RX Family

How to implement FreeRTOS OTA using Amazon Web Services in RX65N (for v202210.01-LTS-rx-1.1.0 or later)

Preface

This application note explains how to use the OTA demo application on FreeRTOS (with IoT Libraries). For details about security, see the Renesas MCU Firmware Update Design Policy (R01AN5548).

Note: The procedures in this application note are for FreeRTOS-v202210.01-LTS-rx-1.1.0 and later. For earlier versions, see How to implement FreeRTOS OTA by using Amazon Web Services on RX65N (R01AN5549).

Target Device

RX65N and RX651 groups

Hardware

CK-RX65N

Related Documents

Renesas MCU Firmware Update Design Policy (R01AN5548)
Contents

1. Overview ... 3
 1.1 System overview .. 3
 1.2 Operation verification environment for Hardware ... 4
 1.3 Operation verification environment for Software ... 4

2. Prerequisites.. 5
 2.1 Installing Tera Term .. 5
 2.2 Installing Python ... 6
 2.3 Installing OpenSSL .. 7
 2.4 Installing Renesas Image Generator .. 8
 2.5 Connecting the CK-RX65N .. 10

3. Setting Up AWS ... 11
 3.1 Signing in to the AWS Console ... 12
 3.2 Setting your region in AWS .. 14
 3.3 Registering your device in AWS .. 14
 3.3.1 Setting policies ... 14
 3.3.2 Registering your device as a thing in AWS IoT ... 16
 3.3.3 Checking the endpoint .. 20
 3.4 Creating an Amazon S3 bucket .. 21
 3.5 Allocating OTA execution permission to IAM users .. 24

4. Setting Up the Device .. 33
 4.1 Generating key pairs and certificates .. 33
 4.2 Creating the initial version of the firmware .. 36
 4.2.1 Importing the project ... 36
 4.2.2 Checking the project environment settings ... 38
 4.2.3 Setting up projects ... 40
 4.2.4 Creating the initial firmware .. 46
 4.2.5 Registering AWS IoT information .. 50

5. Updating the Firmware .. 57
 5.1 Creating the updated firmware ... 57
 5.1.1 Changing the firmware version ... 57
 5.2 Updating the firmware .. 58

6. Troubleshooting .. 66

Revision History .. 67
1. Overview

1.1 System overview

This section shows an overview of implementing OTA using a RX65N microcontroller that supports the dual bank function and has the CK-RX65N cloud kit installed.

The dual bank function divides the ROM of the microcontroller into an execution area and a temporary area. By dynamically swapping the execution area and the temporary area, updated firmware can be written to ROM while the existing software continues to run in the execution area.

The following explains how memory is allocated during OTA updates, and what happens when memory banks are swapped using the dual bank function.

![Figure 1.1 Overview of OTA operation (1)](image1)

1. The state that erased all the data by Renesas Flash Programmer.

2. Memory state after writing combined bootloader and initial firmware data* in Renesas Flash Programmer.

 * It refers to the data that Boot Loader(bank0) + Initial firmware + RSU Header + BootLoader(bank1) are combined. For details of RSU Header, please refer to 4.2 image file of RX Family Firmware Update module Using Firmware Integration Technology Application Notes(R01AN6850).

3. After reset, bootloader (bank0) verifies Initial firmware.

4. Initial firmware is booted.

![Figure 1.2 Overview of OTA operation (2)](image2)

5. When new firmware is received from AWS, it is written to bank1.

 Initial firmware operation is executed by BGO function while writing to bank1.
(6) Updated firmware is verified by the initial firmware.

(7) Bank0 and bank1 are swapped, and bank1 is designated as the execution area.

(8) Updated firmware is verified by bootloader.
 - Erase initial firmware in bank0 and execute Updated firmware written to bank1.

1.2 Operation verification environment for Hardware

Table 1-1 Table 1-2 Operation verification environment for Hardware

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board</td>
<td>CK-RX65N (Cellular/Ethernet)</td>
</tr>
<tr>
<td>Cellular module</td>
<td>RYZ014A (incorporated into CK-RX65N)</td>
</tr>
<tr>
<td>SIM</td>
<td>LTE Cat-M1-compatible SIM (micro-SIM)</td>
</tr>
</tbody>
</table>

Notes: 1. Cellular communication is used in this sample.
 2. To use the SIM card supplied with the CK-RX65N kit, activate the SIM card by following the procedure in 4.1.5 Activating SIM card in the following application note:

SIM activation, Creating the trial account and using Dashboard with RYZ014A or Ethernet Application for AWS - Getting Started Guide (R01QS0064)

1.3 Operation verification environment for Software

Table 1-3 Operation verification environment for Hardware

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated development environment</td>
<td>e2 studio 2023-10</td>
</tr>
<tr>
<td>Compiler</td>
<td>Renesas CC-RX v3.05.00</td>
</tr>
<tr>
<td>FreeRTOS</td>
<td>v202210.01-LTS-rx-1.1.0</td>
</tr>
<tr>
<td>Log monitoring tool</td>
<td>TeraTerm v4.106</td>
</tr>
<tr>
<td>Python</td>
<td>Python 3.11.0</td>
</tr>
<tr>
<td>Keygen tool</td>
<td>Win64 OpenSSL v3.0.12</td>
</tr>
<tr>
<td>Flash programming tool</td>
<td>Renesas Flash Programmer V3.12.00</td>
</tr>
<tr>
<td>Renesas Image Generator</td>
<td>Version 3.02 (supplied with Firmware Update module Rev.2.01)</td>
</tr>
</tbody>
</table>
2. Prerequisites

2.1 Installing Tera Term

(1) Access the Tera Term download site
 [Tera Term download web site (GitHub)]

(2) Download the Tera Term installer

(3) Run the installer and follow the prompts to install Tera Term

(4) Confirm that Tera Term starts when you click the Tera Term icon in the Start menu
2.2 Installing Python

(1) Access the Python download web site

[Python download web site]

(2) Download the Python 3.11.0 installer

Click the Download link for Python 3.11.0

[Image: Downloading Python 3.11.0 installers]

Download the installer for the operating system you are using.

(3) Run the installer and follow the prompts to install Python

On the installation screen, select the Add python.exe to PATH check box.

[Image: Python 3.11.0 installation setup]
(4) Open a command prompt, and confirm that Python 3.11.0 is installed

Execute the following command and confirm that information appears.

```bash
python -V
```

```
C:\Users>python -V
Python 3.11.0
```

(5) Install the Python encryption library (pycryptodome)

Install the encryption library by executing the following command:

```
pip install pycryptodome
```

2.3 Installing OpenSSL

(1) Access the Win32/Win64 download web site for OpenSSL

[Win32/Win64 OpenSSL Installer for Windows - Shining Light Productions (slproweb.com)]

(2) Download the OpenSSL installer

Download the installer for the operating system you are using.

(3) Run the installer and follow the prompts to install OpenSSL

Select the option to copy the OpenSSL DLLs to the OpenSSL binaries directory.

(4) From the Start menu, open the Win64 OpenSSL Command Prompt
(5) Confirm that you can run the openssl command from the command prompt.

 Execute the following command and confirm that version information appears.

 openssl version

 ![Win64 OpenSSL Command Prompt](image)

 C:\openssl\version
 OpenSSL 3.1.2 1 Aug 2023 (Library: OpenSSL 3.1.2 1 Aug 2023)
 C:\openssl

2.4 Installing Renesas Image Generator

Renesas Image Generator is a tool that generates the firmware images used by the firmware update module. Renesas Image Generator can generate the following images for use by the firmware update module:

- Initial image: An image file containing the bootloader and application program written by flash writer during initial system configuration (extension: mot)
- Update image: An image file containing the updated firmware (extension: rsu)

Renesas Image Generator is provided as part of the Firmware Update FIT module.

Note: Version Rev.2.00 and later of the Firmware Update module only support firmware generation using Python scripts.
(1) Access the FIT module list page and select middleware

(2) Download the firmware update module

(3) Extract the downloaded firmware update module

Extract the file RenesasImageGenerator.zip in the firmware update module. The RenesasImageGenerator folder contains the Renesas Image Generator script file (image-gen.py) and the parameter files for various devices (*.ImageGenerator_PRM.csv).
2.5 Connecting the CK-RX65N

(1) Insert the SIM card into the CN6 slot on the RYZ014A PMOD

(2) On the base board, position the jumper on pins 1-2 of J16 to enable debugging mode

(3) Connect the RYZ014A PMOD to PMOD1 on the base board

(4) Connect J20 on the base board to a PC using a USB cable (USB serial connection)

(5) Connect an antenna to CN3 of the RYZ014A PMOD

(6) Supply power by connecting a USB cable to CN4 of the RYZ014A PMOD

(7) Connect J14 on the base board to a PC using a USB cable (debugger connection)

Note: Perform step (6) if you have a spare USB cable available.
If you do not supply power to the RYZ014A PMOD, communication might become unstable.
3. Setting Up AWS

To run the FreeRTOS demo, you must have an AWS account (the root user, or an IAM user with permissions to access AWS IoT and FreeRTOS cloud services).

For details on how to sign up for an AWS account and add permissions to users, see https://docs.aws.amazon.com/freertos/latest/userguide/freertos-prereqs.html. For details on how to set up OTA updates, see https://docs.aws.amazon.com/freertos/latest/userguide/ota-prereqs.html.

You must then register the board with AWS IoT by following the instructions in https://docs.aws.amazon.com/freertos/latest/userguide/freertos-prereqs.html.

You must also configure the source code as explained in chapter 2 to allow the demo to communicate with AWS.
3.1 Signing in to the AWS Console

(1) Access the AWS web site (https://aws.amazon.com/) and click Sign In to the Console

(2) Enter your email address or account ID, and then click Next

 If the account you are using to sign in is the root user, enter the root user email address. If the account is an IAM user, enter the account ID. (You might skip this step if you have already signed in)
(3) Enter your password and then click **Sign in**

For root users

![AWS Sign In](image)

Root user sign in

Email: [HIDDEN]

Password: [HIDDEN]

Sign in to a different account

Create a new AWS account

For IAM users

![AWS Sign In](image)

Sign in as IAM user

Account ID (12 digits) or account alias

IAM user name

Password

Remember this account

Sign in
3.2 Setting your region in AWS
After logging in to AWS, select your region in the top right of the screen.

![Region selection screenshot]

3.3 Registering your device in AWS
The following explains the preparations necessary to run the demo project in AWS. Set up AWS by referring to the following tutorial.

3.3.1 Setting policies
Assign access permissions (policies) for AWS and other resources to the device you want to connect to AWS.

Assign the following policies to the device connected in this application note:

- `iot:Connect`: Connects to AWS IoT
- `iot:Publish`: Publishes a topic
- `iot:Subscribe`: Subscribes to a topic
- `iot:Receive`: Receives messages from AWS IoT

1. Enter IoT Core in the search box at the top of the screen, and click **IoT Core** in the search results.
(2) In the menu, click **Security** and then **Policies**, and then click the **Create policy** button

(3) Enter a policy name (for example: rx65n_ota_demo_policy)

(4) Click the **Policy statements** tab, and in the **Policy document** area, click **Builder**. Enter the policy settings as shown in the following figure, and then click **Create**

Because the policy initially contains only one statement, you must add more statements by clicking the **Add new statement** button.
3.3.2 Registering your device as a thing in AWS IoT

(1) In the menu, click Manage, All devices, and Things, and then click the Create things button

(2) Select Create single thing and then click Next
(3) Enter a thing name (example: `rx65n_ota_demo_thing`), and then click **Next**

Make a note of the thing name you entered. You will need it in a later process.
(4) In the Device certificate area, select **Auto-generate a new certificate** and then click **Next**

![Configure device certificate](image)

(5) Attach the policy to the certificate

Select the policy you created in 3.3.1 Setting policies, and then click the **Create thing** button

![Attach policies to certificate](image)
(6) Download the certificate and key files

The certificate and private key are equivalent to a password for the device (thing). When you register a certificate and private key on a device, the device can use this certificate and private key to connect to AWS.

You must download the certificate, public key, and private key now. You will not have another opportunity to download them.

Download certificates and keys

Download certificate and key files to install on your device so that it can connect to AWS.

Device certificate
You can activate the certificate now, or later. The certificate must be active for a device to connect to AWS IoT.

Device certificate
Deactivate certificate
Download

Key files
The key files are unique to this certificate and can’t be downloaded after you leave this page.
Download them now and save them in a secure place.

⚠️ This is the only time you can download the key files for this certificate.

Public key file
Download

Private key file
Download

Root CA certificates
Download the root CA certificate file that corresponds to the type of data endpoint and cipher suite you’re using. You can also download the root CA certificates later.

Amazon trust services endpoint
Download

RSA 2048 bit key: Amazon Root CA 1

Amazon trust services endpoint
Download

ECC 256 bit key: Amazon Root CA 3

If you don’t see the root CA certificate that you need here, AWS IoT supports additional root CA certificates. These root CA certificates and others are available in our developer...
3.3.3 Checking the endpoint

The endpoint is equivalent to a connection destination (URL) for the device (thing). The device will connect to the endpoint registered for the device.

1. In the menu, click **Settings** and make a note of the endpoint.

![Settings Menu Image]

The endpoint URL highlighted in the image is `iot.ap-northeast-1.amazonaws.com`.
3.4 Creating an Amazon S3 bucket

Amazon S3 is an online storage web service used to store the firmware with which the device will be updated.

(1) From the **Services** menu, select **Storage** and then **S3**

(2) On the **Buckets** page, click the **Create bucket** button
Enter a bucket name (example: s3test-rx65n)

Create bucket

Bucket name must be unique within the global namespace and follow the bucket naming rules. See rules for bucket naming.

AWS Region

Copy settings from existing bucket - optional

Only the bucket settings in the following configuration are copied.

Choose bucket

The bucket name must be globally unique. The following error message appears if the bucket name is already in use. In this case, use another name.
(4) Create the bucket

Enter the settings as follows, and then click the Create bucket button

- **Block Public Access setting for this bucket**: Block all public access
- **Bucket Versioning**: Enable
3.5 Allocating OTA execution permission to IAM users

Create a role with the appropriate access permissions to create OTA update jobs.

1. Enter IAM in the search box at the top of the screen, and click IAM in the search results.

2. In the menu, click Roles and then click the Create role button.
RX Family How to implement FreeRTOS OTA using Amazon Web Services in RX65N (for v202210.01-LTS-rx-1.1.0 or later)

(3) Under **Select trusted entity**, enter the following settings and then click **Next**:

- Under **Trusted entity type**, select **AWS service**
- Under **Use cases for other AWS services**, select **IoT**
- Select the **IoT** option button

(4) Click **Next** on the **Add permissions** page without making any changes

Add permissions

<table>
<thead>
<tr>
<th>Permissions policies</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>The type of role that you selected requires the following policy.</td>
<td></td>
</tr>
<tr>
<td>Policy name</td>
<td>Type</td>
</tr>
<tr>
<td>AWSIoTRuleActions</td>
<td>AWS m...</td>
</tr>
<tr>
<td>AWSIoTLogging</td>
<td>AWS m...</td>
</tr>
<tr>
<td>AWSIoTThingsRegi...</td>
<td>AWS m...</td>
</tr>
</tbody>
</table>

Set permissions boundary - optional

Set a permissions boundary to control the maximum permissions this role can have. This is not a common setting, but you can use it to delegate permission management to others.
RX Family How to implement FreeRTOS OTA using Amazon Web Services in RX65N (for v202210.01-LTS-rx-1.1.0 or later)

(5) Enter a role name (example: ota_role_rx65n), and then click the Create role button

Name, review, and create

Role details

Role name
Enter a meaningful name to identify this role.

ota_role_rx65n

Maximum 64 characters. Use alphanumeric and **_** characters.

Description
Add a short explanation for this role:

Allows IoT to call AWS services on your behalf.

Maximum 1000 characters: Use alphanumeric and **_** characters.

Add tags - optional info

Tags are key-value pairs that you can add to AWS resources to help identify, organize, or search for resources.

No tags associated with the resource.

Add tag
You can add up to 50 more tags.

(6) Click the role you created

Identity and Access Management (IAM)

Roles

ota_role_rx65n

AWS Service: iot
(7) Select Attach policies

![Attach policies](image)

(8) Enter AmazonFreeRTOSOTAUpdate in the Permissions policies search box, and then press the Enter key

![Permissions policies search box](image)

(9) Select the check box beside the AmazonFreeRTOSOTAUpdate policy, and then click the Add permissions button

![Add permissions button](image)
(10) From the **Add permissions** drop-down list, select **Create inline policy**

<table>
<thead>
<tr>
<th>Permissions policies</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter policies by property or policy name and press enter.</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>Policy name</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AWSIoTRuleActions</td>
</tr>
<tr>
<td></td>
<td>AWSIoTLogging</td>
</tr>
<tr>
<td></td>
<td>AWSIoTThingsRegistration</td>
</tr>
<tr>
<td></td>
<td>AmazonFreeRTOSOTAUpd...</td>
</tr>
</tbody>
</table>
(11) Click JSON, paste the following code, and then click Next

This code grants permission to pass the IAM role to AWS services.

Code to paste:

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "iam:GetRole",
                "iam:PassRole"
            ],
            "Resource": "*"
        }
    ]
}
```
(12) Enter a policy name (example: rx65n_ota_demo_iam_policy), and then click the **Create policy** button

(13) Again, from the **Add permissions** drop-down list, select **Create inline policy**
RX Family How to implement FreeRTOS OTA using Amazon Web Services in RX65N (for v202210.01-LTS-rx-1.1.0 or later)

(14) Click JSON, paste the following code, and then click Next

This code allows access to Amazon S3 where the updated firmware is stored.

Code to paste:

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": [
        "s3:GetObjectVersion",
        "s3:GetObject",
        "s3:PutObject"
      ],
      "Resource": [
        "*"
      ]
    }
  ]
}
```
(15) Enter a policy name (example: `rx65n_ota_demo_s3_policy`), and then click the **Create policy** button.

Policy details

- **Policy name**: Enter a meaningful name to identify this policy.
 - `rx65n_ota_demo_s3_policy`
 - Maximum 256 characters. Use alphanumeric and `-`, `_`, characters.

Permissions defined in this policy

- **Search**

Allow (1 of 384 services)

- **S3**: Limited: Read, Write
 - All resources
 - Request condition: None

Create policy button
4. Setting Up the Device

4.1 Generating key pairs and certificates

(1) From the Start menu, open the Win64 OpenSSL Command Prompt

(2) Execute the command to create a CA private key using ECDSA

```
Execute the following command:
openssl ecparam -genkey -name secp256r1 -out ca.key
```

Execution results:

```
C:\openssl>openssl ecparam -genkey -name secp256r1 -out ca.key
using curve name prime256v1 instead of secp256r1
```

(3) Execute the command to create a CA certificate from the CA private key you created

```
Execute the following command: You can enter any character string for Country Name onward.
openssl req -x509 -sha256 -new -nodes -key ca.key -days 3650 -out ca.crt
```

You are about to be asked to enter information that will be incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN. There are quite a few fields but you can leave some blank
For some fields there will be a default value.
If you enter ".", the field will be left blank.

```
Country Name [2 letter code] [AU]:JP
State or Province Name (full name) [Some-State]:Tokyo
Locality Name (eg, city) []:Kodaira
Organization Name (eg, company) []:Internet Widgets Pty Ltd:Renesas Electronics
Organizational Unit Name (eg, section) []:Software Development Division
Common Name (e.g. server FQDN or YOUR name) []:Renesas Tarou
Email Address []:Tarou.Renesas@sample.com
```

Enter any character string for these attributes
(4) Execute the command to create an ECDSA key pair

Execute the following command:
```
openssl ecparam -genkey -name secp256r1 -out secp256r1.keypair
```

(5) Execute the command to create a certificate signing request from the ECDSA key pair you created

Execute the following command: You can enter any character string for Country Name onward. For the last two lines, press Enter without entering anything.
```
openssl req -new -sha256 -key secp256r1.keypair > secp256r1.csr
```

(6) Execute the command to create a certificate from the certificate signing request, CA certificate, and CA private key you created

Execute the following command:
```
openssl x509 -req -sha256 -days 3650 -in secp256r1.csr -CA ca.crt -CAkey ca.key -CAcreateserial -out secp256r1.crt
```

(7) Execute the command to extract the private key from the ECDSA key pair

Execute the following command:
```
openssl ec -in secp256r1.keypair -outform PEM -out secp256r1.privatekey
```
(8) Execute the command to extract the public key from the ECDSA key pair

 Execute the following command:

 openssl ec -in secp256r1.keypair -outform PEM -pubout -out secp256r1.publickey

 D:\openssl>openssl ec -in secp256r1.keypair -outform PEM -pubout -out secp256r1.publickey
 read EC key
 writing EC key
4.2 Creating the initial version of the firmware

The following explains how to create the initial version of the firmware.

4.2.1 Importing the project

1. Clone the demo project

 Clone the demo project from GitHub ([iot-reference-rx: FreeRTOS reference repository](https://github.com/renesas/iot-reference-rx)). This document assumes the reader is using [Git for Windows](https://gitforwindows.org) when explaining the cloning process.

 Open GitBash and execute the following commands:

   ```
   cd c:
   git clone https://github.com/renesas/iot-reference-rx
   ```

 Because you will be cloning the project to the root directory of the C drive, you must change the current directory after starting GitBash *

 Note: Due to restrictions in e² studio, the length of the path of the cloning destination (including any folder names) must not exceed 35 characters. If you specify a path with 36 or more characters, an error occurs when building the project.

 In the preceding example, the project is cloned to the root directory of the C drive.

2. Start e² studio

3. From the **File** menu, select **Import**
(4) Select Existing Projects into Workspace

(5) In Select root directory, select the folder you cloned in 4.2.1(1), select the check boxes for the following projects, and then click Finish

- aws_ryz014a_ck_rx65n
- boot_loader_ck_rx65n
4.2.2 Checking the project environment settings

(1) For both projects, from the **Projects** menu, select **Properties**, expand the **C/C++ Build** menu, and click **Settings**. On the **Toolchain** tab, confirm that the toolchain is **Renesas CC-RX**.

![Toolchain Settings](image)
(2) On the Tool Settings tab, expand the Converter menu and select Output. Confirm that the Motorola S format file check box is selected.
4.2.3 Setting up projects

(1) Assign a public key to each project

Copy the contents of the secp256r1.publickey file you created in 4.1(8), and paste the contents into CODE_SIGNENR_PUBLIC_KEY_PEM defined in the following files:

- boot_loader_ck_rx65n\src\key\code_signer_public_key.h
- Paste the public key into CODE_SIGNENR_PUBLIC_KEY_PEM in boot_loader_ck_rx65n\src\key\code_signer_public_key.h.

You must enclose each line in quotation marks (") and end the line with the \ symbol.

Example: "xx"
(2) Set the definition for the OTA update demo to Enable.

Set ENABLE_OTA_UPDATE_DEMO to 1 (Enable) in
aws_ryz014a_ck_rx65n\src\frtos_confit\demo_config.h. (The default is 0)
(3) Confirm that the initial project version is 0.92

Confirm that the version definitions in `aws_ryz014a_ck_rx65n\src\frtos_config\demo_config.h` are as follows:

- **APP_VERSION_MAJOR** 0
- **APP_VERSION_MINOR** 9
- **APP_VERSION_BUILD** 2

(4) Configure the RYZ014A Cellular Module Control FIT module (`r_cellular`)

Open the file `aws_ryz014a_ck_rx65n.scfg`, and click the **Components** tab. For the `r_cellular` component, set **Access point name**, **Access point login ID**, **Access point password**, and **Authentication protocol type** according to your SIM card.
To use the SIM card supplied with the CK-RX65N kit, activate the SIM card by following the procedure in 4.1.5 Activating SIM card in the following application note:

SIM activation, Creating the trial account and using Dashboard with RYZ014A or Ethernet Application for AWS - Getting Started Guide (R01QS0064)

(5) Firmware device settings (1)

Open the file aws_ryz014a_ck_rx65n.scfg, and click the Board tab. Click the ellipsis (…) beside the Board field in the Device selection area.

(6) Firmware device settings (2)

Click the ellipsis (…) beside the Target Device field, and select R5F565NEHxFB_DUAL. The value in the Target Board drop-down list changes to Custom.
(7) Firmware device settings (3)

When you change a device, the following dialog box appears. Click **Next** to continue.

(8) Firmware device settings (4)

Under **Build Settings > HardwareDebug > Toolchain Settings**, clear the **ROM to RAM mapped section (-rom)** and **Sections (-start)** check boxes and then click **Finish**.
(9) Check the boot loader device

Open the file `boot_loader_ck_rx65n.scfg`, and click the **Board** tab. Confirm that R5F565NEHxFB_DUAL appears in the **device** field.
4.2.4 Creating the initial firmware
The following explains how to create the initial firmware that combines the boot loader (boot_loader_ck_rx65n) and the firmware (aws_ryz014a_ck_rx65n).

(1) Change the firmware (aws_ryz014a_ck_rx65n) vector
Open the aws_ryz014a_ck_rx65n project, and select Project and then Properties.
Expand the C/C++ Build menu, and click Settings. In the menu tree on the Tool Settings tab, expand the Linker menu and click Section, and open the Section Viewer. Allocate EXCEPTVECT to 0xFFFFFEFF80 and RESETVECT to 0xFFFFEFFFC.
You can then build the firmware.
(2) Use Renesas Image Generator to generate the initial firmware

Place the following files in the Renesas Image Generator folder:

- The results of the build process in 4.2.4(1): aws_ryz014a_ck_rx65n.mot
- The results of building the boot loader: boot_loader_ck_rx65n.mot
- The private key created in 4.1(7): secp256r1.privatekey

Open a command prompt, navigate to the Renesas Image Generator folder, and execute the following command to generate the file userprog.mot.

```
python image-gen.py -iup aws_ryz014a_ck_rx65n.mot -ip RX65N_DualBank_ImageGenerator_PRM.csv -o userprog -ibp boot_loader_ck_rx65n.mot -key secp256r1.privatekey -vt ecdsa -ff RTOS
```

(3) Start Renesas Flash Programmer and open the erase.rpj project

The erase.rpj project is located in the following folder of the sample program:

\Projects\aws_ryz014a_ck_rx65n\flash_project\erase_from_bank1
(4) Click Start to erase the device

(5) Open the flash_project.rpj project

The flash_project.rpj project is located in the following folder of the sample program:

\Projects\aws_ryz014a_ck_rx65n\flash_project\
(6) Select the initial firmware (userprog.mot) created in 4.2.4(2)

(7) Write the firmware
4.2.5 Registering AWS IoT information
The following explains how to set AWS IoT information in Tera Term by running the `aws_ryz014a_ck_rx65n` project. The information set by this process is written to data flash memory.

(1) Open Tera Term, and from the **File** menu, select **New Connection**. In the dialog box that appears, select **Serial** and then click **OK**

(2) From the **Setup** menu, select **Terminal**. In the **New-line** area of the dialog box that appears, select **AUTO** for **Receive** and **CR+LF** for **Transmit**
RX Family How to implement FreeRTOS OTA using Amazon Web Services in RX65N (for v202210.01-LTS-rx-1.1.0 or later)

(3) From the Setup menu, select **Serial port**. In the dialog box that appears, set **Speed** to 115200 and then click **New setting**

![Serial port setup dialog box](image)

(4) Move the jumper on J16 of the CK-RX65N board to the RUN setting, and then press the RESET switch.
(5) Enter CLI and press the Enter key within 10 seconds of the menu appearing in the Tera Term window

```
---- RX65N : BootLoader [dual bank] ----
verify install area 0 [sig-sha256-ecdsa]..OK
execute new images ...

FreeRTOS command server.
Type 'Help' to view a list of registered commands.

Standard procedure:
  1. Set value for endpoint/thingname/certificate/key/codesign_cert.
  2. Write the key value to Internal Data Flash Memory with 'commit' command.
  3. Reset the program to start the demo.

>Press CLI and enter to switch to CLI mode or wait 10secs to run demo!

>CL1

Going to FreeRTOS-CLI !
```
(6) Register the certificate you downloaded in 3.3.2(6)

Enter `conf set cert` in Tera Term, and then drag and drop the certificate file (xxxxx-certificate.pem.crt) to the Tera Term window to send the file. Finally, press Enter in the Tera Term window.
(7) Register the private key you downloaded in 3.3.2(6)

Enter conf set key in Tera Term, and then drag and drop the private key file (xxxx-private.pem.key) to the Tera Term window to send the file. Finally, press Enter in the Tera Term window.
(8) Register the thing name you set in 3.3.2(3) and the endpoint you made a note of in 3.3.3(1)

Execute the following commands in Tera Term:

```plaintext
conf set thingname thing-name
conf set endpoint endpoint-name
```

(9) Register the key pair certificate (secp256r1.crt) generated in 4.1(6)

Enter `conf set codesigncert` in Tera Term, and then drag and drop the key pair certificate (secp256r1.crt) to the Tera Term window to send the file.

Note: Change the linefeed code of the certificate file to LF before pasting the file contents.
(10) Commit the AWS IoT settings (write the settings to data flash memory)

Execute the following commands in Tera Term:

```
conf commit
```

```
 conf commit
 0 4472481 [CLI] Destroyed Certificate.
 1 4472485 [CLI] Write certificate...
 2 4472545 [CLI] Destroyed Private key.
 8 4472685 [CLI] Write Private key...
 Configuration saved to Data Flash and used 2879 bytes.
```

(11) Perform a reset

Execute the following commands in Tera Term:

```
reset
```

After the reset process is complete, confirm that Tera Term displays a communication log and the application is waiting for OTA jobs.
5. Updating the Firmware

5.1 Creating the updated firmware

5.1.1 Changing the firmware version

(1) Change the firmware version to v0.9.3

Repeat the build process, this time with 3 specified for the APP_VERSION_BUILD definition in aws_ryz014a_ck_rx65n\src\frtos_config\demo_config.h.

(2) Use Renesas Image Generator to generate the updated firmware

Overwrite the file in the Renesas Image Generator folder with the firmware you rebuilt in 5.1.1(1) (aws_ryz014a_ck_rx65n.mot), and then execute the following command at the command prompt:

```
python image-gen.py -iup aws_ryz014a_ck_rx65n.mot -ip RX65N_DualBank_ImageGenerator_PRM.csv -o user_093 -key secp256r1.privatekey -vt ecdsa -ff RTOS
```

This command generates a file named user_093.rsu.
5.2 Updating the firmware

In AWS, create an OTA update job that will update the firmware.

1. In the IOT Core menu, select Manage, Remote actions, and Jobs, and then click the Create job button.

2. Select Create FreeRTOS OTA update job and then click Next.
(3) Enter a job name (example: rx65n_ota_demo_job) and then click Next

(4) Click the Devices to update drop-down list and select the device to update
(5) Click **Create new profile**

You can skip steps (5) to (9) if you have already created a profile. Click **Choose existing code signing profile** and select the profile you created from the drop-down list.
RX Family How to implement FreeRTOS OTA using Amazon Web Services in RX65N (for v202210.01-LTS-rx-1.1.0 or later)

(6) Create a profile (1): Profile name and device hardware platform
- Enter the profile name (example: rx65n_ota_demo_profile)
- Select Windows Simulator as the device hardware platform

(7) Create a profile (2): Import a certificate
- In the Code signing certificate area, click Import new code signing certificate
- In Certificate body, select the file secp256r1.crt you created in 4.1(6)
- In Certificate private key, select the file secp256r1.private key you created in 4.1
- In Certificate chain, select the file ca.crt you created in 4.1(3)
- Click Import
(8) Create a profile (3): Enter the path of the code signing certificate of the device and then click Create.

You can enter any path. (Example: dummy)

(9) Confirm that the name of the profile you created earlier is selected in the Existing code signing profile drop-down list.
(10) Update the firmware

- Select **Upload a new file**
- In **File to upload**, select the file `usr093.rsu` you created in 5.1.1(2)
- Click **Browse S3** and select the S3 bucket you created in 3.4
- Enter a path name in **Path name of file on device** (You can enter any path name. Example: `/device/updates`)

(11) In the **Role** drop-down list, select the role you created in 3.5(5) and then click **Next**
(12) Click Create job

(13) Wait until firmware reception is complete

When the job starts, the job receives and writes the firmware.

The Received counter is incremented when reception starts.
When the update process is complete, the device resets and the initial menu appears.

(14) Confirm that the firmware version is Ver. 0.9.3
6. Troubleshooting

The following table lists issues that might arise when executing the sample, and how to resolve them.

<table>
<thead>
<tr>
<th>No.</th>
<th>Issue</th>
<th>Cause</th>
<th>Solution</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The command to create the initial firmware fails</td>
<td>The Python installation folder is not set correctly in the Path variable</td>
<td>Reinstall python. Also, make sure that the <code>Add python.exe to PATH</code> check box is selected when you perform the steps in 2.2(3).</td>
<td>2.2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>The encryption library is not installed</td>
<td>Install the encryption library.</td>
<td>2.2(5)</td>
</tr>
<tr>
<td>3</td>
<td>The initial firmware cannot be written</td>
<td>The CK-RX65N kit is not in debug mode</td>
<td>Make sure that the jumper on J16 of the CK-RX65N board is on pins 1-2 (debug mode).</td>
<td>2.5</td>
</tr>
<tr>
<td>4</td>
<td>The initial firmware does not start</td>
<td>The CK-RX65N kit is not in RUN mode</td>
<td>Make sure that the jumper on J16 of the CK-RX65N board is on pins 2-3 (RUN mode).</td>
<td>4.2.5(4)</td>
</tr>
<tr>
<td>5</td>
<td>Cellular communication cannot start</td>
<td>The RYZ014A PMOD board is not connected properly</td>
<td>Check the connection of the RYZ014A PMOD board.</td>
<td>2.5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>No SIM card is inserted</td>
<td>Insert the SIM card.</td>
<td>2.5</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>The SIM card is configured incorrectly</td>
<td>Revise the configuration of the <code>r_cellular</code> module.</td>
<td>4.2.3(4)</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>You are using the SIM card supplied with the CK-RX65N kit but the SIM card is not activated</td>
<td>Activate the SIM card.</td>
<td>4.2.3(4)</td>
</tr>
<tr>
<td>9</td>
<td>An error occurs during cellular communication</td>
<td>The communication environment is poor</td>
<td>Connect an antenna and power supply to the RYZ014A PMOD board. Also, place the antenna in an area with good reception such as near a window.</td>
<td>2.5</td>
</tr>
<tr>
<td>10</td>
<td>An error occurs when connecting to AWS</td>
<td>The AWS IoT information is not set or is set incorrectly</td>
<td>Set the AWS IoT information again.</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>The firmware does not start after starting the boot loader</td>
<td>The public key is not correctly set in the boot loader</td>
<td>Review the public key setting in the boot loader.</td>
<td>4.2.3(1)</td>
</tr>
<tr>
<td>12</td>
<td>The firmware does not start after an OTA update</td>
<td>The public key is not correctly set in the firmware</td>
<td>Review the public key setting in the firmware.</td>
<td>4.2.3(1)</td>
</tr>
<tr>
<td>13</td>
<td>Device selection is incorrect</td>
<td></td>
<td>Review the device setting in the firmware and the boot loader.</td>
<td>4.2.3(5) to 4.2.3(9)</td>
</tr>
</tbody>
</table>
Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date issued</th>
<th>Details</th>
<th>Nature of revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Sept. 15, 2023</td>
<td>—</td>
<td>Initial publication</td>
</tr>
</tbody>
</table>
General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)
 A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semi-conductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on
 The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state
 Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins
 Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals
 After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin
 Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between \(V_{IL} \) (Max.) and \(V_{IH} \) (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between \(V_{IL} \) (Max.) and \(V_{IH} \) (Min.).

7. Prohibition of access to reserved addresses
 Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products
 Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacturing, manufacture, sale, purchase, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 - **Standard**: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - **High Quality**: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implants; etc.), or may cause serious property damage (space system; underwater repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL LIABILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire and/or any danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Contact information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact.