
 Application Note

R01AN3066EJ0300 Rev.3.00 Page 1 of 46

May.31.23

RX Family

ELC Module Using Firmware Integration Technology

Introduction

This application note describes the Renesas ELC module which uses Firmware Integration Technology
(FIT).

This module uses ELC to create links between other modules. In this document, this module is referred to as
the ELC FIT module.

Target Devices

⚫ RX113 Group

⚫ RX130 Group

⚫ RX140 Group

⚫ RX230 Group, RX231 Group

⚫ RX23E-B Group

⚫ RX23W Group

⚫ RX65N Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Target Compilers

 Renesas Electronics C/C++ Compiler Package for RX Family

 GCC for Renesas RX

 IAR C/C++ Compiler for Renesas RX

For details of the confirmed operation contents of each compiler, refer to “5.2 Operation Confirmation
Environment".

Related Documents

⚫ RX Family Board Support Package Module Using Firmware Integration Technology (R01AN1685)

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 2 of 46

May.31.23

Contents

1. Overview .. 3

1.1 ELC FIT Module ... 3

1.2 Overview of the ELC FIT Module ... 4

1.3 API Overview .. 5

1.4 Processing Example ... 6

1.5 State Transition Diagram .. 7

2. API Information .. 8

2.1 Hardware Requirements ... 8

2.2 Software Requirements .. 8

2.3 Supported Toolchain .. 8

2.4 Interrupt Vector .. 8

2.5 Header Files ... 8

2.6 Integer Types ... 8

2.7 Configuration Overview .. 9

2.8 Code Size ... 10

2.9 Parameters ... 11

2.10 Return Values .. 11

2.11 Callback Functions.. 12

2.12 Adding the FIT Module to Your Project ... 13

3. API Functions .. 14

3.1 R_ELC_Open () .. 14

3.2 R_ELC_Set () .. 15

3.3 R_ELC_Control () ... 24

3.4 R_ELC_Close () .. 28

3.5 R_ELC_GetVersion () .. 29

4. Setup Procedure Examples .. 30

4.1 Setup Procedure .. 30

4.2 Case A Setup Example ... 31

4.3 Case B Setup Example ... 33

4.4 Case C Setup Example ... 35

5. Appendices .. 36

5.1 Definitions .. 36

5.2 Operation Confirmation Environment ... 42

5.3 Troubleshooting .. 44

Revision History .. 45

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 3 of 46

May.31.23

1. Overview

The ELC FIT module provides settings that allow the event link signals output by the various modules to be

transmitted to other modules.

1.1 ELC FIT Module

The ELC FIT module can be used by being implemented in a project as an API. See section 2.12, Adding

the FIT Module to Your Project for details on methods to implement this FIT module into a project.

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 4 of 46

May.31.23

1.2 Overview of the ELC FIT Module

When used, the ELC FIT module is initialized and operated using the following procedure.

Step 1: Initialize the event link target module.

Step 2: Set up the event link from the event link source module to the event link target module.

Step 3: Initialize and start the event link source module.*1

Step 4: When an event signal is output from the event link source module to the event link target module,

the operation set up in advance starts.

Note 1. When either an RTC or LVD is used as the event link source, that RTC or LVD should be set up first

and then the ELC should be set up (step 2).

The ELC FIT module supports the setting up of an event link between the event link source module and the

event link target module in step 2. Note that the user must perform the individual settings required for steps

1 and 3 separately.

Figure 1.1 presents an overview of the ELC and the setup procedure.

(ELC)

1. Event Link Target3. Event Link Source 2. Event Link Controller

Range supported by the ELC FIT

module

4. * 4. *

* Event signal output

ELC FIT module overview and setup procedure

Step 1. Event link target setup

First, the event link target is set up. When a port is set as the event link, the PODR and PDR

registers for the corresponding port must be set.

Step 2. Event link controller (ELC) setup

This sets up the event link between the event link target and the event link source.

This module supports this event link setup operation.

Step 3. Event link source setup

Sets up and starts the event link source.

Step 4. Event signal output

The event link signal is output from the event link source to the ELC. The event link signal

it transmitted to the event link target and the operations set up in advance start.

Figure 1.1 ELC FIT Module Overview

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 5 of 46

May.31.23

1.3 API Overview

Table 1.1 lists the API functions included in this module. Also, section 2.8, Code Size, lists the size of the
code sections used by this module.

Table 1.1 API Functions

Function Function Description

R_ELC_Open ELC module initialization

R_ELC_Set Connects the event link source event signal and the event link target

module and sets up the operations performed when an event occurs.

R_ELC_Control Performs ELC module control.

⚫ Event link start/stop

⚫ Clear event link settings

⚫ Generate software events

⚫ Write a port buffer

⚫ Read a port buffer

R_ELC_Close Stop the ELC module

R_ELC_GetVersion Return the ELC FIT module version number.

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 6 of 46

May.31.23

1.4 Processing Example

Figure 1.2 shows an example of processing.

Start

Initialize event link target

Initialize event link

R_ELC_Open()

Set event link

R_ELC_Set()

Have all event links been set?

No

Yes

Start event link operation

R_ELC_Control()

Initialize and start event link source

Terminate event link setup

[1] Initializes the event link target.

 When an event link is being set up for a port, the follow

 registers for the corresponding port are set.

 PODR register: Sets the initial value for ports set to output.

 PDR register: Sets the corresponding ports to input or output.

[2] Initializes the event link.

 The following R_ELC_Set() function can be called by calling

 the R_ELC_Open() function.

[3] Sets the event link.

 Sets the event link source and the event link target.

[4] Starts the event link operation.

 Starts operation of the event link set with the R_ELC_Set()

 function by calling the R_ELC_Control() function.

[5] Initializes and starts the event link source.

 After this, the operation set with the R_ELC_Set() function is

 performed when an event signal is output from the event link

 source.

Figure 1.2 Processing Example of the ELC FIT Module

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 7 of 46

May.31.23

1.5 State Transition Diagram

Figure 1.3 shows the state transition diagram for this module.

ELC terminated state

[Reset released]

ELC stopped state ELC operating state

R_ELC_Close /

Event link termination

R_ELC_Close /

Event link termination

R_ELC_Open /

Event link initialization

R_ELC_Control(ELC_CMD_START) /

Start event link operation

R_ELC_Control(ELC_CMD_STOP) /

Stop event link operation

R_ELC_Control /

Occurrence of software or

other event

R_ELC_Set,

R_ELC_Control /

Set up, clearing, and other

operations on an event link

Figure 1.3 ELC FIT Module State Transition Diagram

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 8 of 46

May.31.23

2. API Information

The sample code provided with this application note has been tested under the following conditions.

2.1 Hardware Requirements

The MCU used must support the following functions:

⚫ Event link controller (ELC)

2.2 Software Requirements

This driver is dependent upon the following FIT module.

⚫ Renesas Board Support Package (r_bsp) Rev.5.20 or higher

2.3 Supported Toolchain

This driver has been confirmed to work with the toolchain listed in 5.2 Operation Confirmation Environment

2.4 Interrupt Vector

To enable the ELC interrupt, use the R_ELC_Set function to specify the ELC interrupt as an event signal for
event linking and set the interrupt priority level to a value other than 0.
Table 2.1 lists the Interrupt Vector Used in the ELC FIT Module.

Table 2.1 Interrupt Vector Used in the ELC FIT Module

Device Interrupt Vector

RX113, RX130, RX140 ELSR8I interrupt (vector no.: 80)
ELSR18I interrupt (vector no.: 106)

RX230, RX231, RX23W, RX23E-B ELSR8I interrupt (vector no.: 80)
ELSR18I interrupt (vector no.: 106)
ELSR19I interrupt (vector no.: 107)

RX65N ELSR18I interrupt (vector no.: 193) (1)
ELSR19I interrupt (vector no.: 194) (1)

Note 1. The interrupt vector numbers for software configurable interrupt B shown here are the default values

specified in the board support package FIT module (BSP module).

2.5 Header Files

All API calls and their supporting interface definitions are located in r_elc_rx_if.h.

2.6 Integer Types

This project uses ANSI C99. These types are defined in stdint.h.

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 9 of 46

May.31.23

2.7 Configuration Overview

The configuration option settings of this module are located in r_elc _rx_config.h. The option names and
setting values are listed in the table below:

Configuration options in r_elc _rx_config.h

Definition Description

#define ELC_CFG_PARAM_CHECKING_ENABLE

Note: The default value becomes the value of

"BSP_CFG_PARAM_CHECKING_ENABLE defined
in the file r_bsp_config.h.

Selects whether or not parameter checking is included in the code.

0: Parameter checking is omitted from the code at build time.

1: Parameter checking is included in the code at build time.

The code size can be reduced by omitting parameter checking from the
code at build time.

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 10 of 46

May.31.23

2.8 Code Size

The sizes of ROM, RAM and maximum stack usage associated with this module are listed below.
The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in 2.7 Configuration Overview.
The values in the table below are confirmed under the following conditions.

Module Revision: r_elc_rx rev3.00
Compiler Version: Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00

(The option of “-lang = c99” is added to the default settings of the integrated
development environment.)
GCC for Renesas RX 8.03.00.202202
(The option of “-std=gnu99” is added to the default settings of the integrated
development environment.)
IAR C/C++ Compiler for Renesas RX version 4.20.3
(The default settings of the integrated development environment.)

Configuration Options: Default settings

ROM, RAM and Stack Memory Usage

Device Category Memory Used

Renesas Compiler GCC IAR Compiler

With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

RX130

ROM 1,271 bytes 1,087 bytes 1,551 bytes 1,280 Bytes 1,926 Bytes 1,600 bytes

RAM 16 bytes 16 bytes 16 bytes 16 bytes 14 bytes 14 bytes

Maximum

stack

usage*1

100 bytes 100 bytes - 120 bytes 120 bytes

RX230

RX231

ROM 1,670 bytes 1,464 bytes 2,133 bytes 1,853 bytes 2,727 bytes 2,381 bytes

RAM 24 bytes 24 bytes 24 bytes 24 bytes 19 bytes 19 bytes

Maximum

stack

usage*1

100 bytes 100 bytes -- - 120 bytes 120 bytes

RX65N

ROM 1,642 bytes 1,461 bytes 2,113 bytes 1,881 bytes 2,719 bytes 2,423 bytes

RAM 16 bytes 16 bytes 16 bytes 16 bytes 14 bytes 14 bytes

Maximum

stack

usage*1

116 bytes 116 bytes - 128 bytes 128 bytes

Note 1. The maximum stack sizes listed are for the case when interrupt processing is included in the API
functions.

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 11 of 46

May.31.23

2.9 Parameters

This section describes the parameter structure used by the API functions in this module. The structure is
located in r_elc_rx_if.h as are the prototype declarations of API functions.

[Event link source setup structure]
typedef struct elc_event_signal_s

{

elc_eventlink_signal_t event_signal; /* Event signal */

elc_port_trigger_select_t event_signal_input_port_edge; /* Input edge selection */

elc_single_port_select_t event_signal_single_port; /* Single port selection */

uint_8 event_signal_port_group_bit; /* Port group specification

 selection */

} elc_event_signal_t;

[Event link target setup structure]

typedef struct elc_link_module_s

{

elc_ module_t link_module; /* Peripheral module to be linked */

elc_timer_operation_select_t link_module_timer_operation; /* Timer operation selection */

elc_port_level_select_t link_module_output_port_level; /* Output port level selection */

elc_single_port_select_t link_module_single_port; /* Single port selection */

uint8_t link_module_port_group_bit; /* Pin selection for port group

 specification */

elc_port_buffer_select_t link_module_port_buffer; /* Port buffer overwrite selection */

uint8_t link_module_interrupt_level; /* ELC interrupt priority level */

elc_interrupt_set_t link_module_callbackfunc; /* ELC interrupt callback function */

} elc_link_module_t;

[Port buffer access structure]

typedef struct elc_pdbf_access_s

{

 elc_portbuffer_t select_group; /* Port buffer group selection */

 uint8_t value; /* Port buffer write value or read value */

} elc_pdbf_access_t;

2.10 Return Values

This section describes return values of API functions. This enumeration is located in r_elc_rx_if.h as are the
prototype declarations of API functions.

[Error structure]

typedef enum

{

 ELC_SUCCESS, /* Normal termination */

 ELC_ERR_LOCK_FUNC, /* ELC already opened */

 ELC_ERR_INVALID_ARG /* Illegal argument */

} elc_err_t;

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 12 of 46

May.31.23

2.11 Callback Functions

In this module, the callback function specified by the user is called when the ELC interrupt occurs.

The callback function is set up by storing the address of the callback function in the
ink_module_callbackfunc structure member (see 2.9 Parameters). When the callback function is called, the
variable which stores the constant listed in Table 2.2 is passed as the argument.

The argument is passed as void type. Thus the argument of the callback function is cast to a void pointer.
See examples below as reference.

When using a value in the callback function, type cast the value.

Table 2.2 Callback Function Parameters (enum elc_icu_t)

Constant Definition Description
ELC_EVT_ICU1 Callback function called from interrupt handling for ELC interrupt 1
ELC_EVT_ICU2 Callback function called from interrupt handling for ELC interrupt 2*1

ELC_EVT_ICU_LPT Callback function called from interrupt handling for the dedicated LPT ELC
interrupt.*2

Note 1. Not available for RX113 Group, RX130 Group and RX140 Group.

Note 2. Not available for RX65N Group.

Sample callback function:

void my_elc_callback(void * pdata)

 {

 elc_icu_t elc_icu_number;

 elc_icu_number = *((elc_icu_t *)pdata);//cast pointer to elc_icu_t

 …

 }

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 13 of 46

May.31.23

2.12 Adding the FIT Module to Your Project

This module must be added to each project in which it is used. Renesas recommends the method using the
Smart Configurator described in (1) or (3) or (5) below. However, the Smart Configurator only supports some
RX devices. Please use the methods of (2) or (4) for RX devices that are not supported by the Smart
Configurator.

(1) Adding the FIT module to your project using the Smart Configurator in e2 studio

By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project.
Refer to“RX Smart Configurator User’s Guide: e2 studio (R20AN0451)” for details.

(2) Adding the FIT module to your project using the FIT Configurator in e2 studio

By using the FIT Configurator in e2 studio, the FIT module is automatically added to your project.
Refer to “RX Family Adding Firmware Integration Technology Modules to Projects (R01AN1723)” for
details.

(3) Adding the FIT module to your project using the Smart Configurator in CS+

By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added to
your project. Refer to “RX Smart Configurator User’s Guide: CS+ (R20AN0470)” for details.

(4) Adding the FIT module to your project in CS+

In CS+, please manually add the FIT module to your project. Refer to “RX Family Adding Firmware
Integration Technology Modules to CS+ Projects (R01AN1826)” for details.

(5) Adding the FIT module to your project using the Smart Configurator in IAREW

By using the Smart Configurator Standalone version, the FIT module is automatically added to your
project. Refer to “RX Smart Configurator User’s Guide: IAREW (R20AN0535)” for details.

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 14 of 46

May.31.23

3. API Functions

3.1 R_ELC_Open ()

This function initializes the ELC FIT module and transitions the module from the ELC terminated state to the
ELC stopped state. This function must be called before calling any other API functions.

Format
elc_err_t R_ELC_Open(void)

Parameters
None

Return Values
ELC_SUCCESS /* Normal completion */

ELC_ERR_LOCK_FUNC /* The ELC was already open */

Properties
The declaration is located in r_elc_rx_if.h.

Description
Initializes an event link. Also, if the ELC interrupt is used, it sets the priority level of that interrupt.

Example

volatile elc_err_t ret;

ret = R_ELC_Open();

if(ELC_SUCCESS != ret)

 {

 /* Error handling is performed if a failure to initialize occurs. */

 }

Special Notes:

When this function is called, all of the content set by the R_ELC_Set() function and R_ELC_Control()

function is cleared.

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 15 of 46

May.31.23

3.2 R_ELC_Set ()

When this module is in the ELC stopped state, this function sets the event link source and event link target.

Format
elc_err_t R_ELC_Set (

 elc_event_signal_t * const p_elc_event_signal

/* Pointer to a link source setup structure */

 elc_link_module_t * const p_elc_module

 /* Pointer to a link target setup structure */
)

Parameters
elc_event_signal_t *p_elc_event_signal

Pointer to an event link source setup structure.
Table 3.1 lists the content set in the event link source setup structure.

Table 3.1 Content Set in the Event Link Source Setup Structure (*p_elc_event_signal)

Constant Definition Description

event_signal Sets the event link source event signal.
See Table 5.1 and Table 5.3 for the event signal definitions.

event_signal_input_port_edge Specifies the valid edge for the single port and the input port group.
See Table 5.7 for the valid edge definitions.
This is valid when either a single port or an input port group is selected for
the event signal.

event_signal_single_port Specifies the pins allocated to the single port.
See Table 5.5 for the single port definitions.
This is valid when a single port is selected for an event signal.

event_signal_port_group_bit Specifies, with 8 bits, the pins allocated as port group.
Pins specified as 1 are allocated as a port group.
This is valid when an input port group is selected for the event signal.

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 16 of 46

May.31.23

elc_link_module_t *p_elc_module

Pointer to an event link target setup structure.
Table 3.2 lists the content set in the event link target setup structure.

Table 3.2 Content Set in the Event Link Target Setup Structure (*p_elc_module)

Constant Definition Description

link_module Specifies the peripheral module to link.
See Table 5.4 for the definitions of the peripheral modules that may be
linked.

link_module_timer_operation Specifies the timer operation when an event signal is input.
See Table 5.8 for the definitions of the timer operations.
This is valid when MTU, TMR, or CMT is specified as peripheral
module to be linked.

link_module_output_port_level Specifies the port output operation when an event signal is input.
See Table 5.6 for the definitions of the port output operations.
This is valid when either a single port or an output port group is
selected for the peripheral module to be linked.

link_module_single_port Specifies the pins allocated to the single port. See Table 5.5 for the
single port definitions.
This is valid when a single port is selected for the peripheral module
to be linked.

link_module_port_group_bit Specifies, with 8 bits, the pins allocated as port group.
Pins specified as 1 are allocated as a port group.
This is valid when either an input port group or an output port group
is selected for the peripheral module to be linked.

link_module_port_buffer Specifies write enable/disable for the port buffer.
See Table 5.9 for the definitions of the write enable/disable settings.
This is valid when an input port group is selected for the peripheral
module to be linked.

link_module_interrupt_level Specifies the interrupt priority level when interrupts are used.
This is valid when interrupts are selected for the peripheral module to
be linked.

link_module_callbackfunc Specifies the callback function to be called when an interrupt occurs.
This is valid when interrupts are selected for the peripheral module to
be linked.

Return Values

ELC_SUCCESS /* Normal completion */

ELC_ERR_INVALID_ARG /* Illegal argument */

Properties

The declaration is located in r_elc_rx_if.h.

Description

This function sets up an event link. The event link source and event link target are specified as arguments.

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 17 of 46

May.31.23

Example
Example 1 Event link source: MTU and event link target: DA

This section presents an example in which the MTU is set up as the event link source and the DA is set up
as the event link target.

[Event link source settings]

・event_signal

Specifies the event link source event signal. In example 1, MTU1 compare match 1A is specified as the
event signal.

[Event link target settings]

・link_module

Specifies the event link target. In example 1, DA0 is specified.

The source code for example 1 is shown below.

volatile elc_err_t ret;

elc_event_signal_t event_signal_info;

elc_link_module_t event_module_info;

ret = R_ELC_Open(); /* Initializes the event link. */

if(ELC_SUCCESS != ret)

{

while(1)

{

 /* Error handling is performed if a failure to initialize occurs. */

}

}

/* Link source settings */

event_signal_info.event_signal = ELC_MTU1_CMP1A; /* Specifies MTU1 compare match 1A

 as the link source event signal. */

/* Link target settings */

event_module_info.link_module = ELC_DA0; /* Specifies DA0 as the link target. */

ret = R_ELC_Set(&event_signal_info, &event_module_info); /* Creates an event link between the

 link source and the link target. */

if(ELC_SUCCESS != ret)

{

while(1)

{

/* Error handling is performed if a failure in the event link settings occurs. */

 }

 }

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 18 of 46

May.31.23

Example 2 Event link source: single port and event link target: port group

This section presents an example in which the single port is set up as the event link source and the port
group is set up as the event link target.

[Event link source settings]

・event_signal

Specifies the event link source event signal. In example 2, an event signal consisting of input edge
detection for single input port 2 is specified.

・event_signal_input_port_edge

Specifies input edge detection. In example 2, falling edge detection is specified.

・event_signal_single_port

Specifies which port is used as a single port. In example 2, PE3 is specified.

[Event link target settings]

・link_module

Specifies the event link target. In example 2, output port group 1 (port B) is specified.

・link_module_output_port_level

Specifies the operation when a port output is performed. In example 2, toggle output from the specified
port is specified.

・link_module_port_group_bit

Specifies which pins are used for the port specified as the port group. In example 2, PB0 to PB3 are
specified.

・link_module_port_buffer

Specifies whether writing to the PDBF register is enabled or disabled. In example 2, write enabled is
specified.

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 19 of 46

May.31.23

The source code for example 2 is shown below.

volatile elc_err_t ret;

elc_event_signal_t event_signal_info;

elc_link_module_t event_module_info;

ret = R_ELC_Open(); /* Initializes the event link. */

if(ELC_SUCCESS != ret)

{

while(1)

{

 /* Error handling is performed if a failure to initialize occurs. */

}

}

/* Link source settings */

event_signal_info.event_signal = ELC_PORT_PSP2; /* Specifies single input port 2 input edge

 detection event signal as the link source

 event signal. */

event_signal_info.event_signal_input_port_edge = ELC_EDGE_FALLING; /* Specifies falling edge

 detection. */

event_signal_info.event_signal_single_port = ELC_PSB_PE3; /* Specifies PE3. */

/* Link target settings */

event_module_info.link_module = ELC_OUT_PGR1; /* Specifies output port group (port B)

 as the link target. */

event_module_info.link_module_output_port_level = ELC_PORT_TOGGLE; /* Specifies toggle output. */

event_module_info.link_module_port_group_bit = 0x0F; /* Specifies PB0 to PB3 as the port group. */

ret = R_ELC_Set(&event_signal_info, &event_module_info); /* Creates an event link between the

 link source and the link target. */

if(ELC_SUCCESS != ret)

{

while(1)

{

 /* Error handling is performed if a failure in the event link settings occurs. */

 }

}

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 20 of 46

May.31.23

Example 3 Event link source: port group and event link target: MTU

This section presents an example in which the port group 1 is set up as the event link source and the MTU is
set up as the event link target.

[Event link source settings]

・event_signal

Specifies the event link source event signal. In example 3, an event signal consisting of input edge
detection for input port group 1 (port B) is specified.

・event_signal_input_port_edge

Specifies input edge detection. In example 3, falling edge detection is specified.

・link_module_port_group_bit

Specifies which pins are used for the port specified as the port group. In example 3, PB4 to PB7 are
specified.

[Event link target settings]

・link_module

Specifies the event link target. In example 3, MTU1 is specified.

・link_module_timer_operation

Specifies timer operation for the event link target. In example 3, input capture is specified.

The source code for example 3 is shown below.

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 21 of 46

May.31.23

volatile elc_err_t ret;

elc_event_signal_t event_signal_info;

elc_link_module_t event_module_info;

ret = R_ELC_Open(); /* Initializes the event link. */

if(ELC_SUCCESS != ret)

{

 while(1)

 {

 /* Error handling is performed if a failure to initialize occurs. */

 }

}

/* Link source settings *

event_signal_info.event_signal = ELC_PORT_PGR1; /* Specifies input port group 1 (port B) input

 edge detection event signal as the link source

 event signal. */

event_signal_info.event_signal_input_port_edge = ELC_EDGE_FALLING; /* Specifies falling edge

 detection. */

event_signal_info.event_signal_port_group_bit = 0xF0;/* Specifies PB4 to PB7 as the port group. */

/* Link target settings */

event_module_info.link_module = ELC_MTU1; /* Specifies MTU1 as the link target. */

event_module_info.link_module_timer_operation = ELC_TIMER_INPUT_CAPTURE; /* Specifies input

 capture. */

ret = R_ELC_Set(&event_signal_info, &event_module_info); /* Creates an event link between the

 link source and the link target. */

if(ELC_SUCCESS != ret)

{

 while(1)

 {

 /* Error handling is performed if a failure in the event link settings occurs. */

 }

}

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 22 of 46

May.31.23

Example 4 Event link source: single port and event link target: ELC interrupt
This section presents an example in which the single port is set up as the event link source and the ELC
interrupt is set up as the event link target.
[Event link source settings]

・event_signal

Specifies the event link source event signal. In example 4, an event signal consisting of input edge
detection for single input port 1 is specified.

・event_signal_input_port_edge

Specifies input edge detection. In example 4, falling edge detection is specified.

・event_signal_single_port

Specifies which port is used as a single port. In example 4, port B3 is specified.

[Event link target settings]

・link_module

Specifies the event link target. In example 4, interrupt 1 is specified.

・link_module_callbackfunc

Registers the callback function to be called when an interrupt occurs.

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 23 of 46

May.31.23

The source code for example 4 is shown below.

volatile elc_err_t ret;

elc_event_signal_t event_signal_info;

elc_link_module_t event_module_info;

ret = R_ELC_Open(); /* Initializes the event link. */

if(ELC_SUCCESS != ret)

{

 while(1)

 {

 /* Error handling is performed if a failure to initialize occurs. */

 }

}

/* Link source settings */

event_signal_info.event_signal = ELC_PORT_PSP1; /* Specifies single input port 1 input edge

 detection event signal as the link source

 event signal. */

event_signal_info.event_signal_input_port_edge = ELC_EDGE_FALLING; /* Specifies falling edge

 detection. */

event_signal_info.event_signal_single_port = ELC_PSB_PE3; /* Specifies port E3. */

/* Link target settings */

event_module_info.link_module = ELC_ICU1; /* Specifies ELC interrupt 1 as the link target. */

event_module_info.link_module_interrupt_level = 3; /* Sets the interrupt priority level to 3. */

event_module_info.link_module_callbackfunc = &elc_icu1_callbackfunc; /* Registers a callback

 function. */

ret = R ELC Set(&event signal info, &event module info); /* Creates an event link between the

 link source and the link target. */

if(ELC_SUCCESS != ret)

{

 while(1)

 {

 /* Error handling is performed if a failure in the event link settings occurs. */

 }

}

void elc_icu1_callbackfunc(void *pdata)

{

 /* User processing when an ELC interrupt occurs. */

}

Special Notes:

 This function should be called when the ELC is in the stopped state.
 The event link signals and link target peripheral modules that can be used differ with the device used.
 To start event link operation, set this module to the ELC operating state with the R_ELC_Control()

function (ELC_CMD_START) described later in this document.
 See section 1.5, State Transition Diagram, for details on the ELC FIT module states.
 When an output port group is selected as the link target and bit rotate output is selected as the port

group operation, an initial value must be written to the port buffers in advance.
See section 4.4, Case C Setup Example, for the setup procedure.

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 24 of 46

May.31.23

3.3 R_ELC_Control ()

This function transitions this module to the ELC operating state, clears the event link settings, and generates
port buffer accesses and ELC software events.

Format
elc_err_t R_ELC_Control (
const elc_eventlink_cmd_t command /* Command specification */

void *pdata /* Value that corresponds to the

 specified command. */

)

Parameters
elc_eventlink_cmd_t command

Specifies the command
Table 3.3 lists the commands that can be specified.

Table 3.3 Commands

Command Definition Command Description

ELC_CMD_START Transitions to the ELC operating state.

ELC_CMD_STOP Transitions to the ELC stopped state.

ELC_CMD_CLEAR_EVENTLINK Clears the specified event link.

ELC_CMD_WRITE_PORTBUFFER Writes a value to a port buffer.

ELC_CMD_READ_PORTBUFFER Reads a value from a port buffer.

ELC_CMD_SOFTWARE_EVENT Generates a software event signal.

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 25 of 46

May.31.23

void *pdata

Used as the pointer to the arguments for each command.

The void pointer set to the argument is converted to the appropriate type according to the command used.

Table 3.4 lists the pointer settings for each command.

Table 3.4 Pointer Settings Corresponding to Each Command

Command Definition Type Assigned to
*pdata

Value Assigned to *pdata

ELC_CMD_START - Not used.
Must be set to a FIT_NO_PTR.

ELC_CMD_STOP - Not used.
Must be set to a FIT_NO_PTR.

ELC_CMD_CLEAR_EVENTLINK elc_link_module_t* Pointer variable set to the event link target
peripheral module to be cleared.
See Table 5.4 for the definitions of the
peripheral modules specified.

ELC_CMD_WRITE_PORTBUFFER elc_pdbf_access_t* Pointer variable set to the port buffer to be
accessed and the write value.
See Table 5.11 for the definitions of the
port buffers specified.

ELC_CMD_READ_PORTBUFFER elc_pdbf_access_t* Pointer variable set to the port buffer to be
accessed.

ELC_CMD_SOFTWARE_EVENT - Not used.
Must be set to a FIT_NO_PTR.

Return Values

ELC_SUCCESS /* Normal completion */

ELC_ERR_INVALID_ARG /* Illegal argument */

Properties

The declaration is located in r_elc_rx_if.h.

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 26 of 46

May.31.23

Description

Performs the operation specified by the command. The following commands can be specified.

 Start event link
Transitions the event link to the operating state. Only ELC_SUCCESS is returned.

R_ELC_Control(ELC_CMD_START, FIT_NO_PTR); /* Transitions the event link to the operating state. */

 Stop event link
Transitions the event link to the stopped state. Only ELC_SUCCESS is returned.

R_ELC_Control(ELC_CMD_STOP, FIT_NO_PTR); /* Transitions the event link to the stopped state. */

 Clear event link settings
Clears an event link set up with the R_ELC_Set() function.

volatile elc_err_t ret;

elc_link_module_t elc_clear_module = ELC_ICU1; /* Selects ICU1 as the event link target

 to be cleared. */

ret = R_ELC_Control(ELC_CMD_CLEAR_EVENTLINK, &elc_clear_module); /* Clears the ICU1 event link

 settings. */

 Write port buffer
Writes the specified value to the port buffer.

volatile elc_err_t ret;

elc_pdbf_access_t pdbf_access;

pdbf_access.select_group = ELC_PORT_GROUP1; /* Selects port group 1. */

pdbf_access.value = 0x0F; /* Sets up the write value for the port buffer. */

ret = R_ELC_Control(ELC_CMD_WRITE_PORTBUFFER, &pdbf_access); /* Writes the value to the port

 buffer. */

 Read port buffer
Reads the value from the port buffer.
The value read is stored in the value element of the elc_pdbf_access_t structure passed as an argument.
Only use this value after confirming that the return value from the R_ELC_Control() function was
ELC_SUCCESS.

volatile elc_err_t ret;

uint8_t read_pdbf_value;

elc_pdbf_access_t pdbf_access;

pdbf_access.select_group = ELC_PORT_GROUP1; /* Selects port group 1. */

ret = R_ELC_Control(ELC_CMD_READ_PORTBUFFER, &pdbf_access); /* Reads from the port buffer. */

if(ELC_SUCCESS == ret){ /* Did the port buffer read succeed? */

 read_pdbf_value = pdbf_access.value; /* Get value read from the port buffer. */

}

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 27 of 46

May.31.23

 Generate software event
Software events can be generated.
When a software event is to be generated, first set the link source to software event with the
R_ELC_Set() function. Only ELC_SUCCESS is returned.

R ELC Control(ELC CMD SOFTWARE EVENT, FIT NO PTR);

Example

volatile elc_err_t ret;

elc_event_signal_t event_signal_info;

elc_link_module_t event_module_info;

elc_module_t elc_clear_module

uint8_t pipr;

ret = R_ELC_Open(); /* Initializes the event link. */

if(ELC_SUCCESS != ret)

{

 while(1)

 {

 /* Error handling is performed if a failure to initialize occurs. */

 }

}

vent_signal_info.event_signal = ELC_ELC_SEG; /* Specifies software event as the link

 source event signal. */

event_module_info.link_module = ELC_ ICU1; /* Specifies ELC interrupt 1 as the link

 target. */

event_module_info.link_module_interrupt_level = 3; /* Sets the interrupt priority level to 3. */

event_module_info.link_module_callbackfunc = &elc_icu1_callbackfunc; /* Registers a callback

 function. */

ret = R_ELC_Set(&event_signal_info, &event_module_info); /* Creates an event link between the

 link source and the link target. */

if(ELC_SUCCESS != ret)

{

 while(1)

 {

 /* Error handling is performed if a failure in the event link settings occurs. */

 }

}

R ELC Control(ELC CMD START,FIT NO PTR); /* Transitions the ELC to the operating state. */

R ELC Control(ELC CMD SOFTWARE EVENT, FIT NO PTR); /* Generates a software event. */

elc_clear_module = ELC_ICU1; /* Selects ELC interrupt 1 for the event link

 target to be cleared. */

R_ELC_Control(ELC_CMD_CLEAR_EVENTLINK, &elc_clear_module); /* Clears the event link setting for

 ELC interrupt 1. */

R ELC Control(ELC CMD STOP, FIT NO PTR); /* Transitions the ELC to the stopped state.*/

Special Notes:

 If event link start is specified as the command, call this function if the ELC is in the stopped state.
 If event link stop is specified as the command, call this function if the ELC is in the operating state.
 If software event is specified as the command, call this function if the ELC is in the operating state.
 See section 1.5, State Transition Diagram, for details on the ELC FIT module states.

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 28 of 46

May.31.23

3.4 R_ELC_Close ()

Sets the ELC to the terminated state.

Format
elc_err_t R_ELC_Close (void)

Parameters
None

Return Values
ELC_SUCCESS /* Normal completion */

Properties
The declaration is located in r_elc_rx_if.h.

Description ELC
Closes the ELC module.

Example

R_ELC_Close(); /* Terminates operation of the set event link. */

Special Notes:
None

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 29 of 46

May.31.23

3.5 R_ELC_GetVersion ()

Returns the version number of the API.

Format
uint32_t R_ELC_GetVersion(void)

Parameters
None

Return Values
Version Number

Properties
The declaration is located in r_elc_rx_if.h.

Description
Returns the version number of this API.

Special Notes:
None

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 30 of 46

May.31.23

4. Setup Procedure Examples

4.1 Setup Procedure

The ELC setup procedure is shown below.

Step 1. Set up the module used as the event link target.

If an output port group bit rotate operation is selected as the event link target, the port buffer is also
set up.
If an RTC or LVD is used as the event link source, that RTC or LVD is also set up.

Step 2. Set up the ELC.
Step 3. Set up the module used as the event link target.

(This step is omitted if an RTC or LVD is used.)
Step 4. Start the module used as the event link source.

The following part of this section presents the setup procedures for three cases, A to C, using the ELC FIT
module.

Case A: When a module other than an RTC or LVD is used as the event link source.
Case B: When an RTC or LVD module is used as the event link source.
Case C: When an output port group bit rotate operation is selected as the event link target.

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 31 of 46

May.31.23

4.2 Case A Setup Example

The settings for case A are performed in the sequence of first setting up the event link target module, then
setting up the ELC, and then setting up the event link source module.
This section presents an ELC setup example under the following conditions.

 Target device : RX23E-B Group
 Event link source : CMT compare match 1 event signal
 Event link target : S12AD (Scan started by an event link signal from the ELC)

In this example, the CMT FIT module Rev. 5.50 and the S12AD FIT module Rev. 5.20 are used.

#include “r_elc_rx_if.h”

#include “r_s12ad_rx_if.h”

#include "r_cmt_rx_if.h"

void main(void);

void adc_int_callback(void *p_args);

void main()

{

 bool cmt_result;

 elc_event_signal event_signal_info;

 elc_link_module_t event_module_info;

 elc_err_t elc_result;

 adc_cfg_t my_adc_cfg;

 adc_ch_cfg_t my_adc_ch_cfg;

 adc_err_t adc_result;

 /* Event link target (S12AD) settings */

 my_adc_cfg.conv_speed = ADC_CONVERT_SPEED_DEFAULT;

 my_adc_cfg.alignment = ADC_ALIGN_RIGHT;

 my_adc_cfg.add_cnt = ADC_ADD_OFF;

 my_adc_cfg.clearing = ADC_CLEAR_AFTER_READ_OFF;

 my_adc_cfg.trigger = ADC_TRIG_SYNC_ELC; /* Specifies event input from the ELC

 as the A/D conversion trigger. */

 my_adc_cfg.priority = 3;

 adc_result = R_ADC_Open(0, ADC_MODE_SS_ONE_CH, &my_adc_cfg, &adc_int_callback);

 my_adc_ch_cfg.chan_mask = ADC_MASK_CH0;

 my_adc_ch_cfg.chan_mask_groupb = ADC_MASK_GROUPB_OFF;

 my_adc_ch_cfg.priority_groupa = ADC_GRPA_PRIORITY_OFF;

 my_adc_ch_cfg.diag_method = ADC_DIAG_OFF; my_adc_ch_cfg.add_mask = 0;

 my_adc_ch_cfg.signal_elc = ADC_ELC_ALL_SCANS_DONE;

 adc_result = R_ADC_Control(0, ADC_CMD_ENABLE_CHANS, &my_adc_ch_cfg);

 adc_result = R_ADC_Control(0, ADC_CMD_ENABLE_TRIG, NULL);

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 32 of 46

May.31.23

 /* ELC settings */

 elc_result = R_ELC_Open();

 event_signal_info.event_signal = ELC_CMT_CMP1;

 event_module_info.link_module = ELC_S12AD;

 elc_result = R_ELC_Set(&event_signal_info,&event_module_info);

 /* When using multiple ELC settings, the R_ELC_Set() function should be called before calling

 the R_ELC_Control() function. */

 elc_result = R_ELC_Control(ELC_CMD_START, FIT_NO_PTR);

 /* Event link source (CMT1) settings */

 cmt_result = R_CMT_CreatePeriodicAssignChannelPriority(10, NULL, 1, 0);

 while(1)

 {

 /* Main loop */

 }

}

void adc_int_callback(void *p_args)

{

 /* A/D conversion completing interrupt handling */

}

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 33 of 46

May.31.23

4.3 Case B Setup Example

In case B, the event link source is set up before setting up the ELC. The sample code for the case where the
RTC (periodic event signal) is the event link source and the S12AD (scan started by a trigger from the ELC)
is the event link target.
This section presents an ELC setup example under the following conditions.

 Target device : RX231 Group
 Event link source : RTC period (1 second)
 Event link target : S12AD (Scan started by an event link signal from the ELC)

In this example, the RTC FIT module Rev. 2.90 and the S12AD FIT module Rev. 5.20 are used.

#include “r_elc_rx_if.h”

#include “r_rtc_rx_if.h”

#include “r_s12ad_rx_if.h”

void main(void);

void adc_int_callback(void *p_args);

void rtc_int_callback(void *p_args);

void main()

{

 adc_cfg_t my_adc_cfg;

 adc_ch_cfg_t my_adc_ch_cfg;

 adc_err_t adc_result;

 elc_event_signal_t event_signal_info;

 elc_link_module_t event_module_info;

 elc_err_t elc_result;

 rtc_init_t rtc_init; rtc_err_t rtc_result;

 /* set the current date & time to be Aug 31, 2015 (Monday) 11:59:20pm */

 tm_t init_time =

 {

 20, //Second

 59, //Minutes

 23, //Hours

 31, //Day of month

 (8-1), //Month

 115, //Years since 1900

 1, //Day of week

 0, //

 0, //Daylight savings disabled

};

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 34 of 46

May.31.23

 /* Event link source (RTC) settings */

 rtc_init.output_freq = RTC_OUTPUT_OFF;

 rtc_init.periodic_freq = RTC_PERIODIC_1_HZ;

 rtc_init.periodic_priority = 1;

 rtc_init.set_time = true;

 rtc_init.p_callback = rtc_int_callback;

 rtc_result = R_RTC_Open(&rtc_init, &init_time);

 /* Event link target (S12AD) settings */

 my_adc_cfg.conv_speed = ADC_CONVERT_SPEED_DEFAULT;

 my_adc_cfg.alignment = ADC_ALIGN_RIGHT;

 my_adc_cfg.add_cnt = ADC_ADD_OFF;

 my_adc_cfg.clearing = ADC_CLEAR_AFTER_READ_OFF;

 my_adc_cfg.trigger = ADC_TRIG_SYNC_ELC; /* Specifies event input from the

 ELC as the A/D conversion trigger. */

 my_adc_cfg.priority = 3;

 adc_result = R_ADC_Open(0, ADC_MODE_SS_ONE_CH, &my_adc_cfg, &adc_int_callback);

 my_adc_ch_cfg.chan_mask = ADC_MASK_CH0;

 my_adc_ch_cfg.chan_mask_groupb = ADC_MASK_GROUPB_OFF;

 my_adc_ch_cfg.priority_groupa = ADC_GRPA_PRIORITY_OFF;

 my_adc_ch_cfg.diag_method = ADC_DIAG_OFF;

 my_adc_ch_cfg.add_mask = 0;

 my_adc_ch_cfg.signal_elc = ADC_ELC_ALL_SCANS_DONE;

 adc_result = R_ADC_Control(0, ADC_CMD_ENABLE_CHANS, &my_adc_ch_cfg);

 adc_result = R_ADC_Control(0, ADC_CMD_ENABLE_TRIG, NULL);

 /* ELC settings */

 elc_result = R_ELC_Open();

 event_signal_info.event_signal = ELC_RTC_PRD;

 event_module_info.link_module = ELC_S12AD;

 elc_result = R_ELC_Set(&event_signal_info, &event_module_info);

 /* When using multiple ELC settings, the R_ELC_Set() function should be called before calling

 the R_ELC_Control() function. */

 elc_result = R_ELC_Control(ELC_CMD_START, FIT_NO_PTR);

 while(1)

 {

 /* Perform an A/D conversion at each period set up in the RTC. */

 }

}

void adc_int_callback(void *p_args)

{

 /* A/D conversion completing interrupt handling */

}

void rtc_int_callback(void *p_args)

{

 /* No processing required. */

}

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 35 of 46

May.31.23

4.4 Case C Setup Example

In case C, the initial value for the output port group is set before setting up the ELC. The sample code, which
sets the event link source to be software events and sets up bit rotate operation for output port group 1,
which is the event link target is shown below.

#include “r_elc_rx_if.h”

void main(void);

void main()

{

 elc_event_signal_t event;

 elc_link_module_t link;

 elc_pdbf_access_t pdbf;

 elc_err_t elc_err;

 PORTB.PDR.BYTE = 0x0F; /* Sets the port group 1 (PORTB) pins to output. */

 PORTB.PODR.BYTE = 0x00; /* Sets the port group 1 (PORTB) pins to low. */

 /* ELC settings */

 elc_err = R_ELC_Open();

 event.event_signal = ELC_ELC_SEG; /* Sets software triggers to be the event link source. */

 link.link_module = ELC_OUT_PGR1; /* Sets output port group 1 as the event link target. */

 link.link_module_output_port_level = ELC_PORT_ROTATE; /* Rotate output */

 link.link_module_port_group_bit = (uint8_t)0x0F; /* Sets the data to be rotated in PB3to PB0. */

 /* Sets rotate output as the initial value in the PDBF1 register before setting up the

 event link. */

 pdbf.select_group = ELC_PORT_GROUP1;

 pdbf.value = 0x08;

 elc_err = R_ELC_Control(ELC_CMD_WRITE_PORTBUFFER, &pdbf);

 elc err = R ELC Set(&event, &link); /* Sets up the event link. */

 elc_err = R_ELC_Control(ELC_CMD_START, FIT_NO_PTR); /* Transitions the module to the ELC

 operating state. */

 while(1)

 {

 R_ELC_Control(ELC_CMD_SOFTWARE_EVENT, FIT_NO_PTR);

 /* Each time a software trigger occurs, the value set in the PDBF1 register is rotated across

 PB3 to PB0, from MSB to LSB. */

 }

}

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 36 of 46

May.31.23

5. Appendices

5.1 Definitions

The table below lists the definitions used as the arguments to each function.

Table 5.1 Event Link Signal Definitions (1/3)

Definition Description

ELC_MTU0_CMP0A MTU0: compare match 0A event signal

ELC_MTU0_CMP0B MTU0: compare match 0B event signal

ELC_MTU0_CMP0C MTU0: compare match 0C event signal

ELC_MTU0_CMP0D MTU0: compare match 0D event signal

ELC_MTU0_CMP0E MTU0: compare match 0E event signal

ELC_MTU0_CMP0F MTU0: compare match 0F event signal

ELC_MTU0_OVF MTU0: overflow event signal

ELC_MTU1_CMP1A MTU1: compare match 1A event signal

ELC_MTU1_CMP1B MTU1: compare match 1B event signal

ELC_MTU1_OVF MTU1: overflow event signal

ELC_MTU1_UDF MTU1: underflow event signal

ELC_MTU2_CMP2A MTU2: compare match 2A event signal

ELC_MTU2_CMP2B MTU2: compare match 2B event signal

ELC_MTU2_OVF MTU2: overflow event signal

ELC_MTU2_UDF MTU2: underflow event signal

ELC_MTU3_CMP3A MTU3: compare match 3A event signal

ELC_MTU3_CMP3B MTU3: compare match 3B event signal

ELC_MTU3_CMP3C MTU3: compare match 3C event signal

ELC_MTU3_CMP3D MTU3: compare match 3D event signal

ELC_MTU3_OVF MTU3: overflow event signal

ELC_MTU4_CMP4A MTU4: compare match 4A event signal

ELC_MTU4_CMP4B MTU4: compare match 4B event signal

ELC_MTU4_CMP4C MTU4: compare match 4C event signal

ELC_MTU4_CMP4D MTU4: compare match 4D event signal

ELC_MTU4_OVF MTU4: overflow event signal

ELC_MTU4_UDF MTU4: underflow event signal

ELC_CMT_CMP1 CMT1: compare match 1 event signal

ELC_TMR0_CMPA0 TMR0: compare match A0 event signal

ELC_TMR0_CMPB0 TMR0: compare match B0 event signal

ELC_TMR0_OVF TMR0: overflow event signal

ELC_TMR1_CMPA1 TMR1: compare match A1 event signal

ELC_TMR1_CMPB1 TMR1: compare match B1 event signal

ELC_TMR1_OVF TMR1: overflow event signal

ELC_TMR2_CMPA2 TMR2: compare match A2 event signal

ELC_TMR2_CMPB2 TMR2: compare match B2 event signal

ELC_TMR2_OVF TMR2: overflow event signal

ELC_TMR3_CMPA3 TMR3: compare match A3 event signal

ELC_TMR3_CMPB3 TMR3: compare match B3 event signal

ELC_TMR3_OVF TMR3: overflow event signal

Note 1. When this event signal is used, the setup procedure sequence differs from that for other event

signals. See case B in section 4, Setup Procedure Examples for details.

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 37 of 46

May.31.23

Table 5.2 Event Link Signal Definitions (2/3)

Definition Description

ELC_RTC_PRD RTC: periodic event signal*1

ELC_IWDT_UDF IWDT: Underflow refresh error event signal

ELC_LPT_CMP0 LPT: compare match 0

ELC_LPT_CMP1 LPT: compare match 1

ELC_S12AD_WMELC S12AD: Comparison condition met

ELC_S12AD_WUMELC S12AD: Comparison condition not met

ELC_SCI5_ER5 SCI5: Error (reception error, error signal detected) event signal

ELC_SCI5_RX5 SCI5: Receive data full event signal

ELC_SCI5_TX5 SCI5: Transmit data empty event signal

ELC_SCI5_TE5 SCI5: Transmit complete event signal

ELC_RIIC0_ER0 RIIC0: Communication error, event occurrence signal

ELC_RIIC0_RX0 RIIC0: Receive data full event signal

ELC_RIIC0_TX0 RIIC0: Transmit data empty event signal

ELC_RIIC0_TE0 RIIC0: Transmit terminated event signal

ELC_RSPI0_ER0 RSPI0: Error (mode fault, overrun, underrun, or parity error) event
signal

ELC_RSPI0_IDLE RSPI0: Idle event signal

ELC_RSPI0_RX0 SPI0: Receive data full event signal

ELC_RSPI0_TX0 RSPI0: Transmit data empty event signal

ELC_RSPI0_TE0 RSPI0: Transmit complete event signal

ELC_S12AD_S12AD0 S12AD: A/D conversion complete event signal

ELC_CMPB_CMPB0 Comparator B0: Comparison result change

ELC_CMPB_CMPB0_CMPB1 Comparator B0/B1 common comparison result change

ELC_LVD1_LVD1 LVD1: Voltage detection event signal*1

ELC_LVD2_LVD2 LVD2: Voltage detection event signal*1

ELC_DMAC0_DMAC0 DMAC0: Transfer complete event signal

ELC_DMAC1_DMAC1 DMAC1: Transfer complete event signal

ELC_DMAC2_DMAC2 DMAC2: Transfer complete event signal

ELC_DMAC3_DMAC3 DMAC3: Transfer complete event signal

ELC_DTC_DTC DTC: Transfer complete event signal

ELC_CGC_OSTD Clock generator circuit: Input edge detection event signal

ELC_PORT_PGR1 Input port group 1: input edge detection event signal

ELC_PORT_PGR2 Input port group 2: input edge detection event signal

ELC_PORT_PSP0 Single input port 0: input edge detection event signal

ELC_PORT_PSP1 Single input port 1: input edge detection event signal

ELC_PORT_PSP2 Single input port 2: input edge detection event signal

ELC_PORT_PSP3 Single input port 3: input edge detection event signal

ELC_ELC_SEG Software event

ELC_DOC_DOPCF DOC: Data calculation result signal

Note 1. When this event signal is used, the setup procedure sequence differs from that for other event

signals. See case B in section 4, Setup Procedure Examples for details.

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 38 of 46

May.31.23

Table 5.3 Event Link Signal Definitions (3/3)

Definition Description

ELC_S12AD_S12AD1 S12AD1: A/D conversion complete event signal

ELC_CMT_CMPW CMTW: channel0: compare match signal

ELC_TPU0_CMPA TPU0: compare match A event signal

ELC_TPU0_CMPB TPU0: compare match B event signal

ELC_TPU0_CMPC TPU0: compare match C event signal

ELC_TPU0_CMPD TPU0: compare match D event signal

ELC_TPU0_OVF TPU0: overflow event signal

ELC_TPU1_CMPA TPU1: compare match A event signal

ELC_TPU1_CMPB TPU1: compare match B event signal

ELC_TPU1_OVF TPU1: overflow event signal

ELC_TPU1_UDF TPU1: underflow event signal

ELC_TPU2_CMPA TPU2: compare match A event signal

ELC_TPU2_CMPB TPU2: compare match B event signal

ELC_TPU2_OVF TPU2: overflow event signal

ELC_TPU2_UDF TPU2: underflow event signal

ELC_TPU3_CMPA TPU3: compare match A event signal

ELC_TPU3_CMPB TPU3: compare match B event signal

ELC_TPU3_CMPC TPU3: compare match C event signal

ELC_TPU3_CMPD TPU3: compare match D event signal

ELC_TPU3_OVF TPU3: overflow event signal

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 39 of 46

May.31.23

Table 5.4 Event Link Target Peripheral Module Definitions

Definition Description

ELC_MTU0 MTU0

ELC_MTU1 MTU1

ELC_MTU2 MTU2

ELC_MTU3 MTU3

ELC_MTU4 MTU4

ELC_CMT1 CMT1

ELC_ICU_LPT ELC interrupt (LPT only)
ELC_TMR0 TMR0

ELC_TMR1 TMR1

ELC_TMR2 TMR2

ELC_TMR3 TMR3

ELC_CTSU CTSU

ELC_S12AD S12AD

ELC_DA0 DA0

ELC_ICU1 ELC interrupt 1

ELC_ICU2 ELC interrupt 2

ELC_OUT_PGR1 Output port group 1

ELC_OUT_PGR2 Output port group 2

ELC_IN_PGR1 Input port group 1

ELC_IN_PGR2 Input port group 2

ELC_PSP0 Single port 0

ELC_PSP1 Single port 1

ELC_PSP2 Single port 2

ELC_PSP3 Single port 3

ELC_CGC_LOCO Clock generator circuit (clock source switched to LOCO)

ELC_POE POE

ELC_CMTW0 CMTW0

ELC_TPU0 TPU0

ELC_TPU1 TPU1

ELC_TPU2 TPU2

ELC_TPU3 TPU3

ELC_S12AD1 S12AD1

ELC_DSAD0 DSAD0

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 40 of 46

May.31.23

Table 5.5 Event Connection Port Selection Definitions

Definition Description

ELC_PSB_PB0 Selects port B0 as the single port
ELC_PSB_PB1 Selects port B1 as the single port

ELC_PSB_PB2 Selects port B2 as the single port

ELC_PSB_PB3 Selects port B3 as the single port

ELC_PSB_PB4 Selects port B4 as the single port

ELC_PSB_PB5 Selects port B5 as the single port

ELC_PSB_PB6 Selects port B6 as the single port

ELC_PSB_PB7 Selects port B7 as the single port

ELC_PSB_PE0 Selects port E0 as the single port

ELC_PSB_PE1 Selects port E1 as the single port

ELC_PSB_PE2 Selects port E2 as the single port

ELC_PSB_PE3 Selects port E3 as the single port

ELC_PSB_PE4 Selects port E4 as the single port

ELC_PSB_PE5 Selects port E5 as the single port

ELC_PSB_PE6 Selects port E6 as the single port

ELC_PSB_PE7 Selects port E7 as the single port

Table 5.6 Single Port/Port Group Operation by Event Link Signal Selection Definitions

Definition Description

ELC_PORT_LOW Low-level output from specified port

ELC_PORT_HIGH High-level output from specified port

ELC_PORT_TOGGLE Toggle output from specified port

ELC_PORT_BUFFER Port buffer value output from specified port*1

ELC_PORT_ROTATE Bit rotate output from specified port*1*2

Note 1. This may only be selected when output port group operation is selected. Do not select this when

single port output is used.

Note 1. An initial value must be written in advance to the port buffers when output port group is selected as

the event link target peripheral module and bit rotate output is selected as the port group output.

 See section 4.4, Case C Setup Example.

Table 5.7 External Input Signal Edge Selection Definitions

Definition Description

ELC_EDGE_RISING Detect rising edge on the external input signal

ELC_EDGE_FALLING Detect falling edge on the external input signal

ELC_EDGE_RISING_AND_FALLING Detect both rising and falling edges on the external input signal

Table 5.8 Timer Operation by Event Link Signal Selection Definitions

Definition Description

ELC_TIMER_START Timer start

ELC_TIMER_RESTART Timer restart

ELC_TIMER_INPUT_CAPTURE Input capture

ELC_TIMER_DISABLED Event disabled

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 41 of 46

May.31.23

Table 5.9 Port Buffer Write Enable/Disable Setting Definitions

Definition Description

ELC_PDBF_OVERWRITE_ENABLE Enable port buffer write

ELC_PDBF_OVERWRITE_DISABLE Disable port buffer write

 Table 5.10 Definitions for the Commands Used with the Control Function

Definition Description

ELC_CMD_START Transitions to the ELC operating state

ELC_CMD_STOP Transitions to the ELC stopped state

ELC_CMD_CLEAR_EVENTLINK Clears the event link settings for the specified module

ELC_CMD_WRITE_PORTBUFFER Writes a value to the port buffer

ELC_CMD_READ_PORTBUFFER Reads a value from the port buffer

ELC_CMD_SOFTWARE_EVENT Generates a software event signal.

Table 5.11 Port Group Selection Definitions

Definition Description

ELC_PORT_GROUP1 Selects port group 1

ELC_PORT_GROUP2 Selects port group 2

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 42 of 46

May.31.23

5.2 Operation Confirmation Environment

This section describes operation confirmation environment for the ELC FIT module.

Table 5.12 Operation Confirmation Environment (Rev. 3.00)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio Version 2022-10
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

GCC for Renesas RX 8.3.0.202202
Compiler option: The following option is added to the default settings of the
integrated development environment.

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development environment.

Endian Big endian/little endian

Revision of the module Rev3.00

Board used Renesas Solution Starter Kit for RX23E-B (product No.: RTK0ES1001C00001BJ)

Table 5.13 Operation Confirmation Environment (Rev. 2.01)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio Version 2021-07
IAR Embedded Workbench for Renesas 4.20.01

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00 Compiler
option: The following option is added to the default settings of the integrated
development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.20.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module Rev2.01

Board used Target board for RX140 (product No.: RTK5RX140xxxxxxxxx)

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 43 of 46

May.31.23

Table 5.14 Operation Confirmation Environment (Rev. 2.00)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio Version 7.7.0
IAR Embedded Workbench for Renesas 4.14.01

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00 Compiler
option: The following option is added to the default settings of the integrated
development environment.
-lang = c99

GCC for Renesas RX 8.03.00.201904
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.14.01
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module Rev2.00

Board used Renesas Solution Starter Kit for RX23W (product No.: RTK5523Wxxxxxxxxxx)
Renesas Starter Kit for RX130 (product No.: RTK5005130xxxxxxxx)
Renesas Starter Kit for RX231 (product No.: R0K505231xxxxxx)
Renesas Starter Kit+ for RX65N (product No.: RTK500565Nxxxxxxxx)

Table 5.15 Operation Confirmation Environment (Rev. 1.21)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio Version 7.3.0

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00

Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian

Revision of the module Rev1.21

Table 5.16 Operation Confirmation Environment (Rev. 1.20)

Item Contents

Integrated development
environment

Renesas Electronics e2 studio Version 6.0.0

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V2.07.00

Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian

Revision of the module Rev1.20

Board used Renesas Starter Kit+ for RX65N-2MB (product No.:RTK50565N2SxxxxxBE)

Renesas Starter Kit for RX130-512KB (product No.: RTK5051308SxxxxxBE)

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 44 of 46

May.31.23

5.3 Troubleshooting

(1) Q: I have added the FIT module to the project and built it. Then I got the error: Could not open source file
“platform.h”.

 A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:

⚫ Using CS+:

 Application note “Adding Firmware Integration Technology Modules to CS+ Projects (R01AN1826)”

⚫ Using e2 studio:

Application note “Adding Firmware Integration Technology Modules to Projects (R01AN1723)”

When using this FIT module, the board support package FIT module (BSP module) must also be added to
the project. Refer to the application note “Board Support Package Module Using Firmware Integration
Technology (R01AN1685)”.

(2) Q: I have added the FIT module to the project and built it. Then I got the error: This MCU is not supported
by the current r_elc_rx module.

 A: The FIT module you added may not support the target device chosen in your project. Check the
supported devices of added FIT modules.

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 45 of 46

May.31.23

Revision History

Rev. Date

Description

Page Summary

1.00 Jul. 20, 2016 — First edition issued
1.10 Oct. 01. 2016 1,8,10,33,

35,36

Added support for RX65N

1.20 July. 24, 2017 — Added support for RX130-512KB and RX65N-2MB.
 7 2.6 Interrupt Vector: Added.
 11 2.12 Adding the FIT Module to Your Project: Revised.
 39 5.2 Operation Confirmation Environment: Added.
 40 5.3 Troubleshooting: Added.
1.21 Apr. 01, 2019 — Changes associated with functions:

Added support setting function of configuration option Using
GUI on Smart Configurator.
[Description]

Added a setting file to support configuration option setting

function by GUI.

 3 Changed 1.1 ELC FIT Module.
 5 Moved 1.3 API Overview.
 8 Moved 2.5 Header Files.

Moved 2.6 Integer Types.

 9 Changed 2.8 Code Size.
 10 Changed 2.9 Parameters.

Changed 2.10 Return Values.

 11 Changed 2.11 Callback Functions.

Changed 2.12 Adding the FIT Module to Your Project.

 40 5.2 Operation Confirmation Environment:

Added table for Rev.1.21.

2.00 Jun. 10, 2020 — Added support for RX23W
Modified comment of API function to Doxygen style. Update the
following compilers
- GCC for Renesas RX
- IAR C/C++ Compiler for Renesas RX.

 1 Added Target Compilers.
 1 Related Documents: Deleted the following documents

Firmware Integration Technology User’s Manual (R01AN1833)
RX Family Adding Firmware Integration Technology Modules to
Projects (R01AN1723)

RX Family Adding Firmware Integration Technology Modules to

CS+ Projects (R01AN1826)

 8 Added revision of dependent r_bsp module in 2.2 Software
Requirements.

 8 2.4 Interrupt Vector: RX23W added.

Table 2.1 Interrupt Vector Used in the ELC FIT Module

 10 Changed 2.8 Code Size.
 13 Changed 2.12 Adding the FIT Module to Your Project.
 14..29 Deleted the Reentrant for each API in 3. API Functions.
 42 5.2 Operation Confirmation Environment:

Added table for Rev.2.00.

 43 5.3 Troubleshooting: Changed.

RX Family ELC Module Using Firmware Integration Technology

R01AN3066EJ0300 Rev.3.00 Page 46 of 46

May.31.23

Rev. Date

Description

Page Summary

2.00 Jun. 10, 2020 Program Fixed the following. [Target device]
All devices. [Description]
Changed processing so that there is a register that may be
accessed from multiple peripheral functions at the same time,
and the atomicity of writing to that register can be ensured.

2.01 Jul. 31. 2021 — Added support for RX140
 8 2.4 Interrupt Vector: RX140 added.

Table 2.1 Interrupt Vector Used in the ELC FIT Module

 12 Changed 2.11 Callback Functions.
 37 LPT compare match 1 added.

Table 5.15 Event Link Signal Definitions (1/3)

3.00 May. 31. 2023 — Added support for RX23E-B

 8 2.4 Interrupt Vector: RX23E-B added.

Table 2.1 Interrupt Vector Used in the ELC FIT Module

 10 Changed 2.8 Code Size.

 31 Changed 4.4 Case A Setup Example.

 39 Table 5.4 Event Link Target Peripheral Module Definitions:
ELC_DSAD0 added.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a

system-evaluation test for the given product.

© 2023 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics

disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product

that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but

not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 ELC FIT Module
	1.2 Overview of the ELC FIT Module
	1.3 API Overview
	1.4 Processing Example
	1.5 State Transition Diagram

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchain
	2.4 Interrupt Vector
	2.5 Header Files
	2.6 Integer Types
	2.7 Configuration Overview
	2.8 Code Size
	2.9 Parameters
	2.10 Return Values
	2.11 Callback Functions
	2.12 Adding the FIT Module to Your Project

	3. API Functions
	3.1 R_ELC_Open ()
	3.2 R_ELC_Set ()
	3.3 R_ELC_Control ()
	3.4 R_ELC_Close ()
	3.5 R_ELC_GetVersion ()

	4. Setup Procedure Examples
	4.1 Setup Procedure
	4.2 Case A Setup Example
	4.3 Case B Setup Example
	4.4 Case C Setup Example

	5. Appendices
	5.1 Definitions
	5.2 Operation Confirmation Environment
	5.3 Troubleshooting

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

