
 APPLICATION NOTE

R01AN2472EU0571 Rev.5.71 Page 1 of 63
Mar.15.25

RX Family
CAN API Using Firmware Integration Technology
Introduction
The Renesas CAN Application Programming Interface enables you to send, receive, and monitor data on the
CAN bus. This manual explains the usage of this API and some of the features of the CAN peripheral.

Bundled with this application note comes the CAN API driver source code files. Demonstration source code
for the API is included in the download, the demo code essentially being in can_api_demo.c, and switches.c.
The demo allows the user to press board switches to send CAN frames and to change demo receive and
transmit CAN IDs.

Target Devices
The following is a list of devices that are currently supported by this API:

• RX64M Group

• RX71M Group

• RX65N, RX651 Groups

• RX66T Group

• RX66N Group

• RX671 Group

• RX72T Group

• RX72M Group

• RX72N Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Target Compilers
• Renesas Electronics C/C++ Compiler Package for RX Family

• GCC for Renesas RX

• IAR C/C++ Compiler for Renesas RX

For details of the confirmed operation contents of each compiler, refer to “10.1 Confirmed Operation
Environment.”

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 2 of 63
Mar.15.25

Contents

1. Overview ... 4
1.1 Basics .. 4
1.2 Communication Layers .. 4
1.3 Using the FIT CAN module ... 5
1.3.1 Using FIT CAN module in C++ project .. 5
1.4 Physical Connection .. 5
1.5 The CAN Mailbox .. 5
1.6 Extended CAN ... 5

2. API Information .. 6
2.1 Hardware Requirements ... 6
2.2 Hardware Resource Requirements ... 6
2.2.1 Peripheral Required .. 6
2.2.2 Other Peripherals Used ... 6
2.3 Software Requirements ... 6
2.4 Limitations ... 6
2.4.1 RAM Location Limitations .. 6
2.5 Supported Toolchain ... 6
2.6 Interrupt Vector .. 6
2.7 Header Files .. 6
2.8 Integer Types ... 7
2.9 Configuration ... 7
2.9.1 Interrupt vs. Polled Mode and CAN Interrupt Level & generation Timing ... 7
2.9.2 Standard & Extended CAN IDs ... 7
2.9.3 CAN Channel enabling and Pin Mapping .. 8
2.9.4 Max Register Poll Time ... 9
2.10 Code Size .. 9
2.11 Adding the CAN FIT Module to Your Project .. 10
2.12 “for”, “while” and “do while” statements ... 10

3. The CAN API ... 11
Summary ... 11
Return Codes ... 12
R_CAN_Create .. 13
R_CAN_PortSet ... 15
R_CAN_Control ... 16
R_CAN_SetBitrate ... 17
R_CAN_TxSet and R_CAN_TxSetXid .. 20
R_CAN_Tx ... 22
R_CAN_TxCheck .. 23

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 3 of 63
Mar.15.25

R_CAN_TxStopMsg .. 24
R_CAN_RxSet and R_CAN_RxSetXid ... 25
R_CAN_RxPoll .. 26
R_CAN_RxRead .. 27
R_CAN_RxSetMask .. 28
R_CAN_CheckErr .. 30
R_CAN_RxSetFIFO and R_CAN_RxSetFIFOXid ... 33

4. Pin Setting ... 35

5. Demo Projects ... 36
5.1 Adding a Demo to a Workspace .. 36
5.1.1 Import and Debug Project with e2 studio ... 36
5.1.2 Run Demo ... 37
5.2 The Renesas Debug Console ... 38

6. Test Modes .. 39
6.1 Loopback ... 39
6.1.1 Internal - Test node without CAN bus ... 39
6.1.2 External - Test node on bus .. 39
6.2 Listen Only = Bus Monitoring .. 40

7. Time Stamp ... 41

8. CAN Sleep Mode ... 42

9. CAN FIFO .. 43

10. Appendices .. 44
10.1 Confirmed Operation Environment .. 44
10.2 Troubleshooting ... 56
10.3 API Functions Changes from Rev. 3.20 to Rev. 4.00 ... 56
10.4 API Functions Changes from Rev. 4.10 to Rev. 5.00 ... 56
10.5 API Functions Changes from Rev. 5.00 to Rev. 5.10 ... 56
10.6 API Functions Changes from Rev. 5.50 to Rev. 5.60 ... 57

Related Technical Updates ... 58

Revision History .. 59

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 4 of 63
Mar.15.25

1. Overview
The RX CAN peripheral has 32 CAN mailboxes with which it can communicate on a CAN bus. The term
‘mailbox’, or in some literature ‘message box’ or ‘message buffer’ refers to the physical location where
messages are stored inside the MCU’s CAN peripheral. In this document we will use the term ‘mailbox’. The
mailboxes are message ‘buffers’ and will hold a CAN data frame until overwritten by either incoming data, or
rewritten by the MCU.

Each mailbox can be configured dynamically to transmit or receive. Most are usually configured to receive
and fewer to transmit, but this is completely flexible.

1.1 Basics
CAN was designed to provide extremely reliable communication for applications in which safety and real-
time operation is a priority.

CAN is based on a “multiple master, multiple slave” topology. Message or Data Frames transmitted do not
contain the addresses of either the transmitting node or of any intended receiving node. This means that any
node can act as master or slave at any time. Messages can be broadcast, or sent between nodes,
depending on which nodes at a particular moment are listening for a specific ID. New nodes can be added
without having to update others. Such design flexibility makes it practical for building intelligent, redundant,
and easily reconfigured systems.

Main attributes of CAN may be listed as

• High reliability and noise immunity

• Error handling on silicon

• Two bus wires / node connection points - Low wiring cost

• Flexible architecture

• Easy to scale to large network

Complex stack software to take care of error handling at the low level is not needed since this takes place in
silicon. Since the MCU bus connectors need only two pins, a CAN network is also at the physical level more
reliable than networking schemes that need multiple bus connections. Adding new nodes is simple; just tap
the bus wire at any point.

Bit rate determines the number of nodes that can be connected and cable length. Allowed CAN data bit rates
are: 62.5, 125, 250, 500 Kbps and 1 Mbps. At the highest speed, the network can support 30 nodes on a 40-
meter cable. At lower speeds, the network can support more than 100 nodes on a 1000-meter cable.

The basic building blocks of a CAN network are a CAN microcontroller, the firmware to run it, a CAN
transceiver to drive and read the bus signal, and a physical bus media (2 wires). Choose a CAN MCUs with
enough mailboxes to fit your applications.

1.2 Communication Layers
The figure below shows the CAN communication layers, with the application layer at the top and the
hardware layer at the bottom.

Figure 1. CAN physical and source code layers.

In this document we will not discuss any higher-level protocols such as CANopen or DeviceNet. (For some
Renesas CAN MCUs there is a CANopen solution. Contact your sales representative.)

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 5 of 63
Mar.15.25

1.3 Using the FIT CAN module
1.3.1 Using FIT CAN module in C++ project
For C++ project, add FIT CAN module interface header file within extern “C”{}:
Extern “C”
{

#include “r_smc_entry.h”
#include “r_can_rx_if.h”

}

1.4 Physical Connection
The Protocol Controller of the CAN peripheral in your CAN MCU must be connected to a bus transceiver
located outside the chip via the CAN Transmit (CTXn) and receive (CRXn) MCU pins.

1.5 The CAN Mailbox
The CAN Protocol Controller reads and writes to the CAN peripheral mailboxes. When a CAN message is to
be sent, it must first be written to a mailbox by the application firmware. It will then be sent automatically as
soon as the bus becomes idle, unless a message of lower ID is sent by another node. If a mailbox is
configured to receive, the message is written to the mailbox by the Protocol Controller and must be copied by
the user, using the API, to user memory area quickly to free the mailbox for the next message coming from
the network.

The API calls will do all the writing to and from the mailbox for you. All you have to do is provide application
data frame structures which the API functions can write incoming messages to and copy outgoing messages
from. It is recommended to have a least one structure for outgoing messages, and one for incoming. For
outgoing messages this could be a local variable (on the stack). For incoming messages one for each
mailbox is recommended. This CAN data frame structure, of type can_frame_t, is provided by the API
header file and has the following structure:
typedef struct
{
 uint32_t id;
 uint8_t dlc;
 uint8_t data[8];
} can_frame_t;

Note that the timestamp is not included in this structure, but can easily be added.

Aside from CAN bus arbitration, priority is determined using the lowest mailbox number - except for SH
(RCAN-ET) where the highest mailbox has priority. This is true for both transmit and receive operations. If
two mailboxes have been set with the same CAN ID, the lowest mailbox number has the highest priority.
Therefore, if two mailboxes are configured to receive with the same ID, one mailbox will never receive a
message.

1.6 Extended CAN
To use extended ID, FRAME_ID_MODE in r_can_rx_config.h must be set. When Extended CAN is enabled,
the API functions ending in ‘Xid’ can be called. These functions will automatically cause the ID field of the
CAN mailbox to be formatted to use extended ID. In other words, the user need only call these Xid-functions,
and the ID value passed in the can_frame_t structure will be sent as a 29-bit ID (instead of 11-bit).

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 6 of 63
Mar.15.25

2. API Information
The names of the APIs of the RSPI FIT module follow the Renesas API naming standard.

2.1 Hardware Requirements
This driver requires that your MCU supports the following peripheral:

• CAN Module (CAN)

2.2 Hardware Resource Requirements
This section details the hardware peripherals that this driver requires. Unless explicitly stated, these
resources must be reserved for the driver, and cannot be used elsewhere in the application.

2.2.1 Peripheral Required
CAN Module (CAN)

2.2.2 Other Peripherals Used
The driver requires I/O port pins to be assigned for CAN bus receive and transmit signals. Assigned pins
may not be used for GPIO.

The driver optionally uses GPIO port pins for Standby and Enable corresponding to each CAN channel.

2.3 Software Requirements
This driver is dependent upon the following FIT module:

• Renesas Board Support Package (r_bsp) v5.20 or higher

2.4 Limitations
2.4.1 RAM Location Limitations
In FIT, if a value equivalent to NULL is set as the pointer argument of an API function, error might be
returned due to parameter check. Therefore, do not pass a NULL equivalent value as pointer argument to an
API function.
The NULL value is defined as 0 because of the library function specifications. Therefore, the above
phenomenon would occur when the variable or function passed to the API function pointer argument is
located at the start address of RAM (address 0x0). In this case, change the section settings or prepare a
dummy variable at the top of the RAM so that the variable or function passed to the API function pointer
argument is not located at address 0x0.
In the case of the CCRX project (e2 studio V7.5.0), the RAM start address is set as 0x4 to prevent the
variable from being located at address 0x0. In the case of the GCC project (e2 studio V7.5.0) and IAR project
(EWRX V4.12.1), the start address of RAM is 0x0, so the above measures are necessary.
The default settings of the section may be changed due to the IDE version upgrade. Please check the
section settings when using the latest IDE.

2.5 Supported Toolchain
This driver has been confirmed to work with the toolchain listed in 10.1 Confirmed Operation Environment.

2.6 Interrupt Vector
When CAN TX and CAN RX interrupts are used, make sure the respective interrupt are mapped to a
software configurable interrupt. This can be done in “r_bsp_interrupt_config.h”

2.7 Header Files
All API calls and their supporting interface definitions are located in “r_can_rx_if.h”.

Build-time configuration options are selected or defined in the file "r_can_rx_config.h”.

To reference CAN API elements in this FIT Module from your code include the following:

#include “r_can_rx_if.h”

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 7 of 63
Mar.15.25

2.8 Integer Types
This software uses ANSI C99. These types are defined in stdint.h.

2.9 Configuration
It will be necessary to make modifications to the r_can_rx_config.h file to customize the application for
desired functionality. For example, there is the option of running in CAN polled mode or CAN interrupt mode.
It is not recommended to change the r_can_rx.c file, which contains the Renesas CAN API driver function,
but this may be merited to add some feature not available with the API.

If installing this software by using the “Smart Configurator” in e2 studio, the configuration settings for this FIT
module are made through the Smart Configurator “Components-> Property” view. Otherwise,
r_can_rx_config.h can be edited manually using the following tables as a guide.

2.9.1 Interrupt vs. Polled Mode and CAN Interrupt Level & generation Timing
Set the method of checking CAN mailboxes for messages received and sent. If Interrupt mode is used, then
also set the interrupt level for the channel

Define Value Meaning

USE_CAN_POLL
0 = Use interrupt, not polled
1 = Use polling, not interrupt

Define method of checking
CAN mailboxes for messages
received and sent.

CAN_CFG_TXFIFO_INT_GEN_TIMING

0 = Every time transmission is
completed.
1 = When the transmit FIFO
becomes empty due to
completion of transmission.

Transmit FIFO Interrupt
Generation Timing Control

CAN_CFG_RXFIFO_INT_GEN_TIMING

0 = Every time reception is
completed.
1 = When the receive FIFO
becomes buffer warning by
completion of reception.

Receive FIFO Interrupt
Generation Timing Control

CAN0_INT_LVL Valid range = 0 to 15 (0 to
disable)

Sets the CAN interrupt level
for channel 0

CAN1_INT_LVL Valid range = 0 to 15 (0 to
disable)

Sets the CAN interrupt level
for channel 1

CAN2_INT_LVL Valid range = 0 to 15 (0 to
disable)

Sets the CAN interrupt level
for channel 2

CAN_CFG_EN_NESTED_INT 0 = Disable nested interrupt.
1 = Enable nested interrupt.

Specifies enable/disable of the
nested interrupt.

2.9.2 Standard & Extended CAN IDs
Select what type of CAN ID type to enable in the driver, that is, usage of 11-bit Standard, or 29-bit Extended
CAN IDs. The API can be set to STD_ID_MODE, EXT_ID_MODE, or MIXED_ID_MODE. If it is set to mixed
mode, the whole API becomes available.

Define Value Meaning

FRAME_ID_MODE

STD_ID_MODE = 11-bit CAN ID.
EXT_ID_MODE = 29-bit CAN ID.
MIXED_ID_MODE = 11-bit and 29-bit
IDs are both in use

STD_ID_MODE or EXT_ID_MODE
enables only those API functions
belonging to that ID mode. If it is set
to mixed mode, the whole API
becomes available.

Note: MIXED_ID_MODE must be used if there will be both Standard and Extended frames on the bus,
otherwise unexpected data may result.

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 8 of 63
Mar.15.25

2.9.3 CAN Channel enabling and Pin Mapping
The CAN channel must be enabled here to be included in the driver build. Disabling a channel will remove
some code from build.

Specify also where the CAN transceiver control pins are physically connected to the MCU. This is much
more flexible as they are not specific to the CAN peripheral. General IO is used for this. Some transceivers
may have other control pins for which the user will need to add own configuration code.

Define Value Meaning

CAN_USE_CAN0 0 = Disable
1 = Enable

Enables or disables the use
of CAN channel 0.

CAN_USE_CAN0_STANDBY_E
NABLE_PINS

0 = Disable
1 = Enable

Enables or disables the use
of CAN channel 0 standby
and enable pins.

CAN0_TRX_STB_PORT Port Number or Letter GPIO output port value for
the Standby signal

CAN0_TRX_STB_PIN Port pin# GPIO output pin number for
the Standby signal

CAN0_TRX_STB_LVL 0 = active low
1 = active high

Standby signal active level

CAN0_TRX_ENABLE_PORT Port Number or Letter GPIO output port value for
the Enable signal

CAN0_TRX_ENABLE_PIN Port pin# GPIO output pin number for
the Enable signal

CAN0_TRX_ENABLE_LVL 0 = active low
1 = active high

Enable signal active level

CAN_USE_CAN1 0 = Disable
1 = Enable

Enables or disables the use
of CAN channel 1.

CAN_USE_CAN1_STANDBY_E
NABLE_PINS

0 = Disable
1 = Enable

Enables or disables the use
of CAN channel 1 standby
and enable pins.

CAN1_TRX_STB_PORT Port Number or Letter GPIO output port value for
the Standby signal

CAN1_TRX_STB_PIN Port pin# GPIO output pin number for
the Standby signal

CAN1_TRX_STB_LVL
0 = active low
1 = active high

Standby signal active level

CAN1_TRX_ENABLE_PORT Port Number or Letter GPIO output port value for
the Enable signal

CAN1_TRX_ENABLE_PIN Port pin# GPIO output pin number for
the Enable signal

CAN1_TRX_ENABLE_LVL
0 = active low
1 = active high

Enable signal active level

CAN_USE_CAN2
0 = Disable
1 = Enable

Enables or disables the use
of CAN channel 2.

CAN_USE_CAN2_STANDBY_E
NABLE_PINS

0 = Disable
1 = Enable

Enables or disables the use
of CAN channel 2 standby
and enable pins.

CAN2_TRX_STB_PORT Port Number or Letter GPIO output port value for
the Standby signal

CAN2_TRX_STB_PIN Port pin# GPIO output pin number for
the Standby signal

CAN2_TRX_STB_LVL
0 = active low
1 = active high

Standby signal active level

CAN2_TRX_ENABLE_PORT Port Number or Letter GPIO output port value for
the Enable signal

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 9 of 63
Mar.15.25

Define Value Meaning

CAN2_TRX_ENABLE_PIN Port pin# GPIO output pin number for
the Enable signal

CAN2_TRX_ENABLE_LVL
0 = active low
1 = active high

Enable signal active level

2.9.4 Max Register Poll Time
Maximum number of loops to poll a CAN register bit for expected value. If you are using polled mode, and If
you wish to wait a certain time to check that a mailbox has received a frame, increase this value. This can be
set to a very low value, but do not set to zero or the mailbox may not be checked at all.

Define Value Meaning

MAX_CANREG_POLLCYCLES

Integer value
range > 0

Valid only for polling mode.
Max loops to poll a CAN register bit for
expected value. This can be set to a very low
value, but do not set to zero or the mailbox may
not be checked at all.

2.10 Code Size
The code size is based on optimization level 2 for size using the Renesas CCRX toolchain 3.05, GCC for
Renesas RX 8.3.0.202305 and IAR Embedded Workbench for Renesas RX 4.20.03. The ROM (code,
constants, and preinitialized data) and RAM (preinitialized data, uninitialized data) sizes are determined by
the build-time configuration options set in the module configuration header reference file for the device.

ROM and RAM code sizes

Build Settings Area
Size (byte)

CCRX GCC IAR
Polled mode, Only channel 0 enabled
CAN0 Standby/Enable pins not used

ROM 3390 4388 3653

Interrupt mode, Only channel 0 enabled
CAN0 Standby/Enable pins not used

ROM 3693 4756 3991

Interrupt mode, 3 channels enabled
All CAN Standby/Enable pins enabled

ROM

4389 5756 4765

All RAM 60 60 60

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 10 of 63
Mar.15.25

2.11 Adding the CAN FIT Module to Your Project
This module must be added to each project in which it is used. Renesas recommends using “Smart
Configurator” described in (1) or (2). However, “Smart Configurator” only supports some RX devices. Please
use the methods of (3) for unsupported RX devices.

(1) Adding the FIT module to your project using “Smart Configurator” in e2 studio.
By using the “Smart Configurator” in e2 studio, the FIT module is automatically added to your project.
Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(2) Adding the FIT module to your project using “Smart Configurator” on CS+
By using the “Smart Configurator Standalone version” in CS+, the FIT module is automatically added to
your project. Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(3) Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “Adding Firmware Integration
Technology Modules to CS+ Projects (R01AN1826)” for details.

2.12 “for”, “while” and “do while” statements
In this module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with “WAIT_LOOP”.

The following shows example of description.

while statement example :
/* WAIT_LOOP */
while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)
{
 /* The delay period needed is to make sure that the PLL has stabilized. */
}

for statement example :
/* Initialize reference counters to 0. */
/* WAIT_LOOP */
for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)
{
 g_protect_counters[i] = 0;
}

do while statement example :
/* Reset completion waiting */
do
{
 reg = phy_read(ether_channel, PHY_REG_CONTROL);
 count++;
} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /* WAIT_LOOP */

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 11 of 63
Mar.15.25

3. The CAN API
The API is a set of functions that allow you to use CAN without having to commit attention to all the details of
setting up the CAN peripheral, to be able to easily have your application communicate with other nodes on
the network.

CAN configuration and communication is accomplished via the CAN SFR Registers described in your MCU’s
HW manual. As the registers in the CAN peripheral must be configured and read in the proper sequence to
achieve useful communication, a CAN API greatly simplifies this. The API takes numerous tedious issues
and does them for you.

After initializing the peripheral, all you need to do is use the receive and transmit API calls, and on a regular
basis check for any CAN error states. If an error state is encountered the application can just wait and
monitor for the peripheral to recover, as the CAN peripheral takes itself on or off line depending on its state.
After a recovery is discovered, the application should restart.

Note: From Rev. 3.20 to Rev. 4.00, some of the functions have been changed significantly. Therefore, when
upgrading application with CAN FIT Rev. 4.00, users are advised to exercise care

Please refer to 10.3 API Functions Changes from Rev. 3.20 to Rev. 4.00 for more details of the changes.

Summary
The following functions are included in this design:
Function Name Description
R_CAN_Create() Initializes CAN peripheral
R_CAN_PortSet() Configures the MCU and transceiver port pins
R_CAN_Control() Set CAN operating modes
R_CAN_SetBitrate() Set the CAN bitrate (communication speed)
R_CAN_TxSet() and R_CAN_TxSetXid() Set up a mailbox to transmit
R_CAN_Tx() Starts message transmission onto the CAN bus
R_CAN_TxCheck() Check for successful data frame transmission
R_CAN_TxStopMsg() Stop a mailbox that has been asked to transmit a frame
R_CAN_RxSet() and R_CAN_RxSetXid() Set up a mailbox to receive
R_CAN_RxPoll() Checks if a mailbox has received a message
R_CAN_RxRead() Read the CAN data frame content from a mailbox
R_CAN_RxSetMask() Sets the CAN ID Acceptance Masks
R_CAN_CheckErr() Check for bus errors
R_CAN_RxSetFIFO() and
R_CAN_RxSetFIFOXid()

Set up a FIFO mailbox to receive

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 12 of 63
Mar.15.25

Return Codes
API Return Codes Description
R_CAN_OK Action completed successfully.
R_CAN_NOT_OK Action did not complete successfully. Usually a more specific

return code is used
R_CAN_SW_BAD_MBX Bad mailbox number.
R_CAN_BAD_CH_NR The channel number does not exist.
R_CAN_BAD_MODE The mode number does not exist.
R_CAN_BAD_ACTION_TYPE No such action type exists for this function.
R_CAN_MSGLOST Message was overwritten or lost
R_CAN_NO_SENTDATA No message was sent.
R_CAN_RXPOLL_TMO Polling for received message timed out.
R_CAN_SW_WAKEUP_ERR The CAN peripheral did not wake up from Sleep mode.
R_CAN_SW_SLEEP_ERR The CAN peripheral did not enter Sleep mode
R_CAN_SW_HALT_ERR The CAN peripheral did not enter Halt mode.
R_CAN_SW_RST_ERR The CAN peripheral did not enter Reset mode.
R_CAN_SW_TSRC_ERR Time Stamp error
R_CAN_SW_SET_TX_TMO Waiting for previous transmission to finish timed out.
R_CAN_SW_SET_RX_TMO Waiting for previous reception to complete timed out.
R_CAN_SW_ABORT_ERR Wait for abort timed out.
R_CAN_MODULE_STOP_ERR Whole CAN peripheral is in stop state (low power)
CAN_ERR_NOT_FIFO_MODE Current mailbox mode is not FIFO mailbox mode.
CAN_ERR_BOX_FULL Transmit FIFO is full (4 unsent messages)
CAN_ERR_BOX_EMPTY No unread message in receive FIFO

CAN BUS State Codes Description
R_CAN_STATUS_ERROR_ACTIVE Node status is normal.
R_CAN_STATUS_ERROR_PASSIVE Node has sent at least 127 Error frames for either the Transmit

Error Counter, or the Receive Error Counter
R_CAN_STATUS_BUSOFF Node’s Transmit Error Counter has surpassed 255 due to the

node’s failure to transmit correctly

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 13 of 63
Mar.15.25

R_CAN_Create
Initializes CAN peripheral - Sets user communication callback functions, configures CAN interrupts, sets
different bitrate for different channels, mailbox defaults, and enters CAN Operation Mode

This function sets the CAN interrupt levels and user callbacks. This function will also call
R_CAN_SetBitrate() and sets the mask to default: not mask any frames.

Format
uint32_t R_CAN_Create(const uint32_t ch_nr,
 const uint32_t mb_mode,
 const can_bitrate_config_t p_cfg,
 void (*tx_cb_func)(void),
 void (*txf_cb_func)(void),
 void (*rx_cb_func)(void),
 void (*rxf_cb_func)(void),
 void (*err_cb_func)(void));

Parameters
ch_nr

CAN channel to use (0-2 MCU dependent).
mb_mode

Normal mailbox (0)
FIFO mailbox (1)

p_cfg
It is an address to the data structure containing the BRP, TSEG1, TSEG2, and SJW that constitute the bitrate for
channel ch_nr.

tx_cb_func
The name of a function in your application which will be called by the CAN driver when a mailbox has finished
transmitting. If you are using polled mode, or do not want a callback for interrupt mode for some reason, specify
NULL.

txf_cb_func
The name of a function in your application which will be called by the CAN driver when every time mailbox in the
transmit FIFO has finished transmitting or the transmit FIFO becomes empty due to completion of transmission. If
you do not want a callback for interrupt mode for some reason, specify NULL.

rx_cb_func
The name of a function in your application which will be called by the CAN driver when a mailbox has finished
receiving. If you are using polled mode, or do not want a callback for interrupt mode for some reason, specify
NULL.

rxf_cb_func
The name of a function in your application which will be called by the CAN driver when every time mailbox in the
receive FIFO has finished receiving or the receive FIFO becomes buffer warning by completion of reception. If you
do not want a callback for interrupt mode for some reason, specify NULL.

err_cb_func
The name of a function in your application which will be called by the CAN driver when there is a CAN error. If

you are using polled mode, or do not want a callback for interrupt mode for some reason, specify NULL.

Return Values
R_CAN_OK Action completed successfully.
R_CAN_SW_BAD_MBX Bad mailbox number.
R_CAN_BAD_CH_NR The channel number does not exist.
R_CAN_BAD_MODE The mode number does not exist.
R_CAN_SW_RST_ERR The CAN peripheral did not enter Reset mode.
R_CAN_MODULE_STOP_ERR Whole CAN peripheral is in stop state (low power). Perhaps the

PRCR register was not used to unlock the module stop register.
See also R_CAN_Control() return values.

Properties
Prototyped in r_can_rx_if.h
Implemented in r_can_rx.c

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 14 of 63
Mar.15.25

Description
This function wakes the peripheral from CAN Sleep mode and puts it in CAN Reset mode. It configures the
mailboxes with these default settings:
Sets mailbox mode: either normal mailbox mode or FIFO mailbox mode.
Overwrite an unread mailbox data when new frames arrive.
Sets the device to use ID priority (normal CAN behavior, not the optional mailbox number priority).
Sets all mailboxes’ masks invalid.
R_CAN_Create calls the R_CAN_SetBitrate function and configures CAN interrupts if USE_CAN_POLL is
commented in r_can_rx_config.h.
Before returning, it clears all mailboxes, sets the peripheral into Operation mode, and clears any errors.

Note: Users need to declare the baud rate prescaler division and bit timing values to set the bitrate of the

CAN channel through the p_cfg argument before call R_CAN_Create function. See the below example:

Example
/* Declares the baud rate prescaler division and bit timing values for CAN0 */
#define CAN0_BRP (5)
#define CAN0_SJW (2)
#define CAN0_TSEG1 (15)
#define CAN0_TSEG2 (8)

/* Sets the bitrate for CAN0 through CAN0_bitrate_cfg */
can_bitrate_config_t CAN0_bitrate_cfg;
CAN0_bitrate_cfg.BRP = CAN0_BRP;
CAN0_bitrate_cfg.SJW = CAN0_SJW;
CAN0_bitrate_cfg.TSEG1 = CAN0_TSEG1;
CAN0_bitrate_cfg.TSEG2 = CAN0_TSEG2;

#if USE_CAN_POLL
 api_status = R_CAN_Create(g_can_channel, mb_mode, CAN0_bitrate_cfg, NULL,
NULL, NULL, NULL, NULL);
#else
 /* Using interrupts. */
 api_status = R_CAN_Create(g_can_channel, mb_mode, CAN0_bitrate_cfg,
my_can_tx0_callback, my_can_txf0_callback, my_can_rx0_callback,
my_can_rxf0_callback, my_can_err0_callback);
#endif

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 15 of 63
Mar.15.25

R_CAN_PortSet
Configures the MCU and transceiver port pins. This function is responsible for configuring the MCU and
transceiver port pins. Transceiver port pins such as Enable will vary depending on design, and this function
must then be modified. The function is also used to enter the CAN port test modes, such as Listen Only.

Format
uint32_t R_CAN_PortSet(const uint32_t ch_nr, const uint32_t action_type);

Parameters
ch_nr

CAN channel to use (0-2 MCU dependent).
action_type

Port actions:

ENABLE Enable the CAN port pins and the CAN transceiver.
DISABLE Disable the CAN port pins and the CAN transceiver.
CANPORT_TEST_LISTEN_ONLY Set to Listen Only mode. No ACKs or Error frames are sent.
CANPORT_TEST_0_EXT_LOOPBACK Use external bus and loopback. Useful for initial debug. See

separate test section.
CANPORT_TEST_1_INT_LOOPBACK Only internal mailbox communication. Useful for initial debug.

See separate test section.
CANPORT_RETURN_TO_NORMAL Return to normal port usage.

Return Values
R_CAN_OK Action completed successfully.
R_CAN_SW_BAD_MBX Bad mailbox number.
R_CAN_BAD_CH_NR The channel number does not exist.
R_CAN_BAD_ACTION_TYPE No such action type exists for this function.
R_CAN_SW_HALT_ERR The CAN peripheral did not enter Halt mode.
R_CAN_SW_RST_ERR The CAN peripheral did not enter Reset mode.

See also R_CAN_Control() return values.

Properties
Prototyped in r_can_rx_if.h
Implemented in r_can_rx.c

Description
Unless Internal Loopback mode is used (for initial test and debug) make sure this function is called after any
board default port set up function is used (e.g., ‘hwsetup’).

Observe that a stray output high/low on an MCU CAN port pin that was set by some other (default) board
setup code could affect the bus negatively. You may discover that a hard reset on a node could cause other
nodes to go into error mode. The reason may be that all ports were set as default output hi/low before CAN
reconfigures the ports. Such code should be removed, or else, for a brief period of time, the ports may be
output low/high and disrupt the CAN bus voltage level.

You may have to change/add transceiver port pins according to your transceiver.

Example
/* Normal CAN bus usage. */
R_CAN_PortSet(0, ENABLE);

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 16 of 63
Mar.15.25

R_CAN_Control
Set CAN operating modes. Controls transition to CAN operating modes determined by the CAN Control
register. For example, the Halt mode should be used to later configure a receive mailbox.

Format
uint32_t R_CAN_Control(const uint32_t ch_nr, const uint32_t action_type);

Parameters
ch_nr

CAN channel to use (0-2 MCU dependent).
action_type

Peripheral actions:
EXITSLEEP_CANMODE Exit CAN Sleep mode, the default state when the peripheral starts up.
ENTERSLEEP_CANMODE Enter CAN Sleep mode to save power.
RESET_CANMODE Put the CAN peripheral into Reset mode.
HALT_CANMODE Put the CAN peripheral into Halt mode. CAN peripheral

 is still connected to the bus but stops communicating.
OPERATE_CANMODE Put the CAN peripheral into normal Operation mode.

Return Values
R_CAN_OK Action completed successfully.
R_CAN_SW_BAD_MBX Bad mailbox number.
R_CAN_BAD_CH_NR The channel number does not exist.
R_CAN_BAD_ACTION_TYPE No such action type exists for this function.
R_CAN_SW_WAKEUP_ERR The CAN peripheral did not wake up from Sleep mode.
R_CAN_SW_SLEEP_ERR The CAN peripheral did not enter Sleep mode.
R_CAN_SW_HALT_ERR The CAN peripheral did not enter Halt mode.
R_CAN_SW_RST_ERR The CAN peripheral did not enter Reset mode.

See also R_CAN_PortSet() return values.

Properties
Prototyped in r_can_rx_if.h

Description
Other than calling this API to enter Halt mode, CAN mode transitions are called via the other API functions
automatically. For example, the default mode when starting up is CAN Sleep mode. Use the API to switch to
other operating modes, for example first ‘Exit Sleep’ followed by ‘Reset‘ to initialize the CAN registers for
bitrate and interrupts, then enter ‘Halt’ mode to configure mailboxes.

Example
/* Normal CAN bus usage. */
result = R_CAN_Control(0, OPERATE_CANMODE); //Check that result is = R_CAN_OK.

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 17 of 63
Mar.15.25

R_CAN_SetBitrate
Set the CAN bitrate (communication speed). The baud rate and bit timing must always be set during the
configuration process. It can be changed later if reset mode is entered.

Format
void R_CAN_SetBitrate(const uint32_t ch_nr, const can_bitrate_config_t p_cfg);

Parameters
ch_nr

CAN channel to use (0-2 MCU dependent).

p_cfg
It is an address to the data structure containing the BRP, TSEG1, TSEG2, and SJW that constitute the bitrate for
channel ch_nr.

Return Values
None

Properties
Prototyped in r_can_rx_if.h

Description
Setting the baud rate or data speed on the CAN bus requires some understanding of CAN bit timing and
MCU frequency, as well as reading hardware manual figures and tables.

Some calculations need to be done to set up the baud rate: Selects the baud rate prescaler division value,
time segment 2 control, time segment 1 control, and resynchronization jump width control indicated by p_cfg.
First some explanations. The CAN system clock, fcanclk, is the internal clock period of the CAN peripheral.
This CAN system clock is determined by the CAN Baud Rate Prescaler value and the peripheral bus clock.
One Time Quantum is equal to the period of the CAN clock.

One CAN bus bit-time is an integer sum of a number of Time Quanta, Tq. Each bitrate register is then given
a certain number of Tq of the total number of Time Quanta that make up one CAN bit period, or Tqtot.

Formulas to calculate the bitrate register settings.
PCLK is the peripheral clock frequency, PCLKB.

fcan = PCLK or EXTAL

The prescaler scales the CAN peripheral clock down with a factor.

fcanclk = fcan/prescaler

One Time Quantum is one clock period of the CAN clock.

Tq =1/fcanclk

Tqtot is the total number of CAN peripheral clock cycles during one CAN bit time and is by the
peripheral built by the sum of the “time segments” and “SS” which is always 1. In the code, Tqtot is
shown to be

BSP_CFG_XTAL_HZ * BSP_CFG_PLL_MUL) / (CAN_BRP * BITRATE * BSP_CFG_PCKB_DIV)

Set these macros so that a Tqtot is found which is not larger than accepted by the CAN registers.

Note: CAN_BRP defined in user program

 BITRATE as expected bitrate

 See the HW-manual’s table of examples for bitrate settings.

Another restriction is:

Tqtot = TSEG1 + TSEG2 + SS (TSEG1 must be > TSEG2)

SS is always 1. SJW is often given by the bus administrator. Select 1 <= SJW <= 4.

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 18 of 63
Mar.15.25

Example calculate the bitrate register settings
CAN BITRATE Settings
See 'CAN Communication Speed Setting', and 'Bit Rate' sections in HW-manual.

CCLKS is 0(running on PCLK which is PCLKB), that is,
FCAN = PCLK = PCLKB.
CAN_BRP = Baudrate prescaling.
FCANCLK = FCAN / CAN_BRP
P = value selected in BRP[9:0] bits in BCR (P = 0 to 1023). P + 1 = CAN_BRP.
TQTOT = Nr CAN clocks in one CAN bit = FCANCLK/BITRATE.

With CCLKS = 0, and using r_bsp macros we get:
FCAN = (BSP_CFG_XTAL_HZ * BSP_CFG_PLL_MUL / BSP_CFG_PCKB_DIV) (Eq. 1)
TQTOT = (FCAN/(CAN_BRP * BITRATE)) (Eq. 2)

Eq. (1) in (2):
TQTOT = (BSP_CFG_XTAL_HZ * BSP_CFG_PLL_MUL / BSP_CFG_PCKB_DIV)/(CAN_BRP *
BITRATE)), or
TQTOT = (BSP_CFG_XTAL_HZ * BSP_CFG_PLL_MUL)/(CAN_BRP * BITRATE *
BSP_CFG_PCKB_DIV) (Eq. 3)

Example: Desired baudrate 500 kbps.
 Try CAN_BRP = 4. Equation 3:
 TQTOT = (24000000 * 10)/(4 * 500000 * 4) = 30. This is too large. TQTOT can be max 25.
 Try CAN_BRP = 5.
 TQTOT =
 (BSP_CFG_XTAL_HZ * BSP_CFG_PLL_MUL)/(CAN_BRP * BITRATE * BSP_CFG_PCKB_DIV)
 = (24000000 * 10)/(5 * 500000 * 4) = ***24***
 TQTOT = 24 = TSEG1 + TSEG2 + SS:
 Try:
 SS = 1 Tq always.
 TSEG1 = 15 Tq
 TSEG2 = 8 Tq
 ============
 SUM = 24

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 19 of 63
Mar.15.25

You can also use this Python code as an aid to change bit rate.
Python 3.5.1. Simple python code to help calculate bitrate register settings.
If you don't have Python, just follow the code, you should see how to calculate
register settings by hand.

from fractions import Fraction
BITRATE = 500000

Try a BRP. If TQTOT is too large for register settings, increase.
CAN_BRP = 4

Limit on what is tolerated if TQTOT is not a whole integer.
If it is not, it is impossible to get an exact baudrate.
Value is not tested.
MAX_TQ_FRACTION_DEV = 0.1
XTAL_HZ = 12000000
PLL_MUL = 4 # Depending on part, these may not exist, and so be = 1.
PCKB_DIV = 2
TQTOT = (XTAL_HZ * PLL_MUL)/(CAN_BRP * BITRATE * PCKB_DIV)
print ("TQTOT is", round(TQTOT, 2), "=> Set TSEG1 larger than TSEG2, and SJW to
1, so that the sum of these is TQTOT.")
print ("=============")

Example
/* Declares the baud rate prescaler division and bit timing values for CAN0 */
#define CAN0_BRP (5)
#define CAN0_SJW (2)
#define CAN0_TSEG1 (15)
#define CAN0_TSEG2 (8)

/* Sets the bitrate for CAN0 through CAN0_bitrate_cfg */
can_bitrate_config_t CAN0_bitrate_cfg;
CAN0_bitrate_cfg.BRP = CAN0_BRP;
CAN0_bitrate_cfg.SJW = CAN0_SJW;
CAN0_bitrate_cfg.TSEG1 = CAN0_TSEG1;
CAN0_bitrate_cfg.TSEG2 = CAN0_TSEG2;

/* Set BAUDRATE */
R_CAN_SetBitrate(0, CAN0_bitrate_cfg);

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 20 of 63
Mar.15.25

R_CAN_TxSet and R_CAN_TxSetXid
Set up a mailbox to transmit. R_CAN_TxSet will write to a mailbox the specified ID, data length and data
frame payload, then set the mailbox to transmit mode and send a frame onto the bus by calling R_CAN_Tx().

R_CAN_TxSetXid does the same, except if this function is used, the ID will be a 29-bit ID.

Format
uint32_t R_CAN_TxSet(const uint32_t ch_nr, const uint32_t mb_mode, const

uint32_t mbox_nr, const can_frame_t* frame_p, const
uint32_t frame_type);

uint32_t R_CAN_TxSetXid(const uint32_t ch_nr, const uint32_t mb_mode, const

uint32_t mbox_nr, can_frame_t* frame_p, const
uint32_t frame_type);

Parameters
ch_nr

CAN channel to use (0-2 MCU dependent).
mbox_nr

Mailbox to use.
mb_mode

Normal mailbox (0)
FIFO mailbox (1)

frame_p
Pointer to a data frame structure in memory. It is an address to the data structure containing the ID, DLC and data
that constitute the dataframe the mailbox will transmit.

frame_type

DATA_FRAME Send a normal data frame.
REMOTE_FRAME Send a remote data frame request.

Return Values
R_CAN_OK The mailbox was set up for transmission.
R_CAN_SW_BAD_MBX Bad mailbox number.
R_CAN_BAD_CH_NR The channel number does not exist.
R_CAN_BAD_MODE The mode number does not exist.
CAN_ERR_BOX_FULL Transmit FIFO is full (4 unsent messages).
R_CAN_BAD_ACTION_TYPE No such action type exists for this function.

Properties
Prototyped in r_can_rx_if.h

Description
This function sets up transmitting for normal mailboxes or transmit FIFO mailboxes.

To transmit FIFO mailboxes, this function first interrupt disables the mailbox temporarily when setting up the
mailbox. It then checks to ensure the transmit FIFO is not full to perform setting up the mailbox: Copies the
data frame payload bytes (0-7) into the mailbox, selects data frame or remote frame request, sets the ID
value for the mailbox and finally the Data Length Code indicated by frame_p. The mailbox is interrupt
enabled as well as transmit FIFO interrupt generation timing again unless USE_CAN_POLL was defined.
Finally, R_CAN_Tx is called to deliver the message.

To normal mailboxes, this function first waits for any previous transmission of the specified mailbox to
complete. It then interrupt disables the mailbox temporarily when setting up the mailbox: Sets the ID value for
the mailbox, the Data Length Code indicated by frame_p, selects dataframe or remote frame request and
finally copies the data frame payload bytes (0-7) into the mailbox. The mailbox is interrupt enabled again
unless USE_CAN_POLL was defined. Finally, R_CAN_Tx is called to deliver the message.

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 21 of 63
Mar.15.25

Example
#define MY_TX_SLOT (7)
can_frame_t my_tx_dataframe;

my_tx_dataframe.id = 1;
my_tx_dataframe.dlc = 2;
my_tx_dataframe.data[0] = 0xAA;
my_tx_dataframe.data[1] = 0xBB;

/* Send my frame. */
api_status = R_CAN_TxSet(0, 0, MY_TX_SLOT, &my_tx_dataframe, DATA_FRAME);

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 22 of 63
Mar.15.25

R_CAN_Tx
Starts actual message transmission onto the CAN bus. This API will wait until the mailbox finishes handling a
prior frame, then set the mailbox to transmit mode.

Format
uint32_t R_CAN_Tx(const uint32_t ch_nr, const uint32_t mb_mode, const uint32_t

mbox_nr);

Parameters
ch_nr

CAN channel to use (0-2 MCU dependent).
mb_mode

Normal mailbox (0)
FIFO mailbox (1)

mbox_nr
Which CAN mailbox to use (0-31).

Return Values
R_CAN_OK Set up to transmit was performed successfully.
R_CAN_SW_BAD_MBX Bad mailbox number.
R_CAN_BAD_CH_NR The channel number does not exist.
R_CAN_BAD_MODE The mode number does not exist.
R_CAN_SW_SET_TX_TMO Waiting for previous transmission to finish timed out.
R_CAN_SW_SET_RX_TMO Waiting for previous reception to complete timed out.

Properties
Prototyped in r_can_rx_if.h

Description
R_CAN_TxSet must have been called at least once for this mailbox after system start to set up the mailbox
content, as this function only tells the mailbox to send its content.

Example
#define MY_TX_SLOT (7)

/* Send mailbox content. This mailbox is presumed to have been set up to send

some time in the past. */
R_CAN_Tx(0, 0, MY_TX_SLOT);

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 23 of 63
Mar.15.25

R_CAN_TxCheck
Check for successful data frame transmission. Use to check a mailbox for a successful data frame
transmission.

Format
uint32_t R_CAN_TxCheck(const uint32_t ch_nr, const uint32_t mbox_nr);

Parameters
ch_nr

CAN channel to use (0-2 MCU dependent).
mbox_nr

Which CAN mailbox to use (0-31).

Return Values
R_CAN_OK Transmission was completed successfully.
R_CAN_SW_BAD_MBX Bad mailbox number.
R_CAN_BAD_CH_NR The channel number does not exist.
R_CAN_MSGLOST Message was overwritten or lost.
R_CAN_NO_SENTDATA No message was sent.

Properties
Prototyped in r_can_rx_if.h

Description
This function is only needed if an application needs to verify that a message has been transmitted for
example so that it can progress a state machine, or if messages are sent back-to-back. With CAN’s level of
transport control built into the silicon, it can reasonably be assumed that once a mailbox has been asked to
send with the API that the message will indeed be sent. Safest if of course to use this function after a
transmission.

Example
/* TRANSMITTED a particular frame? */
api_status = R_CAN_TxCheck(0, CANBOX_TX);

if (api_status == R_CAN_OK)
{
 message_x_sent_flag = TRUE; // Notify main application.
}

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 24 of 63
Mar.15.25

R_CAN_TxStopMsg
Stop a mailbox that has been asked to transmit a frame

Format
uint32_t R_CAN_TxStopMsg(const uint32_t ch_nr, const uint32_t mb_mode, const

uint32_t mbox_nr);

Parameters
ch_nr

CAN channel to use (0-2 MCU dependent).
mb_mode

Normal mailbox (0)
FIFO mailbox (1)

mbox_nr
Which CAN mailbox to use (0-31).

Return Values
R_CAN_OK Action completed successfully.
R_CAN_SW_BAD_MBX Bad mailbox number.
R_CAN_BAD_MODE The mode number does not exist.
R_CAN_BAD_CH_NR The channel number does not exist.
R_CAN_SW_ABORT_ERR Waiting for an abort timed out.

Properties
Prototyped in r_can_rx_if.h

Description
This function clears the mailbox control or transmit FIFO control flags so that a transmission is stopped
(TrmReq is set to 0 for normal mailboxes or TFE is set to 0 for transmit FIFO mailboxes). A software counter
then waits for an abort for a maximum period of time.

If the message was not stopped, R_CAN_SW_ABORT_ERR is returned. Note that the cause of this could be
that the message was already sent.

Example
R_CAN_TxStopMsg(0, 0, MY_TX_SLOT);

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 25 of 63
Mar.15.25

R_CAN_RxSet and R_CAN_RxSetXid
Set up a mailbox to receive.

R_CAN_RxSet: The API sets up a given mailbox to receive data frames with the given CAN 11-bit ID.
Incoming data frames with the same ID will be stored in the mailbox.

R_CAN_RxSetXid: Does the same, except the ID will be a 29-bit ID.

Format
uint32_t R_CAN_RxSet(const uint32_t ch_nr, const uint32_t mbox_nr,
 const uint32_t id, const uint32_t frame_type);

uint32_t R_CAN_RxSetXid(const uint32_t ch_nr, const uint32_t mbox_nr,
 uint32_t xid, const uint32_t frame_type);

Parameters
ch_nr

CAN channel to use (0-2 MCU dependent).
mbox_nr

Which CAN mailbox to use (0-31).
id
xid

The CAN ID which the mailbox should receive.
frame_type

DATA_FRAME Send a normal data frame.
REMOTE_FRAME Send a remote data frame request.

Return Values
R_CAN_OK Action completed successfully.
R_CAN_SW_BAD_MBX Bad mailbox number.
R_CAN_BAD_CH_NR The channel number does not exist.
R_CAN_SW_SET_TX_TMO Waiting for previous transmission to finish timed out.
R_CAN_SW_SET_RX_TMO Waiting for previous reception to complete timed out.

Properties
Prototyped in r_can_rx_if.h

Description
The function will first wait for any previous transmission/reception to complete, then temporarily interrupt
disable the mailbox. It sets the mailbox to the given standard ID value, and whether to receive normal CAN
dataframes or remote frame requests.

Example
#define MY_RX_SLOT (8)
#define SID_FAN_SPEED 0x10

R_CAN_RxSet(0, MY_RX_SLOT, SID_FAN_SPEED, DATA_FRAME);

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 26 of 63
Mar.15.25

R_CAN_RxPoll
Checks if a mailbox has received a message

Format
uint32_t R_CAN_RxPoll(const uint32_t ch_nr, const uint32_t mbox_nr);

Parameters
ch_nr

CAN channel to use (0-2 MCU dependent).
mbox_nr

Which CAN mailbox to check (0-31).

Return Values
R_CAN_OK There is a message waiting.
R_CAN_NOT_OK No message waiting or pending.
R_CAN_RXPOLL_TMO Message pending but timed out.
R_CAN_SW_BAD_MBX Bad mailbox number.
R_CAN_BAD_CH_NR The channel number does not exist.

Properties
Prototyped in r_can_rx_if.h

Description
When a mailbox is set up to receive certain messages, it is important to determine when it has finished
receiving successfully. There are two methods for doing this:

Polling. Call the API regularly to check for new messages. USE_CAN_POLL must be defined in the CAN
configuration file. If there is a message use R_CAN_RxRead to fetch it.

Using the CAN receive interrupt (USE_CAN_POLL not defined): Use this API to check which mailbox
received. Then notify the application.

The function returns R_CAN_OK if new data was found in the mailbox.

Example
See example in R_CAN_RxRead().

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 27 of 63
Mar.15.25

R_CAN_RxRead
Read the CAN data frame content from a mailbox. The API checks if a given mailbox has received a
message. If so, a copy of the mailbox’s dataframe will be written to the given structure.

Format
uint32_t R_CAN_RxRead(const uint32_t ch_nr, const uint32_t mb_mode,
 const uint32_t mbox_nr, can_frame_t* const frame_p);

Parameters
ch_nr

CAN channel to use (0-2 MCU dependent).
mb_mode

Normal mailbox (0)
FIFO mailbox (1)

mbox_nr
Which CAN mailbox to check (0-31).

frame_p
Refers to a pointer to a data frame structure in memory. It is an address to the data structure into which the function
will place a copy of the mailbox’s received CAN dataframe.

Return Values
R_CAN_OK There is a message waiting.
R_CAN_BAD_MODE The mode number does not exist.
R_CAN_SW_BAD_MBX Bad mailbox number.
R_CAN_BAD_CH_NR The channel number does not exist.
CAN_ERR_BOX_EMPTY No unread message in receive FIFO
R_CAN_MSGLOST Message was overwritten or lost.

Properties
Prototyped in r_can_rx_if.h

Description
This function is used to receive the message by the normal mailboxes or receive FIFO mailboxes.

To receive FIFO mailboxes, it checks Receive FIFO Empty Status Flag to ensure unread message in receive
FIFO. If have, it loads the ID value, the Data Length Code and the data frame payload bytes (0-7) of
message into the mailbox. Finally, it checks Message Lost then write FF to Receive FIFO Pointer Control
Register.
To normal mailboxes, Use R_CAN_RxPoll() first to check whether the mailbox has received a message.

This function is used to fetch the message from a mailbox, either when using polled mode or from a CAN
receive interrupt.

Example
#define MY_RX_SLOT (8)
can_frame_t my_rx_dataframe;

api_status = R_CAN_RxPoll(0, CANBOX_RX_DIAG);

if (api_status == R_CAN_OK)
{
 R_CAN_RxRead(0, 0, CANBOX_RX_DIAG, &my_rx_dataframe);
}

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 28 of 63
Mar.15.25

R_CAN_RxSetMask
Sets the CAN ID Acceptance Masks. To accept only one ID, set mask to all ones. To accept all messages,
set mask to all zeros. To accept a range of messages, set the corresponding ID bits to zero.

Format
void R_CAN_RxSetMask(const uint32_t ch_nr, const uint32_t mbox_nr,

 const uint32_t mask_value);

Parameters
ch_nr

CAN channel to use (0-2 MCU dependent).
mbox_nr

Which mailbox to mask (0-31). Four mailboxes will be affected within its group.
mask_value

Mask value. (0-0x7FF)

Return Values
None

Properties
Prototyped in r_can_rx_if.h

Description
Receive mailboxes can use a mask to filter out one message or expand receiving to a range of messages
(CAN IDs). The mask enables this using the mailbox group’s ID field. There is one mask for mailbox 0-3, one
for 4-7, etc. Changing a mask will therefore affect the behavior of adjacent mailboxes.

- Each '0' in the mask means "mask this bit", or “don't look at that bit”; accept anything.

- Each '1' means check if the CAN-ID bit in this position matches the CAN-ID of the mailbox.

How to set a mask
Let’s say that the range of CAN-IDs that you want to receive in a mailbox is 700-704h. Using standard 11-bit
IDs we then have the following Ids in hex and binary:

Hex representation Bit representation

0x700 011100000000b

0x701 011100000001b

0x702 011100000010b

0x703 011100000011b

0x704 011100000100b

Normally, the mailbox will only accept frames whose ID matches the set receive ID, but if a bit position’s
MASK is 0, an ID bit of both 0 and 1 will be accepted. If we then want to accept all of above, we set the mask
as 011111111000b, or 07F8h.

The CAN receive filter will only look at bit positions b10 (MSB) to b3 (LSB), whether these match the receive
ID of the mailbox.

If we then set one of the mailboxes belonging to above mask (they are grouped - four mailboxes per mask)
to receive ID 0x700, that mailbox will accept all IDs from 0x700 to 0x707. (Setting the ID to 0x700-0x707 will
give the same result.) Because of this, IDs 0x705 to 0x707 must later be ignored ‘manually’ by the
application software.

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 29 of 63
Mar.15.25

Fast filtering of messages with Acceptance Filter Support
If you have used a mask to receive a broad range of message IDs, you must filter for the actual desired
messages with firmware. To increase the speed of this search one may use the Acceptance Filter Support
instead.

The Acceptance Filter Support Unit (ASU) provides a faster search compared to software filtering of
messages using a mask (with the R_CAN_RxSetMask API). Software filtering can be time consuming as the
Standard ID bits are rearranged and not stored as a normal word in memory. Another problem could be that
the acceptance mask may not be able to be set to receive the particular combination of messages you want.
If you set the mask to accept all messages you may have to ‘waste’ time by checking a long list of the
messages using software for each incoming ID. This manual filtering’ would also involve having all the IDs in
a readable format. An efficient solution in such cases is to use the Acceptance Filter Support Unit.

To use it, one writes the CAN-ID as it is stored in the message box into the ASU. When reading back from
the ASU register, the data word is used to search through a table. The data readout has the following parts.
Bit 0-7 = Table ‘Address Search Info”, ASI, SID10 -3.
Bit 8-15 = “Bit Search Information”, BSI, SID0-3 has now been converted to a bit position to enable faster
table searches.

Figure 2. The Acceptance Filter Support Unit (ASU).

When read, the representation of the ID is formatted to enable a fast search through a table. This provides a
faster response than a search through a ‘normal’ array of CAN IDs.

The search table
A table must be prepared by the user to check whether an ID is of interest to the application. The firmware
must search the table at each byte address ASI and bit position BSI. If a bit BSI-value is set in the user’s
table, the bit pattern matches the BSI pattern of the register which means the address is of interest to the
node, and the frame should be processed by the application.

See REJ05B0276 “CAN Application Note” for more information on how to use the ASU.
Download from www.renesas.com

http://www.renesas.com/

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 30 of 63
Mar.15.25

R_CAN_CheckErr
Check for bus errors. The API checks the CAN status, or Error State, of the CAN peripheral.

Format
uint32_t R_CAN_CheckErr(const uint32_t ch_nr);

Parameters
ch_nr

CAN channel to use (0-2 MCU dependent).

Return Values
R_CAN_BAD_CH_NR The channel number does not exist.
R_CAN_STATE_ERROR_ACTIVE CAN bus status is normal.
R_CAN_STATE_ERROR_PASSIVE Node has sent at least 127 Error frames for either the Transmit Error

Counter, or the Receive Error Counter.
R_CAN_STATE_BUSOFF Node’s Transmit Error Counter has surpassed 255 due to the node’s

failure to transmit correctly.

Properties
Prototyped in “r_can_rx_if.h”.

Description
The API checks the CAN status flags of the CAN peripheral and returns the status error code. It tells whether
the node is in a functioning state or not and is used for application error handling.

It should be polled either routinely from the main loop, or via the CAN error interrupt. Since the peripheral
automatically handles retransmissions and Error frames it is usually of no advantage to include an error
interrupt routine.

If an error state is encountered the application can just wait and monitor for the peripheral to recover, as the
CAN peripheral takes itself on or off line depending on its state. After a recovery is discovered, the
application should restart.

Bus States
CAN is designed to protect network communication in the event that any CAN network node becomes faulty.
Every time the transmitter sees an Error flag, the Transmit Error Counter is increased, and when an error in a
received frame is detected, the Receive Error Counter is increased. The Transmit and Receive Error
Counters are respectively decreased with every successfully transmitted or received frame. In both the Error
Active state (the normal operating state) and the Error Passive State, messages can be transmitted and
received.

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 31 of 63
Mar.15.25

Figure 3. CAN bus error states.

(1) Error Active
When a node is in Error Active state it communicates with the bus normally. If the unit detects an error, it
transmits an active Error flag. Once it counts 127 errors, it switches to the Error Passive state.

(2) Error Passive
When either error counter exceeds 128, the CAN status for that node changes to state Error passive, and
messages can still be transmitted and received, but the node will not send Error frames. Error frames are
invisible to the user and are taken care of by the peripheral silicon.

(3) Bus Off
If the transmit error counter exceeds 255, the CAN node enters the Bus Off state. This prevents a faulty node
from causing a bus failure. When serious problems cause a CAN node to enter the Bus Off state, no
messages can be transmitted or received by that node until it detects 11 consecutive ‘recessive’ bits 128
times, or until the peripheral is reset. When the application detects a recovery from Bus Off, the user should
reinitialize all registers of the CAN module and restart the application.

(a) Using CAN Polling
Call the API regularly to check the CAN state for the application, so it does not try to communicate if the
node is Bus Off. In the following, it is assumed that handle_can_bus_state() is called once every loop of the
main application.

Error Active

Normal

Bus Off

No comm-
unication

11 consecutive recessive
bits detected 128 times

TEC > 127
or

REC > 127

TEC < 128
and

REC < 128

TEC > 255

Error
Passive

No error
frames sent

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 32 of 63
Mar.15.25

Figure 4. Handling recovery from Bus Off for the application.

The MCU detects recovery of the bus on its own. A node will automatically resume the normal Error Active
state again after seeing 11 consecutive recessive bits on the bus 128 times. Note that the time a node
spends in Bus Off could be very short, e.g., less than a millisecond.

Poll with the Check Error function once every cycle in the main routine what state the node is in (or use the
CAN error interrupt). If the node has reached Bus Off a certain number of times within a certain time period,
you may want to send a warning message, light an LED etc.

The minimum action required of a node if Bus Off is reached is shown above. Stop trying to communicate
and poll the peripheral with the Check Error function to see when the peripheral has returned to the normal
Error Active state. When the node has recovered, it is important to reinitialize the CAN peripheral and the
application to make sure the slots are in a known state.

Example
See usage of handle_can_bus_state() in can_api_demo.c.

(b) Using CAN Error Interrupts.
The CAN error interrupt can be used to check the error state of the node, although polling with the API
regularly is usually sufficient since low level error handling is done by the peripheral.

The API can be called from the error ISR to determine the error state, and then flag the application if a state
transition has occurred. Most often the Transmit or Receive Error Counter will have just incremented.

Interrupts can be enabled separately for each of: A single error, transition to Error Passive, and transition to
Bus Off. If the first of these, the CAN Error interrupt is enabled, an interrupt is generated each time an error
is detected. Again, generating this interrupt is usually unnecessary as CAN handles errors on its own.

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 33 of 63
Mar.15.25

R_CAN_RxSetFIFO and R_CAN_RxSetFIFOXid
Set up a mailbox to receive.

R_CAN_RxSetFIFO: The API sets up a given FIFO mailbox to receive data frames with the given CAN 11-bit
ID. Incoming data frames with the same ID will be stored in the mailbox.

R_CAN_RxSetFIFOXid: Does the same, except the ID will be a 29-bit ID.

Format
uint32_t R_CAN_RxSetFIFO(const uint32_t ch_nr,
 const uint32_t mb_mode,
 const uint32_t mbox_nr,
 const uint32_t fidcr0_value,
 const uint32_t fidcr1_value,
 const uint32_t fidcr0_frame_type,
 const uint32_t fidcr1_frame_type,
 const uint32_t mkr6_value,
 const uint32_t mkr7_value)

uint32_t R_CAN_RxSetFIFOXid(const uint32_t ch_nr,
 const uint32_t mb_mode,
 const uint32_t mbox_nr,
 const uint32_t xfidcr0_value,
 const uint32_t xfidcr1_value,
 const uint32_t fidcr0_frame_type,
 const uint32_t fidcr1_frame_type,
 const uint32_t mkr6_value,
 const uint32_t mkr7_value)

Parameters
ch_nr

CAN channel to use (0-2 MCU dependent).
mb_mode

Normal mailbox (0)
FIFO mailbox (1)

mbox_nr
Which CAN mailbox to use (28-31).

fidcr0_value
fidcr1_value
xfidcr0_value
xfidcr1_value
 The CAN ID which the mailbox should receive
fidcr0_frame_type
fidcr1_frame_type

DATA_FRAME Send a normal data frame.
REMOTE_FRAME Send a remote data frame request.

mkr6_value
mkr7_value
 The mask register

Return Values
R_CAN_OK Action completed successfully.
R_CAN_SW_BAD_MBX Bad mailbox number.
R_CAN_BAD_CH_NR The channel number does not exist.
R_CAN_BAD_MODE The mode number does not exist.
CAN_ERR_NOT_FIFO_MODE Current mailbox mode is not FIFO mailbox mode.

Properties
Prototyped in r_can_rx_if.h

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 34 of 63
Mar.15.25

Description
The function will first temporarily interrupt disable the mailbox. Then it sets whether to receive normal CAN
data frames or remote frame requests. It also sets the FIFO mailbox to the given ID value. Next, it performs
setting value for mask register, refer to R_CAN_RxSetMask for details.

Example
uint32_t ch_nr = 0;

uint32_t mb_mode = 1;

uint32_t mbox_nr = 0;

const uint32_t FIDCR0_value = 0x05A;

const uint32_t FIDCR1_value = 0x06B;

const uint32_t FIDCR0_frame_type = DATA_FRAME;

const uint32_t FIDCR1_frame_type = DATA_FRAME;

const uint32_t MKR6_value = 0x00;

const uint32_t MKR7_value = 0x00;

api_status = R_CAN_RxSetFIFO(ch_nr, mb_mode, mbox_nr, FIDCR0_value, FIDCR1_value,

FIDCR0_frame_type, FIDCR1_frame_type, MKR6_value, MKR7_value);

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 35 of 63
Mar.15.25

4. Pin Setting
To use the CAN FIT module, assign input/output signals of the peripheral function to pins with the multi-
function pin controller (MPC). The pin assignment is referred to as the “Pin Setting” in this document.

Please perform the pin setting after calling the R_CAN_Create() function.

When performing the pin setting in the e2 studio, the Pin Setting feature of the Smart Configurator can be
used. When using the Pin Setting feature, a source file is generated according to the option selected in the
Pin Setting window in the Smart Configurator. Then pins are configured by calling the function defined in the
source file. Refer to Table 4.1 Function Output by the Smart Configurator for details.

Table 4.1 Function Output by the Smart Configurator

MCU Used Function to be Output Remarks
All MCUs R_CAN_PinSet_CANx x: Channel number

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 36 of 63
Mar.15.25

5. Demo Projects
CAN demo projects are complete stand-alone programs. They include function main() that utilizes the
module and its dependent modules.

Note: The demos have been upgraded with CAN FIT module Rev 5.50

Revision history demo update:

- Rev 4.00:
Please refer to 10.3 API Functions Changes from Rev. 3.20 to Rev. 4.00 for more details of the API
functions changes in Rev. 4.00.

- Rev 5.00:
Please refer to 10.4 API Functions Changes from Rev. 4.10 to Rev. 5.00 for more details of the API
functions changes in Rev. 5.00.

The major change in the demo program: Declares the baud rate prescaler division and bit timing
values to set the bitrate of the CAN channel through the p_cfg argument before call
R_CAN_Create() function.

- Rev 5.50:
Updated demo projects to support FIFO callback.

5.1 Adding a Demo to a Workspace
Demo projects are found in the FITDemos subdirectory of the distribution file for this application note. To
add a demo project to a workspace, select File>Import>General>Existing Projects into Workspace, then click
“Next”. From the Import Projects dialog, choose the “Select archive file” radio button. “Browse” to the
FITDemos subdirectory, select the desired demo zip file, then click “Finish”.

The demo CAN application code is in the ../src directory, namely in files can_api_demo.c and switches.c.

To run the demo, import the e2studio project archive r01an2472eu1xxxx_can.zip into e2 studio as explained
below.

5.1.1 Import and Debug Project with e2 studio
(a) New workspace
Create an empty folder, where you want the workspace.

Start e2 studio, and point to above folder when e2 studio asks what workspace to open.

Click Workbench icon (bottom right in blue intro-screen).

Continue with next step below.

(b) Existing workspace
Select Import.

Select General => Existing Projects into workspace. ("Create new projects from an archive file or directory.")

If the code is a zipped, previously exported archive:

Browse to the archive zip-file and select it.

If the code is an e2 studio project directory with source code (with a .project file):
Browse to the root directory of the project. (The folder containing the “.project” file.) Make sure to check
box "Copy project to workspace" if you want the code to be local to the workspace (where the .metadata
directory is).

Click "Finish".

You have now imported this project into the workspace. You can go ahead and import other projects into the
same workspace.

(c) Run the code
Create a debug session, download and run the code.

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 37 of 63
Mar.15.25

5.1.2 Run Demo
Included in the package is a demonstration of using the CAN API, showing how to receive and transmit using
the CAN API at 500 kbps. The demo can be run in polled mailbox mode, or with CAN receive and transmit
interrupts. In interrupt mode, the demo can be run in normal or FIFO mailbox mode (determined by
g_mb_mode, default is CANBOX_NORMAL).

The demo can physically be set up a few different ways:

1. Program two boards and connect them together over the CAN bus. Swap the CAN ID values
TX_CANID_DEMO_INIT and RX_CANID_DEMO_INIT on one of the boards before programming
and running the demo.

2. With CANPORT_TEST_1_INT_LOOPBACK used in the R_CAN_PortSet API you can communicate
internally, no external bus needed!

3. Use a CAN bus monitor, e.g. SysTec low-cost monitor 3204000, to send and receive frames to/from
the demo.

Remote frames can also be demonstrated if CAN interrupts are enabled.

(a) Operation
The demo transmits and receives frames with the default CAN-IDs TX_CANID_DEMO_INIT and
RX_CANID_DEMO_INIT. The demo starts up by sending NR_STARTUP_TEST_FRAMES test frames back-
to-back as fast as possible. This has two purposes. 1) Check the bus link. 2) Demonstrate how messages
are sent back-to-back as fast as possible.

(b) User action
Press SW1 to send one CAN frame. To increment the TxID hold SW2 down and press SW3. The actual
send command is invoked by the Sw1Func() function. To change RxID hold SW3 down and press SW2. The
demo "action" can best be seen inside function can_int_demo() or can_poll_demo() depending on the setting
of USE_CAN_POLL in r_can_rx_config.h.

(c) Remote Frames
Besides demonstrating transmit and receive of standard CAN frames, the demo will also send remote frame
responses for remote frame requests received by the mailbox at CAN-ID 50h (in standard ID mode) or
50000h (in extended ID mode or mixed ID mode) to the RX. The CAN-ID is defined as the
REMOTE_TEST_ID macro in the can_api_demo.h file.

Set REMOTE_DEMO_ENABLE to 1 in can_api_demo.h to add this feature to the demo.
The demo requires interrupt mode; that is, USE_CAN_POLL set to 0 in the CAN API config-file. Remote
requests must come from an outside source, e.g. the CAN monitor mentioned above. This external CAN
source must be set to send remote frame requests to CAN-ID 50h (in standard ID mode) or 50000h (in
extended ID mode or mixed ID mode).

(d) FIFO mailbox mode

The demo will transmit and receive the frames by FIFO mailbox mode if the variable g_mb_mode is set to
CANBOX_FIFO in can_api_demo.c

Note:

1. The FIFO mailbox mode demo only runs in interrupt mode (USE_CAN_POLL set to 0).
2. FIFO mailboxes can only receive data frame (REMOTE_DEMO_ENABLE = 0) or remote frame

(REMOTE_DEMO_ENABLE = 1) at a time.
3. FIFO mailboxes can only receive remote frames in standard ID mode.

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 38 of 63
Mar.15.25

5.2 The Renesas Debug Console
Enabling trace data from the E1/E20 to the e2 studio Debug Console allows you to output data from your
application in real-time. This means you have the ability to use printf() statements in C to send trace strings
to the standard output. Standard output will in this case be the E1/E20 debug register.

To use this set BSP_CFG_IO_LIB_ENABLE to 1 in ../r_config/r_bsp_config.h.

The macro should automatically enable code in order to make the Debug Console available, but there are
certain actions you must take.

1. Make sure INIT_IOLIB() is called. See resetprog.c.

The code in lowlvl.c should contain functions charput and charget so that E1/E20 debug registers are used
for the lowest level I/O processing. charput for example must contain
/* Wait for transmit buffer to be empty */
while(0 != (E1_DBG_PORT.DBGSTAT & TXFL0EN));

Include <stdio.h> in any files where you wish to use printf-statements.

To any file where printf() is called, add
#if BSP_CFG_IO_LIB_ENABLE

 #include <stdio.h>

#endif

In e2 studio, depending on version, it may be necessary to add the Debug Console window by clicking on
both icons “1/0” and “Pin Console” as shown below. Both must be on so the print buffer in E1/E20 can be
emptied and not block code execution.

Figure 5. Buttons to control the Debug Console.

Press the I/O button for the console in e2 studio again if the console seems unresponsive. If nothing is
printed, press the Clear icon a few times. (The icon partially concealed by the red border.)

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 39 of 63
Mar.15.25

6. Test Modes
There are test modes that may be useful for example during product development. There are two loopback
modes “Internal” and “External”, and a Listen only mode.

6.1 Loopback
With loopback modes, the node will itself also receive any messages it sends if a mailbox is configured to
receive the same message. This can be useful for testing an application, or self-diagnosis during application
debug.

6.1.1 Internal - Test node without CAN bus
Internal Loopback mode, or Self Test mode, allows you to communicate via the CAN mailboxes without
connecting to a bus. The node acknowledges its own data with the ACK bit in the data frame. The node also
stores its own transmitted messages into a receive mailbox if it was configured for that CAN ID. This is
normally not possible.

Figure 6. CAN Internal Loopback mode lets you test the functionality of a node without having a CAN

bus connected.
Internal Loopback can be convenient when testing as this mode allows the CAN controller to run without
sending CAN errors due to no ACKs received when the node is alone on the bus, it acknowledges
transmitted frames itself.

6.1.2 External - Test node on bus
External Loopback is like Internal Loopback with the differences that there must be a CAN bus connected to
the node, and that the messages is also transmitted onto the bus. Just like internal loopback, a sent
message is acknowledged by the node itself so the node can be alone on the bus. This is an advantage as
nodes can be tested standalone.

Figure 7. External Loopback: The message is transmitted onto the CAN bus and can be received back

on the same node.

This is convenient when testing code and when a node is alone on the bus.

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 40 of 63
Mar.15.25

6.2 Listen Only = Bus Monitoring
In Listen Only mode, or Bus Monitoring, the node is quiet. A node in Listen Only mode will not acknowledge
messages or send Error frames etc. This enables you to test your node without affecting bus traffic.

Caution:

1. Do not transmit frames from the Listen Only node. That is not a correct behavior, and the CAN
module has not been designed for this.

2. If you only have two nodes on the network and one of them is Listen Only, the other node will not get
any ACKs and will keep trying to send over and over.

3. Mark entering listen only mode clearly in your code so you remember to disable Listen Only mode
again.

Figure 8. A node in Listen Only mode will not acknowledge messages or send Error frames etc.

Listen Only is useful for bringing up a new node that has been added to an existing CAN bus. The mode can
be used for a recently connected node’s application to ensure that frames have properly been received
before going live.

A common usage is to detect a bus’s communication speed before letting the new unit go ‘live’. Listen Only
is not a part of the Bosch CAN specification, but is required by ISO-11898 for bitrate detection.

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 41 of 63
Mar.15.25

7. Time Stamp
The timestamp function captures the value of the on-chip time stamp to a mailbox when a message is
received. By examining the time stamp you can for example determine the sequence of messages if they are
spread out over multiple receive mailboxes. Time stamp reading is not done by the API, so you will have to
poll the mailbox, and if the return value is R_CAN_OK (a message waiting) you can then go in and read the
timestamp.

Figure 9. CAN Timestamp is available in each mailbox.

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 42 of 63
Mar.15.25

8. CAN Sleep Mode
The default mode after an MCU reset is CAN Sleep mode. Use the API to switch to other operating modes,
see the R_CAN_Control API. Entering the CAN Sleep mode instantly stops the clock supply to the module
and thereby reduces power dissipation. All registers remain unchanged when the CAN module enters CAN
sleep mode.

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 43 of 63
Mar.15.25

9. CAN FIFO
CAN FIFO buffering is available in the RX MCUs that have CAN hardware, and FIFO mode is supported in
this software.

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 44 of 63
Mar.15.25

10. Appendices
10.1 Confirmed Operation Environment
This section describes confirmed operation environment for the CAN FIT module.

Table 10.1 Confirmed Operation Environment (Rev.5.71)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2025-01
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX RX 8.3.0.202411
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 5.10.1

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.5.71
Board used -

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 45 of 63
Mar.15.25

Table 10.2 Confirmed Operation Environment (Rev.5.70)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2024-01
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.06.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX RX 8.3.0.202311
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 5.10.1

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.5.70
Board used Renesas Starter Kit+ for RX671 (product No.: RTK55671EDC1xxxxBJ)

Table 10.3 Confirmed Operation Environment (Rev.5.60)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2023-10
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202305
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.5.60
Board used Renesas Starter Kit+ for RX671 (product No.: RTK55671EDC1xxxxBJ)

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 46 of 63
Mar.15.25

Table 10.4 Confirmed Operation Environment (Rev.5.50)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2023-07
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202305
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.5.50
Board used Renesas Starter Kit+ for RX64M (product No.: R0K50564MxxxxBE)

Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2CxxxxxBE)
Renesas Starter Kit+ for RX72N (product No.: RTK5572Nxxxxxxxxxx).
Renesas Starter Kit+ for RX71M (product No.: R0K50571MCxxxBE)
Renesas Starter Kit+ for RX72M (product No.: RTK5572MNDCxxxxxBJ)
Renesas Starter Kit+ for RX671 (product No.: RTK55671EDC1xxxxBJ)
Renesas Starter Kit for RX72T (product No.: RTK5572TKCCxxxxxBE)
Renesas Starter Kit for RX66T (product No.: RTK50566T0CxxxxxBE)

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 47 of 63
Mar.15.25

Table 10.5 Confirmed Operation Environment (Rev.5.40)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 22.7.0
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.5.40
Board used Renesas Starter Kit+ for RX64M (product No.: R0K50564MxxxxBE)

Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2CxxxxxBE)
Renesas Starter Kit+ for RX71M (product No.: R0K50571MCxxxBE)
Renesas Starter Kit+ for RX72M (product No.: RTK5572MNDCxxxxxBJ)
Renesas Starter Kit+ for RX671 (product No.: RTK55671EDC1xxxxBJ)
Renesas Starter Kit for RX72T (product No.: RTK5572TKCCxxxxxBE)
Renesas Starter Kit for RX66T (product No.: RTK50566T0CxxxxxBE)

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 48 of 63
Mar.15.25

Table 10.6 Confirmed Operation Environment (Rev.5.30)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 22.7.0
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.5.30
Board used Renesas Starter Kit+ for RX64M (product No.: R0K50564MxxxxBE)

Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2CxxxxxBE)
Renesas Starter Kit+ for RX71M (product No.: R0K50571MCxxxBE)
Renesas Starter Kit+ for RX72M (product No.: RTK5572MNDCxxxxxBJ)
Renesas Starter Kit+ for RX671 (product No.: RTK55671EDC1xxxxBJ)
Renesas Starter Kit for RX72T (product No.: RTK5572TKCCxxxxxBE)
Renesas Starter Kit for RX66T (product No.: RTK50566T0CxxxxxBE)

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 49 of 63
Mar.15.25

Table 10.7 Confirmed Operation Environment (Rev.5.21)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 21.7.0
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.5.21
Board used Renesas Starter Kit+ for RX671 (product No.: RTK55671xxxxxxxxxx)

Table 10.8 Confirmed Operation Environment (Rev.5.20)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 21.7.0
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.5.20
Board used Renesas Starter Kit+ for RX671 (product No.: RTK55671xxxxxxxxxx)

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 50 of 63
Mar.15.25

Table 10.9 Confirmed Operation Environment (Rev.5.10)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 21.7.0
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.5.10
Board used Renesas Starter Kit+ for RX671 (product No.: RTK55671xxxxxxxxxx)

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 51 of 63
Mar.15.25

Table 10.10 Confirmed Operation Environment (Rev.5.00)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 21.1.0
IAR Embedded Workbench for Renesas RX 4.20.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.1

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.5.00

Board used

Renesas Starter Kit+ for RX64M (product No.: R0K50564MSxxxBE).
Renesas Starter Kit+ for RX65N-2M (product No.: RTK50565Nxxxxxxxxx).
Renesas Starter Kit for RX66T (product No.: RTK50566T0SxxxxxBE).
Renesas Starter Kit+ for RX71M (product No.: R0K50571MSxxxBE).
Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx).
Renesas Starter Kit+ for RX72N (product No.: RTK5572Nxxxxxxxxxx).

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 52 of 63
Mar.15.25

Table 10.11 Confirmed Operation Environment (Rev.4.10)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.8.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.201904
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.4.10

Board used

Renesas Starter Kit+ for RX64M (product No.: R0K50564MSxxxBE).
Renesas Starter Kit+ for RX65N-2M (product No.: RTK50565Nxxxxxxxxx).
Renesas Starter Kit for RX66T (product No.: RTK50566T0SxxxxxBE).
Renesas Starter Kit+ for RX71M (product No.: R0K50571MSxxxBE).
Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx).
Renesas Starter Kit+ for RX72N (product No.: RTK5572Nxxxxxxxxxx).

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 53 of 63
Mar.15.25

Table 10.12 Confirmed Operation Environment (Rev.4.00)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.8.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.201904
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.4.00
Board used Renesas Starter Kit+ for RX65N-2M (product No.: RTK50565Nxxxxxxxxx).

Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx).

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 54 of 63
Mar.15.25

Table 10.13 Confirmed Operation Environment (Rev.3.20)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.7.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.8.4.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.3.20
Board used Renesas Starter Kit+ for RX72N (product No.: RTK5572Nxxxxxxxxxx).

Table 10.14 Confirmed Operation Environment (Rev.3.11)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.5.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.8.4.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.3.11
Board used Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx)

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 55 of 63
Mar.15.25

Table 10.15 Confirmed Operation Environment (Rev.3.10)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.5.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.8.4.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.3.10
Board used Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx)

Table 10.16 Confirmed Operation Environment (Rev.3.00)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.3.0
IAR Embedded Workbench for Renesas RX 4.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.8.4.201803
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.10.1

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.3.00
Board used Renesas Starter Kit+ for RX65N-2M (product No.: RTK50565Nxxxxxxxxx)

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 56 of 63
Mar.15.25

10.2 Troubleshooting
(1) Q: I have added the FIT module to the project and built it. Then I got the error: Could not open source file

“platform.h”.

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:

 Using CS+:

Application note “Adding Firmware Integration Technology Modules to CS+ Projects
(R01AN1826)”

 Using e2 studio:

Application note “Adding Firmware Integration Technology Modules to Projects (R01AN1723)”

When using this FIT module, the board support package FIT module (BSP module) must also be added
to the project. Refer to the application note “Board Support Package Module Using Firmware Integration
Technology (R01AN1685)”.

(2) Q: I have added the FIT module to the project and built it. Then I got the error: This MCU is not supported
by the current r_can_rx module.

A: The FIT module you added may not support the target device chosen in your project. Check the
supported devices of added FIT modules.

(3) Q: I have added the FIT module to the project and built it. Then I got an error for when the configuration
setting is wrong.

A: The setting in the file “r_can_rx_config.h” may be wrong. Check the file “r_can_rx_config.h”. If there is
a wrong setting, set the correct value for that. Refer to 2.9 Configuration for details.

10.3 API Functions Changes from Rev. 3.20 to Rev. 4.00
(1) R_CAN_TxSet(); R_CAN_Create(); R_CAN_TxSetXid(); R_CAN_Tx(); R_CAN_TxStopMsg();
R_CAN_RxRead(): the new input arguments(mb_mode; txf_cb_func; rxf_cb_func) have been added. Refer
to 3. The CAN API for details.

(2) R_CAN_RxSetMask(): Removed command which shift the CAN operation to OPERATE_CANMODE.
Need to call R_CAN_Control(ch_nr, OPERATE_CANMODE) before call R_CAN_TxSet() or
R_CAN_TxSetXid().

(3) R_CAN_Control(): if the action_type is EXITSLEEP_CANMODE, it will not go to OPERATE_CANMODE,
instead it will go to RESET_CANMODE.

(4) R_CAN_PortSet(): Removed source code pin-setting in case enable and disable. From now, setting
pin/port by using R_CAN_PinSet_CANn()(n=0,1,2) in file “/smc_gen/r_pincfg/r_can_rx_pinset.c”.

10.4 API Functions Changes from Rev. 4.10 to Rev. 5.00
(1) R_CAN_Create(); R_CAN_SetBitrate(): the new input argument(p_cfg) have been added.

From now, define the baud rate prescaler division and bit timing values for setting bitrate in user program.

Refer to 3. The CAN API for details.

10.5 API Functions Changes from Rev. 5.00 to Rev. 5.10
(1) R_CAN_RxSet (): Changed the input argument name from sid to id.

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 57 of 63
Mar.15.25

10.6 API Functions Changes from Rev. 5.50 to Rev. 5.60
(1) R_CAN_RxSetFIFO(); R_CAN_RxSetFIFOXid(): Removed the argument frame_type and added two new
arguments fidcr0_frame_type and fidcr1_frame_type to support the reception of both data frames and
remote frames in FIFO mailbox mode.

Refer to 3. The CAN API for details.

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 58 of 63
Mar.15.25

Related Technical Updates
This module reflects the content of the following technical updates.

TN-RX*-A151A/E

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 59 of 63
Mar.15.25

Revision History

Rev. Date
Description
Page Summary

1.00 Nov 17, 2014 — First release. 64M.
2.00 Feb 20, 2015 — Added 71M.
2.01 Jul 01, 2015 21 - Introduction slightly revised.

- Comments section under R_CAN_RxSetMask() slightly
revised.
- Source code: R_CAN_TxCheck() and R_CAN_TxStopMsg()
in r_can_rx.c modified because of RX64M/71M UM 43.2.8
note "Bits SENTDATA and TRMREQ cannot be set to 0
simultaneously.”

2.02 Oct 30, 2015 5.3, 5.4,
p9, p15.

Updates to code packaging (only) for FIT.
R_CAN_Create(): Added arguments for interrupt callbacks.
R_CAN_Tx(): Rephrased R_CAN_OK return case.

2.10 Mar 3, 2016 — - 65N added.
- Set IDE bit according to requested frame type for mixed ID
mode only.
- Change in R_CAN_RxRead() Mixed mode.
- R_CAN_Control(). Cases EXITSLEEP_CANMODE and
ENTERSLEEP_CANMODE, OPERATE_CANMODE.

2.11 Jan 30, 2017 All Added 65N-2MB.
Application note:
- Comments from Japan review.
- Added chapter “Using the Renesas Debug Console”.
- R_CAN_SetBitrate() section rewritten and expanded.
Code:
- Added user level CAN error diagnostics code to
can_api_demo.c. This is to aid user in bus problem
diagnostics during development & test. This code is macro
enabled by setting ERROR_DIAG to 1.
- Removed all USE_LCD code. Using debug console (printf)
instead. Added corresponding trace code to demo.
- Function names changed_to_this_style(), except for API for
legacy purpose.
- Cleaned up code in Handle_can_bus_state().
- Fig. 4 text "TEC or REC > 127" changed to "TEC < 128 and
REC <128".
- 7.2. For Remote Frames, the value for USE_CAN_POLL
corrected to "0".

2.12 Aug 15, 2017 22 - Text in Comments section of R_CAN_RxSetMask()
adjusted.
- ICU.GRPBE0.BIT changed for channels 1 and 2 in
CAN_ERS_ISR(). (All were set to channel 0.)

 6 Text change in description of R_CAN_Create(). Removed
reference to R_CAN_RxSetMask () and R_CAN_PortSet ()
calls.

2.13 Oct 26, 2018 1 Added RX66T as Target Device.
 All Changed title to add new device.
2.14 Nov 16, 2018 All Major revision of application note to updated template.

All sections affected.
2.15

Jan 10, 2019 1 Revision changed. Added RX72T device.

3.00 May.20.2019 — Supported the following compilers:

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 60 of 63
Mar.15.25

Rev. Date
Description
Page Summary

6

- GCC for Renesas RX
- IAR C/C++ Compiler for Renesas RX
2.3 Software Requirements
Requires r_bsp v5.20 or higher

 9 Updated the section of 2.9 Code Size
 36

37

Table 9.1 Confirmed Operation Environment (Rev. 3.00) :
Updated.
Added 9.2 Troubleshooting

 38 Deleted the section of Website and Support.
 Program Changed bellow for support GCC and IAR compiler:

1. Replaced evenaccess with the macro definition of BSP.
2. Replaced nop with the intrinsic functions of BSP.
3. Replaced the declaration of interrupt functions with the
macro definition of BSP.

 Changed the processing to prevent register access
contention between peripheral functions that occurs when
using RTOS or when multiple interrupts are enabled.

1. Changed the setting process of the Interrupt Request
Enable Bits (IEN)
[Description]
Changed the setting process of the Interrupt Request Enable
Bits (IEN) to use R_BSP_InterruptRequestDisable, and
R_BSP_InterruptRequestEnable in the API functions of BSP.

2. Changed the setting process of the Group Interrupt
Request Enable Register (GENBL1) (RX64M, RX65N,
RX66T, RX71M, and RX72T).
[Description]
Changed to perform the setting process of the Group
Interrupt Request Enable Register (GENBL1) while interrupts
are disabled.

3.10 Aug.15.19 1 Added support for RX72M
 9 Added code size corresponding to RX72M
 35

Program

9.1 Confirmed Operation Environment:
Added Table for Rev.3.10
Added support for RX72M.

3.11 Sep.16.19 6
36

Program

Added Interrupt Vector chapter
9.1 Confirmed Operation Environment:
Added Table for Rev.3.11
Fixed issue of interrupt sources are not assigned vector
number.

3.20 Dec.30.19 1
10
36

Program

Added support for RX66N, RX72N.
Added code size corresponding to RX66N, RX72N.
9.1 Confirmed Operation Environment:
Added Table for Rev.3.20
Added support for RX66N, RX72N.

4.00 Jun.30.20 8, 13-16,
21-23, 25,
28, 34, 35,
41

9, 10

Added support for CAN FIFO.

2.9.3 CAN Channel enabling and Pin Mapping:

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 61 of 63
Mar.15.25

Rev. Date
Description
Page Summary

11
36
42

Program

Removed TX, RX, pin-setting macro from r_can_rx_config.h.
Updated code size corresponding to CAN FIFO.
Added section 4. Pin Setting.
10.1 Confirmed Operation Environment:
Added Table for Rev.4.00.
Added support for CAN FIFO.
Added support for Pin Setting. Pin-setting for RX, TX is now
by Smart Configurator.
Fixed MDF file not support for RX651.
Fixed R_CAN_Control() – case EXITSLEEP_CANMODE.
Fixed R_CAN_RxSetMask().
Added warning text for STB/EN port/pin in MDF file.
Removed parentheses at value of macros for STB/EN
port/pin in r_can_rx_config.h.
Updated and added new demo project.

4.10 Jan.04.21 13, 37
43

48

Program

Added note about the API changes.
10.1 Confirmed Operation Environment:
Added Table for Rev.4.10.
Added section 10.3 API Functions Changes from Rev. 3.20
to Rev. 4.00.
Changed can_tx_callback to can_txf_callback in case
txf_cb_func is NULL in R_CAN_Create().
Upgraded demo project with CAN FIT module Rev. 4.10.

5.00 Apr.01.21 10

11
14, 15,
18, 19, 20
37

43

49

Program

Removed section 2.9.4 Bitrate Settings.
Updated code size corresponding to support for setting
different bitrate for different channels.
Added section 2.12 “for”,”while”, and “do while” statements.
Added argument p_cfg and updated example
for R_CAN_Create() and R_CAN_SetBitrate().
5. Demo Projects:
Updated note for changes corresponding to CAN FIT module
Rev. 5.00.
10.1 Confirmed Operation Environment:
Added Table for Rev.5.00.
Added section 10.4 API Functions Changes from Rev. 4.10
to Rev. 5.00.
Added support for setting different bitrate for different
channels.
Removed default macros for setting bitrate.
Upgraded demo project with CAN FIT module Rev. 5.00.

5.10 Apr.07.21 1
5

10
26
43

49

Added support for RX671.
Added 1.3 Using the FIT CAN module.
Added 1.3.1 Using FIT CAN module in C++ project.
Added code size corresponding to RX671.
Changed sid to id in R_CAN_RxSet().
10.1 Confirmed Operation Environment:
Added Table for Rev.5.10.
Added section 10.5 API Functions Changes from Rev. 5.00

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 62 of 63
Mar.15.25

Rev. Date
Description
Page Summary

Program

to Rev. 5.10.
Added support for RX671.
Changed sid to id in R_CAN_RxSet().

5.20 Sep.13.21 43

Program

Table 10.1: Confirm Operation Environment:
Added Table for Rev. 5.20.
Updated and added new demo projects.
Added CS+ support for demo project.

5.21 Feb.21.22 43

Program

Table 10.1: Confirm Operation Environment:
Added Table for Rev. 5.21.
Updated minor version.

5.30 Jun.28.22 43

Program

Table 10.1: Confirm Operation Environment:
Added Table for Rev. 5.30.
Updated demo projects

5.40 Sep.20.22 51

43

Program

10.3 API Functions Changes from Rev. 3.20 to Rev. 4.00:
Section (2): Added R_CAN_TxSetXid().
Table 10.1: Confirm Operation Environment:
Added Table for Rev. 5.40.
Updated demo projects.

5.50 Sep.08.23 10, 35

36, 37

42

Program

Deleted the description of FIT configurator from "2.11 Adding
the CAN FIT Module to Your Project" and "4. Pin Settings".
5. Demo Projects:
Added note for changes in demo project.
Updated descriptions for demo project.
Added support FIFO callback.
Table 10.1: Confirm Operation Environment:
Added Table for Rev. 5.50.
Updated and added new demo projects.
Updated demo projects to support FIFO callback.
Added WAIT_LOOP comments.

5.60 Dec.21.23

9
12, 20
22-28, 33
33

34

44

56

Program

Updated code size corresponding to source code CAN v5.60.
Modified the description of CAN_ERR_BOX_FULL.
Modified the description of mbox_nr.
Removed the argument frame_type and added two new
arguments fidcr0_frame_type and fidcr1_frame_type for
R_CAN_RxSetFIFO and R_CAN_RxSetFIFOXid to support
the reception of both data frames and remote frames in FIFO
mailbox mode.
Updated the example for R_CAN_RxSetFIFO and
R_CAN_RxSetFIFOXid.
Table 10.1: Confirm Operation Environment:
Added Table for Rev. 5.60.
Added section 10.6 API Functions Changes from Rev. 5.50
to Rev. 5.60.
Added support to receive both data frames and remote
frames in FIFO mailbox mode.
Fixed issue cannot receive remote frames with extended ID
in FIFO mailbox mode.

5.70 Nov.01.24 7

44

Program

Added new macros CAN_CFG_EN_NESTED_INT to support
nested interrupt.
Table 10.1: Confirm Operation Environment:
Added Table for Rev. 5.70.
Added support for nested interrupt.

RX Family CAN API Using Firmware Integration Technology

R01AN2472EU0571 Rev.5.71 Page 63 of 63
Mar.15.25

Rev. Date
Description
Page Summary

5.71 Mar.15.25 44

Program

Table 10.1: Confirm Operation Environment:
Added Table for Rev. 5.71.
Updated FIT Disclaimer and Copyright.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Basics
	1.2 Communication Layers
	1.3 Using the FIT CAN module
	1.3.1 Using FIT CAN module in C++ project

	1.4 Physical Connection
	1.5 The CAN Mailbox
	1.6 Extended CAN

	2. API Information
	2.1 Hardware Requirements
	2.2 Hardware Resource Requirements
	2.2.1 Peripheral Required
	2.2.2 Other Peripherals Used

	2.3 Software Requirements
	2.4 Limitations
	2.4.1 RAM Location Limitations

	2.5 Supported Toolchain
	2.6 Interrupt Vector
	2.7 Header Files
	2.8 Integer Types
	2.9 Configuration
	2.9.1 Interrupt vs. Polled Mode and CAN Interrupt Level & generation Timing
	2.9.2 Standard & Extended CAN IDs
	2.9.3 CAN Channel enabling and Pin Mapping
	2.9.4 Max Register Poll Time

	2.10 Code Size
	2.11 Adding the CAN FIT Module to Your Project
	2.12 “for”, “while” and “do while” statements

	3. The CAN API
	Summary
	Return Codes
	R_CAN_Create
	R_CAN_PortSet
	R_CAN_Control
	R_CAN_SetBitrate
	R_CAN_TxSet and R_CAN_TxSetXid
	R_CAN_Tx
	R_CAN_TxCheck
	R_CAN_TxStopMsg
	R_CAN_RxSet and R_CAN_RxSetXid
	R_CAN_RxPoll
	R_CAN_RxRead
	R_CAN_RxSetMask
	R_CAN_CheckErr
	(1) Error Active
	(2) Error Passive
	(3) Bus Off
	(a) Using CAN Polling
	(b) Using CAN Error Interrupts.

	R_CAN_RxSetFIFO and R_CAN_RxSetFIFOXid

	4. Pin Setting
	5. Demo Projects
	5.1 Adding a Demo to a Workspace
	5.1.1 Import and Debug Project with e2 studio
	(a) New workspace
	(b) Existing workspace
	(c) Run the code

	5.1.2 Run Demo
	(a) Operation
	(b) User action
	(c) Remote Frames
	(d) FIFO mailbox mode

	5.2 The Renesas Debug Console

	6. Test Modes
	6.1 Loopback
	6.1.1 Internal - Test node without CAN bus
	6.1.2 External - Test node on bus

	6.2 Listen Only = Bus Monitoring

	7. Time Stamp
	8. CAN Sleep Mode
	9. CAN FIFO
	10. Appendices
	10.1 Confirmed Operation Environment
	10.2 Troubleshooting
	10.3 API Functions Changes from Rev. 3.20 to Rev. 4.00
	10.4 API Functions Changes from Rev. 4.10 to Rev. 5.00
	10.5 API Functions Changes from Rev. 5.00 to Rev. 5.10
	10.6 API Functions Changes from Rev. 5.50 to Rev. 5.60

	Related Technical Updates
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

