
 APPLICATION NOTE

RX Family
R01AN0226EJ0100

Rev.1.00
Mar 14, 2011

Multiple precision Multiplication Program Making Use
of the DSP Functions

Introduction
This application note explains how to use the instructions specific to the RX Family DSP functions. Coding examples of
a multiple precision multiplication program using the DSP function specific instructions are also introduced.

Target Device
RX Family

Contents

1. General.. 2

2. Data Representation Multiple precision Numbers... 2

3. Multiplications of Multiple precision Numbers ... 3

4. Four Arithmetic Operations on Multiple precision Numbers.. 8

5. Sample Program ... 13

R01AN0226EJ0100 Rev.1.00 Page 1 of 14
Mar 14, 2011

RX Family Multiple precision Multiplication Program Making Use of the DSP Functions

1. General
Multiple precision arithmetic refers to numerical computations on numbers of a precision higher than that which can be
handled directly with the hardware instructions of a computer. The range of numbers that can be handled directly by a
32-bit microcomputer such as the RX family is limited to from 0 to 232 – 4294967295 (assuming that the numbers are
unsigned integers). A program that carries out multiple precision arithmetic is required to make calculations beyond
such hardware limitations. Generally, multiple precision arithmetic is used in applications in which the precision
provided by hardware-implemented fixed-precision arithmetic would be inadequate or any overflows of computation
results would bring about some problems. A typical application of multiple precision arithmetic is public key encryption.
The public key encryption algorithm entails integer computations with a great number of digits.

This application note describes a multiple precision multiplication program as an application example of the multiply-
accumulate instruction of the RX family CPU core (hereafter referred to as the RX). In addition to the multiplication
program, the note also illustrates multiple precision arithmetic programs for addition, subtraction, and division. These
programs may be combined and used as a four-function multiple precision arithmetic program.

For details on the RX's multiply-accumulate instructions, refer to RX Family User's Manual; Software (REJ09B0435).
Reference should also be made to the document listed below for details on the multiple precision arithmetic algorithm.

Note: [1] D. E. Knuth, Seminumerical Algorithms, The Art of Computer Programming, Vol. 2, pp.265-284, 3rd
edition, Addison Wesley, 1997.

2. Data Representation Multiple precision Numbers
Numbers of which precision exceeds the limits of values that a computer hardware can handle directly are called
multiple precision numbers. This chapter describes the data representation of multiple precision numbers that are
subject to multiple precision arithmetic.

The multiple precision numbers are assumed to be unsigned integers. The RX has a 16 bits × 16 bits multiply-
accumulate instruction. To take advantage of this multiply-accumulate instruction to implement a multiplication
program for multiple precision numbers, a multiple precision number is assumed to be represented by an array of 16-bit
unsigned integers in this application note.

A 16-bit unsigned integer representation can represent 216 numbers. By regarding each element of the array as a digit in
a notation system of base 216, an array of 16-bit unsigned integers with a length of N can be used to represent an integer
of N digits in a notation system of base 216. In addition, it is predefined that the elements of the array for a number of N
digits are arranged in the ascending order toward the uppermost digit, with the element with a subscript of 0 being
designated as the lowermost digit.

This is illustrated in figure 1.

Highest

order digit

Lowest

order digit

Array of 16-bit unsigned integers (length N)

a [N - 1] a [3] a [2] a [1] a [0]

Figure 1 Data Representation of a Multiple precision Number Using an Array of 16-bit Unsigned
Integers

The numerical value stored in the multiple precision number a[N] can be represented by the following expression:

a[N −1]× 216×(N−1) + ...+ a[2]× 232 + a[1]× 216 + a[0]

An example of a C program fragment for a multiple precision number that corresponds to figure 1 is given below. In
this program, the number of digits N is set to 32 and unsigned integers with a maximum of 2512 – 1 of magnitude are
assumed to be handled.

R01AN0226EJ0100 Rev.1.00 Page 2 of 14
Mar 14, 2011

RX Family Multiple precision Multiplication Program Making Use of the DSP Functions

R01AN0226EJ0100 Rev.1.00 Page 3 of 14
Mar 14, 2011

#include <stdint.h>
#define N 32 /* Length of multiple precision number (for an array
of 16-bit unsigned integers) */
uint16_t a[N];

For example, 12345678901234567890 in decimal notation can be represented as a C language array with initial values
as shown below. Note that the elements of the array for which no initial value is specified (upper digits) are all assumed
to have a value of 0.

uint16_t num[N] = { 0x0ad2, 0xeb1f, 0xa98c, 0xab54 };

3. Multiplications of Multiple precision Numbers
This chapter discusses the multiplications of multiple precision numbers using the RX's multiply-accumulate instruction.

3.1 Multiplication of 16-bit Unsigned Integers
Since multiple precision numbers are represented by arrays of 16-bit unsigned integers, multiplication of 16-bit
unsigned integers is required as one of the basic arithmetic operations for implementing multiple precision
multiplications. The RX are provided with a 32 bits × 32 bits multiplication instruction and a 16 bits × 16 bits multiply-
accumulate instruction but these are signed multiplication instructions. On the other hand, since multiple precision
numbers are unsigned integers, multiplication of 16 bits × 16 bits unsigned integers is necessary. Accordingly, 16 bits ×
16 bits unsigned integer multiplications are implemented using the RX's multiply-accumulate instruction.

The basic idea about this implementation is shown in figure 2. The point is to divide each of the 16-bit unsigned integer
multiplicand and multiplier into the uppermost bit (b15 only) and the part other than the uppermost bit (b14 to b0). That
is, we consider a multiplication of the 16-bit unsigned integer multiplicand a and multiplier b as the sum of the
following four parts:

1. Product of the lower 15 bits of a and the lower 15 bits of b
2. If the uppermost bit of a is 1, add the value that is obtained by shifting the lower 15 bits of b 15 bits to the left (equal

to the product of the uppermost bit of a and the lower 15 bits of b).
3. If the uppermost bit of b is 1, add the value that is obtained by shifting the lower 15 bits of a 15 bits to the left (equal

to the product of the uppermost bit of b and the lower 15 bits of a).
4. IF the uppermost bit of both a and b is 1, add 0x40000000 (equal to the product of the uppermost bit of a and the

uppermost bit of b).

Execute the product of the lower 15 bits of a and the lower 15 bits of b described in step 1 above using the RX's
multiply-accumulate instruction MULLO. The MULLO instruction performs a 16-bit signed multiplication but causes
no problem because both operands are 15-bit unsigned integers.

Given below is a sample program for the 16-bit unsigned integer multiplication function mul16. This function returns a
32-bit unsigned integer as the results of multiplying the 16-bit unsigned integers a and b. This function is coded in
assembly language. Accordingly, the #pragma inline_asm declaration is used.

RX Family Multiple precision Multiplication Program Making Use of the DSP Functions

R01AN0226EJ0100 Rev.1.00 Page 4 of 14
Mar 14, 2011

/*
 Multiplies 16-bit unsigned integers.
 Returns a 32-bit unsigned integer as the results.
 */
#pragma inline_asm mul16
static uint32_t mul16(uint16_t a, uint16_t b)
{
 push.l r6
 mov.l r1,r3
 and #7fffh,r3
 mov.l r2,r4
 and #7fffh,r4
 mov.l #0,r5
 tst #8000h,r1
 bz ?+
 mov.l r4,r6
 shll #15,r6
 add r6,r5
 ?:
 tst #8000h,r2
 bz ?+
 mov.l r3,r6
 shll #15,r6
 add r6,r5
 tst #8000h,r1
 bz ?+
 add #40000000h,r5
 ?:
 mullo r3,r4
 mvfacmi r1
 add r5,r1
 pop r6
}

RX Family Multiple precision Multiplication Program Making Use of the DSP Functions

a

b15

b

0

0

b0b29

b0b14

b0b14 b0b14

0

0

0

00 1

b0b29

+

a × b

b0

1.

2.

3.

4.

b15b29

b30

b31

b0b14b15b29

MULLO

b15

Lower 15 bits Lower 15 bits

RX's multiply-accumulate instruction

Lower 15 bits of a

Lower 15 bits of b

Add if b15 of b is 1.

Add if b15 of a is 1.

Add if b15 of a is 1

and b15 of b is 1.

Figure 2 16 Bits × 16 Bits Unsigned Integer Multiplication

R01AN0226EJ0100 Rev.1.00 Page 5 of 14
Mar 14, 2011

RX Family Multiple precision Multiplication Program Making Use of the DSP Functions

3.2 Multiplication of Multiple precision Numbers on Paper
This section explains the multiplication of multiple precision numbers on paper. Considering multiple precision
numbers as 16-bit unsigned integers of N digits, add together the results of multiplying each digit of the multiplicand by
each digit of the multiplier (32-bit unsigned integers) sequentially at their required digit position. Figure 3 shows an
example of on-paper multiplication of 4-digit multiple precision numbers.

×

a[0]a[1]a[2]a[3]

b[0]b[1]b[2]b[3]

res[0]res[1]res[2]res[3]res[4]res[5]res[6]res[7]

+

a[2] b[0]×

a[1] b[1]×

a[1] b[0]×

a[0] b[1]×a[3] b[0]×

a[2] b[1]×

a[1] b[2]×

a[0] b[2]×a[3] b[1]×

a[0] b[0]×

a[3] b[3]×

a[2] b[3]×

a[2] b[2]×

a[1] b[3]×

a[0] b[3]×a[3] b[2]×

Figure 3 Example of Multiple precision Multiplication on Paper (4 Digits × 4 Digits)

R01AN0226EJ0100 Rev.1.00 Page 6 of 14
Mar 14, 2011

RX Family Multiple precision Multiplication Program Making Use of the DSP Functions

R01AN0226EJ0100 Rev.1.00 Page 7 of 14
Mar 14, 2011

3.3 Multiplication Programs
Given below is a sample program for the function long_mul that performs on-paper multiplications on multiple
precision numbers. This function performs a multiplication on the multiple precision numbers a and b and places the
results in a.

/*
 Multiplies multiple precision numbers.
 The results are placed in a.
 */
void long_mul(uint16_t *a, uint16_t *b)
{
 int i, j;
 uint32_t x;
 uint16_t res[N];

 memset(res, 0, sizeof res);
 for (i = 0; i < N; i++) {
 if (a[i] != 0) {
 for (j = 0; j < N; j++) {
 if (b[j] != 0 && i + j < N) {
 x = mul16(a[i], b[j]);
 add16(res, i + j, (x & 0xffff));
 add16(res, i + j + 1, (x >> 16));
 }
 }
 }
 }
 memcpy(a, res, sizeof res);
}

The function long_mul initially resets the variable res for storing the results, then sequentially performs multiplications
over the digits of multiplicand a and multiplier b, one digit at a time, and adds the intermediate results to the variable res.
The function, however, skips any computation on the digit whose value is 0 or if the results will not fit in N digits.
Finally, the function copies the results from the variable res to a.

Given below is a sample program for the auxiliary function add16 which is called by the function long_mul. This
function adds the 16-bit unsigned integer b to the ith digit of multiple precision number a.

/*
 Adds 16-bit unsigned integer b to ith digit of multiple precision number a
 */
static void add16(uint16_t *a, int i, uint16_t b)
{
 uint32_t c;

 for (c = b ; c > 0 && i < N; i++) {
 c += a[i];
 a[i] = c; // Only lower 16 bits of c are transferred.
 c >>= 16; // Upper 16 bits of c hold the value of the carry.
 }
}

RX Family Multiple precision Multiplication Program Making Use of the DSP Functions

R01AN0226EJ0100 Rev.1.00 Page 8 of 14
Mar 14, 2011

4. Four Arithmetic Operations on Multiple precision Numbers
This chapter introduces sample arithmetic operation programs that perform three of the four arithmetic operations on
multiple precision numbers; except the multiplication which is discussed in the preceding chapter.

• Addition
• Subtraction
• Division

4.1 Addition Program
This section explains a sample program for the addition function long_add for multiple precision numbers. This
function places the results of adding multiple precision number b to multiple precision number a in a. This function is
coded in assembly language. Accordingly, the #pragma inline_asm declaration is used.

/*
 Adds together multiple precision numbers.
 Results are placed in a.
 */
#pragma inline_asm long_add
void long_add(uint16_t *a, uint16_t *b)
{
 mov.l #0,r4
 mov.l #N,r5
 ?:
 movu.w [r1],r3
 add r3,r4
 movu.w [r2+],r3
 add r3,r4
 mov.w r4,[r1+]
 shlr #16,r4
 sub #1,r5
 bnz ?-
}

RX Family Multiple precision Multiplication Program Making Use of the DSP Functions

R01AN0226EJ0100 Rev.1.00 Page 9 of 14
Mar 14, 2011

4.2 Subtraction Program
This section explains a sample program for the subtraction function long_sub for multiple precision numbers. This
function places the results of subtracting multiple precision number b from multiple precision number a in a. However,
the inequality a ≥ b must be observed. This function is coded in assembly language. Accordingly, the #pragma
inline_asm declaration is used.

/*
 Subtraction on multiple precision numbers (a >= b must be observed)
 Results are placed in a.
 */
#pragma inline_asm long_sub
void long_sub(uint16_t *a, uint16_t *b)
{
 mov.l #0,r4
 mov.l #N,r5
 ?:
 movu.w [r1],r3
 add r3,r4
 movu.w [r2+],r3
 sub r3,r4
 mov.w r4,[r1+]
 shar #16,r4
 sub #1,r5
 bnz ?-
}

Shown below is another sample program for the comparison function long_cmp for multiple precision numbers which
is used to carry out the operation that is performed in conjunction with a subtraction. This function compares two
multiple precision number a and b and returns 0 if a = b, –1 if a < b, and 1 if a > b.

/*
 Compares between multiple precision numbers
 Returns 1 if a > b, 0 if a == b, and -1 if a < b.
 */
int long_cmp(uint16_t *a, uint16_t *b)
{
 int i;
 int32_t c;

 for (i = N - 1; i >= 0; i--) {
 c = (int32_t)a[i] - (int32_t)b[i];
 if (c < 0) {
 return -1;
 }
 if (c > 0) {
 return 1;
 }
 }
 return 0;
}

RX Family Multiple precision Multiplication Program Making Use of the DSP Functions

R01AN0226EJ0100 Rev.1.00 Page 10 of 14
Mar 14, 2011

4.3 Division Program
This section contains a sample program for the division function long_div for multiple precision numbers. This function
divides the value of multiple precision number a by multiple precision number b and places the quotient in q and the
remainder in r. However, the inequality b > 0 must be observed.

static uint32_t guess(uint16_t *a, uint16_t *b, int c, int d);
/*
 Performs division on multiple precision numbers (inequality b > 0 must be
observed).
 Places the quotient in q and the remainder in r.
 */
void long_div(uint16_t *a, uint16_t *b, uint16_t *q, uint16_t *r)
{
 int i, m, n, shift;
 uint32_t u, quot;
 uint16_t c[N], d[N], e[N];

#define ZERO(x) memset(x, 0, sizeof(uint16_t) * N)
#define COPY(x, y) memcpy(x, y, sizeof(uint16_t) * N)

 /* initialize */
 ZERO(e);
 ZERO(q);
 COPY(r, a);
 n = llen(b) - 1;
 if (long_cmp(a, b) < 0 || n < 0) {
 return;
 }
 /* normalize */
 for (shift = 0, u = b[n]; (u & 0x8000) == 0; u <<= 1) {
 shift++;
 }
 lshl(r, shift);
 lshl(b, shift);
 /* loop */
 while (long_cmp(r, b) >= 0) {
 m = llen(r) - 1;
 if (r[m] >= b[n]) {
 ZERO(c);
 for (i = 0; i <= n; i++) { c[m - n + i] = b[i]; }
 if (long_cmp(r, c) >= 0) {
 q[m - n] = 1;
 long_sub(r, c);
 continue;
 }
 }
 quot = guess(r, b, m, n);
 ZERO(c);
 for (i = 0; i <= n; i++) { c[m - n - 1 + i] = b[i]; }
 COPY(d, c);
 e[0] = quot;
 long_mul(c, e);
 while (long_cmp(r, c) < 0) {
 long_sub(c, d);
 quot--;
 }
 q[m - n - 1] = quot;

RX Family Multiple precision Multiplication Program Making Use of the DSP Functions

R01AN0226EJ0100 Rev.1.00 Page 11 of 14
Mar 14, 2011

 long_sub(r, c);
 }
 /* unnormalize */
 lshr(r, shift);
 lshr(b, shift);

#undef ZERO
#undef COPY
}

#pragma inline_asm guess
static uint32_t guess(uint16_t *a, uint16_t *b, int c, int d)
{
 shll #01h,r3,r5
 add r1,r5
 movu.w [r5],r1
 sub #02h,r5
 shll #10h,r1
 add [r5].uw,r1
 movu.w [r4,r2],r5
 divu r5,r1
 cmp #0ffffh,r1
 bleu ?+
 mov.l #0ffffh,r1
 ?:
}

The above division program uses the following three auxiliary functions in addition to the already-discussed
multiplication, subtraction, and comparison functions:

• Bit-shift multiple precision number left (lshl)
• Bit-shift multiple precision number right (lshr)
• Get number of digits of multiple precision number (llen)

Firstly, a sample program for the left shift function lshl for multiple precision numbers is shown below. This function
shifts multiple precision number a n bits to the left. The inequality 0 ≤ n ≤ 15 must be observed.

/*
 Shifts multiple precision number a n bits to the left.
 0 <= n <= 15 must be observed.
 */
static void lshl(uint16_t *a, int n)
{
 int i;
 uint32_t c = 0;
 uint32_t t;

 if (n == 0) {
 return;
 }
 for (i = 0; i < N; i++) {
 t = (uint32_t)a[i];
 t <<= n;
 t |= c;
 a[i] = t;
 c = (t >> 16);
 }
}

RX Family Multiple precision Multiplication Program Making Use of the DSP Functions

R01AN0226EJ0100 Rev.1.00 Page 12 of 14
Mar 14, 2011

Given below is a sample program for the right shift function lshr for multiple precision numbers. This function shifts
multiple precision number a n bits to the right. The inequality 0 ≤ n ≤ 15 must be observed.

/*
 Shifts multiple precision number a n bits to the right.
 0 <= n <= 15 must be observed.
 */
static void lshr(uint16_t *a, int n)
{
 int i;
 uint16_t c = 0;
 uint16_t t;

 if (n == 0) {
 return;
 }
 for (i = N - 1; i >= 0; i--) {
 t = a[i];
 a[i] = (c | (t >> n));
 c = (t << (16 - n));
 }
}

Finaly, a sample program for the function llen for getting the length of multiple precision numbers is shown below.This
function returns the number of digits of multiple precision number a. The function returns 0 if a = 0.

/*
 Returns number of digits of a multiple precision number.
 A 0 is returned if a == 0.
 */
static int llen(uint16_t *a)
{
 int i;

 for (i = N - 1; i >= 0; i--) {
 if (a[i] != 0) {
 return i + 1;
 }
 }
 return 0;
}

RX Family Multiple precision Multiplication Program Making Use of the DSP Functions

R01AN0226EJ0100 Rev.1.00 Page 13 of 14
Mar 14, 2011

5. Sample Program
Given below is an example of a simple multiple precision arithmetic program that finds the factorial of 35.

void main(void)
{
 int i;
 uint16_t a[N];
 uint16_t b[N];
 uint16_t c[N];

 memset(a, 0, sizeof a);
 memset(b, 0, sizeof b);
 memset(c, 0, sizeof b);
 a[0] = 1;
 b[0] = 2;
 c[0] = 1;
 for (i = 0; i < 35 - 1; i++) {
 long_mul(a, b);
 long_add(b, c);
 }
 /* a <- 35! = 10333147966386144929666651337523200000000 */
}

RX Family Multiple precision Multiplication Program Making Use of the DSP Functions

R01AN0226EJ0100 Rev.1.00 Page 14 of 14
Mar 14, 2011

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry

A-1

Revision Record
Description

Rev. Date Page Summary
1.00 Mar 14, 2011 — First edition issued

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and
pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.

⎯ When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.

⎯ The characteristics of an MPU or MCU in the same group but having a different part number may
differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and

regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product

depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for

which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;

 personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically

 designed for life support.

 "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2011 Renesas Electronics Corporation. All rights reserved.

Colophon 1.1

	1. General
	2. Data Representation Multiple precision Numbers
	3. Multiplications of Multiple precision Numbers
	3.1 Multiplication of 16-bit Unsigned Integers
	3.2 Multiplication of Multiple precision Numbers on Paper
	3.3 Multiplication Programs

	4. Four Arithmetic Operations on Multiple precision Numbers
	4.1 Addition Program
	4.2 Subtraction Program
	4.3 Division Program

	5. Sample Program

