

without ECC

Bit pattern Block (4)

8KB

Area (1)

16KB

Non safe

data areas

Safe data

area

Area (2)

16KB

Area (3)

16KB

Area (4)

16KB

Code

Flash

Block (5)

8KB

Bit pattern

for double RAM

Block (8)

8KB

Non safe

parameter

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 13 of 41

Aug 10, 2016

3.2 Operation Sequence

In this section, explain the operation sequence in this example when the total number of safety data record are 8

specified to “NUM_REC”.

Figure 3.2 shows the USB memory contents. There are NON folder, NCMP folder, SAFE folder, SCMP folder, and

RESULT.txt file in the USB memory. The NON folder stores the non safe test data in the files from “SRC_1.txt” to

“SRC_3.txt”. The NCMP folder stores the compared data after the normal read/write operation in the files from

“CMP_1.txt” to “CMP_3.txt”. The SAFE folder stores the safe test data in the files from “SRC_0.txt” to “SRC_7.txt”.

The SCMP folder stores the compared data after the double RAM operation in the files from “CMP_0.txt” to

“CMP_7.txt”. The contents of SAFE (NON) folder and SCMP (NCMP) folder are identical each other if operation

finished without error. Figure 3.2 also shows the contents of SRC_3.txt of the non safe test data and SRC_2.txt of the

safe test data respectively as example. The RESULT.txt stores the number of the total test times, sizes of the safe test

data, and the addresses of raw and invert records of the safe test data.

Figure 3.2 USB memory Contents

RESULT.txt: store diagnosis result data

USB memory SCMP folder: store compared data

==== RAM Soft Error Diagnosis Result ====

Number of total operations = 8,

Safe data size[0] = 48,

RAW record[0]: 0x0002c000 to 0x0002c02f, INV record[0]: 0x0002e000 to 0x0002e02f,

Safe data size[1] = 49,

RAW record[1]: 0x0002c400 to 0x0002c430, INV record[1]: 0x0002e400 to 0x0002e430,

Safe data size[2] = 50,

RAW record[2]: 0x0002c800 to 0x0002c831, INV record[2]: 0x0002e800 to 0x0002e831,

Safe data size[3] = 59,

RAW record[3]: 0x0002cc00 to 0x0002cc3a, INV record[3]: 0x0002ec00 to 0x0002ec3a,

Safe data size[4] = 188,

RAW record[4]: 0x0002d000 to 0x0002d0bb, INV record[4]: 0x0002f000 to 0x0002f0bb,

Safe data size[5] = 948,

RAW record[5]: 0x0002d400 to 0x0002d7b3, INV record[5]: 0x0002f400 to 0x0002f7b3,

Safe data size[6] = 1023,

RAW record[6]: 0x0002d800 to 0x0002dbfe, INV record[6]: 0x0002f800 to 0x0002fbfe,

Safe data size[7] = 1024,

RAW record[7]: 0x0002dc00 to 0x0002dfff, INV record[7]: 0x0002fc00 to 0x0002ffff,

RESULT.txt

Identical data

CMP_0.txt CMP_1.txt CMP_2.txt CMP_7.txt

SAFE folder: store safe test data

SRC_0.txt SRC_1.txt SRC_2.txt SRC_7.txt

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18

19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30

31

SRC_2.txt (binary view)

NCMP folder: store compared dataIdentical data

CMP_1.txt CMP_2.txt CMP_3.txt

NON folder: store non safe test data

SRC_1.txt SRC_2.txt SRC_3.txt

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18

19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30

31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 42 43 44 45 46 47 48 49

4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61

62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A

7B 7C 7D 7E 7F 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 90 91 92 93

94 95 96 97 98 99 9A 9B 9C 9D 9E 9F A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB

AC AD AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF C0 C1 C2

C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF D0 D1 D2 D3 D4 D5 D6 D7 D8

D9 DA DB DC DD DE DF E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE

EF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF 00 01 02

SRC_3.txt (binary view)

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 14 of 41

Aug 10, 2016

This example uses the 16KB data flash area and 64KB RAM without ECC area. The erase unit and program unit of

RX64M/71M’s data flash are 64B and 4B respectively
1
.

A portion of the data flash divided by eight defines the block (Block(1) to Block(8)). Furthermore, each 1KB unit of the

block defines the segment (Segment(0) to Segment(7)). Allocating one block as the bit pattern stored area, the other

block as the bit pattern for double RAM stored area, and remaining blocks are used as the not safety parameter stored

areas.

The last 16KB RAM area, defining Area(4), assigns the safe data stored area and remaining 3x16KB areas uses the not

safety data stored areas (Area(1) to Area(4)). Forward 8KB of the Area(4) allocates a raw data area (Raw record(0) to

Raw record(7)) and backward 8KB uses a bit invert area (Invert record(0) to Invert record(7)). Each 1KB unit of them

defines a raw record or invert record.

Figure 3.3 explains the operation overview in relation to the data allocation when 1byte safety data (hereafter, Data A)

write after read operation. And then, Data A is stored at Nth byte of 7th raw record and exclusive OR operation

(hereafter, XOR) is applied. (1 <= N <= 1024)

(1) Update bit pattern in the data flash. Thereafter, verify updated bit pattern applied to double RAM operation.

(2) Execute XOR Data A with Bit pattern(6,N). This operated data defines Data A’.

(3) Write Data A’ to Nth byte of 7th raw record.

(4) Execute bit invert operation to Data A’. This operated data defines Data A”.

(5) Write Data A” to (1024 – N + 1)th byte of 2nd invert record.

(6) Read Data A” from (1024 – N + 1)th byte of 2nd invert record.

(7) Execute bit invert operation to Data A’’.

(8) Read Data A’ to Nth byte of 7th raw record.

(9) Compare the bit invert Data A” at sequence(7) to the Read Data A’ at sequence(8). If not compare match each other,

any RAM soft error detected.

(10) Execute XOR Data A’ with Bit pattern(6,N). This operated data retrieves Data A due to XOR feature. And then,

return Data A to user application.

1
As for more detailed feature, please refer to RX64M/71M user’s manual.

Figure 3.3 Operation overview and data allocation

Segment(0) 1KB
Block(1)

8KB
Data Flash feature
Erase unit: 64B
Program unit: 4B Block(2)

8KB

Block(3)

8KB

Block(4)

8KB

Segment(1) 1KB

Segment(2) 1KB

Segment(3) 1KB

Segment(4) 1KB

Segment(5) 1KB

Segment(6) 1KB

Segment(7) 1KB

Block (4)

Non safe

parameter

Bit

pattern

Data Flash 64KB

Area(4)

16KB

Non safe

data

area

Safe

data

area

RAM 64KB

Area(3)

16KB

Area(2)

16KB

Area(1)

16KB

Area (4)

Raw data area

8KB

Bit inverted

data area

8KB

Raw record(0) 1KB

Raw record(6) 1KB

Write operation

Bit pattern(6,N)

Bit pattern(6,1)

Segment (6)

1KB

Invert record(1) 1KB

Invert record(7) 1KB

レコード(6,)

Data(6,N)

Data(6,1)

Raw record (6)

Data(1,1024-N+1)

Data(1,1)

Invert record(1)

Data A

XOR

Data A’

Write

Bit pattern(6,1024)

レコード(6,)Data(6,1024)

Data(1,1024)

Bit
invert

Write

Data A”

Read operation

Data A

XOR

Data A’

Read

Bit
invert

Data A”

Read

Compare

XOR operated data

XOR operation + bit invert data

Raw record(7) 1KB

Invert record(0) 1KB

Records

1KB

1KB

(1) (2)

(3)

(4)

(5)

(6)

(7)

(8)
(9)

(10)

Block(5)

8KB

Bit pattern

for double RAM

Block(7)

8KB

Non safe

parameter

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 15 of 41

Aug 10, 2016

3.3 Reducing Biased Data

In general, the safe data of user application are not balanced (biased 0’s or 1’s) and difficult to detect RAM’s 0 or 1

fixed error effectively. Therefore, XOR make equivalent data pattern of safe data stored in the RAM and enhances the

error detection rate.

Figure 3.4 shows the example of reducing user application’s biased data by XOR and the operation is same as described

Figure 3.3. Store the sequential bit pattern such as 0x00 to 0xFF by 256 byte unit in the Segment(6). In this case, both of

PN and PI closes nearly 1/2 because the number of b’0 and b’1 are 4096 unit respectively and each safe data is applied to

XOR with the bit pattern (PN: probability preserving the current bit value, PI: the probability inverting the current bit

value). If the number of b’0 and b’1 in the user application data are N unit and (8192 – N) unit respectively, XOR

makes the number of b’0 or b’1 approximately becomes 4092 unit and reduces the biased data in view of

probabilistically (N = 0, 1, 2,,, 8192).

The error detection rate improves proportional to the data size of user application because the more data size, PN and PI

become closer to 1/2.

If bit pattern is created from random data, the same degree of result can be expected because the number of b’0 and b’1

are approximately equivalent.

Figure 3.4 Reducing biased data by XOR

00-01-02,,, FE-FF 00-01-02,,, FE-FF

(6,1) (6,256)

00-01-02,,, FE-FF 00-01-02,,, FE-FF

(6,512) (6,768) (6,1024)

Repeat by 256Byte unit

Bit pattern

Safe data

Biased data depend on the user application

b’0: 4096 unit
b’1: 4096 unit

b’0: N unit
b’1: (8192-N) unit
N = 0,1,2,, 8192

XORX11Y11-X12Y12,,, X21Y21-X22Y22,,, X31Y31-X32Y32,,, X41Y41-X42Y42,,,

No invert probability PN ⋍1/2
Invert probability PI ⋍1/2

b’0: (PN*N + PI*(8192 – N)) unit ⋍ 4096 unit
b’1: (PN*(8192 – N) + PI*N) unit ⋍ 4096 unit

Bit pattern(6,N)

Bit pattern(6,1)

Segment (6)

1KB

Bit pattern(6,1024)

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 16 of 41

Aug 10, 2016

3.4 Performance of Safety Data Access (Measurement Example)

Table 3.1 and Table 3.2 show the access time of RX64M and RX71M respectively as the typical examples. Those

access time are measured by the execution interval of safety write function (RAM_SafetyWrite) or safety read function

(RAM_SafetyRead) with bit operation and those safety data are used the safety data set
1
 stored in the SAFE folder.

Please keep your mind those result are depend on the condition and environment.

1
 Stored at demo_src/usb_memory_sample/set1 and set2.

Table 3.1 RX64M access time

Table 3.2 RX71M access time

Data size (Byte) 150 1024 256 127 991 992 723 27

Write (ns) 67,983 460,333 115,533 57,675 445,575 445,966 325,250 12,775

Read (ns) 70,316 476,325 119,533 59,658 461,050 461,458 336,541 13,200

- set1 with bit operation

Data size (Byte) 48 49 50 59 188 948 1023 1024

Write (ns) 22,150 22,616 23,083 27,141 85,008 426,216 459,941 460,333

Read (ns) 22,891 23,375 23,858 28,066 87,941 441,025 475,916 476,325

- set2 with bit operation

- RX64M Measurement conditions

Board CPU frequency Code area Data area Compiler Optimization setting

RX64M RSK board

(R0K50564MC001BR)
120MHz

Internal ROM

Read: 1cycle

Internal RAM

Read/Write: 1cycle

CC-RX

V2.04.01

Default setting

- Opt level: 2

- Opt method: size priority

- Inter module opt: none

Data size (Byte) 150 1024 256 127 991 992 723 27

Write (ns) 55,350 375,333 94,141 46,933 363,283 363,625 265,150 10,316

Read (ns) 56,483 383,300 96,108 47,891 370,983 371,333 270,766 10,491

- set1 with bit operation

Data size (Byte) 48 49 50 59 188 948 1023 1024

Write (ns) 17,983 18,350 18,733 22,033 69,250 347,516 375,000 375,333

Read (ns) 18,316 18,708 19,083 22,458 70,666 354,875 382,950 383,300

- set2 with bit operation

- RX71M Measurement conditions

Board CPU frequency Code area Data area Compiler Optimization setting

RX64M RSK board

(R0K50571MC000BR)
240MHz

Internal ROM

Read: 2cycles

Internal RAM

Read/Write: 1cycle

CC-RX

V2.04.01

Default setting

- Opt level: 2

- Opt method: size priority

- Inter module opt: none

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 17 of 41

Aug 10, 2016

3.5 Software Operation Flow

In this section, describes the software operation flow of this sample.

Figure 3.5 shows from the initialize process to the infinite loop. This sample task (Sample_Task function) is called via

USB application task showed by Figure 3.6 within the infinite loop. Figure 3.7 and Figure 3.8 show the each task

structure managed by the application state. Figure 3.9 to Figure 3.20 are software operation flows related to the double

RAM with bit operation.

Figure 3.5 Initial operation

1. Initialize user LED

Start

3. Initialize Flash driver Call R_FLASH_Open

2. Initialize operation parameter

6. Initialize USB Initialize scheduler, ports, etc

7. Initialize USB driver Call R_USB_Open

8. Initialize USB Host related task Initialize USB Host driver, register application task, etc

Start USB task management scheduler

9. Infinite
loop

10. Start scheduler

11. Is any
USB task?

No

Yes

12. Execute USB task

13. USB application task
Refer: USB application embedded task

Call usb_hmsc_AplTask

Host controller task, Hub task,

Host Driver task, etc

4. Create bit pattern data If bit pattern is random, use rand() function

5. Initialize RAM area

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 18 of 41

Aug 10, 2016

Figure 3.6 USB application embedded task

Figure 3.7 Sample application task (1)

Start

1０. Sample
application task

1. Is any USB
application task?

No

Yes

Call R_USB_TRCV_MSG

2. Judge task
messageEnd

3. Transfer task
state to

“USB_APL_STATE”

“USB_HMSC_DRIVE_OPEN” “USB_APL_START”

5. Transfer task state to
“USB_HMSC_DRIVEMOUNT”

6. Transfer task
state to “USB

_HMSC_FILEREAD”

4. Execute USB
memory mount

sequence

“USB_HMSC_DRIVEMOUNT” “USB_HMSC_FILEREAD”

7. Can
be read

file?

End

11. Transfer file state
to “FILE_WRITE”

“USB_HMSC_FILEWRITE”

9. Can
be write

file?
No

Yes

No

Yes

Refer: Sample

application task

Call Sample_Task

12. Release task message

8. Transfer file state
to “FILE_WRITE”

Other

state

Usb_hmsc_AplTask function

Start

1. Judge
application state

“APL_START”

2. Start USB memory and
create data directory

End

Sample_Task function

Refer apl_state

3. Update bit
pattern

Call upd_bitpat

5. User LED 0x1 pattern

6. Is SW1
pushed?

No

Yes

8. Application state
to “APL_NREAD”

“APL_NREAD”

9. Set read (from USB)
data buffer pointer

10. File
read operation

Call file_read

11. Application state
to “APL_NRAM”

“APL_NRAM”

12. Set write (to USB)
data buffer pointer

13. Write non
safety data to RAM

Call RAM_Write

15. Application state
to “APL_NWRITE”

“APL_SREAD”

“APL_SRAM”

“APL_SWRITE”

“APL_STOP”

“APL_NWRITE

”

16. File
write operation

17. Increment
block number and

access area

blk_no ← blk_no +1

area ← area + 1

18. Is area
safety?

No

Yes

19. Application state
to “APL_SREAD”

20. Application state
to “APL_NREAD”

Call file_write

4. Load seed

Call load_seed

7. Increment next seed

14. Read non safety
data from RAM

Call RAM_Read

1

Only if “UPD_NXT_SEED” defined

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 19 of 41

Aug 10, 2016

Figure 3.8 Sample application task (2)

Figure 3.9 Update bit pattern operation

1. Judge
application state

End

Sample_Task function

Refer apl_state

“APL_SREAD”

Call file_read

10. Application state
to “APL_SWRITE”

“APL_STOP”

20. Infinite
loop

16. File
stop operation

Call file_stop

Only if “FORCE_ERASE_BPAT” defined

1

2. Set read (from USB)
data buffer pointer

3. File
read operation

4. Application state
to “APL_SRAM”

“APL_SRAM”

5. Set write (to USB)
data buffer pointer

6. Write safety data
to RAM

Call RAM_SafetyWrite

7. Read safety data
from RAM

Call RAM_SafetyRead

8. User LED indicates
operation times (0x0 to 0x7)

9. Is SW2
pushed?

No

Yes

11. File
write operation

12. Increment
Record number

rec_no ← rec_no +1

13. Is final
record?

No

Yes

14. Application state
to “APL_STOP”

15. Application state
to “APL_SREAD”

Call file_write

“APL_SWRITE”

Call ers_bitpat

Call upd_seed

Only if “UPD_NXT_SEED” defined

17. Update seed
to data flash

18. Erase bit pattern
from data flash

19. User LED 0xF pattern

Start

1. Is defined
parameter?

No

Yes

upd_bitpat function

Check segment number and size

Call R_FLASH_Erase

Err End Return DBRAM_ERR_PARAM

Call R_FLASH_BlankCheck

Call R_FLASH_Write

2. Erase bit pattern segment

3. Check blank for bit pattern segment

4. Write bit pattern

Call R_FLASH_Erase

Call R_FLASH_BlankCheck

Call R_FLASH_Write

5. Erase double RAM segment

6. Check blank for double RAM segment

7. Write bit pattern to double RAM segment

8. Is all data
verified?

No

Yes

9. Is data
coincident?

No

Yes Err End Return DBRAM_ERR_FLDBRAM

10. Increment data pointer
p_w ← p_w +1

p_r ← p_r +1

*p_w == *p_r?

Verify updated bit pattern

Not verify double RAM segment

End Return DBRAM_OK

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 20 of 41

Aug 10, 2016

Figure 3.10 Load bit pattern operation

Figure 3.11 File read operation

Start

1. Is defined
parameter?

No

Yes

load_bitpat function

Check segment number and size

Err End Return DBRAM_ERR_PARAM

4. Is all data
compared?

No

Yes

End Return DBRAM_OK

5. Is data
coincident?

No

Yes Err End

Return DBRAM_ERR_FLDBRAM

6. Increment data pointer
p_r ← p_r +1

p_rc ← p_rc +1

*p_r == *p_rc?

Double RAM to updated bit pattern

2. Set bit pattern pointer p_r ← bp_addr

3. Set double RAM pointer p_r c ← bpc_addr

Start

1. Is defined
area?

No

Yes

file_read function

Check RAM area

6. Open read data file

Err End

“NON or SAFE/SRC_N.txt” (default)

Call R_tfat_f_open

8. Close read data file

Call R_tfat_f_close

MAX_DAT_SIZE is 16Kbyte

9. Read read data file Call R_tfat_f_read

Return FLIF_ERR

10. Is any error
occurred?

No

Yes

Err End

11. Close read data file

Call R_tfat_f_close

Return FLIF_ERR

End

14. Close read data file Call R_tfat_f_close

Return FLIF_OK

Err End Return FLIF_ERR

2. Is safety
area?

No

Yes

3. Set safe read directory path4. Set non safe read directory path

str ← READ_DIR_SAFE str ← READ_DIR_NON

5. Set file path

str ← READ_FILE

7. Is file
size more
than MAX?

No

Yes

12. Is Safety
area?

No

Yes

13. Set safety data size

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 21 of 41

Aug 10, 2016

Figure 3.12 Write non safety data operation

Figure 3.13 Read non safety data operation

Figure 3.14 File write operation

Start RAM_Write function

Area number is 1, 2 or 3

Area size <= 16KB

End

3. Write non safety data Call memcpy function

Return DBRAM_OK

1. Judge area
number

2. Set non safe data write buffer buf ← N1_BUF, N2_BUF or N3_BUF

Err End Return DBRAM_ERR_PARAM

Undefined area number or size

Start RAM_Read function

Area number is 1, 2 or 3

Area size <= 16KB

End

3. Read non safety data Call memcpy function

Return DBRAM_OK

1. Judge area
number

2. Set non safe data read buffer buf ← N1_BUF, N2_BUF or N3_BUF

Err End Return DBRAM_ERR_PARAM

Undefined area number or size

Start

1. Is area
defined?

No

Yes

file_write function

6. Open write data file

Err End

“NCMP or SCMP/CMP_N.txt” (default)

Call R_tfat_f_open

8. Close write data file

Call R_tfat_f_close

MAX_DAT_SIZE is 16Kbyte

9. Write write data file Call R_tfat_f_write

Return FLIF_ERR

10. Is any error
occurred?

No

Yes

Err End

11. Close write data file

Call R_tfat_f_close

Return FLIF_ERR

End

12. Close write data file Call R_tfat_f_close

Return FLIF_OK

Err End Return FLIF_ERR

2. Is safety
area?

No

Yes

3. Set safe write directory path4. Set non safe write directory path

str ← WRITE_DIR_SCMP str ← WRITE_DIR_NCMP

5. Set file path

str ← WRITE_FILE

7. Is file
size more
than MAX?

No

Yes

Check RAM area

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 22 of 41

Aug 10, 2016

Figure 3.15 Write safety data operation

Figure 3.16 Read safety data operation

Figure 3.17 Execute bit operation

Start RAM_SafetyWrite function

End

3. Set raw data Call memcpy function

Return DBRAM_OK

1. Is record
defined?

2. Execute bit operation Call _exec_bitop

Err End Return DBRAM_ERR_PARAM

Undefined raw and invert record number

Check raw and invert record number

4. Set invert data by inverse order Call _inv_memcpy

No

Yes

Start RAM_SafetyRead function

End

4. Set raw data Call memcpy function

Return DBRAM_OK

1. Is record
defined?

Call _exec_bitop

Err End Return DBRAM_ERR_PARAM

Undefined raw and invert record number

Check raw and invert record number

Call inv_comp_data

No

Yes

5. Execute bit operation

3. Is any
difference?

No

Yes

2. Compare data
Compare raw data with inverted data by inverse order

Err End Return DBRAM_ERR_CMP

Detect soft error by double RAM operation

Start

1. Is defined
parameter?

No

Yes

exec_bitop function

Check segment number and size

Err End Return DBRAM_ERR_PARAM

5. Is all data
operated?

No

Yes

End Return DBRAM_OK

6. Is data
coincident?

No

Yes Err End

Return DBRAM_ERR_FLDBRAM

8. Increment access pointer
pat ← pat +1

patc ← patc +1

raw ← raw +1

*pat == *patc?

2. Set bit pattern pointer pat ← bp_addr

3. Set double RAM pointer patc ← bpc_addr

_exec_bitop function

Bit operation with loading bit pattern using double RAM

7. Execute bit operation

4. Set data pointer raw ← dat

*raw ← *raw XOR *pat

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 23 of 41

Aug 10, 2016

Figure 3.18 File stop operation

Figure 3.19 Update seed operation

Start file_stop function

1. Open result data file
“RESULT.txt” (default)

Call R_tfat_f_open

Number of total operations, safe data sizes, raw record addresses

and invert record address

3. Write result data file Call R_tfat_f_write

4. Is any
error

occurred?

No

Yes

Err End

5. Close result data file

Call R_tfat_f_close

Return FLIF_ERR

End

6. Close result data file

Call R_tfat_f_close

Return FLIF_OK

If file is not existed, create it.

2. Copy soft error diagnosis
result to write buffer

Start upd_seed function

Call R_FLASH_Erase

Err End

Call R_FLASH_BlankCheck

Call R_FLASH_Write

Return DBRAM_OK

5. Is data
coincident?

No

Yes

End

Return DBRAM_ERR_FLVERIFY

*p_w == *p_r?

Verify updated seed

1. Erase updating seed block

2. Check blank area

3. Write seed

4. Set write and read pointer

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 24 of 41

Aug 10, 2016

Figure 3.20 Erase bit pattern operation

3.6 Board Setting

There are two jumpers changing from the default setting of the RX64M/71M RSK board to execute this example. When

the product name of the RX64M/71M RSK board is R0K50564MC001BR or R0K5RX71MC010BR, Table 3.3

indicates their changing. And when the product name of the RX71M RSK board is R0K50571MC000BR, Table 3.4

indicates their changing.

Table 3.3 Jumper setting

Table 3.4 Jumper setting

Start

1. Is defined
parameter?

No

Yes

ers_bitpat function

Check segment number and size

Call R_FLASH_Erase

End

Err End Return DBRAM_ERR_PARAM

Call R_FLASH_BlankCheck

Return DBRAM_OK

2. Erase updated bit pattern segments

3. Check blank for updated bit pattern segments

4. Is bit pattern
erased?

No

Yes Err End Return DBRAM_ERR_FLERASE

Call R_FLASH_Erase

Call R_FLASH_BlankCheck

5. Erase double RAM segments

6. Check blank for double RAM segments

7. Is double
RAM erased?

No

Yes Err End Return DBRAM_ERR_FLERASE

Jumper Board default setting This example Functional use

J2 2-3 1-2 USB Enables Host Mode

J6 1-2 2-3 USB USB0VBUSEN

- USB access setting

- USB access setting

Jumper Board default setting This example Functional use

J1 2-3 1-2 USB Enables Host Mode

J3 1-2 2-3 USB USB0VBUSEN

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 25 of 41

Aug 10, 2016

4. API Functions

4.1 FlashInit ()

This function initializes flash driver (flash API).

Format

dbram_t FlashInit(void);

Parameters

None

Return Values
DBRAM_OK: Processing completed successfully
DBRAM_ERR: Any error occurred

Properties
Prototyped in “db_ram.h”.

Description
This function initializes flash driver (flash API).

- If bit pattern setting is random (BIT_PAT_RAN == BIT_PAT_MODE), load seed from data flash and set
initial seed by srand function.

Reentrant
Function is reentrant.

Example
Example showing this function being used.

#include <stdlib.h>

#include "db_ram.h"

#include "r_flash_rx_if.h"

static int8_t BPT_BUF[BIT_SEG_SIZE]; /* Bit pattern data buffer */

dbram_t db_ret;

/* Initialize flash API and set initial seed */

db_ret = FlashInit();

if (DBRAM_OK != db_ret)

{

goto Err_end; /* error */

}

/* Create bit pattern data */

crt_bitpat(BPT_BUF, sizeof(BPT_BUF));

/* Initializes RAM area */

RAM_Init();

 /* Update bit pattern to 7th segment */

db_ret = upd_bitpat(6, (uint8_t*)BPT_BUF, BIT_SEG_SIZE);

if (DBRAM_OK != db_ret)

{

goto Err_end; /* error */

}

return;

Special Notes
This function need to be executed at least once after the system was started, if bit pattern setting is random.

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 26 of 41

Aug 10, 2016

4.2 load_seed ()

This function loads seed from data flash.

Format

uint32_t load_seed(void);

Parameters

None

Return Values
Seed data

Properties
Prototyped in “db_ram.h”.

Description
This function loads seed from data flash.

Reentrant
Function is reentrant.

Example
Example showing this function being used.

#include "db_ram.h"

dbram_t db_ret;

uint32_t seed;

/* Load seed from data flash */

seed = load_seed();

 /* Update bit pattern to 7th segment */

 db_ret = upd_seed(&next_seed);

if (DBRAM_OK != db_ret)

{

goto Err_end; /* error */

}

return;

Special Notes
This function is only used, if bit pattern setting is random (BIT_PAT_RAN == BIT_PAT_MODE).

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 27 of 41

Aug 10, 2016

4.3 upd_seed ()

This function updates seed to data flash.

Format

dbram_t upd_seed(uint32_t *dat);

Parameters

dat – seed data.

Return Values
DBRAM_OK: Processing completed successfully
DBRAM_ERR_FLERASE: Flash erase error
DBRAM_ERR_FLWRITE: Flash write error
DBRAM_ERR_FLVERIFY: Flash verify error

Properties
Prototyped in “db_ram.h”.

Description
This function updates seed to data flash.

Reentrant
Function is reentrant.

Example
Example is same as “4.2 load_seed”.

Special Notes
This function is only used, if bit pattern setting is random (BIT_PAT_RAN == BIT_PAT_MODE).

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 28 of 41

Aug 10, 2016

4.4 crt_bitpat ()

This function creates bit pattern data.

Format

void crt_bitpat(int8_t *dat, int32_t size);

Parameters

dat - bit pattern data.

size – bit pattern size.

Return Values
None

Properties
Prototyped in “db_ram.h”.

Description
This function creates bit pattern data.

- If bit pattern setting is random (BIT_PAT_RAN == BIT_PAT_MODE), create random data by rand function.

- If bit pattern setting is sequential (BIT_PAT_SEQ == BIT_PAT_MODE), create sequential data composed
of repeating 0x00 to 0xff by 256 byte unit.

- If bit pattern setting is constant (BIT_PAT_CNT == BIT_PAT_MODE), create constant data whose value is
specified by constant data pattern (CONST_PAT).

Reentrant
Function is reentrant.

Example
Example is same as “4.1 FlashInit”.

Special Notes
Need to allocate buffer more than creating bit pattern.

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 29 of 41

Aug 10, 2016

4.5 load_bitpat ()

This function loads bit pattern from data flash with double RAM operation.

Format

dbram_t load_bitpat(int32_t seg_no, uint8_t *dat, int32_t size);

Parameters

seg_no – segment number.

dat – bit pattern data.

size – bit pattern size.

Return Values
DBRAM_OK: Processing completed successfully
DBRAM_ERR_FLDBRAM: Flash double RAM error
DBRAM_ERR_PARAM: Parameter error

Properties
Prototyped in “db_ram.h”.

Description
This function loads bit pattern from data flash with double RAM operation.

Reentrant
Function is reentrant.

Example
Example showing this function being used.

#include <stdio.h>

#include "db_ram.h"

static uint8_t BUF[4]; /* Bit pattern data buffer */

dbram_t db_ret;

/* Load bit pattern from 3rd segment, */

db_ret = load_bitpat(2, (uint8_t*)BUF, 4);

if (DBRAM_OK != db_ret)

{

goto Err_end; /* error */

}

printf("Bit pattern data = %8x\n", BUF);

return;

Special Notes
None.

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 30 of 41

Aug 10, 2016

4.6 upd_bitpat ()

This function updates bit pattern to data flash with double RAM operation.

Format

dbram_t upd_bitpat(int32_t seg_no, uint8_t *dat, int32_t size);

Parameters

seg_no – segment number.

dat – bit pattern data.

size – bit pattern size.

Return Values
DBRAM_OK: Processing completed successfully
DBRAM_ERR_PARAM: Parameter error
DBRAM_ERR_FLERASE: Flash erase error
DBRAM_ERR_FLWRITE: Flash write error
DBRAM_ERR_FLVERIFY: Flash verify error

Properties
Prototyped in “db_ram.h”.

Description
This function updates bit pattern to data flash with double RAM operation following procedures.

- Erase bit pattern segment, check blank for bit pattern segment and write bit pattern.

- Erase double RAM segment, check blank for double RAM segment and write bit pattern to double RAM
segment.

- Verify updated bit pattern (Not verify double RAM segment).

Reentrant
Function is reentrant.

Example
Example is same as “4.1 FlashInit”.

Special Notes
None.

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 31 of 41

Aug 10, 2016

4.7 ers_bitpat ()

This function erases bit pattern from data flash.

Format

dbram_t ers_bitpat(int32_t seg_no, int32_t num_seg);

Parameters

seg_no – erase segment number.

num_seg - number of erase segment.

Return Values
DBRAM_OK: Processing completed successfully
DBRAM_ERR_PARAM: Parameter error
DBRAM_ERR_FLERASE: Flash erase error

Properties
Prototyped in “db_ram.h”.

Description
This function erases bit pattern from data flash with double RAM blocks.

Reentrant
Function is reentrant.

Example
Example showing this function being used.

#include <stdio.h>

#include "db_ram.h"

dbram_t db_ret;

/* Erase bit pattern of 4th segment, */

db_ret = ers_bitpat(3, 1);

if (DBRAM_OK != db_ret)

{

goto Err_end; /* error */

}

printf("Bit pattern erased of 4th segment\n");

return;

Special Notes
This function erases not only bit pattern data itself but also the double RAM data.

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 32 of 41

Aug 10, 2016

4.8 exec_bitop ()

This function executes bit operation.

Format

dbram_t exec_bitop(int32_t seg_no, int8_t *dat, uint16_t size);

Parameters

seg_no – segment number.

dat - bit operation data.

size - bit operation data size.

Return Values
DBRAM_OK: Processing completed successfully
DBRAM_ERR_FLDBRAM: Flash double RAM error
DBRAM_ERR_PARAM: Parameter error

Properties
Prototyped in “db_ram.h”.

Description
This function executes bit operation with loading bit pattern using double RAM.

Reentrant
Function is reentrant.

Example
Example showing this function being used.

#include <string.h>

#include "db_ram.h"

static int8_t USER_BUF[1024];

#pragma section _RAW_AREA

static int8_t R_BUF[NUM_RAW_REC][RAW_REC_SIZE]; /* Raw data area (8*1024) byte

*/

#pragma section

#pragma section _INV_AREA

static int8_t I_BUF[NUM_INV_REC][INV_REC_SIZE]; /* Invert data area (8*1024)

byte */

#pragma section

int32_t ret;

int32_t *dat;

/* Compare 1st record raw data with inverted data by 1KB */

ret = inv_comp_data(R_BUF[0], &(I_BUF[0][BIT_SEG_SIZE-1]), 1024);

if ((-1) != ret)

{

 ErrPtr = ret; /* set error byte */

goto Err_end; /* compare error */

}

/* Set user buffer pointer */

dat = USER_BUF;

/* Set raw data */

memcpy(dat, R_BUF[0], 1024);

/* Execute bit operation */

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 33 of 41

Aug 10, 2016

_exec_bitop(rec_no, dat, size);

return;

Special Notes
No bit operation is executed, if kind of bit operation is no operation (OP_NONE == KND_BIT_OP).

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 34 of 41

Aug 10, 2016

4.9 RAM_Init ()

This function initializes RAM.

Format

void RAM_Init(void);

Parameters

None

Return Values
None

Properties
Prototyped in “db_ram.h”.

Description
This function initializes following RAM areas.

- Non safe areas: Area(1), Area(2) and Area(3).

- Safe areas: raw data area and bit inverted data area.

Reentrant
Function is reentrant.

Example
Example is same as “4.1 FlashInit”.

Special Notes
None.

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 35 of 41

Aug 10, 2016

4.10 RAM_Write ()

This function writes non safety data to RAM.

Format

dbram_t RAM_Write(int32_t area_no, int8_t *dat, uint16_t size);

Parameters

area_no - area number.

dat - write data.

size - data size.

Return Values
DBRAM_OK: Processing completed successfully
DBRAM_ERR_PARAM: Parameter error

Properties
Prototyped in “db_ram.h”.

Description
This function writes non safety data to RAM specified by area number and size.

Reentrant
Function is reentrant.

Example
Example showing this function being used.

#include <stdio.h>

#include "db_ram.h"

static int8_t W_BUF[1024]; /* write buffer */

static int8_t R_BUF[1024]; /* read buffer */

dbram_t db_ret;

int32_t i;

/* Write non safe data to Area(1) by 1KB */

db_ret = RAM_Write(1, W_BUF, sizeof(W_BUF));

if (DBRAM_OK != db_ret)

{

 printf("Write error occurred\n");

 goto Err_end;

}

/* ==== Add user operation ==== */

/* Read non safe data from Area(1) by 1KB */

db_ret = RAM_Read(1, R_BUF, sizeof(R_BUF));

if (DBRAM_OK != db_ret)

{

 printf("Read error occurred\n");

 goto Err_end;

}

/* Compare read and write data by 1KB */

for (i = 0; i < 1024; i++)

{

if (R_BUF[i] != W_BUF[i])

 {

 printf("Data error detected at %d\n", i);

goto Err_end; /* compare error */

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 36 of 41

Aug 10, 2016

}

}

printf("Non safe data access completed\n");

return;

Special Notes
None.

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 37 of 41

Aug 10, 2016

4.11 RAM_SafetyWrite ()

This function writes safety data to RAM.

Format

dbram_t RAM_SafetyWrite(int32_t rec_no, int8_t *dat, uint16_t size);

Parameters

rec_no - record number.

dat - write data.

size - data size.

Return Values
DBRAM_OK: Processing completed successfully
DBRAM_ERR_FLDBRAM: Flash double RAM error
DBRAM_ERR_PARAM: Parameter error

Properties
Prototyped in “db_ram.h”.

Description
This function writes safety data to RAM specified by record number and size.

- Execute bit operation with loading bit pattern using double RAM.

- Write the bit operated data to raw records.

- Write bit inverting data after bit operation to invert records.

Reentrant
Function is reentrant.

Example
Example showing this function being used.

#include <stdio.h>

#include "db_ram.h"

static int8_t W_BUF[128]; /* write buffer */

static int8_t R_BUF[128]; /* read buffer */

dbram_t db_ret;

int32_t i;

/* Write safe data to record(6)by 128B */

db_ret = RAM_SafetyWrite (6, W_BUF, sizeof(W_BUF));

if (DBRAM_OK != db_ret)

{

 printf("Write error occurred\n");

 goto Err_end;

}

/* ==== Add user operation ==== */

/* Read safe data from record(6)by 128B */

db_ret = RAM_SafetyRead(6, R_BUF, sizeof(R_BUF));

if (DBRAM_OK != db_ret)

{

 printf("Read error occurred\n");

 goto Err_end;

}

/* Compare read and write data by 128B */

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 38 of 41

Aug 10, 2016

for (i = 0; i < 1024; i++)

{

if (R_BUF[i] != W_BUF[i])

 {

 printf("Data error detected at %d\n", i);

goto Err_end; /* compare error */

}

}

printf("Safe data access completed\n");

return;

Special Notes
None.

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 39 of 41

Aug 10, 2016

4.12 RAM_Read ()

This function reads non safety data from RAM.

Format

dbram_t RAM_Read(int32_t area_no, int8_t *dat, uint16_t size);

Parameters

area_no - area number.

dat - read data.

size - data size.

Return Values
DBRAM_OK: Processing completed successfully
DBRAM_ERR_PARAM: Parameter error

Properties
Prototyped in “db_ram.h”.

Description
This function reads non safety data from RAM specified by block number and size.

Reentrant
Function is reentrant.

Example
Example is same as “4.10 RAM_Write”.

Special Notes
None.

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 40 of 41

Aug 10, 2016

4.13 RAM_SafetyRead ()

This function reads safety data from RAM.

Format

dbram_t RAM_SafetyRead(int32_t rec_no, int8_t *dat, uint16_t size);

Parameters

rec_no - record number.

dat - read data.

size - data size.

Return Values
DBRAM_OK: Processing completed successfully
DBRAM_ERR_FLDBRAM: Flash double RAM error
DBRAM_ERR_PARAM: Parameter error
DBRAM_ERR_CMP: Double RAM compare error

Properties
Prototyped in “db_ram.h”.

Description
This function reads safety data from RAM specified by record number and size.

- Compare data read from raw record with data read by inverse address order from inverted record. If there
was any difference, a soft error was detected by the double RAM.

- Copy data from raw record to user buffer.

- Execute bit operation with loading bit pattern using double RAM.

Reentrant
Function is reentrant.

Example
Example is same as “4.11 RAM_SafetyWrite”.

Special Notes
None.

RX Family RAM Soft Error Diagnosis Example

R01AN3361EJ0100 Rev.1.00 Page 41 of 41

Aug 10, 2016

5. Reference Documents

User’s Manual: Hardware

RX64M Group User’s Manual: Hardware Rev.1.00 (R01UH0377EJ)

RX71M Group User’s Manual: Hardware Rev.1.00 (R01UH0493EJ)

The latest version can be downloaded from the Renesas Electronics website.

User’s Manual: Software

RX Family RXv2 Instruction Set Architecture User’s Manual: Hardware Rev.1.00 (R01US0071EJ)

The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

Revision History

Rev. Date

Description

Page Summary

1.00 Aug 10, 2016 — First edition issued.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.

For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as

well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an

associated shoot-through current flows internally, and malfunctions occur due to the false

recognition of the pin state as an input signal become possible. Unused pins should be handled as

described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins

are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function

are not guaranteed from the moment when power is supplied until the power reaches the level at

which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.

Moreover, when switching to a clock signal produced with an external resonator (or by an external

oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

 The characteristics of Microprocessing unit or Microcontroller unit products in the same group but

having a different part number may differ in terms of the internal memory capacity, layout pattern,

and other factors, which can affect the ranges of electrical characteristics, such as characteristic

values, operating margins, immunity to noise, and amount of radiated noise. When changing to a

product with a different part number, implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2016 Renesas Electronics Corporation. All rights reserved.

Colophon 5.0

	1. Overview
	1.1 RAM Soft Error Diagnosis Example
	1.2 Related documents
	1.3 Hardware Structure
	1.4 Software Structure
	1.5 File Structure
	1.6 Outline of Functions

	2. Functional Information
	2.1 Hardware Requirements
	2.2 Hardware Resource Requirements
	2.2.1 RAM
	2.2.2 Data Flash
	2.2.3 USB Channel

	2.3 Software Requirements
	2.4 Limitations
	2.5 Supported Toolchains
	2.6 Header Files
	2.7 Integer Types
	2.8 Configuration Overview
	2.9 Data Structures
	2.10 Return Values

	3. Specification of This Example
	3.1 Environment and Execution
	3.2 Operation Sequence
	3.3 Reducing Biased Data
	3.4 Performance of Safety Data Access (Measurement Example)
	3.5 Software Operation Flow
	3.6 Board Setting

	4. API Functions
	4.1 FlashInit ()
	4.2 load_seed ()
	4.3 upd_seed ()
	4.4 crt_bitpat ()
	4.5 load_bitpat ()
	4.6 upd_bitpat ()
	4.7 ers_bitpat ()
	4.8 exec_bitop ()
	4.9 RAM_Init ()
	4.10 RAM_Write ()
	4.11 RAM_SafetyWrite ()
	4.12 RAM_Read ()
	4.13 RAM_SafetyRead ()

	5. Reference Documents
	Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

