
 Application Note

R01AN6923EJ0100 Rev.1.00 Page 1 of 55
June.30.23

RX Family
GUI Sample Program using Serial LCD and emWin Library
Introduction
In this application note, we describe how to develop a GUI application using serial TFT-LCD display with
Segger's graphics library emWin.

The sample program uses the basic functions provided by emWin, such as window manager, widgets,
memory devices, animations, etc., which are also explained in this application note. Please note that this
sample program does not use the GUI design tool AppWizard.

Note:

• Running this sample program requires separate SPI-compatible TFT-LCD display and wiring
components to connect with the target board EK-RX671

• Because the link size of this sample program exceeds 128K bytes, it cannot be built if the free
evaluation version's trial period of CC-RX has expired. If you have purchased the compiler, make
sure to register the license key to the License Manager.

Target Device
RX671 Group

If you apply this application note to another microcontroller, please modify it according to the specifications of
that microcontroller and thoroughly evaluate it.

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 2 of 55
June.30.23

Contents

1. Overview ... 4
1.1 Home Screen ... 4
1.2 RX Logo Display .. 4
1.3 Air Conditioning Control .. 5
1.4 Image Display .. 5
1.5 Font Display ... 5
1.6 Screen Switch by Touch Keys ... 6

2. Main Functions of emWin .. 7
2.1 Display Driver (Flex Color Driver) and Color Mode ... 7
2.2 Memory Management ... 7
2.3 Screen Update Speed ... 7
2.3.1 Cache .. 7
2.3.2 Memory Devices .. 7
2.4 Window Manager ... 8
2.5 Windows .. 8
2.6 Dialogs ... 10
2.7 Images ... 11
2.8 Fonts .. 11
2.9 Animation ... 12
2.10 Notes ... 13
2.11 Additional Information .. 13

3. Evaluation Environment ... 14

4. How to Run the Sample Project ... 15
4.1 Prepare the Hardware ... 15
4.2 Import the Project .. 15
4.3 Build the Project .. 17
4.4 Connect Debugger and Execute the Program .. 18

5. Hardware Description .. 20
5.1 Hardware Configuration .. 20
5.2 Connection to LCD .. 21
5.3 Used Pins and Their Functions ... 21

6. Software Description .. 22
6.1 Software Configuration .. 22
6.2 Used FIT Module ... 22
6.3 Project Structure .. 23
6.4 File Structure ... 24

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 3 of 55
June.30.23

6.5 Processes in Detail .. 25
6.5.1 Main Process (main.c) ... 25
6.5.2 Home Screen Process (home_menu.c) .. 28
6.5.3 RX Logo Display Processing (rx_logo_screen.c) .. 31
6.5.4 Air Conditioning Control Processing (ac_screen.c)... 35
6.5.5 Image Display Processing (image_screen.c) .. 40
6.5.6 Font Display Processing (font_screen.c) .. 43
6.6 Resources Usage .. 46
6.6.1 Overall Resources Usage ... 46
6.6.2 Resources Usage of Each Screens .. 46
6.7 Tools Used .. 48
6.7.1 QE for Display ... 48
6.7.2 QE for Capacitive Touch ... 48

7. Additional Explanation to Screen Update Speed .. 49
7.1 Communication Baud Rate ... 49
7.2 Selecting the DMA Transfer Function ... 49
7.3 Compile Options .. 49

8. Project Configuration Information ... 50
8.1 Smart Configurator .. 50
8.2 QE for Display ... 53
8.3 QE for Capacitive Touch ... 53

9. Reference Documents ... 54

Revision History .. 55

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 4 of 55
June.30.23

1. Overview
This sample program consists of the following screens. The LCD display is equipped with touchscreen
functions, which could be used to control the operation through buttons displayed. In addition, transitions
between screens can be controlled by the touch keys designed on the target board.

 Home Screen

 RX Logo Display

 Air Conditioning Control

 Image Display

 Font Display

1.1 Home Screen
This is the first screen displayed when this sample program is run. It allows the transition to the other four
screens. The main functions of emWin being used here are the Window Manager, Dialog, and Button
Widget.

Figure 1.1 Home Screen

1.2 RX Logo Display
The RX logo, which is displayed in the center of the screen, can be moved freely around the screen by
dragging it. When the drag is released, the RX logo returns to the center of the screen. The main functions of
emWin being used here are the Window Manager, Button Widget, and Animation.

Figure 1.2 RX Logo Display

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 5 of 55
June.30.23

1.3 Air Conditioning Control
This screen resembles the control of the temperature and airflow. By touching the left and right arrows when
either "Temp" or "Air Flow" is selected, you can change each setting value. The state of the temperature
meter and the air flow meter changes according to the set value. The main features of emWin being used
here are the Window Manager, Dialog, Button Widget, Timer, and Memory Devices.

Figure 1.3 Air Conditioning Control

1.4 Image Display
This screen displays images in full screen. Image is switched by touching the thumbnail on the left. The main
features of emWin being used here are the Window Manager and Iconview Widget.

Figure 1.4 Image Display

1.5 Font Display
This displays several fonts included in the emWin library. The main features of emWin being used are the
Window Manager and Font Display.

Figure 1.5 Font Display

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 6 of 55
June.30.23

1.6 Screen Switch by Touch Keys
You can switch between screens as shown below by touch keys on the target board.

Touch key 1：

Touch key 2：
Figure 1.6 Screen Switch Sequence

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 7 of 55
June.30.23

2. Main Functions of emWin
2.1 Display Driver (Flex Color Driver) and Color Mode
emWin provides a variety of display drivers compatible with various types of LCD controllers and color
modes for displaying various colors. This sample program uses the display driver named "Flex Color" which
is compatible with the connected LCD controller (ILI9341), and the color mode defined as "GUICC_565" for
16-bit RGB.

https://www.segger.com/doc/UM03001_emWin.html#GUIDRV_FlexColor

https://www.segger.com/doc/UM03001_emWin.html#Colors

2.2 Memory Management
emWin is a lightweight graphics library, but the amount of memory used can vary greatly depending on the
images and designs used, making memory management extremely important. In particular, the RAM used as
a workspace for functions such as cache and memory devices, requires careful consideration.

The workspace used in emWin is specified by the configuration parameter "EMWIN_GUI_NUM_BYTES" in
the emWin FIT module. It is recommended to set this with ample room for user applications.

2.3 Screen Update Speed
When using an LCD with a serial interface, the screen update speed is significantly affected by the screen
design and communication speed. In particular, the extensive use of windows and widgets, or slow data
communication speeds, can reduce the overall screen update performance. As a result, flickering may occur,
or screen updates may be visually perceptible. emWin provides the following features to mitigate these
issues. Also, please refer to Chapter 7 for additional information on screen update speeds from a hardware
perspective.

2.3.1 Cache
Normal screen updates are performed for each window or widget, resulting in repeated data transmissions to
the LCD. By using a cache, all screen update data can be written out to the cache and then sent to the LCD
in one go. This reduces access to the LCD and can increase the screen update speed. However, a cache
requires memory for a full screen, so sufficient RAM capacity is necessary.

RAM required for cache: Display width (px) x height (px) x bytes per pixel (bpp)
To use the cache, set "EMWIN_GUI_USE_CACHE" to "1" in the configuration settings of the emWin FIT
module, and set the size required for the cache to "EMWIN_GUI_NUM_BYTES".

In this sample program, the cache is enabled. The RAM required for the cache is 240px x 320px x 2bpp =
150KB, which can be accommodated within the built-in RAM (384KB) of the RX671.

2.3.2 Memory Devices
Memory devices are buffers that can be used in the following ways:

1. Buffer for image data read from an external device.

2. Buffer used for operations such as rotating images, changing color, α value, blurring and blending.

3. Buffer for screens that take time to draw (used in the same way as a cache)

Memory devices are dynamic buffers, and if multiple memory devices are enabled simultaneously, RAM
capacity for that number of enabled memory devices is required. These are allocated from the configuration
parameter "EMWIN_GUI_NUM_BYTES" of the emWin FIT module.

There are several types of API functions to create memory devices, and you need to select the appropriate
API depending on the purpose. For example, the GUI_MEMDEV_CreateFixed32 function must be used to
perform rotation processing.

https://www.segger.com/doc/UM03001_emWin.html#GUIDRV_FlexColor
https://www.segger.com/doc/UM03001_emWin.html#Colors

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 8 of 55
June.30.23

Moreover, the MCUs which do not have enough memory capacity for cache function can instead use
memory devices to increase the screen update speed. By dividing the screen into multiple sections and
writing to memory devices of an allocable size, the performance will be higher than when not using a cache.
To apply a memory device to a screen, refer to 2.5 Windows.

https://www.segger.com/doc/UM03001_emWin.html#Memory_Devices

In this sample program, memory device is used in the 1.3 Air Conditioning Control screen.

2.4 Window Manager
The emWin window manager is a feature managing the screen in units called windows.

The screen content is divided into multiple parts (windows) and managed, and the performance is improved
by independently drawing each part.

The operation of created windows is managed by callback functions corresponding to events of windows
creation (WM_CREATE) and drawing processing (WM_PAINT), for example.

https://www.segger.com/doc/UM03001_emWin.html#The_Window_Manager_WM

In order to execute events such as window drawing and touch panel input, it is necessary to execute the
GUI_Exec function in the main loop. When the GUI_Exec function is executed, the callback functions of each
window are executed.

You can use the GUI_Delay function instead of the GUI_Exec function. The GUI_Delay function waits for the
time specified in the argument (in ms units). During the wait, the GUI_Exec function is called at least once
within the GUI_Delay function. Also, the waiting time specified in the argument of the GUI_Delay function is a
minimum period, and when the processing time of the callback function by the GUI_Exec function is long, it
may be over the specified time. Therefore, please use the GUI_Delay function as a wait function for
processes that are expected to take less time than the specified waiting period.

2.5 Windows
There are different types and statuses of windows.

<Types>

 Child/Grandchild Window

 These are windows that are defined relative to another window, referred to as the parent. If the parent
window moves, its child windows move accordingly. Child windows are always contained within the parent
window. A new child window (grandchild window) can also be created within a child window.

 Parent Window

This is the window that serves as the parent for the child windows.

 Desktop Window

This is the bottommost window that covers the entire screen. It becomes the default (active) window when no
other windows are defined. Therefore, all windows are descendants of this desktop window. If multiple layers
are defined, a desktop window is created for each layer.

<Status>

 Active Window (Current Window)

 This is the window currently being used for drawing operations. It may not necessarily be the topmost
window.

 Show/Hide Window

These are windows that are visible/invisible. You can specify visibility/invisibility when creating a window, or
you can toggle visibility/invisibility using API functions.

Basically, a window can be created using the following API functions.

https://www.segger.com/doc/UM03001_emWin.html#Memory_Devices
https://www.segger.com/doc/UM03001_emWin.html#The_Window_Manager_WM

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 9 of 55
June.30.23

WM_HWIN WM_CreateWindow(int x0,
 int y0,
 int width,
 int height,
 U32 Style,
 WM_CALLBACK * cb,
 int NumExtraBytes);

WM_HWIN WM_CreateWindowAsChild(int x0,
 int y0,
 int width,
 int height,
 WM_HWIN hParent,
 U32 Style,
 WM_CALLBACK * cb,
 int NumExtraBytes);

• x0, y0

These indicate the position of the window. In the case of a child window, it's the position relative to the parent
window.

• width, height

These indicate the size of the window.

• hParent, (WM_CreateWindowAsChild function)

This specifies the parent window. If you specify NULL, the desktop window becomes the parent window.

• Style

Flags ("WM_CF_xxxx") are specified. Multiple flags can be specified by OR operand. If WM_CF_SHOW is
included, the window will be displayed from the start. Also, specifying WM_CF_MEMDEV will use a memory
device for window drawing. For details on the flags, please refer to the URL below.

https://www.segger.com/doc/UM03001_emWin.html#Window_create_flags

• cb

This is a pointer to a callback function that defines the behavior of the window. Within this callback function,
you write processes according to events (messages) such as WM_PAINT. For details on the messages,
please refer to the URL below.

https://www.segger.com/doc/UM03001_emWin.html#List_of_messages

Below is an example of a callback function that fills the window area with red.

static void cbBk(WM_MESSAGE * pMsg)
{
 switch (pMsg->MsgId) {
 case WM_PAINT:
 GUI_SetBkColor(GUI_RED);
 GUI_Clear();
 break;
 default:
 WM_DefaultProc(pMsg);
 break;
 }
}

The pMsg argument of the callback function could specify various information. For example, the above
pMsg->MsgId stores the event message, and pMsg->hWin allows access to the properties of the window to
which the callback function belongs.

https://www.segger.com/doc/UM03001_emWin.html#WM_MESSAGE

https://www.segger.com/doc/UM03001_emWin.html#Window_create_flags
https://www.segger.com/doc/UM03001_emWin.html#List_of_messages
https://www.segger.com/doc/UM03001_emWin.html#WM_MESSAGE

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 10 of 55
June.30.23

• NumExtraBytes

It specifies the number of bytes to allocate for user data. For more details, please refer to the description of
the WM_SetUserData function.

2.6 Dialogs
Dialogs are a function that allows collective management of windows or parts (widgets) within a window by
defining their placement in a structure. This feature is particularly useful for organizing multiple widgets within
a window or when the placement will not change.

Basic dialogs can be created using the following API functions.

WM_HWIN GUI_CreateDialogBox(const GUI_WIDGET_CREATE_INFO * paWidget,
 int NumWidgets,
 WM_CALLBACK * cb,
 WM_HWIN hParent,
 int x0,
 int y0);

• paWidget

It specifies a pointer to a structure variable. The variable of GUI_WIDGET_CREATE_INFO is defined and
each widgets, including windows, are configured.

https://www.segger.com/doc/UM03001_emWin.html#Resource_table

static const GUI_WIDGET_CREATE_INFO _aDialogCreate[] = {
 { FRAMEWIN_CreateIndirect, "Dialog", 0, 10, 10, 180, 230, 0, 0},
 { BUTTON_CreateIndirect, "OK", GUI_ID_OK, 100, 5, 60, 20, 0, 0},
 { EDIT_CreateIndirect, NULL, GUI_ID_EDIT0, 60, 55, 100, 15, 0, 50}
};

• NumWidgets

It indicates the total number of widgets contained in the dialog. Users can directly set a numerical value or
can use GUI_COUNTOF("the variable of structure") to dynamically accommodate the size of the structure
variable.

• cb

It points to a callback function that defines the behavior of the dialog. It is similar to a normal window, but the
initialization message and processing content may differ.

static void _cbCallback(WM_MESSAGE * pMsg) {
 WM_HWIN hItem;
 WM_HWIN hWin;
 hWin = pMsg->hWin;
 switch (pMsg->MsgId) {
 case WM_INIT_DIALOG:
 hItem = WM_GetDialogItem(hWin, GUI_ID_EDIT0);
 EDIT_SetText(hItem, "EDIT widget 0");
 :
 :
 break;
 default:
 WM_DefaultProc(pMsg);
 }
}

In Dialogs, the WM_INIT_DIALOG message is executed only once during initialization. It is used to configure
the widgets within the dialog.

https://www.segger.com/doc/UM03001_emWin.html#Resource_table

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 11 of 55
June.30.23

 • hParent

It specifies the parent window. If NULL is specified, the desktop window becomes the parent window.

•x0, y0

It indicates the position of the dialog. It is relative to the parent window.

The screens designed using the GUI Builder, which is provided with emWin, are composed of these dialogs.
For more details on Dialogs, please refer to the URL below.
https://www.segger.com/doc/UM03001_emWin.html#Dialogs

In this sample program, dialogs are used in screens 1.1 Home Screen and 1.3 Air Conditioning Control

2.7 Images
emWin supports popular image formats such as PNG, JPG, and GIF.

https://www.segger.com/doc/UM03001_emWin.html#Displaying_bitmap_files

All the images used in this sample program are converted to C source code using the Bitmap Converter
provided with emWin. This tool allows you to convert images to the emWin-specific format (bitmap). By
converting images to emWin bitmaps in advance, processing time can be reduced for images that are used
only within the system.

https://www.segger.com/doc/UM03001_emWin.html#Bitmap_Converter

The images used in this sample program are output in the following formats. This output format is efficiently
processed when matched with the display driver (Flex Color driver) described in section 2.1 Display Drivers
and Color Mode (GUICC_565).

• High color (565) ... 16-bit BGR565 image

• High color with Alpha (565) ... 16-bit BGR565 image with transparency

Figure 2.1 Format of Images

2.8 Fonts
emWin provides a mechanism to use a wide variety of fonts. It is possible to use fonts included in the library
or import fonts in SIS or CBF formats from external memory.

https://www.segger.com/doc/UM03001_emWin.html#Fonts

The Font Converter provided with emWin allows to convert fonts installed on a Windows PC into emWin
format fonts. Users can specify whether anti-aliasing is enabled or only the characters to be used in the
application is applied. However, please note that font licensing is not included, and users must obtain the
necessary licenses.

https://www.segger.com/doc/UM03001_emWin.html#Font_Converter

https://www.segger.com/doc/UM03001_emWin.html#Dialogs
https://www.segger.com/doc/UM03001_emWin.html#Displaying_bitmap_files
https://www.segger.com/doc/UM03001_emWin.html#Bitmap_Converter
https://www.segger.com/doc/UM03001_emWin.html#Fonts
https://www.segger.com/doc/UM03001_emWin.html#Font_Converter

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 12 of 55
June.30.23

To Japanese fonts, emWin supports SJIS encoding and other formats, but it is recommended to use UTF-8
whenever possible. The U2C tool provided with emWin allows you to convert UTF-8 text data into character
code. It can be used in the same way for languages other than Japanese. When saving UTF-8 text files,
please save them with the "BOM (Byte Order Mark)".

https://www.segger.com/doc/UM03001_emWin.html#Using_U2C_dot_exe_to_convert_UTF_8_text_into_C_
code

This sample program uses only the fonts included with emWin.

2.9 Animation
emWin offers animation mechanism that dividing a given period of time 32768 by default and counting from 0
to 32768. This allows to animate the coordinates, color codes, and other values of animation objects.

https://www.segger.com/doc/UM03001_emWin.html#Animations

An animation is created by calling the following function:

GUI_ANIM_HANDLE GUI_ANIM_Create(GUI_TIMER_TIME Period,
 unsigned MinTimePerSlice,
 void * pVoid,
 void (* pfSlice)(int, void *));

•Period

The duration of the animation in milliseconds.

•MinTimePerSlice

The execution period of the animation processing (callback function) in milliseconds.

• pVoid

A pointer to user-defined data.

• pfSlice

A pointer to the callback function. A NULL could be set. This function is executed before and after the
callback function of the animation item. If multiple animation items are active simultaneously, it is executed
before the first animation item and after the last animation item. In this case, the values
GUI_ANIM_START("0") and GUI_ANIM_END("2") are passed to the first argument.

After creating an animation, users need to add animation items.

int GUI_ANIM_AddItem(GUI_ANIM_HANDLE hAnim,
 GUI_TIMER_TIME ts,
 GUI_TIMER_TIME te,
 GUI_ANIM_GETPOS_FUNC pfGetPos,
 void * pVoid,
 GUI_ANIMATION_FUNC * pfAnim);

• hAnim

The handle of the animation.

• ts, te

The start and end times of this item within the animation's duration.

• pVoid

A pointer to user-defined data.

https://www.segger.com/doc/UM03001_emWin.html#Using_U2C_dot_exe_to_convert_UTF_8_text_into_C_code
https://www.segger.com/doc/UM03001_emWin.html#Using_U2C_dot_exe_to_convert_UTF_8_text_into_C_code
https://www.segger.com/doc/UM03001_emWin.html#Animations

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 13 of 55
June.30.23

• pfAnim

A pointer to the callback function of the animation item. This callback function is executed when the time
matches the period set by MinTimePerSlice in the GUI_ANIM_Create function, during period from the start
time to the end time of this item.

After setting the animation items, the animation starts by executing the GUI_ANIM_StartEx function.

void GUI_ANIM_StartEx(GUI_ANIM_HANDLE hAnim,
 int NumLoops,
 void (* pfOnDelete)(void * pVoid));

• hAnim

The handle of the animation.

• NumLoops

Specifies the number of times the animation is executed. Set to "-1" for infinitive execution.

• pfOnDelete

A pointer to the callback function called when the animation is deleted. A NULL could be set.

In this sample program, animation is used in 1.2 RX Logo Display.

2.10 Notes
To use anti-aliasing and semi-transparent bitmaps function, it is necessary to obtain the color information of
the background and foreground pixels that are overlapped. Therefore, the use of a cache or memory device
is required.

2.11 Additional Information
For more information about emWin, please refer to the following URLs from Segger.

 https://wiki.segger.com/emWin

 https://wiki.segger.com/emWin_Examples

https://wiki.segger.com/emWin
https://wiki.segger.com/emWin_Examples

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 14 of 55
June.30.23

3. Evaluation Environment
This sample program has been evaluated under the following conditions.

Table 3.1 Evaluation Environment

Items Description
Target MCU R5F5671EHDFB (RX671 Group)
Operating Frequency • Main clock: 24MHz

• PLL:240MHz (Main clock divided by 1 and multiplicated by 10)
• System clock (ICLK): 120MHz (PLL divided by 2)
• Peripheral module clock A(PCLKA): 120MHz (PLL divided by 2)
• Peripheral module clock B(PCLKB): 60MHz (PLL divided by 4)
• Peripheral module clock C(PCLKD): 60MHz (PLL divided by 4)
• Peripheral module clock D(PCLKD): 60MHz (PLL divided by 4)
• FlashIF clock (FCLK): 60MHz (PLL divided by 4)

Operating Power 3.3V
Integrated Development
Environment

Renesas Electronics e2 studio Version 2023-04

C Compiler Renesas Electronics
C/C++ Compiler Package for RX Family V.3.05.00
Compiler Option
-lang = c99

iodefine.h version V1.00
Endian Little endian
Operation Mode Single chip mode
Processor Mode Supervisor mode
Sample Project Versioon Version 1.00
Emulator Onboard Emulator (E2 Lite Emulator)
Target Board EK-RX671 (Part Number: RTK5EK6710S00001BE)
Target LCD MSP2807 (Manufacturer: Kuongshun Electronic Limited)

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 15 of 55
June.30.23

4. How to Run the Sample Project
4.1 Prepare the Hardware
In order to run this sample code, you will need to set up the jumpers on the EK-RX671 and connect it to an
LCD (MSP2807). Please prepare the necessary parts in advance. Refer to section 5 Hardware Description
for information on how to set up the jumpers and connect the devices.

4.2 Import the Project
Go to "File" → "Import" to open the "Import Select" window. Select "Existing Projects into Workspace" from
the "General" category, then click "Next"

In the "Import Projects" window that appears, click "Browse" under "Select root directory" and choose the
folder of the downloaded sample project. Once the project is recognized, check the "Copy projects into
workspace" option and click "Finish" If a "Question" window appears, click "Yes to All"

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 16 of 55
June.30.23

Once the import is complete, the sample project will be displayed in the Project Explorer.

Launch the Smart Configurator. Check the "Selected Components" in the "Overview" tab and make sure that
the target version is downloaded to PC.

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 17 of 55
June.30.23

If it has not been downloaded, you can download the target version by clicking on the target module from the
"Components" tab.

4.3 Build the Project
Select the project and click the build button.

Make sure that the build is completed successfully. If the build fails, it's possible that the compiler mentioned
in Section 3 Evaluation Environment is not installed, or the trial period for the free evaluation version has
ended. Please check the toolchain settings in the project properties and set a usable compiler.

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 18 of 55
June.30.23

4.4 Connect Debugger and Execute the Program
Select the project and click the debug button.

After the debugging connection is initiated, the "Confirm Perspective Switch" window will appear. Click on the
"Switch" button.

Once the perspective has switched to debugging, click the "Resume" button.

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 19 of 55
June.30.23

Click the "Resume" button once again to execute the program.

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 20 of 55
June.30.23

5. Hardware Description
5.1 Hardware Configuration
Figure 5.1 shows the hardware configuration.

EK-RX671

RX671 MSP2807

LED1

B1 B2

RSPI

SCI (Simple SPI)

GPIO × 5

GPIO

CTSU

LCD

Touch

LCD or Touch control I/O

SPI

SPI

Figure 5.1 Hardware Configuration

Also, to run the sample program, the jumper settings for the EK-RX671 shown in Table 5.1 are required.

Table 5.1 Jumper settings

Jumper Setting Description
J30 Open To use P16

Table 5.2 Evaluated LCD

LCD Part Number Resolution LCD
Controller

Touch
Panel
Controller

Operating
Power

Note

MSP2807
(Kuongshun
Electronic Limited)

240×320 ILI9341
(ILITEK)

XPT2046
(Xptek)

3.3V The sample program
could be run on a
product equivalent to
this one.

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 21 of 55
June.30.23

5.2 Connection to LCD
Table 5.3 shows the connection between the EK-RX671 and the LCD. Please connect the LCD according to
this table.

Table 5.3 Connection Between EK-RX671 and the LCD

EK-RX671 emWin Control Pin

⇔

LCD (MSP2807)
Pin No. Signal Pin No. Signal Description
J2-1 3.3V - 1 VCC 3.3V
J2-35 GND - 2 GND GND
J2-29 PC3 EMWIN_LCD_CS_PIN 3 CS CS signal of LCD
J2-23 P50 EMWIN_DISP_SIGNAL_PIN 4 RESET Reset signal of LCD
J2-22 P51 EMWIN_DATA_CMD_PIN 5 DC/RS Data/Command signal

of LCD
J2-26 PC6 MOSIA 6 SDI(MOSI) Data input of LCD
J2-27 PC5 RSPCKA 7 SCK Clock signal of LCD
J2-21 P52 EMWIN_BACKLIGHT_PIN 8 LED Backlight control signal
J2-25 PC7 MISOA(Not used) 9 SDO(MISO) Not used
J2-11 P17 SCK1 10 T_CLK Touch panel clock
J2-14 P14 EMWIN_TOUCH_CS_PIN 11 T_CS CS signal of touch

panel
J2-12 P16 SMOSI1 12 T_DIN Data input of touch

panel
J2-13 P15 SMISO1 13 T_DO Data output of touch

panel
- 14 T_IRQ Not used

5.3 Used Pins and Their Functions
Table 5.4 shows the used pins and their functions.

Table 5.4 Used Pins and Their Functions

Devices Pin Name Input/Output Description
LCD
(MSP2807)

PC6/MOSIA Output Data output
PC7/MISOA Input Data input(Not used)

Please pull up or pull down.
PC5/RSPCKA Output Clock output
PC3 Output CS signal output
P50 Output LCD reset signal output
P51 Output Data/Command signal output
P52 Output Backlight control signal output

Touch Panel
(MSP2807)

P17/SCK1 Output Clock output
P16/SMOSI1 Output Data output
P15/SMISO1 Input Data input
P14 Output CS signal output

Touch keys
(EK-RX671)

PC4/TSCAP Input For LPF connnection
P33/TS1 Input Touch button 1
P24/TS5 Input Touch button 2

LED P56 Output Control LED

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 22 of 55
June.30.23

6. Software Description
6.1 Software Configuration
Figure 6.1 shows the software configuration. The emWin FIT module consists of the emWin library, which
serves as the core, and the interface that connects the RX MCU and the library. The Application control the
screen using only the emWin API.

emWin

FIT module (Middleware)

DMAC RSPI SCI GPIO

BSP

CMT

Evaluation Kit for RX MCU

Application

emWin
Library

CTSU

QE Touch

FIT module (Driver)

Figure 6.1 Software Configuration

6.2 Used FIT Module
Table 6.1 shows the FIT modules used in the sample program.

Table 6.1 Used FIT Modules

Module Document Title Document Number
BSP RX Family Board Support Package Module Firmware Integration

Technology
R01AN1685

emWin RX Family emWin v6.32 Module Firmware Integration
Technology

R01AN6771

CMT RX Family CMT Module Firmware Integration Technology R01AN1856
GPIO RX Family GPIO Module Firmware Integration Technology R01AN1721
RSPI RX Family RSPI Module Firmware Integration Technology R01AN1827
SCI RX Family SCI Module Firmware Integration Technology R01AN1815

DMAC RX Family DMAC Module Firmware Integration Technology R01AN2063
CTSU RX Family QE CTSU Module Firmware Integration Technology R01AN4469
QE Touch RX Family QE Touch Module Firmware Integration Technology R01AN4470
BYTEQ RX Family BYTEQ Module Firmware Integration Technology R01AN1683

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 23 of 55
June.30.23

6.3 Project Structure
Figure 6.2 shows the project structure.

emwin_sample_ek_rx671

doc

src

qe_gen - QE for Capacitive Touch and QE for Display output files

QE-Touch - QE for Capacitive Touch configuration files

HardwareDebug

.settings

Project setting files (*.scfg, *.launch, *.rcpc, .cproject, .project)

Application Note(this file)
r01anXXXXjjxxxx-rx-apl.pdf
r01anXXXXejxxxx-rx-apl.pdf

smc_gen – SmartConfigrator output files (FIT modules)

main.c – main source file

main.h

Image – Image data (C source) files

PDF

Figure 6.2 Project Structure

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 24 of 55
June.30.23

6.4 File Structure
The files used in this sample program are shown below. Please note that files generated from the Smart
Configurator or QE are not included.

Table 6.2 Files used in this sample program

File Name Description Notes
Src Folder
 main.c Main process
 main.h Common header
 home_menu.c Home Screen process
 rx_logo_screen.c RX Logo Display process
 ac_ screen.c Air Conditioning Control process
 image_ screen.c Image Display process
 font_screen.c Font Display process
src\image Folder
 renesas_logo.c Renesas logo Generated by

Bitmap Converter icon1.c Icon 1 of Home Screen
 icon2.c Icon 2 of Home Screen
 icon3.c Icon 3 of Home Screen
 icon4.c Icon 4 of Home Screen
 rx_logo.c RX logo
 home_btn.c Home button
 image1.c Image 1
 image1_thumb.c Thumbnail of Image 1
 image2.c Image 2
 image2_thumb.c Thumbnail of Image 2
 image3.c Image 3
 image3_thumb.c Thumbnail of Image 3
 image4.c Image 4
 image4_thumb.c Thumbnail of Image 4
 left_btn_down.c Left button (when pressed)
 left_btn_up.c Left button (when not pressed)
 right_btn_down.c Right button (when pressed)
 right_btn_up.c Right button (when not pressed)
 mode_btn_off.c Mode selection (when pressed)
 mode_btn_on.c Mode selection (when not pressed)
 temp_meter.c Temperature meter image
 windmill.c Air flow meter image

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 25 of 55
June.30.23

6.5 Processes in Detail
This section explains the details of each process. Because this explanation uses the functions and variables
from the sample program, please refer to the sample program for further clarification.

6.5.1 Main Process (main.c)
6.5.1.1 Specification
After initializing emWin and the touch key, the main loop updates the GUI and scans the touch key.

Start

Screen update notification to emWin
GUI_Delay()

Get scan results and start next scan
RM_TOUCH_DataGet()
RM_TOUCH_ScanStart()

Initialize a Touch and an emWin
qe_touch_init()

GUI_Init()

touch scan
completed

Display home screen
home_menu()

Key 1 ?

Notification of transition to the next
screen to emWin

WM_SendMessageNoPara()

Yes

No

Key 2 ?

Notification of transition to the
previous screen to emWin

WM_SendMessageNoPara()

Deteced

Not detected

Detected

Not detected

Figure 6.3 Overview Flow of Main Process

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 26 of 55
June.30.23

6.5.1.2 Variables
This shows the list of global variables.

Table 6.3 Global Variables

Type Variable Name Description
WM_HWIN g_window The handle of the active window being displayed

6.5.1.3 Constants
This shows the list of constants shared in the sample program.

Table 6.4 Constants（Shared in the sample program: main.h）

Constant Setting Value Description
LCD_SIZE_X 320 The width of the screen
LCD_SIZE_Y 240 The height of the screen
HOME_BTN_POS_X 259 X coordination of Home Button
HOME_BTN_POS_Y 0 Y coordination of Home Button
MY_NEXT_SCREEN WM_USER + 0 User-defined message: Next screen
MY_BACK_SCREEN WM_USER + 1 User-defined message: Previous screen
BT1_ON 1 Detection judgement value of touch key 1
BT2_ON 2 Detection judgement value of touch key 2
LED_ON 1 LED on
LED_OFF 0 LED off
LED1 PORT5.PODR.BIT.B6 PODR register bit of LED1 (P56)
LED1_PDR PORT5.PDR.BIT.B6 PDR register bit of LED1 (P56)

6.5.1.4 Functions
This shows the list of functions of the main process.

Table 6.5 Functions (main.c)

Functions Description
main Main process
pin_init Drive capacity setting process for communication pins
qe_touch_init Initialization and initial scan process of touch keys

6.5.1.5 Function Specification
This shows the function specifications of the main process.

main
Description Main Process
Header No
Declaration void main(void)
Explanation It initializes emWin and the touch keys. After that, it updates the GUI and scans the

touch keys in the main loop.
Arguments No
Return Value No

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 27 of 55
June.30.23

pin_init
Description Drive capacity setting process for communication pins
Header No
Declaration void pin_init(void)
Explanation It sets the drive capacity of the pins used for communication with the LCD.
Arguments No
Return Value No

qe_touch_init
Description It initialize touch key initialization and performs initial scanning
Header No
Declaration void qe_touch_init(void)
Explanation After the terminal settings and initialization of the touch keys (execution of the

RM_TOUCH_Open function), it performs the initial scan.
Arguments No
Return Value No

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 28 of 55
June.30.23

6.5.2 Home Screen Process (home_menu.c)
6.5.2.1 Specification
The Home Screen consists of parts as shown in Figure 6.4.

icon1 icon2

icon3 icon4

renesas_logo
Window

Image widget (ID_IMG_RENESAS_LOGO)

Button widget (ID_ICON_1)

Button widget (ID_ICON_3)

Button widget (ID_ICON_2)

Button widget (ID_ICON_4)

Touch the icon
to transition to
each screen

Widget

Figure 6.4 Home Screen Structure

The Home Screen is composed using Dialog function. By using it, users can set information about windows
and widgets all together using the structure variable g_dialog_home_menu. The operation within the dialog
is managed by the callback function cb_home_menu, and the processing is executed according to the
message p_msg->MsgId.

Table 6.6 Processing According To Messages

Message Description of Processing
WM_INIT_DIALOG Executed only once when the dialog is generated.

It initializes each widget placed in the dialog (background setting and
the button image setting)

WM_NOTIFY_PARENT Executed when an event occurs in each widget.
It determines from which button the event notification came using
WM_GetId(p_msg->hWinSrc), and transitions to the next screen
according to the button. Before transitioning, the home screen dialog is
deleted using WM_DeleteWindow(p_msg->hWin).

MY_NEXT_SCREEN A user-defined message.
It is executed upon receiving WM_SendMessageNoPara(g_window,
MY_NEXT_SCREEN) from the main loop.

MY_BACK_SCREEN A user-defined message.
It is executed upon receiving WM_SendMessageNoPar(g_window,
MY_BACK_SCREEN) from the main loop.

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 29 of 55
June.30.23

6.5.2.2 Variables
Below is a list of global variables for Home Screen processing.

Table 6.7 Global Variables

Type Variable Name Description
extern GUI_CONST_STORAGE
GUI_BITMAP

bmrenesas_lo
go

Data variable of renesas_logo

extern GUI_CONST_STORAGE
GUI_BITMAP

bmicon1 Data variable of icon1

extern GUI_CONST_STORAGE
GUI_BITMAP

bmicon2 Data variable of icon2

extern GUI_CONST_STORAGE
GUI_BITMAP

bmicon3 Data variable of icon3

extern GUI_CONST_STORAGE
GUI_BITMAP

bmicon4 Data variable of icon4

extern WM_HWIN g_window Handle of the active window currently displayed
static const
GUI_WIDGET_CREATE_INFO

g_dialog_hom
e_menu[]

Management information of widgets used in the
dialog

6.5.2.3 Constants
Below is a list of constants for Home Screen processing.

Table 6.8 Constants

Constants Setting Value Description
ID_WINDOW_HOME GUI_ID_USER + 0 Management ID of the window
ID_IMG_RENESAS_LOGO GUI_ID_IMAGE0 Management ID of image widget

(renesas_logo)
ID_ICON_1 GUI_ID_BUTTON1 Management ID of button widget (icon1)
ID_ICON_2 GUI_ID_BUTTON2 Management ID of button widget (icon2)
ID_ICON_3 GUI_ID_BUTTON3 Management ID of button widget (icon3)
ID_ICON_4 GUI_ID_BUTTON4 Management ID of button widget (icon4)

6.5.2.4 Function
Below is a list of functions for Home Screen processing.

Table 6.9 Functions

Function Description
cb_home_menu Callback function of the Home Screen
home_menu Home Screen dialog creation

6.5.2.5 Function Specification
The function specification for Home Screen processing is as follows.

cb_home_menu
Description Callback function of the home screen
Header No
Declaration static void cb_home_menu(WM_MESSAGE * p_msg);
Explanation Controls the Home Screen
Arguments WM_MESSAGE * p_msg Pointer to the message of the dialog (window)
Return Value No

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 30 of 55
June.30.23

home_menu
Description Home Screen dialog creation
Header main.h
Declaration void home_menu(void);
Explanation Create the Home Screen by executing the GUI_CreateDialogBox function.
Arguments No
Return Value No

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 31 of 55
June.30.23

6.5.3 RX Logo Display Processing (rx_logo_screen.c)
6.5.3.1 Specification
The RX Logo Display consists of parts as shown in Figure 6.5.

Move by
dragging

Release to
move to the
center of the
screen

Touch to transition
to home screen home_btn

rx_logo

Window

Button widget (ID_BTN_HOME)

Image (rx_logo)

Widget

Image

Figure 6.5 RX Logo Display Screen

The operation within the window is managed by the callback function cb_rx_logo_screen, and processing is
executed according to the message p_msg->MsgId.

Table 6.10 Processing According to Message

Message Description of Processing
WM_CREATE Executed only once when the window is created.

It initializes the button widget placed within the window and sets the initial
coordinates of the RX logo.

WM_PAINT Clears the screen and draws the RX logo.
WM_TOUCH Executed when touch operation is being performed.

When the RX logo is touched, the WM_SetCapture function is executed to
occupy the touch event during drag operation. During dragging, it obtains the
current touch coordinates, updates the coordinates of the RX logo, and
instructs screen update with the WM_InvalidateWindow function. When the RX
logo is released, the WM_ReleaseCapture function releases the touch event
and performs the animation processing.

WM_NOTIFY_PARENT Executes when an event occurs in the widget.
WM_GetId(p_msg->hWinSrc) determines if it's an event notification from the
home button (home_btn) and transitions to the Home Screen if it is determines.
Before transitioning, the RX logo screen dialog is removed with
WM_DeleteWindow(p_msg->hWin).

MY_NEXT_SCREEN User-defined message.
It is executed upon receiving WM_SendMessageNoPara(g_window,
MY_NEXT_SCREEN) from the main loop.

MY_BACK_SCREEN User-defined message.
It is executed upon receiving WM_SendMessageNoPara(g_window,
MY_BACK_SCREEN) from the main loop.

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 32 of 55
June.30.23

The animation feature is used for the processing of returning the RX logo to the center of the screen after
drag operation.

The anim_setup function initializes and starts the animation. Once the animation starts, the cb_anim_func
function is executed every ANIM_SLICE time (100ms) set by the GUI_ANIM_Create function. The
cb_anim_func function updates the coordinate information of the RX logo and instructs the screen update
with the WM_InvalidateWindow function.

t

t = 500ms
Pos = 32767

t = 0
Pos = 0

t = 100ms × n
Pos = 100 × n × 32768 / 500

p_info->Pos

(End position)

(Start position)
Figure 6.6 Overview of The RX Logo Animation

6.5.3.2 Variables
Below is a list of global variables for RX Logo Display processing.

Table 6.11 Global Variables

Type Variable Name Description
extern GUI_CONST_STORAGE
GUI_BITMAP

bmhome_btn Data variable of home_btn

extern GUI_CONST_STORAGE
GUI_BITMAP

bmrx_logo Data variable of rx_logo

WM_HWIN g_window Handle of the active window being displayed
static GUI_POINT g_logo_pos Coordinates of rx_logo

6.5.3.3 Constants
Below is a list of constants for RX Logo Display processing.

Table 6.12 Constants

Name Setting Value Description
ANIM_PERIOD 500 Animation execution time (ms)
ANIM_SLICE 100 Animation processing execution cycle (ms)
BM_RX_LOGO &bmrx_logo Pointer to the data variable of rx_logo
ID_BTN_HOME GUI_ID_BUTTON0 Management ID of button widget (home_btn)

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 33 of 55
June.30.23

6.5.3.4 Function
Below is a list of functions for RX Logo Display processing.

Table 6.13 Function

Name Description
cb_anim_func Execution of animation processing
anim_setup Initialization and start of animation
cb_rx_logo_screen Callback function of RX Logo Screen
rx_logo_screen RX Logo Screen window creation

6.5.3.5 Function Specification
The function specification for RX Logo Display processing is as follows.

cb_anim_func
Description Execution of animation processing
Header No
Declaration static void cb_anim_func(GUI_ANIM_INFO * p_info, void * p_void);
Explanation This is a callback function of animation items registered by the GUI_ANIM_AddItem

function. It is executed periodically. It updates the coordinates of the RX logo and
instructs the screen update using the WM_InvalidateWindow function.

Arguments GUI_ANIM_INFO * p_info Animation information
 void * p_void Pointer to user data
Return Value No

anim_setup
Description Initializes and starts the animation.
Header No
Declaration static void anim_setup(WM_HWIN h_win);
Explanation It stores the current coordinates of the RX logo in the anim_data variable and

initializes the animation processing using the GUI_ANIM_Create and
GUI_ANIM_AddItem functions. The anim_data variable, which is passed an
argument during initialization, can be referenced by the cb_anim_func callback
function.

Arguments WM_HWIN h_win Window handle
Return Value No

cb_rx_logo_screen
Description Callback function of RX Logo Screen
Header No
Declaration static void cb_rx_logo_screen(WM_MESSAGE * p_msg);
Explanation It controls the behavior of the RX logo screen.
Arguments WM_MESSAGE * p_msg Window handle
Return Value No

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 34 of 55
June.30.23

rx_logo_screen
Description RX Logo Screen window creation
Header main.h
Declaration void rx_logo_screen(void);
Explanation It executes the WM_CreateWindow function to generate the RX Logo Screen
Arguments No
Return Value No

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 35 of 55
June.30.23

6.5.4 Air Conditioning Control Processing (ac_screen.c)
6.5.4.1 Specification
The Air Conditioning Control Display consists of parts shown in Figure 6.7.

rx_logo Window

Image widget (ID_IMG_RX_LOGO)

Button widget (ID_BTN_HOME)

Button widget (ID_BTN_RIGHT)

Button widget (ID_BTN_LEFT)

Button widget (ID_BTN_TEMP)

home_btn

left_btn_up
/left_btn_down

windmill

right_btn_up
/right_btn_down

temp_meter

mode_btn_on
/mode_btn_off

Button widget (ID_BTN_AIR)

Text widget (ID_TXT_TEMP)

Text widget (ID_TXT_AIR)

Text widget (ID_TXT_TEMP_VAL)

Text widget (ID_TXT_AIR_VAL)

Image widget (ID_IMG_METER)

Child window

Image (windmill)

Widget

Child window

Image
Child window

Draw object (Rectangle)
Draw object

The rotation speed
changes by the set
value

The length changes
by the set value

Mode switch button

Touch to transition
to home screen

Figure 6.7 Air Conditioning Control Screen

The operation inside the window is managed by the callback function cb_ac_screen, and processing is
executed according to the message p_msg->MsgId.

Table 6.14 Processing According to Message (cb_ac_screen)

Message Description of Processing
WM_INIT_DIALOG Executed only once when the window is created.

It initializes the widgets inside the window and creates child windows.
WM_NOTIFY_PARENT Executed when an event occurs in a widget.

It determines the source of the event using WM_GetId(p_msg->hWinSrc) and
performs respective processing.

WM_DELETE Deletes the child windows for the temperature meter and fan speed meter.
MY_NEXT_SCREEN User-defined message

It is executed upon receiving WM_SendMessageNoPara(g_window,
MY_NEXT_SCREEN) from the main loop.

MY_BACK_SCREEN User-defined message
It is executed upon receiving WM_SendMessageNoPara(g_window,
MY_BACK_SCREEN) from the main loop

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 36 of 55
June.30.23

In this sample program, two child windows are created for the temperature meter and fan speed meter. The
callback functions for each window are cb_win_temp and cb_win_flow, respectively.

Table 6.15 Processing According to Messages (cb_win_temp)

Message Description of Processing
WM_PAINT It obtains the temperature setting value from the parent window using

WM_GetUserData and calculates the dimensions of the rectangle to be drawn. Then,
the rectangle is drawn using GUI_FillRectEx.。

Table 6.16: Processing Based on Messages (cb_win_flow)

Message Description of Processing
WM_CREATE Executed only once when the window is created.

It creates two memory devices and a timer for rotation processing.
GUI_MEMDEV_CreateFixed32 and WM_CreateTimer functions are used.

The purpose of the created memory devices and timer is as follows:
Memory Device (h_mem[0]): Stores the image before rotation.
Memory Device (h_mem[1]): Stores the image after rotation
Timer: Window drawing cycle (50ms)

WM_PAINT Clears the window and draws the image from Memory Device (1) to this window using
GUI_MEMDEV_WriteAt.

WM_TIMER Executed after a specified time interval.
It obtains the fan speed setting value from the parent window using
WM_GetUserData and calculates the rotation angle of the image. Then, the rotated
image is drawn to Memory Device (1) using GUI_MEMDEV_Rotate.
Afterwards, WM_InvalidateWindow is used to instruct screen update, and
WM_RestartTimer restarts the timer.

WM_DELETE Executed when the window is deleted.
It deletes the memory devices.

h_mem[0] h_mem[1] Child window

GUI_MEMDEV
_Rotate()

GUI_MEMDEV
_WriteAt()

Figure 6.8 Rotation Processing Using Memory Devices

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 37 of 55
June.30.23

6.5.4.2 Variables
Below is a list of global variables for Air Conditioning Control Display processing.

Table 6.17 Global Variables

Type Variable Name Description
extern GUI_CONST_STORAGE
GUI_BITMAP

bmhome_btn Data variable of home_btn

extern GUI_CONST_STORAGE
GUI_BITMAP

bmrx_logo Data variable of rx_logo

extern GUI_CONST_STORAGE
GUI_BITMAP

bmleft_btn_up Data variable of left_btn_up

extern GUI_CONST_STORAGE
GUI_BITMAP

bmleft_btn_down Data variable of left_btn_down

extern GUI_CONST_STORAGE
GUI_BITMAP

bmright_btn_up Data variable of right_btn_up

extern GUI_CONST_STORAGE
GUI_BITMAP

bmright_btn_dow
n

Data variable of right_btn_down

extern GUI_CONST_STORAGE
GUI_BITMAP

bmwindmill Data variable of windmill

extern GUI_CONST_STORAGE
GUI_BITMAP

bmtemp_meter Data variable of temp_meter

extern GUI_CONST_STORAGE
GUI_BITMAP

bmmode_btn_on Data variable of mode_btn_on

extern GUI_CONST_STORAGE
GUI_BITMAP

bmmode_btn_off Data variable of mode_btn_off

WM_HWIN g_window The handle of the active window being displayed
static const
GUI_WIDGET_CREATE_INFO

g_dialog_ac_scre
en []

The management information for the widgets used
in the dialog.

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 38 of 55
June.30.23

6.5.4.3 Constants
Below is a list of constants for Air Conditioning Control Display processing.

Table 6.18 Constants

Name Setting Value Description
TIMER_PERIOD 50 Air flow meter window update period in ms
WINDMILL_POS_X 230 X-coordinate of the air flow meter window
WINDMILL_POS_Y 160 Y-coordinate of the air flow meter window
SET_VAL_MIN 0 Minimum setting value for temperature and air flow
TEMP_VAL_MAX 40 Maximum setting value for temperature
AIR_VAL_MAX 20 Maximum setting value for air flow
TEMP_METER_WIDTH 6 Width of the meter window
TEMP_METER_HEIGHT 33 Height of the meter window
TEMP_METER_COLOR 0xFF9D282A Color code for the meter
ID_WINDOW_AIR_CONDITI
ONING

GUI_ID_USER +
0x00

Management ID for the window

ID_IMG_RX_LOGO GUI_ID_IMAGE0 Management ID for the image widget (rx_logo)
ID_IMG_METER GUI_ID_IMAGE1 Management ID for the image widget (temp_meter)
ID_BTN_TEMP GUI_ID_BUTTON0 Management ID for the button widget (Temp)
ID_BTN_AIR GUI_ID_BUTTON1 Management ID for the button widget (Air flow)
ID_BTN_LEFT GUI_ID_BUTTON2 Management ID for the button widget (left_btn)
ID_BTN_RIGHT GUI_ID_BUTTON3 Management ID for the button widget (right_btn)
ID_BTN_HOME GUI_ID_BUTTON4 Management ID for the button widget (home_btn)
ID_TXT_TEMP GUI_ID_TEXT0 Management ID for the text widget ("Temp")
ID_TXT_AIR GUI_ID_TEXT1 Management ID for the text widget ("Air Flow")
ID_TXT_TEMP_VAL GUI_ID_TEXT2 Management ID for the text widget (Temperature

Setting Value)
ID_TXT_AIR_VAL GUI_ID_TEXT3 Management ID for the text widget (Air Flow Setting

Value)

6.5.4.4 Functions
Below is a list of functions for Air Conditioning Control Display processing.

Table 6.19 Functions

Name Description
cb_win_temp Callback function of temperature meter processing
cb_win_flow Callback function of airflow meter processing
cb_ac_screen Callback function of Air Conditioning Control screen
ac_screen Window creation of Air Conditioning Control screen

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 39 of 55
June.30.23

6.5.4.5 Function Specification
The function specification for Air Conditioning Control Display is as follows.

cb_win_temp
Description Callback function of temperature meter processing
Header No
Declaration static void cb_win_temp(WM_MESSAGE * p_msg);
Explanation It controls drawing process of the temperature meter
Arguments WM_MESSAGE * p_msg Window information
Return Value No

cb_win_flow
Description Callback function of airflow meter processing
Header No

Declaration static void cb_win_flow(WM_MESSAGE * p_msg);
Explanation It controls drawing process of the airflow meter
Arguments WM_MESSAGE * p_msg Window information
Return Value No

cb_ac_screen
Description Callback function of Air Conditioning Control screen
Header No
Declaration static void cb_ac_screen(WM_MESSAGE * p_msg);
Explanation It controls the screen of Air Conditioning Control Display
Arguments WM_MESSAGE * p_msg Window information
Return Value No

ac_screen
Description Window creation of Air Conditioning Control screen
Header main.h
Declaration void ac_screen(void)
Explanation It execute the GUI_CreateDialogBox function to generate the Air Conditioning

Control screen.
Arguments No
Return Value No

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 40 of 55
June.30.23

6.5.5 Image Display Processing (image_screen.c)
6.5.5.1 Specification
The Image Display consists of parts shown in Figure 6.9.

home_btn

Window

Button widget (ID_BTN_HOME)

Icon-view widget (ID_ICONVIEW)

Image widget (ID_IMG_BG)

Widget

image1_thumb

image2_thumb

image3_thumb

image4_thumb
Touch the icon to switch the
background to the touched
image (image1- image4)

Item (image1_thumb)

Item (image2_thumb)

Item (image3_thumb)

Item (image4_thumb)
Item (image)

Touch to transition
to home screen

Figure 6.6 Image Display Screen

Operations in the window are managed by the callback function cb_image_screen, and processing is
executed according to the message p_msg->MsgId.

Table 6.20 Processing According to Message

Message Description of Processing
WM_CREATE Executed only once when the window is created.

It initializes each widget placed in the window (background
image setting and icon view setting).

WM_PAINT It draws the background image selected in the icon view with the
IMAGE_SetBitmap function

WM_NOTIFY_PARENT Executed when an event occurs in each widget.
WM_GetId(p_msg->hWinSrc) is used to determine which button
notified the event, performe processing according to the button.

MY_NEXT_SCREEN User-defined message.
It is executed upon receiving
WM_SendMessageNoPara(g_window, MY_NEXT_SCREEN)
from the main loop.

MY_BACK_SCREEN User-defined message.
It is executed upon receiving
WM_SendMessageNoPara(g_window, MY_BACK_SCREEN)
from the main loop.

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 41 of 55
June.30.23

6.5.5.2 Variables
Below is a list of global variables for Image Display processing.

Table 6.21 Global Variables

Type Variable Name Description
extern GUI_CONST_STORAGE
GUI_BITMAP

bmhome_btn Data variables of home_btn

extern GUI_CONST_STORAGE
GUI_BITMAP

bmimage1 Data variables of image1

extern GUI_CONST_STORAGE
GUI_BITMAP

bmimage2 Data variables of image2

extern GUI_CONST_STORAGE
GUI_BITMAP

bmimage3 Data variables of image3

extern GUI_CONST_STORAGE
GUI_BITMAP

bmimage4 Data variable of image4

extern GUI_CONST_STORAGE
GUI_BITMAP

bmimage1_thumb Data variable for image1_thumb (Thumbnail
of image1)

extern GUI_CONST_STORAGE
GUI_BITMAP

bmimage2_thumb Data variable for image2_thumb (Thumbnail
of image2)

extern GUI_CONST_STORAGE
GUI_BITMAP

bmimage3_thumb Data variable for image3_thumb (Thumbnail
of image3)

extern GUI_CONST_STORAGE
GUI_BITMAP

bmimage4_thumb Data variable for image4_thumb (Thumbnail
of image4)

extern WM_HWIN g_window Handle of the active window being displayed

6.5.5.3 Constants
Below is a list of constants for Image Display processing.

Table 6.22 Constants

Name Setting Value Description
ICONVIEW_WIDTH 60 Width of icon view
ICONVIEW_HEIGHT LCD_GetYSize() Height of icon view (function to get the height of LCD)
ICON_WIDTH 50 Icon width
ICON_HEIGHT 38 Height of icon
ID_IMG_BG GUI_ID_IMAGE0 Management ID of image widget(background_image)
ID_BTN_HOME GUI_ID_BUTTON0 Management ID of button widget(home_btn)
ID_ICONVIEW GUI_ID_ICONVIEW0 Management ID of an icon view widget

6.5.5.4 Functions
Below is a list of functions for Image Display processing.

Table 6.23 Functions

Name Description
cb_image_screen Callback function of image display screen
image_screen Window Creation of the image display screen

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 42 of 55
June.30.23

6.5.5.5 Function Specification
The function specification for Image Display is as follows.

cb_image_screen
Description Callback function of image display screen
Header No
Declaration static void cb_image_screen(WM_MESSAGE * p_msg);
Explanation It controls the Image Display screen
Arguments WM_MESSAGE * p_msg Window information
Return Value なし

image_screen
Description Window Creation of the image display screen
Header main.h
Declaration void image_screen (void);
Explanation It execute WM_CreateWindow function to create Image Display screen
Arguments No
Return Value No

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 43 of 55
June.30.23

6.5.6 Font Display Processing (font_screen.c)
6.5.6.1 Specification
The Font Display consists of parts shown in Figure 6.10.

home_btn

Window

Button widget (ID_BTN_HOME)

Text (abcdefghijklmn)

Widget

Text

Text (ABCDEFGHIJKLMN)

Text (あいうえおかきくけこ)

Text (アイウエオカキクケコ)

Text (Hello world)

Text (0123456789)

Touch to transition
to home screen

Figure 6.7 Font Display

Operations in the window are managed by the callback function cb_font_screen, and processing is executed
according to the message p_msg->MsgId.

Table 6.20 Processing According to Message

Message Description of Processing
WM_CREATE Executed only once when a window is created.

It initializes the button widgets to be placed in the window.
WM_PAINT Draws each font.
WM_NOTIFY_PARENT Executed when an event occurs in each widget.

WM_GetId(p_msg->hWinSrc) determines if the event notification is
from the home button (home_btn) and transitions to the home
screen.
Before transition, WM_DeleteWindow(p_msg->hWin) deletes the
RX logo screen dialog.

MY_NEXT_SCREEN User-defined message.
It is executed upon receiving WM_SendMessageNoPara(g_window,
MY_NEXT_SCREEN) from the main loop.

MY_BACK_SCREEN User-defined message.
It is executed upon receiving WM_SendMessageNoPara(g_window,
MY_BACK_SCREEN) from the main loop.

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 44 of 55
June.30.23

All fonts used in the font display screen are provided by emWin. The fonts used are listed in Table 6.25.

Table 6.14 Lists of Used Fonts

Font Description
GUI_FONT_16_ASCII Alphabet (ASCII) font, 16h
GUI_FONT_16_HK Japanese (Hiragana & Katakana) font, 16h
GUI_FONT_COMIC24B_ASCII Comic-like font (ASCII), 24h
GUI_FONT_D24X32 Numeric font, 24w x 32h

Japanese fonts are converted to character codes using U2C including in emWin. For example, Hiragana
(str_hiragana_utf8), the first character "\xe3\x81\x82" is the character code for "あ".

Figure 6.11. Hiragana & Katakana Character Codes

6.5.6.2 Variables
Below is a list of global variables for Font Display processing.

Table 6.26 Global Variables

Type Variable Name Description
extern GUI_CONST_STORAGE
GUI_BITMAP

bmhome_btn Data variable of home_btn

extern WM_HWIN g_window Handle of the active window being displayed
static const char * str_hiragana_utf8[] Character code for Hiragana (あいうえおか

きくけこ)
static const char * str_katakana_utf8[] character code for Katakana(アイウエオカキ

クケコ)

6.5.6.3 Constants
Below is a list of constants for Font Display processing.

Table 6.27 Constants

Name Setting Value Description
ID_BTN_HOME GUI_ID_BUTTON0 Management ID for the button widget (home_btn)

6.5.6.4 Functions
Below is a list of functions for Font Display processing.

Table 6.28 Functions

Name Description
cb_font_screen Callback function for font display screen
font_screen Window Creation for the font display screen

static const char * str_hiragana_utf8[] =
{
 "\xe3\x81\x82\xe3\x81\x84\xe3\x81\x86\xe3\x81\x88\xe3\x81\x8a\xe3\x81\x8b\xe3\x81\x8d\xe3\x81\x8f\xe3\x81\x91\xe3\x81\x93"
};

static const char * str_katakana_utf8[] =
{
 "\xe3\x82\xa2\xe3\x82\xa4\xe3\x82\xa6\xe3\x82\xa8\xe3\x82\xaa\xe3\x82\xab\xe3\x82\xad\xe3\x82\xaf\xe3\x82\xb1\xe3\x82\xb3"
};

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 45 of 55
June.30.23

6.5.6.5 Function Specification
The function specification for Font Display is as follows.

cb_font_screen
Description Callback function for font display screen
Header No
Declaration static void cb_font_screen(WM_MESSAGE * p_msg);
Explanation It controls the font display screen.
Arguments WM_MESSAGE * p_msg Window information
Return Value No

font_screen
Description Window Creation for the font display screen
Header main.h
Declaration void font_screen (void);
Explanation It executes the WM_CreateWindow function to generate the font display screen.
Arguments No
Return Value No

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 46 of 55
June.30.23

6.6 Resources Usage
The resources for this sample program are listed below. These are reference values under the following
conditions.

 C/C++ Compiler Package for RX Family V3.05.00

 Optimization level: Level 2

6.6.1 Overall Resources Usage
Table 6.29 Overall resources of the sample program

Memory Usage (in byte) Note

RAM 269,155 Of this, 250 Kbytes are reserved for
emWin work size.

ROM 1,055,073

Stack 1,355

6.6.2 Resources Usage of Each Screens
The resources usage for each screen are shown following. Note that the FIT module, main processing-
related resources, and the cache used by emWin (150 Kbytes) are not included.

6.6.2.1 Home Screen
Table 6.30 Resources of Home Screen

Memory Usage (in byte) Note

RAM 1,269 emWin work (1,269 bytes)

ROM 81,769 Programs, constants, images

6.6.2.2 RX Logo Display
Table 6.31 Resources of RX Logo Display

Memory Usage (in byte) Note

RAM 521 Variables (28 bytes) + emWin work (493 bytes)

ROM 21,503 Program, constants, images

6.6.2.3 Air Conditioning Control

Table 6.32 Resources of Air Conditioning Control

Memory Usage (in byte) Note

RAM 42,568 Variables (39 bytes) + emWin work (42,529 bytes)

(Of this, 39,200 bytes are used by memory devices)

ROM 88,956 Program, constants, images

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 47 of 55
June.30.23

6.6.2.4 Image Display
Table 6.33 Resources of Image Display

Memory Usage (in byte) Note

RAM 1,181 Variables (8 bytes) + emWin Work (1,173 bytes)

ROM 641,048 Programs, constants, images

6.6.2.5 Font Display
Table 6.34 Resources for Font Display

Memory Usage (in byte) Note

RAM 397 Variables (8 bytes) + emWin work (389 bytes)

ROM 11,428 Programs, constants, images

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 48 of 55
June.30.23

6.7 Tools Used
6.7.1 QE for Display
This sample code uses QE for Display, a plug-in for e2 studio, an integrated development environment
compatible with Renesas RX microcontrollers. It supports efficient development of embedded systems with
display devices by providing graphical interface settings in conjunction with various tools and FIT modules.

For details, please refer to the following URL:

https://www.renesas.com/us/en/software-tool/qe-display-development-assistance-tool-display-applications

6.7.2 QE for Capacitive Touch
This sample code uses QE for Capacitive Touch, a plug-in for e2 studio, an integrated development
environment that supports Renesas RX microcontrollers, and a stand-alone version that can be linked with
CS+ and IAR EWRX (download (included in the package). In the development of embedded systems using
capacitive touch functionality, this plug-in supports efficient development by making it easy to perform initial
settings and sensitivity tuning of the touch interface.

For details, please refer to the following URL

https://www.renesas.com/us/en/software-tool/qe-capacitive-touch-development-assistance-tool-capacitive-
touch-sensors

https://www.renesas.com/us/en/software-tool/qe-display-development-assistance-tool-display-applications
https://www.renesas.com/us/en/software-tool/qe-capacitive-touch-development-assistance-tool-capacitive-touch-sensors
https://www.renesas.com/us/en/software-tool/qe-capacitive-touch-development-assistance-tool-capacitive-touch-sensors

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 49 of 55
June.30.23

7. Additional Explanation to Screen Update Speed
The explanation described in Section 2.3 Screen Update Speed is based on the features of the emWin
library, however it also should be considered from a hardware perspective.

7.1 Communication Baud Rate
The higher the communication baud rate, the faster the screen update speed can be increased, but there
may be limitations on baud rate settings. In the case of the RX671, the RSPI used in the communication
interface with the LCD can be set to a maximum 40 MHz, but the system clock (ICLK) and peripheral module
clock A (PCLKA) must be set to 80MHz. Because of lower the operating frequency in trade-off with the
maximum baud rate, the screen update speed may be slower even if the maximum baud rate is set,
depending on the processing load of the user application and emWin. Be careful of the appropriate operating
frequency and baud rate in light of the processing load of the user application and emWin.

7.2 Selecting the DMA Transfer Function
When the emWin FIT module uses RSPI or SCI (simple SPI mode) for the communication interface with the
LCD, the DMA transfer function can be used to reduce the overhead between communications and improve
communication efficiency. The RX family is equipped with two types of DMACs: DMACs are faster than
DTCs in terms of transfer rate. Therefore, it is recommended that DMAC be used under normal
circumstances.

7.3 Compile Options
One way to increase screen update speed is to improve code efficiency through compilation options.
Maximizing the optimization level and specifying the execution performance emphasis (-speed option) can
further reduce the communication overhead.

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 50 of 55
June.30.23

8. Project Configuration Information
8.1 Smart Configurator
The FIT module used in the sample program and the Smart Configurator settings in e² studio are shown
below. For details on each FIT module, please refer to the documentation for each FIT module.

Table 8.1 BSP Module Settings

Directory Target Setting & Description
Smart Configurator >> Clock Default setting when "EK-RX671" is selected for

board selection when creating a project.
 VCC Setting 3.3(V)
 Main clock setting Operation: Check

Oscillation source: Crystal
Frequency: 24 (MHz)
Oscillation stabilization time: 9980 (μs)

 PLL circuit setting Division ratio：x1
Multiplication ratio：x10.0

 Sub-clock oscillator setting Operation: Check
Frequency: 32.768 (kHz)
Oscillator drive capability: Standard CL
Oscillator stability time: 2000 (m

 HOCO clock setting Stop: Uncheck
 LOCO clock setting Stop: Uncheck
 System clock setting Clock source: PLL

System clock (ICLK): x1/2 120 (MHz)
Peripheral module clock (PCLKA): x1/2 120 (MHz)
Peripheral module clock (PCLKB): x1/4 60 (MHz)
Peripheral module clock (PCLKC): x1/4 60 (MHz)
Peripheral module clock (PCLKD): x1/4 60 (MHz)
FlashIF clock (FCLK): x1/4 60 (MHz)

 IWDT dedicated clock setting Stop: Uncheck

Table 8.2 GPIO Module Settings

Directory Target Setting & Description
Smart Configurator >> Components >> r_gpio_rx Default setting (no change)

Table 8.3 CMT Module Settings

Directory Target Setting & Description
Smart Configurator >> Components >> r_cmt_rx Default setting (no change)

Table 8.4 BYTEQ Module Settings

Directory Target Setting & Description
Smart Configurator >> Components >> r_byteq Default setting (no change)

Table 8.5 DMAC Module Settings

Directory Target Setting & Description
Smart Configurator >> Components >> r_dmaca_rx Default setting (no change)

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 51 of 55
June.30.23

Table 8.6 RSPI Module Settings

Directory Target Setting & Description
Smart Configurator >> Components >> r_rspi_rx Default settings except for the following changes.
Configurations
 Dummy data of reception

(RSPI_CFG_DUMMY_TXDATA)
Changed to 0x00

Resource >> RSPI
 RSPI0 Check
 RSPCKA Pin Use: check
 MOSIA Pin Use: check
 MISOA Pin Use: check
Smart Configurator >> Pins >> Serial Peripheral
Interface >> RSPI0

Uncheck except for the following settings.

 RSPCKA Use: check
Pin assignment: Set to PC5

 MOSIA Use: check
Pin assignment: Set to PC6

 MISOA Use: check
Pin assignment: Set to PC7

Table 8.7 SCI Module Settings

Directory Target Setting & Description
Smart Configurator >> Components >> r_sci_rx Default settings except for the following changes.
Configurations
 Use ASYNC mode

(SCI_CFG_ASYNC_INCLUDED)
Change to Not (0)

 Use SSPI mode
(SCI_CFG_SSPI_INCLUDED)

Change to Include (1)

 Byte value to transmit while clocking
in data in SSPI mode
(SCI_CFG_DUMMY_TX_BYTE)

Change to 0x00

Resource >> SCI
 SCI1 Check
 SCK1 Pin Use: check
 RXD1/SMISO1/SSCL1 Pin Use: check
 TXD1/SMOSI1/SSDA1 Pin Use: check
Smart Configurator >> Pins >> Serial Peripheral
Interface >> SCI1

Uncheck except for the following settings.

 SCK1 Use: check
Pin assignment: Set to P17

 RXD1 Use: check
Pin assignment: Set to P15

 TXD1 Use: check
Pin assignment: Set to P16

Table 8.8 Touch QE Module Settings

Directory Target Setting & Description
Smart Configurator >> Components >> rm_touch_qe Default settings except for the following changes.

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 52 of 55
June.30.23

Table 8.9 CTSU Module Settings

Directory Target Setting & Description
Smart Configurator >> Components >> r_ctsu_qe Default settings except for the following changes.
Resource >> CTSU
 TSCAP Pin Use
 TS1 Pin Use
 TS5 Pin Use

Table 8.10 emWin Module Settings

Directory Target Setting & Description
Smart Configurator >> Components >> r_emwin_rx f you do not use QE for Display, please make

the following settings.
Default settings except for the following
changes.

Configurations
 Work area size for GUI

(EMWIN_GUI_NUM_BYTES)
Set to 256000
(Default value of 100 KB plus 150 KB, the
size required by the cache function.)

 Horizontal LCD size
(EMWIN_XSIZE_PHYS)

Set to 240

 Vertical LCD size
(EMWIN_YSIZE_PHYS)

Set to 320

 LCD orientation
(EMWIN_DISPLAY_ORIENTATION)

Set to ORIENTATION_CCW

 LCD interface
(EMWIN_LCD_IF)

LCD_IF_RSPI

 Select LCD Driver IC
(EMWIN_LCD_DRIVER_IC)

LCD_DRV_IC_ILI9341

 Communication baud rate of LCD interface
(EMWIN_LCD_BAUDRATE)

30000000

 Use or unuse display cache
(EMWIN_GUI_USE_CACHE)

Use: Check

 Display Signal Pin
(EMWIN_DISP_SIGNAL_PIN)

GPIO_PORT_5_PIN_0

 Backlight Pin
(EMWIN_BACKLIGHT_PIN)

GPIO_PORT_5_PIN_2

 Data/Command Pin
(EMWIN_DATA_CMD_PIN)

GPIO_PORT_5_PIN_1

 Chip Select Pin
(EMWIN_LCD_CS_PIN)

GPIO_PORT_C_PIN_3

 Touch interface
(EMWIN_TOUCH_IF)

TOUCH_IF_SCI_SPI

 Touch interface channel number
(EMWIN_TOUCH_IF_NUMBER)

Set to 1

 Communication baud rate of touch interface
(EMWIN_TOUCH_BAUDRATE)

2000000

 Use Touch IC Reset Pin
(EMWIN_USE_TOUCH_IC_RESET_PIN)

Not use Touch IC Reset Pin: Uncheck

 Touch Chip Select Pin
(EMWIN_TOUCH_CS_PIN)

GPIO_PORT_1_PIN_4

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 53 of 55
June.30.23

8.2 QE for Display
The settings for QE for Display are shown in Figure 8.1.

Figure 8.1 QE for Display Setting

8.3 QE for Capacitive Touch
QE for Capacitive Touch settings are shown in Figure 8.2. The adjustment results are reference data based
on the board on which the operation was verified. If the touch keys do not respond on your board, please
readjust the touch keys.

Figure 8.2 QE for Capacitive Touch Setting

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 54 of 55
June.30.23

9. Reference Documents

User's Manual: Software

• emWin Graphic Library with Graphical User Interface User Guide & Reference Manual

（https://www.segger.com/downloads/emwin/UM03001）

• RX Smart Configurator User Guide: e2 studio Edition (R20AN0451)

User's Manual: Hardware

• RX671 Group User's Manual: Hardware Edition (R01UH0899)

• EK-RX671 User's Manual (R20UT5234)

• EK-RX671 CPU Board Circuit Diagram (R20UT5233)

(Please obtain the latest version of each device from the Renesas Electronics website.)

Technical Update / Technical News

(Please obtain the latest information from the Renesas Electronics website)

User's Manual: Development Environment

RX Family CC-RX Compiler User's Manual (R20UT3248)

(Please obtain the latest version from Renesas Electronics website)

https://www.segger.com/downloads/emwin/UM03001

RX Family GUI Sample Program using Serial LCD and emWin Library

R01AN6923EJ0100 Rev.1.00 Page 55 of 55
June.30.23

Revision History

Rev. Date
Description
Page Summary

1.00 June.30.23 - First Edition

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2023 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Home Screen
	1.2 RX Logo Display
	1.3 Air Conditioning Control
	1.4 Image Display
	1.5 Font Display
	1.6 Screen Switch by Touch Keys

	2. Main Functions of emWin
	2.1 Display Driver (Flex Color Driver) and Color Mode
	2.2 Memory Management
	2.3 Screen Update Speed
	2.3.1 Cache
	2.3.2 Memory Devices

	2.4 Window Manager
	2.5 Windows
	2.6 Dialogs
	2.7 Images
	2.8 Fonts
	2.9 Animation
	2.10 Notes
	2.11 Additional Information

	3. Evaluation Environment
	4. How to Run the Sample Project
	4.1 Prepare the Hardware
	4.2 Import the Project
	4.3 Build the Project
	4.4 Connect Debugger and Execute the Program

	5. Hardware Description
	5.1 Hardware Configuration
	5.2 Connection to LCD
	5.3 Used Pins and Their Functions

	6. Software Description
	6.1 Software Configuration
	6.2 Used FIT Module
	6.3 Project Structure
	6.4 File Structure
	6.5 Processes in Detail
	6.5.1 Main Process (main.c)
	6.5.1.1 Specification
	6.5.1.2 Variables
	6.5.1.3 Constants
	6.5.1.4 Functions
	6.5.1.5 Function Specification

	6.5.2 Home Screen Process (home_menu.c)
	6.5.2.1 Specification
	6.5.2.2 Variables
	6.5.2.3 Constants
	6.5.2.4 Function
	6.5.2.5 Function Specification

	6.5.3 RX Logo Display Processing (rx_logo_screen.c)
	6.5.3.1 Specification
	6.5.3.2 Variables
	6.5.3.3 Constants
	6.5.3.4 Function
	6.5.3.5 Function Specification

	6.5.4 Air Conditioning Control Processing (ac_screen.c)
	6.5.4.1 Specification
	6.5.4.2 Variables
	6.5.4.3 Constants
	6.5.4.4 Functions
	6.5.4.5 Function Specification

	6.5.5 Image Display Processing (image_screen.c)
	6.5.5.1 Specification
	6.5.5.2 Variables
	6.5.5.3 Constants
	6.5.5.4 Functions
	6.5.5.5 Function Specification

	6.5.6 Font Display Processing (font_screen.c)
	6.5.6.1 Specification
	6.5.6.2 Variables
	6.5.6.3 Constants
	6.5.6.4 Functions
	6.5.6.5 Function Specification

	6.6 Resources Usage
	6.6.1 Overall Resources Usage
	6.6.2 Resources Usage of Each Screens
	6.6.2.1 Home Screen
	6.6.2.2 RX Logo Display
	6.6.2.3 Air Conditioning Control
	6.6.2.4 Image Display
	6.6.2.5 Font Display

	6.7 Tools Used
	6.7.1 QE for Display
	6.7.2 QE for Capacitive Touch

	7. Additional Explanation to Screen Update Speed
	7.1 Communication Baud Rate
	7.2 Selecting the DMA Transfer Function
	7.3 Compile Options

	8. Project Configuration Information
	8.1 Smart Configurator
	8.2 QE for Display
	8.3 QE for Capacitive Touch

	9. Reference Documents
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

