
 Application Note

R01AN3167EJ0207 Rev.2.07 Page 1 of 46
Mar.15.25

RX Family
Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology
Introduction
This application note describes the parallel data capture unit (PDC) using firmware integration technology
(FIT). This module controls the PDC to capture parallel data output by an image sensor such as a camera
module. The module is referred to below as the PDC FIT module.

It should be noted that this application note is not compatible with application note “RX Family Parallel Data
Capture Unit (PDC) Module Using Firmware Integration Technology” (R01AN2220).

Operation Confirmation Devices
The following is a list of devices that are currently supported by this API:

• RX64M
• RX71M
• RX651, RX65N
• RX66N
• RX72M
• RX72N

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Target Compilers
• Renesas Electronics C/C++ Compiler Package for RX Family
• GCC for Renesas RX
• IAR C/C++ Compiler for Renesas RX

For details of the confirmed operation contents of each compiler, refer to “6.1 Operation Confirmation
Environment".

Related Documents
• RX Family Board Support Package Module Using Firmware Integration Technology (R01AN1685)
• RX Family DMA Controller DMACA Control Module Using Firmware Integration Technology

(R01AN2063)
• RX Family DTC Module Using Firmware Integration Technology (R01AN1819).

(THE latest version can be downloaded from the Renesas Electronics website.)

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 2 of 46
Mar.15.25

Contents

1. Overview ... 3
1.1 About the PDC FIT Module ... 3
1.2 API Overview ... 4

2. API Information ... 5
2.1 Hardware Requirements ... 5
2.2 Software Requirements .. 5
2.3 Supported Toolchain .. 5
2.4 Interrupt Vector ... 5
2.5 Header Files ... 5
2.6 Integer Types ... 5
2.7 Compile Settings ... 6
2.8 Code Size ... 6
2.9 Arguments ... 7
2.10 Return Values .. 10
2.11 Callback Functions ... 11
2.12 Adding the FIT Module to Your Project .. 12
2.13 “for”, “while” and “do while” statements ... 13

3. API Functions ... 14
R_PDC_Open() .. 14
R_PDC_Close() ... 21
R_PDC_Control() .. 22
R_PDC_GetFifoAddr() .. 34
R_PDC_GetVersion() .. 37

4. Pin Setting .. 38

5. How to Use .. 39
5.1 API Usage Example ... 39

5.1.1 Example Operation Flowcharts ... 39

6. Appendices ... 40
6.1 Operation Confirmation Environment ... 40
6.2 Troubleshooting .. 44

Revision History .. 45

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 3 of 46
Mar.15.25

1. Overview
The PDC provides functionality for communicating with an external I/O device such as an image sensor and
transferring parallel data, such as image data, output by the external I/O device to the on-chip RAM or an
external address space (CS area or SDRAM area), via the DTC or DMAC. Figure 1.1 shows an overview of
the PDC.

External I/O
Image sensor
(camera module)

On-chip RAM

CS, SDRAM

PDC

FIFO

DTC or DMAC

DTC or DMAC

Memory
PCKO

PIXCLK

VSYNC

HSYNC

PIXD0 to
PIXD7

Figure 1.1 Overview of PDC

Limitations
This module utilizes the hardware locking function of the r_bsp.

1.1 About the PDC FIT Module
This module is used by embedding it in a project as an API. For information on how to embed the module,
see 2.11, Adding the FIT Module to Your Project.

Notes
The endianness of the PDC FIT module switches automatically to match the endian setting of the compiler.

It is not possible to acquire image data from an image sensor using this module alone. The DMAC or DTC is
used to transfer data to the memory, so refer to the manual of the corresponding FIT module and embed the
FIT module in your project. You must prepare an initialization program for the image sensor and make
settings yourself. For information on image sensor settings, contact the sensor manufacturer.

For information on the hardware lock function of r_bsp, see 2.17, Atomic Locking, in application note “RX
Family Board Support Package Module Using Firmware Integration Technology” (R01AN1685).

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 4 of 46
Mar.15.25

1.2 API Overview
Table 1.1 lists the API functions included in the PDC FIT module.

Table 1.1 API Functions

Function Description
R_PDC_Open This function initializes the PDC FIT module.
R_PDC_Close This function ends PDC operation and puts the PDC into the module stop state.
R_PDC_Control This function performs processing according to control codes.
R_PDC_GetFifoAddr This function gets the FIFO address of the PDC.
R_PDC_GetVersion This function returns the API version number.

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 5 of 46
Mar.15.25

2. API Information
The API function of the PDC FIT module adhere to the Renesas API naming standards.

2.1 Hardware Requirements
The microcontroller used must support the following functions:

• PDC
• DTC
• DMAC

2.2 Software Requirements
This FIT module is dependent upon the following package:

Renesas Board Support Package (r_bsp) Rev.5.20 or higher

2.3 Supported Toolchain
This FIT module is tested and working with toolchains listed in 6.1 Operation Confirmation Environment.

2.4 Interrupt Vector
When the R_PDC_Open function is executed, the PCDFI, PCFEI, and PCERI interrupts are enabled
according to the parameter values.
Table 2.1 lists the interrupt vector used in the PDC FIT Module.

Table 2.1 Interrupt Vector Used in the PDC FIT Module

Device Interrupt Vector
RX64M
RX65N
RX66N
RX71M
RX72M
RX72N

PCDFI interrupt (vector no.: 97)
GROUPBL0 interrupt (vector no.: 110)
 PCFEI interrupt (group interrupt source no.: 30)
 PCERI interrupt (group interrupt source no.: 31)

2.5 Header Files
All API calls and their supporting interface definitions are located in r_pdc_rx_if.h.

2.6 Integer Types
This project uses ANSI C99. These types are defined in stdint.h.

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 6 of 46
Mar.15.25

2.7 Compile Settings
The configuration option settings of this module are located in r_pdc_rx_config.h. The option names and
setting values are listed in the table below:

Configuration options in r_pdc_rx_config.h
PDC_CFG_PCKO_DIV
Note: The default value is “2”.

Set the PCKO frequency division ratio select bits in PDC control
register 0 (PCCR0) according to the specified frequency division
ratio. The parallel data transfer clock output (PCKO) operating
frequency is the clock source, peripheral module clock B
(PCLKB), divided by this setting value. The available setting
values are 2, 4, 6, 8, 10, 12, 14, and 16. Specifying a value other
than the preceding will result in an error at compile time.
Note: The operating frequency range is 1 to 30 MHz, but the

optimum value at which operation is possible under the
specifications of the image sensor (camera module) used
should be specified.

2.8 Code Size
The code size estimates for the supported toolchains (listed in section 2.3) assume optimization level 2 and
optimization prioritizing code size. The ROM size (code and constants) and RAM size (global data) are
determined by the configuration options specified in the module’s configuration header file at build time.

The values in the table below are confirmed under the following conditions.

Module Revision: r_pdc_rx rev2.06

Compiler Version: Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00

(The option of “-lang = c99” is added to the default settings of the integrated
development environment.)

GCC for Renesas RX 8.3.0.202102

(The option of “-std=gnu99” is added to the default settings of the integrated
development environment.)

IAR C/C++ Compiler for Renesas RX version 4.20.1

(The default settings of the integrated development environment.)

Configuration Options: Default settings

ROM, RAM and Stack Code Sizes

Device Category Memory Used
Renesas Compiler GCC IAR Compiler

RX72N ROM 2069 bytes 3976 bytes 3236 bytes

RAM 17 bytes 20 bytes 17 bytes

STACK
*1 152 bytes - 204 bytes

Note1. The sizes of maxmum usage stack of Interrupts functions is included.

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 7 of 46
Mar.15.25

2.9 Arguments
The structures and enumerated types used as arguments for the API functions are listed below. The API
functions and their prototype declarations are located in r_pdc_rx_if.h.

/* Interrupt priority level control */
typedef struct st_pdc_int_priority_data_cfg
{
 uint8_t pcdfi_level; /* PCDFI interrupt priority level */
 uint8_t groupbl0_level; /* GROUPBL0 interrupt priority level */
} pdc_ipr_dcfg_t;

/* Interrupt controller (ICUA) PDC interrupt enable/disable */
typedef struct st_pdc_inticu_data_cfg
{
 bool pcfei_ien; /* Frame-end interrupt request enabled */
 bool pceri_ien; /* Error interrupt request enabled */
 bool pcdfi_ien; /* Receive data-ready interrupt request enabled */
} pdc_inticu_dcfg_t;

/* PDC interrupt enable/disable */
typedef struct st_pdc_intpdc_data_cfg
{
 bool dfie_ien; /* Receive data-ready interrupt request enabled */
 bool feie_ien; /* Frame-end interrupt request enabled */
 bool ovie_ien; /* Overrun interrupt request enabled */
 bool udrie_ien; /* Underrun interrupt request enabled */
 bool verie_ien; /* Vertical line count setting error interrupt request enabled */
 bool herie_ien; /* Horizontal byte count setting error interrupt request enabled */
} pdc_intpdc_dcfg_t;

/* Capture position specification */
typedef struct st_pdc_position_data_cfg
{
 uint16_t vst_position; /* Vertical capture start line position */
 uint16_t hst_position; /* Horizontal capture start byte position */
} pdc_pos_dcfg_t;

/* Capture size specification */
typedef struct st_pdc_size_data_cfg
{
 uint16_t vsz_size; /* Vertical capture size */
 uint16_t hsz_size; /* Horizontal capture size */
} pdc_size_dcfg_t;

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 8 of 46
Mar.15.25

/* PDC settings */
typedef struct st_pdc_data_cfg
{
 uint16_t iupd_select; /* Interrupt setting update select */
 pdc_ipr_dcfg_t priority; /* Interrupt priority level */
 pdc_inticu_dcfg_t inticu_req; /* ICU interrupt setting */
 pdc_intpdc_dcfg_t intpdc_req; /* PDC interrupt setting */
 bool vps_select; /* VSYNC signal polarity select */
 bool hps_select; /* HSYNC signal polarity select */
 pdc_pos_dcfg_t capture_pos; /* Capture position setting */
 pdc_size_dcfg_t capture_size; /* Capture size setting */
 pdc_cb_t p_callback; /* Pointer to callback function */
} pdc_data_cfg_t;

/* Copy of PDC status register (PCSR) */
typedef struct st_pdc_data_cfg
{
 bool frame_busy; /* PDC operating status (FBSY flag) */
 bool fifo_empty; /* FIFO status (FEMPF flag) */
 bool frame_end; /* Frame-end (FEF flag) */
 bool overrun; /* Overrun (OVRF flag) */
 bool underrun; /* Underrun (UDRF flag) */
 bool verf_error; /* Vertical line count setting error (VERF flag) */
 bool herf_error; /* Horizontal byte count setting error (HERF flag) */
} pdc_pcsr_stat_t;

/* Copy of PDC pin monitor status register (PCMONR) */
typedef struct st_pdc_data_cfg
{
 bool vsync; /* VSYNC signal status (VSYNC flag) */
 bool hsync; /* HSYNC signal status (HSYNC flag) */
} pdc_pcmonr_stat_t;

/* PDC status */
typedef struct st_pdc_data_cfg
{
 pdc_pcsr_stat_t pcsr_stat; /* PDC status register (PCSR) information */
 pdc_pcmonr_stat_t pcmonr_stat; /* PDC pin monitor status (PCMONR) information */
} pdc_stat_t;

/* R_PDC_Control control codes */
typedef enum e_pdc_command
{
 PDC_CMD_CAPTURE_START = 0, /* Start PDC capture */
 PDC_CMD_CHANGE_POS_AND_SIZE, /* Change PDC capture position and capture size */
 PDC_CMD_STATUS_GET, /* Get PDC status */
 PDC_CMD_STATUS_CLR, /* Clear PDC status */
 PDC_CMD_SET_INTERRUPT, /* PDC interrupt setting */
 PDC_CMD_DISABLE, /* Disable PDC receive operation */
 PDC_CMD_ENABLE, /* Enable PDC receive operation */
 PDC_CMD_RESET /* PDC reset */
} pdc_command_t;

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 9 of 46
Mar.15.25

/* Pointers to callback functions */
typedef struct
{
 void (*pcb_receive_data_ready)(void *); /* Pointer to callback function when receive data-ready
 interrupt occurs */
 void (*pcb_frame_end)(void *); /* Pointer to callback function when PDC FIFO is empty
 after frame-end interrupt occurs */
 void (*pcb_error)(void *); /* Pointer to callback function when overrun error,
 underrun error, vertical line count setting error, or
 horizontal byte count setting error occurs */
}pdc_cb_t;

/* Callback function call source event code */
typedef enum
{
 PDC_EVT_ID_DATAREADY = 0, /* Receive data-ready interrupt occurred. */
 PDC_EVT_ID_FRAMEEND, /* Frame-end interrupt occurred. */
 PDC_EVT_ID_TIMEOUT, /* Standby time elapsed but FIFO has not become empty. */
 PDC_EVT_ID_ERROR, /* Error interrupt occurred. */
 PDC_EVT_ID_OVERRUN, /* Overrun interrupt occurred. */
 PDC_EVT_ID_UNDERRUN, /* Underrun interrupt occurred. */
 PDC_EVT_ID_VERTICALLINE, /* Vertical line count setting error interrupt occurred. */
 PDC_EVT_ID_HORIZONTALBYTE /* Horizontal byte count setting error interrupt occurred. */
}pdc_cb_event_t;

/* Argument passed to callback function */
typedef struct
{
 pdc_cb_event_t event_id; /* Event code of callback function call source */
}pdc_cb_arg_t;

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 10 of 46
Mar.15.25

2.10 Return Values
The return values of the API functions are shown below. This enumerated type and the API function
prototype declarations are located in r_pdc_rx_if.h.

/* Function return values */
typedef enum e_pdc_return /* PDC API error codes */
{
 PDC_SUCCESS = 0, /* Processing finished successfully.*/
 PDC_ERR_OPENED, /* PDC module initialized. Initialization function R_PDC_Open has been run. */
 PDC_ERR_NOT_OPEN, /* PDC module uninitialized. R_PDC_Open has not been run. */
 PDC_ERR_INVALID_ARG, /* Invalid argument input. */
 PDC_ERR_INVALID_COMMAND, /* Command is invalid. */
 PDC_ERR_NULL_PTR, /* Argument pointer value was NULL. */
 PDC_ERR_LOCK_FUNC, /* PDC resource is in use by another process. */
 PDC_ERR_INTERNAL , /* Module internal error detected. */
 PDC_ERR_RST_TIMEOUT /* PDC reset was not canceled even after the specified amount of time elapsed. */
 PDC_ERR_ONGOING /* Operations for reception are ongoing. */
} pdc_return_t;

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 11 of 46
Mar.15.25

2.11 Callback Functions
(1) Receive Data-Ready Interrupt (PCDFI) and Frame-End Interrupt (PCFEI) Callback Functions
When a receive data-ready interrupt (PCDFI) occurs, or when the FIFO becomes empty after a frame-end
interrupt (PCFEI) occurs, the PDC FIT module calls a callback function.

The R_PDC_Open function is used to specify the callback function. For details, see 3.1, R_PDC_Open().

When a receive data-ready interrupt occurs, the PDC FIT module calls the receive data-ready interrupt
callback function. However, if the DMAC is selected for data transfer, you should set the PCDFI interrupt
priority level to 0 so that no callback function is called.

When a frame-end interrupt occurs, the PDC FIT module stands by until the DTC or DMAC has transferred
all the data in the FIFO of the PDC (until the FIFO of the PDC is empty). When it is confirmed that the FIFO
of the PDC is empty, PDC operation is disabled, the frame-end flag is cleared to 0, and the PDC FIT module
calls the frame-end interrupt callback function. Note that if an underrun occurs before the FIFO of the PDC
becomes empty, the frame-end flag is cleared to 0, and the error callback function is called. Also, if the FIFO
of the PDC is not empty even after the specified amount of time has elapsed, the frame-end flag is cleared to
0, and the timeout callback function is called.

When the callback function is called, the variable stored for the constant listed in Table 2.2 is passed as an
argument. If an argument will be used outside the callback function, it should be copied to a global variable,
or the like.

When the callback function is called as described above, group interrupt (GROUPBL0) requests should first
be enabled, and then PCFEI interrupt requests, receive data-ready interrupt requests, and frame-end
interrupt requests should be enabled by means of arguments passed when the R_PDC_Open function is run.
For details, see 3.1, R_PDC_Open().

Table 2.2 Callback Function Arguments when Receive Data-Ready Interrupt or Frame-End Interrupt

Occurs

Variable Definition Description
PDC_EVT_ID_DATAREADY A receive data-ready interrupt occurred.
PDC_EVT_ID_FRAMEEND A frame-end interrupt occurred.
PDC_EVT_ID_TIMEOUT The standby time elapsed but the FIFO did not become empty.

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 12 of 46
Mar.15.25

(2) Callback Function when Errors Occur
When an overrun, underrun, vertical line count setting error, or horizontal byte count setting error occurs, the
PDC FIT module calls a callback function.

The R_PDC_Open function is used to specify the callback function. For details, see 3.1, R_PDC_Open().

When an error interrupt occurs, the PDC FIT module stops PDC operation and then calls the callback
function with the argument PDC_EVT_ID_ERROR. After this, it confirms in order whether or not an overrun,
underrun, vertical line count setting error, or horizontal byte count setting error has occurred. If an error has
occurred, it calls the callback function. When the callback function finishes, the error flag corresponding to
the error that occurred is cleared to 0 and checking resumes to determine if the next error type has occurred.

When the callback function is called with the argument PDC_EVT_ID_ERROR, make sure that at the start of
processing the DTC or DMAC data transfer processing is disabled.

When the callback function is called, the variable stored for the constant listed in Table 2.3 is passed as an
argument. If an argument will be used outside the callback function, it should be copied to a global variable,
or the like.

When the callback function is called as described above, group interrupt (GROUPBL0) requests should first
be enabled, and then PCERI interrupt requests, overrun interrupt requests, underrun interrupt requests,
vertical line count setting error interrupt requests, and horizontal byte count setting error interrupt requests
should be enabled by means of arguments passed when the R_PDC_Open function is run. For details, see
3.1, R_PDC_Open().

Table 2.3 Callback Function Arguments when Errors Occurs

Variable Definition Description
PDC_EVT_ID_ERROR Error interrupt occurred.
PDC_EVT_ID_OVERRUN Overrun error occurred.
PDC_EVT_ID_UNDERRUN Underrun error occurred.
PDC_EVT_ID_VERTICALLINE Vertical line count setting error occurred.
PDC_EVT_ID_HORIZONTALBYTE Horizontal byte count setting error occurred.

2.12 Adding the FIT Module to Your Project
This module must be added to each project in which it is used. Renesas recommends using “Smart
Configurator” described in (1) or (3). However, “Smart Configurator” only supports some RX devices. Please
use the methods of (2) or (4) for unsupported RX devices.

(1) Adding the FIT module to your project using “Smart Configurator” in e2 studio
By using the “Smart Configurator” in e2 studio, the FIT module is automatically added to your
project. Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(2) Adding the FIT module to your project using “FIT Configurator” in e2 studio
By using the “FIT Configurator” in e2 studio, the FIT module is automatically added to your project.
Refer to “Adding Firmware Integration Technology Modules to Projects (R01AN1723)” for details.

(3) Adding the FIT module to your project using “Smart Configurator” on CS+
By using the “Smart Configurator Standalone version” in CS+, the FIT module is automatically
added to your project. Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)”
for details.

(4) Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “Adding Firmware Integration
Technology Modules to CS+ Projects (R01AN1826)” for details.

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 13 of 46
Mar.15.25

2.13 “for”, “while” and “do while” statements
In this module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with “WAIT_LOOP”.

The following shows example of description.

while statement example :
/* WAIT_LOOP */
while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)
{
 /* The delay period needed is to make sure that the PLL has stabilized. */
}

for statement example :
/* Initialize reference counters to 0. */
/* WAIT_LOOP */
for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)
{
 g_protect_counters[i] = 0;
}

do while statement example :
/* Reset completion waiting */
do
{
 reg = phy_read(ether_channel, PHY_REG_CONTROL);
 count++;
} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /*
WAIT_LOOP */

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 14 of 46
Mar.15.25

3. API Functions

R_PDC_Open()
This function initializes the PDC FIT module. It must be run before using the other API functions.

Format
pdc_return_t R_PDC_Open(
 pdc_data_cfg_t *p_data_cfg
)

Parameters
*p_data_cfg

Pointer to PDC settings data structure

Members of Referenced pdc_data_cfg_t Structure and Their Setting Values

Parameters other than those listed below are not referenced, so they do not need to be set before the API is
called.

Structure Member Summary Setting Value
Setting Target
Register Setting Description

priority.pcdfi_level PCDFI
interrupt
priority level

8-bit data
00h to 0Fh

ICU.IPR097.IPR Sets the receive data-ready
interrupt (PCDFI) priority level.

priority.groupbl0_level GROUPBL0
interrupt
priority level

8-bit data
00h to 0Fh

ICU.IPR110.IPR Sets the fame-end interrupt and
error interrupt priority level.

inticu_req.pcdfi_ien PCDFI
interrupt
enabled

false ICU.IER0C.IEN1 Disables interrupt requests for the
receive data-ready interrupt
(PCDFI).

true Enables interrupt requests for the
receive data-ready interrupt
(PCDFI).

inticu_req.pcfei_ien PCFEI
interrupt
enabled

false ICU.GRPBL0.EN30 Disables interrupt requests for the
frame-end interrupt (PCFEI).

true Enables interrupt requests for the
frame-end interrupt (PCFEI).

inticu_req.pceri_ien PCERI
interrupt
enabled

false ICU.GRPBL0.EN31 Disables interrupt requests for the
error interrupt (PCERI).

true Enables interrupt requests for the
error interrupt (PCERI).

intpdc_req.dfie_ien Receive data-
ready interrupt
request

false PCCR0.DFIE Disables receive data-ready
interrupt requests.

true Enables receive data-ready
interrupt requests.

intpdc_req.feie_ien Frame-end
interrupt
request

false PCCR0.FEIE Disables frame-end interrupt
requests.

true Enables frame-end interrupt
requests.

intpdc_req.ovie_ien Overrun
interrupt
request

false PCCR0.OVIE Disables overrun interrupt
requests.

true Enables overrun interrupt
requests.

intpdc_req. udrie_ien Underrun
interrupt

false PCCR0.UDRIE Disables underrun interrupt
requests.

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 15 of 46
Mar.15.25

Structure Member Summary Setting Value
Setting Target
Register Setting Description

request true Enables underrun interrupt
requests.

intpdc_req. verie_ien Vertical line
count setting
error interrupt
request

false PCCR0.VERIE Disables vertical line count setting
error interrupt requests.

true Enables vertical line count setting
error interrupt requests.

intpdc_req. herie_ien Horizontal
byte count
setting error
interrupt
request

false PCCR0.HERIE Disables horizontal byte count
setting error interrupt requests.

true Enables horizontal byte count
setting error interrupt requests.

vps_select VSYNC signal
polarity select

PDC_VSYNC_
SIGNAL_POLA
RITY_HIGH

PCCR0.VPS VSYNC signal is high-active.

PDC_VSYNC_
SIGNAL_POLA
RITY_LOW

VSYNC signal is low-active.

hps_select HSYNC signal
polarity select

PDC_HSYNC_
SIGNAL_POLA
RITY_HIGH

PCCR0.HPS HSYNC signal is high-active.

PDC_HSYNC_
SIGNAL_POLA
RITY_LOW

HSYNC signal is low-active.

capture_pos.vst_position Vertical
capture start
line position

12-bit data
0000h to
0FFEh

VCR.VST Vertical capture start line position

capture_pos.hst_position Horizontal
capture start
line position

12-bit data
0000h to
0FFBh

HCR.HST Horizontal capture start line
position

capture_size.vsz_size Vertical
capture size

12-bit data
0001h to
0FFFh

VCR.VSZ Vertical capture line count

capture_size.hsz_size Horizontal
capture size

12-bit data
0004h to
0FFFh

HCR.HSZ Horizontal capture byte count

p_callback.pcb_receive
_data_ready

Pointer to
callback
function when
PCDFI
interrupt
occurs

other than
NULL/
FIT_NO_FUNC

None The callback function at the
address indicated by the pointer
runs when a receive data-ready
interrupt occurs.

NULL/
FIT_NO_FUNC

The callback function does not
run even when the source occurs.

p_callback.pcb_frame
_end

Pointer to
callback
function when
PCFEI
interrupt
occurs

other than
NULL/
FIT_NO_FUNC

None The callback function at the
address indicated by the pointer
runs when the FIFO becomes
empty after a frame-end interrupt
occurs.

NULL/
FIT_NO_FUNC

The callback function does not
run even when the source occurs.

p_callback.pcb_error Pointer to
callback
function when
PCERI
interrupt
occurs

other than
NULL/
FIT_NO_FUNC

None The callback function at the
address indicated by the pointer
runs when an error interrupt
occurs and when an overrun,
underrun, vertical line count
setting error, or horizontal byte
count setting error occurs.

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 16 of 46
Mar.15.25

Structure Member Summary Setting Value
Setting Target
Register Setting Description

NULL/
FIT_NO_FUNC

The callback function does not
run even when the source occurs.

Return Values
PDC_SUCCESS /* Processing finished successfully. */
PDC_ERR_OPENED /* R_PDC_Open has already been run. */
PDC_ERR_INVALID_ARG /* Parameter values in PDC setting information are invalid. */
PDC_ERR_NULL_PTR /* Argument p_data_cfg is a NULL pointer. */
PDC_ERR_LOCK_FUNC /* The PDC has already been locked by another process. */
PDC_ERR_INTERNAL /* A module internal error was detected. */
PDC_ERR_RST_TIMEOUT /* PDC reset was not canceled even after the specified amount of time

elapsed. */

Properties
The declaration is located in r_pdc_rx_if.h.

Description
The following processing is performed to initialize the PDC:

• Locks the PDC hardware resource using the r_bsp hardware locking function.
• Cancels PDC module stop state.
• Registers the callback functions to be called when interrupts used by the PDC occur.
• Makes settings for interrupts used by the PDC.

Interrupt settings are made for the receive data-ready interrupt (PCDFI), frame-end interrupt (PCFEI), and
error interrupt (PCERI).

• Stops PDC receive operation.
Sets the PCE bit in PDC control register 1 (PCCR1) to “receive operation disabled.”

• Specifies the clock for parallel data transfer clock output (PCKO).
Sets the PCKDIV bits in PDC control register 0 (PCCR0) to specify the clock.
Specifies the parallel data transfer clock output (PCKO) setting value according to the value of
PDC_CFG_PCKO_DIV in r_pdc_rx_config.h.

• Starts supply of parallel data transfer clock output (PCKO).
Sets the PCKOE bit in PDC control register 0 (PCCR0) to “PCKO output enabled.”

• Enables PIXCLK input (PCCR0.PCKE).
Sets the PCKE bit in PDC control register 0 (PCCR0) to “PIXCLK input enabled.”

• Resets the PDC (PCCR0.PRST).
Starts initialization of the internal state of the PDC and of the PDC reset target registers.

• Makes vertical and horizontal capture range settings (VCR and HCR settings).
• Makes polarity settings for VSYNC and HSYNC signals (VPS and HPS).
• Makes interrupt enable/disable settings (DFIE. FEIE, OVIE, UDRIE, VERIE, and HERIE).
• Makes endianness setting (EDS).

Example
In the sample code two bytes are used to represent each dot of the image sensor output, so the horizontal
dot count for the horizontal capture position and size is set to twice the actual value. The setting value should
be modified as necessary to match the output characteristics of the actual image sensor used.

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 17 of 46
Mar.15.25

Case 1: Capturing image at VGA (640 × 480) resolution

#include “platform.h”
#include “r_pdc_rx_if.h”

/* Error code of PDC FIT API */
volatile pdc_return_t ret_pdc;
/* Setting values of PDC operation */
pdc_data_cfg_t data_pdc;

/*
 Set the value 0 to PCDFI interrupt priority when using DMAC
 Set the value 1-15 to PCDFI interrupt priority level when using DTC
*/
data_pdc.priority.pcdfi_level = 0;
/* Set the values 1-15 to GROUPBL0 interrupt priority level */
data_pdc.priority.groupbl0_level = 2;
/* PCDFI interrupt request in ICU is enabled */
data_pdc.inticu_req.pcdfi_ien = true;
/* PCFEI interrupt request in ICU is enabled */
data_pdc.inticu_req.pcfei_ien = true;
/* PCERI interrupt request in ICU is enabled */
data_pdc.inticu_req.pceri_ien = true;
/* Generation of receive data ready interrupt requests is enabled */
data_pdc.intpdc_req.dfie_ien = true;
/* Generation of frame end interrupt requests is enabled */
data_pdc.intpdc_req.feie_ien = true;
/* Generation of overrun interrupt requests is enabled */
data_pdc.intpdc_req.ovie_ien = true;
/* Generation of underrun interrupt requests is enabled */
data_pdc.intpdc_req.udrie_ien = true;
/* Generation of vertical line number setting error interrupt requests is enabled */
data_pdc.intpdc_req.verie_ien = true;
/* Generation of horizontal byte number setting error interrupt requests is enabled */
data_pdc.intpdc_req.herie_ien = true;
/* VSYNC signal is active LOW */
data_pdc.vps_select = PDC_VSYNC_SIGNAL_POLARITY_LOW;
/* HSYNC signal is active HIGH */
data_pdc.hps_select = PDC_HSYNC_SIGNAL_POLARITY_HIGH;
/* Capture from 0 pixel of vertical direction */
data_pdc.capture_pos.vst_position = 0;
/* Capture from 0 pixel of horizontal direction */
data_pdc.capture_pos.hst_position = 0;
/* Capture 480 pixels in vertical direction */
data_pdc.capture_size.vsz_size = 480;
/* Capture 640 pixels in horizontal direction */
data_pdc.capture_size.hsz_size = (640 * 2);
/* Pointer to PCDFI interrupt callback function */
data_pdc.p_callback.pcb_receive_data_ready = (void (*) (void *)) pcdfi_callback;
/* Pointer to PCFEI interrupt callback function */
data_pdc.p_callback.pcb_frame_end = (void (*) (void *)) pcfei_callback;
/* Pointer to PCERI interrupt callback function */
data_pdc.p_callback.pcb_error = (void (*) (void *)) pceri_callback;

ret_pdc = R_PDC_Open(&data_pdc);
if (PDC_SUCCESS != ret_pdc)
{
 /* Error processing */

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 18 of 46
Mar.15.25

}
Case 2: Capturing the lower right quadrant of a VGA (640 × 480) image at QVGA (320 × 240) resolution

#include “platform.h”
#include “r_pdc_rx_if.h”

/* Error code of PDC FIT API */
volatile pdc_return_t ret_pdc;
/* Setting values of PDC operation */
pdc_data_cfg_t data_pdc;

/*
 Set the value 0 to PCDFI interrupt priority when using DMAC
 Set the value 1-15 to PCDFI interrupt priority level when using DTC
*/
data_pdc.priority.pcdfi_level = 0;
/* Set the values 1-15 to GROUPBL0 interrupt priority level */
data_pdc.priority.groupbl0_level = 2;
/* PCDFI interrupt request in ICU is enabled */
data_pdc.inticu_req.pcdfi_ien = true;
/* PCFEI interrupt request in ICU is enabled */
data_pdc.inticu_req.pcfei_ien = true;
/* PCERI interrupt request in ICU is enabled */
data_pdc.inticu_req.pceri_ien = true;
/* Generation of receive data ready interrupt requests is enabled */
data_pdc.intpdc_req.dfie_ien = true;
/* Generation of frame end interrupt requests is enabled */
data_pdc.intpdc_req.feie_ien = true;
/* Generation of overrun interrupt requests is enabled */
data_pdc.intpdc_req.ovie_ien = true;
/* Generation of underrun interrupt requests is enabled */
data_pdc.intpdc_req.udrie_ien = true;
/* Generation of vertical line number setting error interrupt requests is enabled */
data_pdc.intpdc_req.verie_ien = true;
/* Generation of horizontal byte number setting error interrupt requests is enabled */
data_pdc.intpdc_req.herie_ien = true;
/* VSYNC signal is active LOW */
data_pdc.vps_select = PDC_VSYNC_SIGNAL_POLARITY_LOW;
/* HSYNC signal is active HIGH */
data_pdc.hps_select = PDC_HSYNC_SIGNAL_POLARITY_HIGH;
/* Capture from 240 pixel of vertical direction */
data_pdc.capture_pos.vst_position = 240;
/* Capture from 320 pixel of horizontal direction */
data_pdc.capture_pos.hst_position = (320 * 2);
/* Capture 240 pixels in vertical direction */
data_pdc.capture_size.vsz_size = 240;
/* Capture 320 pixels in horizontal direction */
data_pdc.capture_size.hsz_size = (320 * 2);
/* Pointer to PCDFI interrupt callback function */
data_pdc.p_callback.pcb_receive_data_ready = (void (*) (void *)) pcdfi_callback;
/* Pointer to PCFEI interrupt callback function */
data_pdc.p_callback.pcb_frame_end = (void (*) (void *)) pcfei_callback;
/* Pointer to PCERI interrupt callback function */
data_pdc.p_callback.pcb_error = (void (*) (void *)) pceri_callback;

ret_pdc = R_PDC_Open(&data_pdc);
if (PDC_SUCCESS != ret_pdc)
{

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 19 of 46
Mar.15.25

 /* Error processing */
}

Callback function called when receive data-ready interrupt occurs

#include “platform.h”
#include “r_pdc_rx_if.h”

void pcdfi_callback(void * pdata)
{
 /* Stores the argument for callback function */
 pdc_cb_arg_t * pdecode;
 pdecode = (pdc_cb_arg_t *)pdata;

 switch(pdecode->event_id)
 {
 case PDC_EVT_ID_DATAREADY:
 /* do something */
 break;

 default:
 break;
 }
}

Callback function called when frame-end interrupt occurs and FIFO of the PDC is empty

#include “platform.h”
#include “r_pdc_rx_if.h”

void pcfei_callback(void * pdata)
{
 /* Stores the argument for callback function */
 pdc_cb_arg_t * pdecode;
 pdecode = (pdc_cb_arg_t *)pdata;

 switch(pdecode->event_id)
 {
 case PDC_EVT_ID_FRAMEEND:
 /* do something */
 break;

 case PDC_EVT_ID_TIMEOUT:
 /* do something */
 break;

 default:
 break;
 }
}

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 20 of 46
Mar.15.25

Callback function called when error interrupt, overrun error, underrun error, vertical line count setting error, or
horizontal byte count setting error occurs

#include “platform.h”
#include “r_pdc_rx_if.h”

void pceri_callback(void * pdata)
{
 /* Stores the argument for callback function */
 pdc_cb_arg_t * pdecode;
 pdecode = (pdc_cb_arg_t *)pdata;

 switch(pdecode->event_id)
 {
 case PDC_EVT_ID_ERROR:
 /* Disable the DTC or DMAC transfer */
 /* Error interrupt processing */
 break;

 case PDC_EVT_ID_OVERRUN:
 /* Overrun error processing */
 break;

 case PDC_EVT_ID_UNDERRUN:
 /* Underrun error processing */
 break;

 case PDC_EVT_ID_VERTICALLINE:
 /* Vertical Line Number Setting Error processing */
 break;

 case PDC_EVT_ID_HORIZONTALBYTE:
 /* Horizontal Byte Number Setting Error processing */
 break;

 default:
 break;
 }
}

Special Notes:
This API function should be run when the device and the camera module are connected. Running this API
function enables PIXCLK input and then resets the PDC, but this is because the reset will not complete if
PIXCLK where the camera module output is not input to the device. If the return value
PDC_ERR_RST_TIMEOUT is confirmed, check the settings and hardware configuration of the camera
module.

An endianness setting is applied within this API function. The endianness setting should be selected to
match the corresponding compiler setting. If the compiler endianness setting is little-endian, the PDC
endianness setting should be little-endian as well, and if the compiler endianness setting is big-endian, the
PDC endianness setting should also be big-endian.

The arguments and return values of the registered callback function should be of type void.

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 21 of 46
Mar.15.25

R_PDC_Close()
Ends operation by the PDC and puts it into the module stop state.

Format
pdc_return_t R_PDC_Close(void)

Parameters
None

Return Values
PDC_SUCCESS /* Processing finished successfully. */
PDC_ERR_NOT_OPEN /* R_PDC_Open has not been run. */
PDC_ERR_ONGOING /* Operations for reception are ongoing. */

Properties
The declaration is located in r_pdc_rx_if.h.

Description
Performs the following processing to shut down the PDC:

• Disables interrupts (PCFEI, PCERI, and PCDFI) used by the PDC.
• Disables PDC operation.

Sets the PCE bit in PDC control register 1 (PCCR1) to “Operations for reception are disabled.”
• Stops supply of parallel data transfer clock output (PCKO).

Sets the PCKOE bit in PDC control register 0 (PCCR0) to “PCKO output is disabled (fixed to the high
level).”

• Disables pixel clock input from the image sensor.
Sets the PCKE bit in PDC control register 0 (PCCR0) to “PIXCLK input is disabled.”

• Stops PDC module.
Cancels PDC hardware resource locking using the r_bsp hardware locking function.

Example
#include “platform.h”
#include “r_pdc_rx_if.h”

/* Error code of PDC FIT API */
volatile pdc_return_t ret_pdc;

ret_pdc = R_PDC_Close();

if (PDC_SUCCESS != ret_pdc)
{
 /* Error processing */
}

Special Notes:
Use this API function after running R_PDC_Open and confirming that the return value is PDC_SUCCESS.

Use this API function during operations for reception are stopped as after frame end has been generated or
error detection.

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 22 of 46
Mar.15.25

R_PDC_Control()
This function performs processing according to control codes.

Format
dmac_return_t R_PDC_Control(
 dmac_command_t command,
 pdc_data_cfg_t *p_data_cfg,
 pdc_stat_t *p_stat
)

Parameters
command

Control code
*p_data_cfg

Pointer to PDC settings data structure
*p_stat

Pointer to PDC status structure

The Command Values:
/* Start capturing data from the image sensor (camera module). */

PDC_CMD_CAPTURE_START
/* Change the range data capture from the image sensor (camera module). */

PDC_CMD_CHANGE_POS_AND_SIZE
/* Get PDC status information. */

PDC_CMD_STATUS_GET
/* Clear PDC status information. */

PDC_CMD_STATUS_CLR
/* Reset PDC interrupt settings. */

PDC_CMD_SET_INTERRUPT
/* Disable PDC receive operation. */

PDC_CMD_DISABLE
/* Enable PDC receive operation. */

PDC_CMD_ENABLE
/* Reset the PDC. */

PDC_CMD_RESET

The arguments that are referenced differ according to the specified command.

• PDC_CMD_CAPTURE_START
 Members of referenced pdc_data_cfg_t structure and their setting values

None
 Members of referenced pdc_stat_t structure and their setting values

None

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 23 of 46
Mar.15.25

• PDC_CMD_CHANGE_POS_AND_SIZE
 Members of referenced pdc_data_cfg_t structure and their setting values

Parameters other than those listed below are not referenced, so they do not need to be set before the
API is called.

Structure
Member Summary Setting Value

Setting Target
Register Setting Description

vst_position Vertical capture
start line position

12-bit data
0000h to 0FFEh

VCR.VST Number of the line where capture
is to start.

hst_position Horizontal capture
start byte position

12-bit data
0000h to 0FFBh

HCR.HST Horizontal position in bytes where
capture is to start.

vsz_size Vertical capture
size

12-bit data
0001h to 0FFFh

VCR.VSZ Number of lines to be captured.

hsz_size Horizontal capture
size

12-bit data
0004h to 0FFFh

HCR.HSZ Number of bytes to be captured
horizontally.

 Members of referenced pdc_stat_t structure and their setting values

None

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 24 of 46
Mar.15.25

• PDC_CMD_STATUS_GET
 Members of referenced pdc_data_cfg_t structure and their setting values

None
 Members of referenced pdc_stat_t structure and their setting values

Structure Member Summary
Setting
Value

Setting Target
Register Setting Description

pcsr_stat.frame_busy Frame-busy flag false PCSR.FBSY Operations for reception are
stopped.

true Operations for reception are
ongoing.

pcsr_stat.fifo_empty FIFO-empty flag false PCSR.FEMPF FIFO is not empty.
true FIFO is empty.

pcsr_stat.frame_end Frame-end flag false PCSR.FEF Frame end has not been
generated.

true Frame end has been generated.
pcsr_stat.overrun Overrun flag false PCSR.OVRF FIFO overrun has not been

generated.
true FIFO overrun has been

generated.
pcsr_stat.underrun Underrun flag false PCSR.UDRF Underrun has not been

generated.
true Underrun has been generated.

pcsr_stat.verf_error Vertical line
number setting
error flag

false PCSR.VERF Vertical line number setting
error has not been generated.

true Vertical line number setting
error has been generated.

pcsr_stat.herf_error Horizontal byte
number setting
error flag

false PCSR.HERF Horizontal byte number setting
error has not been generated.

true Horizontal byte number setting
error has been generated.

pcmonr_stat.vsync VSYNC signal
status flag

false PCMONR.VSYNC VSYNC signal is at the low
level.

true VSYNC signal is at the high
level.

pcmonr_stat.hsync HSYNC signal
status flag

false PCMONR.HSYNC HSYNC signal is at the low
level.

true HSYNC signal is at the high
level.

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 25 of 46
Mar.15.25

• PDC_CMD_STATUS_CLR
 Members of referenced pdc_data_cfg_t structure and their setting values

None
 Members of referenced pdc_stat_t structure and their setting values

Parameters other than those listed below are not referenced, so they do not need to be set before the
API is called.

Structure Member Summary
Setting
Value

Setting Target
Register Setting Description

pcsr_stat.frame_end Frame-end flag false PCSR.FEF Does nothing.
true Clears the frame-end flag.

pcsr_stat.overrun Overrun flag false PCSR.OVRF Does nothing.
true Clears the overrun flag.

pcsr_stat.underrun Underrun flag false PCSR.UDRF Does nothing.
true Clears the underrun flag.

pcsr_stat.verf_error Vertical line
number setting
error flag

false PCSR.VERF Does nothing.
true Clears the vertical line number

setting error flag.
pcsr_stat.herf_error Horizontal byte

number setting
error flag

false PCSR.HERF Does nothing.
true Clears the horizontal byte

number setting error flag.

• PDC_CMD_SET_INTERRUPT

 Members of referenced pdc_data_cfg_t structure and their setting values
Parameters other than those listed below are not referenced, so they do not need to be set before the
API is called.

Structure Member Summary
Setting
Value

Setting Target
Register Setting Description

iupd_select Update
target
selection

10-bit
data
0000h to
03FFh

None The following parameters specify
which interrupt settings are updated:
Bit 0: PCDFI interrupt priority level
Bit 1: GROUPBL0 interrupt priority

level
Bit 2: PCDFI interrupt enabled
Bit 3: PCFEI interrupt enabled
Bit 4: PCERI interrupt enabled
Bit 5: Receive data-ready interrupt

request
Bit 6: Frame-end interrupt request
Bit 7: Overrun interrupt request
Bit 8: Underrun interrupt request
Bit 9: Vertical line number setting

error interrupt request
Bit 10: Horizontal byte number

setting error interrupt request
Bits 11 to 15: Not used
0: Do not update setting.
1: Update setting.

priority.pcdfi_level PCDFI
interrupt
priority level

8-bit data
00h to
0Fh

ICU.IPR097.IPR Sets the receive data-ready interrupt
(PCDFI) priority level.
Note: Set bit 0 in iupd_select to 1.

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 26 of 46
Mar.15.25

Structure Member Summary
Setting
Value

Setting Target
Register Setting Description

priority.groupbl0_level GROUPBL
0 interrupt
priority level

8-bit data
00h to
0Fh

ICU.IPR110.IPR Sets the frame-end interrupt and
error interrupt priority level.
Note: Set bit 1 of iupd_select to 1.

Setting a value smaller than
the current value is invalid.

inticu_req.pcfei_ien PCFEI
interrupt
enabled

false ICU.GRPBL0.E
N30

Disables frame-end interrupt
(PCFEI) interrupt requests.
Note: Set bit 2 in iupd_select to 1.

true Enables frame-end interrupt (PCFEI)
interrupt requests.
Note: Set bit 2 in iupd_select to 1.

inticu_req.pceri_ien PCERI
interrupt
enabled

false ICU.GRPBL0.E
N31

Disables error interrupt (PCERI)
interrupt requests.
Note: Set bit 3 in iupd_select to 1.

true Enables error interrupt (PCERI)
interrupt requests.
Note: Set bit 3 in iupd_select to 1.

inticu_req.pcdfi_ien PCDFI
interrupt
enabled

false ICU.IER0C.IEN1 Disables receive data-ready interrupt
(PCDFI) interrupt requests.
Note: Set bit 4 in iupd_select to 1.

true Enables receive data-ready interrupt
(PCDFI) interrupt requests.
Note: Set bit 4 in iupd_select to 1.

intpdc_req.dfie_ien Receive
data-ready
interrupt
request

false PCCR0.DFIE

Disables generation of receive data-
ready interrupt requests.
Note: Set bit 5 in iupd_select to 1.

true Enables generation of receive data-
ready interrupt requests.
Note: Set bit 5 in iupd_select to 1.

intpdc_req.feie_ien Frame-end
interrupt
request

false PCCR0.FEIE Disables generation of frame-end
interrupt requests.
Note: Set bit 6 in iupd_select to 1.

true Enables generation of frame-end
interrupt requests.
Note: Set bit 6 in iupd_select to 1.

intpdc_req.ovie_ien Overrun
interrupt
request

false PCCR0.OVIE Disables generation of overrun
interrupt requests.
Note: Set bit 7 in iupd_select to 1.

true Enables generation of overrun
interrupt requests.
Note: Set bit 7 in iupd_select to 1.

intpdc_req. udrie_ien Underrun
interrupt
request

false PCCR0.UDRIE Disables generation of underrun
interrupt requests.
Note: Set bit 8 in iupd_select to 1.

true Enables generation of underrun
interrupt requests.
Note: Set bit 8 in iupd_select to 1.

intpdc_req. verie_ien Vertical line
number
setting error
interrupt

false PCCR0.VERIE Disables generation of vertical line
number setting error interrupt
requests.
Note: Set bit 9 in iupd_select to 1.

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 27 of 46
Mar.15.25

Structure Member Summary
Setting
Value

Setting Target
Register Setting Description

request true Enables generation of vertical line
number setting error interrupt
requests.
Note: Set bit 9 in iupd_select to 1.

intpdc_req. herie_ien Horizontal
byte
number
setting error
interrupt
request

false PCCR0.HERIE Disables generation of horizontal
byte number setting error interrupt
requests.
Note: Set bit 10 in iupd_select to 1.

true Enables generation of horizontal
byte number setting error interrupt
requests.
Note: Set bit 10 in iupd_select to 1.

 Members of referenced pdc_stat_t structure and their setting values

None

• PDC_CMD_DISABLE/PDC_CMD_ENABLE

 Members of referenced pdc_data_cfg_t structure and their setting values
None

 Members of referenced pdc_stat_t structure and their setting values
None

• PDC_CMD_RESET

 Members of referenced pdc_data_cfg_t structure and their setting values
None

 Members of referenced pdc_stat_t structure and their setting values
None

Return Values
PDC_SUCCESS /* Processing finished successfully. */
PDC_ERR_NOT_OPEN /* R_PDC_Open has not been run. */
PDC_ERR_INVALID_ARG /* Setting value applied to PDC register is invalid. */
PDC_ERR_INVALID_COMMAND /* The argument command is invalid. */
PDC_ERR_NULL_PTR /* The argument p_data_cfg or p_stat is a NULL pointer. */
PDC_ERR_RST_TIMEOUT /* PDC reset was not canceled even after the specified amount of time

elapsed. */
PDC_ERR_ONGOING /* Operations for reception are ongoing. */

Properties
The declaration is located in r_pdc_rx_if.h.

Description
< PDC_CMD_CAPTURE_START command processing >

After reconfiguring interrupt conditions and resetting the PDC, enables PDC receive operation to start
data capture.

< PDC_CMD_CHANGE_POS_AND_SIZE command processing >
After disabling PDC receive operation, resets the capture start position and capture size.
 Set the capture position and size in the horizontal direction to match the output characteristics of the

image sensor used.
< PDC_CMD_STATUS_GET command processing >

Writes PDC status information to the pointer position indicated by argument p_stat.

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 28 of 46
Mar.15.25

< PDC_CMD_STATUS_CLR command processing >
Clears PDC status information indicated by argument p_stat.

< PDC_CMD_SET_INTERRUPT command >
After disabling PDC receive operation, resets PDC interrupts.

< PDC_CMD_DISABLE command >
Disables PDC receive operation.

< PDC_CMD_ENABLE command >
Enables PDC receive operation.

< PDC_CMD_RESET command processing >
After disabling PDC receive operation, resets the PDC.

Example
In the sample code two bytes are used to represent each dot of the image sensor output, so the horizontal
dot count for the horizontal capture position and size is set to twice the actual value. The setting value should
be modified as necessary to match the output characteristics of the actual image sensor used.

Case 1: Starting capture operation

#include “platform.h”
#include “r_pdc_rx_if.h”

/* Error code of PDC FIT API */
volatile pdc_return_t ret_pdc;
/* Unused */
pdc_data_cfg_t dummy_data;
/* Unused */
pdc_stat_t dummy_stat;

ret_pdc = R_PDC_Control(PDC_CMD_CAPTURE_START, &dummy_data, &dummy_stat);
if (PDC_SUCCESS != ret_pdc)
{
 /* Error Processing */
}

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 29 of 46
Mar.15.25

Case 2: Resetting the capture position and size

#include “platform.h”
#include “r_pdc_rx_if.h”

/* Error code of PDC FIT API */
volatile pdc_return_t ret_pdc;
/* Setting values of PDC operation */
pdc_data_cfg_t data_pdc;
/* Unused */
pdc_stat_t dummy_stat;

/* Capture from 0 pixel of vertical direction */
data_pdc.capture_pos.vst_position = 0;
/* Capture from 0 pixel of horizontal direction */
data_pdc.capture_pos.hst_position = 0;
/* Capture 480 pixels in vertical direction */
data_pdc.capture_pos.vsz_size = 480;
/* Capture 640 pixels in horizontal direction */
data_pdc.capture_pos.hsz_size = (640 * 2);

ret_pdc = R_PDC_Control(PDC_CMD_CHANGE_POS_AND_SIZE, &data_pdc, &dummy_stat);
if (PDC_SUCCESS != ret_pdc)
{
 /* Error processing */
}

Case 3: Getting the status

#include “platform.h”
#include “r_pdc_rx_if.h”

/* Error code of PDC FIT API */
volatile pdc_return_t ret_pdc;
/* Unused */
pdc_data_cfg_t dummy_data;
/* Status values of PDC operation */
pdc_stat_t stat_pdc;

ret_pdc = R_PDC_Control(PDC_CMD_STATUS_GET, &dummy_data, &stat_pdc);
if (PDC_SUCCESS != ret_pdc)
{
 /* Error processing */
}

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 30 of 46
Mar.15.25

Case 4: Clearing the status

#include “platform.h”
#include “r_pdc_rx_if.h”

/* Error code of PDC FIT API */
volatile pdc_return_t ret_pdc;
/* Unused */
pdc_data_cfg_t dummy_data;
/* Status values of PDC operation */
pdc_stat_t stat_pdc;

/* Clear Frame Busy Flag */
stat_pdc.pcsr_stat.frame_busy = true;
/* Clear FIFO Empty Flag */
stat_pdc.pcsr_stat.fifo_empty = true;
/* Clear Frame End Flag */
stat_pdc.pcsr_stat.frame_end = true;
/* Clear Overrun Flag */
stat_pdc.pcsr_stat.overrun = true;
/* Clear Underrun Flag */
stat_pdc.pcsr_stat.underrun = true;
/* Clear Vertical Line Number Setting Error Flag */
stat_pdc.pcsr_stat.verf_error = true;
/* Clear Horizonal Byte Number Setting Error Flag */
stat_pdc.pcsr_stat.herf_error = true;

ret_pdc = R_PDC_Control(PDC_CMD_STATUS_CLR, &dummy_data, &stat_pdc);
if (PDC_SUCCESS != ret_pdc)
{
 /* Error processing */
}

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 31 of 46
Mar.15.25

Case 5: Resetting the interrupt settings

#include “platform.h”
#include “r_pdc_rx_if.h”

/* Error code of PDC FIT API */
volatile pdc_return_t ret_pdc;
/* Setting values of PDC operation */
pdc_data_cfg_t p_data_pdc;
/* Unused */
pdc_stat_t dummy_stat;

/* Update all of interrupt setting values with the contents of following */
data_pdc.iupd_select = PDC_ALL_INT_UPDATE;
/* PCDFI interrupt priority level is 8 */
data_pdc.priority.pcdfi_level = 8;
/* GROUPBL0 interrupt priority level is 2 */
data_pdc.priority.groupbl0_level = 2;
/* PCDFI interrupt request in ICU is enabled */
data_pdc.inticu_req.pcdfi_ien = true;
/* PCFEI interrupt request in ICU is enabled */
data_pdc.inticu_req.pcfei_ien = true;
/* PCERI interrupt request in ICU is enabled */
data_pdc.inticu_req.pceri_ien = true;
/* Generation of receive data ready interrupt requests is enabled */
data_pdc.intpdc_req.dfie_ien = true;
/* Generation of frame end interrupt requests is enabled */
data_pdc.intpdc_req.feie_ien = true;
/* Generation of overrun interrupt requests is enabled */
data_pdc.intpdc_req.ovie_ien = true;
/* Generation of underrun interrupt requests is enabled */
data_pdc.intpdc_req.udrie_ien = true;
/* Generation of vertical line number setting error interrupt requests is enabled */
data_pdc.intpdc_req.verie_ien = true;
/* Generation of horizontal byte number setting error interrupt requests is enabled */
data_pdc.intpdc_req.herie_ien = true;

ret_pdc = R_PDC_Control(PDC_CMD_SET_INTERRUPT, &data_pdc, &dummy_stat);
if (PDC_SUCCESS != ret_pdc)
{
 /* Error processing */
}

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 32 of 46
Mar.15.25

Case 6: Disabling PDC receive operation only

#include “platform.h”
#include “r_pdc_rx_if.h”

/* Error code of PDC FIT API */
volatile pdc_return_t ret_pdc;
/* Unused */
pdc_data_cfg_t dummy_data;
/* Unused */
pdc_stat_t dummy_stat;

ret_pdc = R_PDC_Control(PDC_CMD_DISABLE, &dummy_data, &dummy_stat);
if (PDC_SUCCESS != ret_pdc)
{
 /* Error processing */
}

Case 7: Enabling PDC receive operation only

#include “platform.h”
#include “r_pdc_rx_if.h”

/* Error code of PDC FIT API */
volatile pdc_return_t ret_pdc;
/* Unused */
pdc_data_cfg_t dummy_data;
/* Unused */
pdc_stat_t dummy_stat;

ret_pdc = R_PDC_Control(PDC_CMD_ENABLE, &dummy_data, &dummy_stat);
if (PDC_SUCCESS != ret_pdc)
{
 /* Error processing */
}

Case 8: Resetting the PDC

#include “platform.h”
#include “r_pdc_rx_if.h”

/* Error code of PDC FIT API */
volatile pdc_return_t ret_pdc;
/* Unused */
pdc_data_cfg_t dummy_data;
/* Unused */
pdc_stat_t dummy_stat;

ret_pdc = R_PDC_Control(PDC_CMD_RESET, &dummy_data, &dummy_stat);
if (PDC_SUCCESS != ret_pdc)
{
 /* Error processing */
}

Special Notes:
Running this API function when receive operation is in progress will overwrite the PDC registers, thereby
causing receive operation to stop. Since running this API function before the frame-end interrupt is

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 33 of 46
Mar.15.25

generated stops receive operation, capturing of image data is halted midway. To restart image capture, reset
in the DMAC or DTC the pointer to the transfer destination in memory, then use the R_PDC_Control capture
start command to restart capturing of image data.

When running R_PDC_Control with the command PDC_CMD_STATUS_CLR as an argument, set the status
information to be cleared as “true” and the status information not to be cleared as “false”. If these settings are
not made before running R_PDC_Control, status information may be cleared in an unintended manner.

When running R_PDC_Control with the other than command PDC_CMD_STATUS_GET or
PDC_CMD_RESET as an argument, use this API function during operations for reception are stopped as
after frame end has been generated or error detection.

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 34 of 46
Mar.15.25

R_PDC_GetFifoAddr()
This function gets the FIFO address of the PDC.

Format
pdc_return_t R_PDC_GetFifoAddr(
 uint32_t *p_fifo_addr
)

Parameters
*p_fifo_addr

Pointer to PDC FIFO address

Return Values
PDC_SUCCESS /* Processing finished successfully. */
PDC_ERR_NOT_OPEN /* R_PDC_Open has not been run. *
PDC_ERR_NULL_PTR /* Argument p_fifo_addr is a NULL pointer. */

Properties
The declaration is located in r_pdc_rx_if.h.

Description
Stores the address of the PDC receive data register (PCDR) in argument p_fifo_addr.

Example
Case 1: Example settings using the DMAC (RX Family DMA controller DMCA control module using Firmware

Integration Technology)

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 35 of 46
Mar.15.25

#include “platform.h”
#include "r_pdc_rx_if.h"
#include "r_dmaca_rx_if.h"

/* Error code of PDC API */
volatile pdc_return_t ret_pdc;
/* Error code of DMACA FIT API */
volatile dmaca_return_t ret_dmac;
/* Setting values of dmaca_transfer information structure */
dmaca_transfer_data_cfg_t td_cfg;
/* Pointer to FIFO address of PDC */
uint32_t pdc_fifo_address;

/* Set PDC FIFO to DMACA transfer source address */
ret_pdc = R_PDC_GetFifoAddr(&pdc_fifo_address);
if (PDC_SUCCESS == ret_pdc)
{
 td_cfg.p_src_addr = pdc_fifo_address;
}
/* Set PCDFI to DMACA activation source */
td_cfg.act_source = IR_PDC_PCDFI;

ret_dmac = R_DMACA_Create (DMACA_CH0, &td_cfg);
if (DMACA_SUCCESS != ret_dmac)
{
 /* Error processing */
}

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 36 of 46
Mar.15.25

Case 2: Example settings using the DTC (RX Family DTC module using Firmware Integration Technology)

#include “platform.h”
#include “r_pdc_rx_if.h”
#include “r_dtc_rx_if.h”

/* Error code of PDC API */
volatile pdc_return_t ret_pdc;
/* Error code of DTC FIT API */
volatile dtc_err_t ret_dtc;
/* Activation source of DTC */
dtc_activation_source_t act_source;
/* Pointer to start address of Transfer data area on RAM */
dtc_transfer_data_t *p_transdata_dtc;
/* Pointer to setting values for transfer data */
dtc_transfer_data_cfg_t *p_data_dtc;
/* Pointer to FIFO address of PDC */
Uint32_t pdc_fifo_address;
/* Number of chain transfer */
uint32_t chain_trans_nr;

/* Set PCDFI to DTC Activation souce */
act_source = (dtc_activation_source_t)VECT_PDC_PCDFI;
/* Set PDC FIFO to DTC transfer source address */
ret_pdc = R_PDC_GetFifoAddr(&pdc_fifo_address);
if (PDC_SUCCESS == ret_pdc)
{
 p_data_dtc->source_addr = pdc_fifo_address;
}
/* Set 0 to number of chain transfer */
chain_trans_nr = 0;

ret_dtc = R_DTC_Create(act_source, p_transdata_dtc, p_data_dtc, chain_trans_nr);
if(DTC_SUCCESS != ret_dtc)
{
 /* Error processing */
}

Special Notes:
None

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 37 of 46
Mar.15.25

R_PDC_GetVersion()
This function returns the API version number.

Format
uint32_t R_PDC_GetVersion(void)

Parameters
None

Return Values
Version number

Properties
The declaration is located in r_pdc_rx_if.h.

Description
This function returns the version number of the currently installed PDC FIT module. The version number is
encoded. The first two bytes contain the major version number and the last two bytes contain the minor
version number. For example, if the version number is 4.25, the return value would be 0x00040019.

Example
#include “platform.h”
#include “r_pdc_rx_if.h”

/* Version number */
uint32_t version;

version = R_PDC_GetVersion();

Special Notes:
None

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 38 of 46
Mar.15.25

4. Pin Setting
To use the PDC FIT module, assign input/output signals of the peripheral function to pins with the multi-
function pin controller (MPC). The pin assignment is referred to as the “Pin Setting” in this document. Please
perform the pin setting before calling the R_PDC_Open function.

When performing the Pin Setting in the e2 studio, the Pin Setting feature of the FIT Configurator or the Smart
Configurator can be used. When using the Pin Setting feature, a source file is generated according to the
option selected in the Pin Setting window in the FIT Configurator or the Smart Configurator. Pins are
configured by calling the function defined in the source file. Refer to Table 4.1 for details.

Table 4.1 Function Output by the FIT Configurator and Smart Configurator

MCU Used Function to be Output Remarks
RX64M,
RX65N,
RX66N,
RX71M,
RX72M,
RX72N

R_PDC_PinSet() -

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 39 of 46
Mar.15.25

5. How to Use
5.1 API Usage Example
In the example presented below, the API is used to activate the DMAC and transfer input image data to the
SDRAM. Example operation flowcharts and sample code are shown.

5.1.1 Example Operation Flowcharts

Figure 5.1 Example Operation Flowchart (1)

Figure 5.2 Example Operation Flowchart (2)

SDRAM initial setting

Main routine

PDC initial setting
R_PDC_Open(arg1)

Image sensor initial setting

DMAC initial setting

Start capture
R_PDC_Control(PDC_CMD_CAPTURE_START,

arg1,arg2)

Pin setting

Start fame-end interrupt callback function
processing

Disable DMAC transfers

Reset transfer destination address

Restart capture
R_PDC_Control(PDC_CMD_CAPTURE_START,

arg1,arg2)

End fame-end interrupt callback function
processing

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 40 of 46
Mar.15.25

6. Appendices
6.1 Operation Confirmation Environment
This section describes operation confirmation environment for the PDC FIT module.

Table 6.1 Operation Confirmation Environment (Rev. 2.01)

Item Contents

Integrated development
environment Renesas Electronics e2 studio Version 6.00.000

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.07.00

Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = C99

Endian Big endian/little endian

Revision of the module Rev.2.01

Board used Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2SxxxBE)

Table 6.2 Operation Confirmation Environment (Rev. 2.02)

Item Contents

Integrated development
environment Renesas Electronics e2 studio Version 7.03.000

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00

Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = C99

Endian Big endian/little endian

Revision of the module Rev.2.02

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 41 of 46
Mar.15.25

Table 6.3 Operation Confirmation Environment (Rev. 2.03)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio V7.3.0
IAR Embedded Workbench for Renesas RX 4.10.01

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = C99

GCC for Renesas RX 4.08.04.201803
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.10.01
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module Rev.2.03

Board used Renesas Starter Kit+ for RX64M (product No:RTK500564Mxxxxxx)

Table 6.4 Operation Confirmation Environment (Rev. 2.04)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio V7.4.0
IAR Embedded Workbench for Renesas RX 4.12.01

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = C99

GCC for Renesas RX 4.08.04.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.12.01
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module Rev.2.04

Board used Renesas Starter Kit+ for RX72M (product No: RTK5572Mxxxxxxxxxx)

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 42 of 46
Mar.15.25

Table 6.5 Operation Confirmation Environment (Rev. 2.05)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio V7.4.0
IAR Embedded Workbench for Renesas RX 4.12.01

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = C99

GCC for Renesas RX 4.08.04.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.12.01
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module Rev.2.05

Board used Renesas Starter Kit+ for RX72N (product No: RTK5572Nxxxxxxxxxx)

Table 6.6 Operation Confirmation Environment (Rev. 2.06)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio Version 2021-10
IAR Embedded Workbench for Renesas RX 4.20.1

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = C99

GCC for Renesas RX 8.3.0.202102
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.20.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module Rev.2.06

Board used Renesas Starter Kit+ for RX65N-2MB (product No: RTK50565Nxxxxxxxxx)

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 43 of 46
Mar.15.25

Table 6.7 Operation Confirmation Environment (Rev. 2.07)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio Version 2025-01
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = C99

GCC for Renesas RX 8.3.0.202411
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 5.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module Rev.2.07

Board used -

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 44 of 46
Mar.15.25

6.2 Troubleshooting
(1) Q: I have added the FIT module to the project and built it. Then I got the error: Could not open source file

“platform.h”.

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:

 Using CS+:

Application note “Adding Firmware Integration Technology Modules to CS+ Projects (R01AN1826)”

 Using e2 studio:

Application note “Adding Firmware Integration Technology Modules to Projects (R01AN1723)”

When using a FIT module, the board support package FIT module (BSP module) must also be added to
the project. Refer to the application note “Board Support Package Module Using Firmware Integration
Technology (R01AN1685)”.

(2) Q: I have added the FIT module to the project and built it. Then I got the error: This MCU is not supported
by the current r_pdc_rx module.

A: The FIT module you added may not support the target device chosen in your project. Check the
supported devices of added FIT modules.

(3) Q: I have added the FIT module to the project and built it. Then I got an error for when the configuration
setting is wrong.

A: The setting in the file “r_pdc_rx_config.h” may be wrong. Check the file “r_pdc_rx_config.h”. If there is
a wrong setting, set the correct value for that. Refer to 2.7 Compile Settings for details.

(4) Q: PDC reset was not canceled even after the specified amount of time elapsed.

A: The pin setting may not be performed correctly. When using this FIT module, the pin setting must be
performed. Refer to 4 Pin Setting for details.

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 45 of 46
Mar.15.25

Revision History

Rev. Date
Description
Page Summary

2.00 Oct. 1, 2016  First edition issued
2.01 Oct. 2, 2017  Supported RX65N-2MB version.
 5 2.4, Interrupt Vector, added
 12 2.12, Adding the FIT Module to Your Project, amended
 19 Special Notes in 3.1, R_PDC_Open(), amended
 37 4, Pin Setting, amended
 39 6.1, Operation Confirmation Environment, added
 39 6.2, Troubleshooting, added
2.02 Feb. 1, 2019 39 Table 6.2 Operation Confirmation Environment (Rev. 2.02),

added
  Changes associated with functions:

Added support setting function of configuration option Using
GUI on Smart Configurator.
[Description]
Added a setting file to support configuration option setting
function by GUI.

2.03 May. 20, 2019  Update the following compilers
GCC for Renesas RX
IAR C/C++ Compiler for Renesas RX

 1 Deleted R01AN1723, R01AN1826, R20AN0451 from Related
Documents.

 1 Added Target Compilers.
 5 Added revision of dependent r_bsp module in 2.2 Software

Requirements.
 6 2.8 Code Size, amended.
 40 Table 6.3 Operation Confirmation Environment (Ver. 2.03),

added.
2.04 Jul. 30, 2019  Supported RX72M version.
 1 Deleted R01AN1833 from Related Documents.
 5 Table 2.1 Interrupt Vector Used in the PDC FIT Module,

amended.
 6 2.8 Code Size, amended.
 13 2.13 “for”, “while” and “do while” statements, added
 14-37 Delete “Reentrant” item on the API description page.
 38 Table 4.1 Function Output by the FIT Configurator and Smart

Configurator, amended.
 41 Table 6.4 Operation Confirmation Environment (Ver. 2.04),

added.
2.05 Nov. 22, 2019  Supported RX66N and RX72N versions.
 5 Table 2.1 Interrupt Vector Used in the PDC FIT Module,

amended.
 6 2.8 Code Size, amended.
 38 Table 4.1 Function Output by the FIT Configurator and Smart

Configurator, amended.
 42 Table 6.5 Operation Confirmation Environment (Ver. 2.05),

added.

RX Family Parallel Data Capture Unit (PDC) Module Using
Firmware Integration Technology

R01AN3167EJ0207 Rev.2.07 Page 46 of 46
Mar.15.25

Rev. Date
Description
Page Summary

2.06 Jan. 07, 2022 Program The module is updated to fix the software issue.
Description:
When an R_PDC_Close function is called during operations for
reception or continued reception, the processing of the
R_PDC_Close function may not end.

Conditions:
When you start data capture by calling an R_PDC_Control
function, and then call an R_PDC_Close function during the
operations for reception or continued reception before the data
capture is stopped by a frame end interrupt or error interrupt.

Corrective action:
Please use the Parallel Data Capture Unit FIT module
Rev2.06.
The following function is changed by this correction.

R_PDC_Close function

Corresponding Tool News number : R20TS0674

 6 2.8 Code Size, amended.
 10 2.10 Return Values, PDC_ERR_ONGOING added.
 21 Special Notes and Return Values in 3.2, R_PDC_Close(),

amended.
 22 Special Notes and Return Values in 3.3, R_PDC_Control(),

amended.
 42 Table 6.6 Operation Confirmation Environment (Ver. 2.06),

added.
2.07 Mar. 15, 2025 Program Updated FIT Disclaimer and Copyright.
 43 Table 6.7 Operation Confirmation Environment (Ver. 2.07),

added.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 About the PDC FIT Module
	1.2 API Overview

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchain
	2.4 Interrupt Vector
	2.5 Header Files
	2.6 Integer Types
	2.7 Compile Settings
	2.8 Code Size
	2.9 Arguments
	2.10 Return Values
	2.11 Callback Functions
	(1) Receive Data-Ready Interrupt (PCDFI) and Frame-End Interrupt (PCFEI) Callback Functions
	(2) Callback Function when Errors Occur

	2.12 Adding the FIT Module to Your Project
	2.13 “for”, “while” and “do while” statements

	3. API Functions
	R_PDC_Open()
	R_PDC_Close()
	R_PDC_Control()
	R_PDC_GetFifoAddr()
	R_PDC_GetVersion()

	4. Pin Setting
	5. How to Use
	5.1 API Usage Example
	5.1.1 Example Operation Flowcharts

	6. Appendices
	6.1 Operation Confirmation Environment
	6.2 Troubleshooting

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

