Introduction
This document explains how to compute Mersenne primes as an example of a multiple precision arithmetic program using the DSP instructions for the RX family microcomputers.

Target Device
RX Family

Contents

1. General.. 2
2. Data Representation Multiple precision Numbers... 2
3. Mersenne Primes .. 3
4. Multiple precision Arithmetic Program... 4
5. Computing Mersenne Primes.. 11
1. General

Multiple precision arithmetic refers to numerical computations on numbers of a precision higher than that which can be handled directly with the hardware instructions of a computer. The range of numbers that can be handled directly by a 32-bit microcontroller such as the RX family is limited to from 0 to $2^{32} - 4294967295$ (assuming that the numbers are unsigned integers). A program that carries out multiple precision arithmetic is required to make calculations beyond such hardware limitations. Generally, multiple precision arithmetic is used in applications in which the precision provided by hardware-implemented fixed-precision arithmetic would be inadequate or any overflows of computation results would bring about some problems. Some four multiple precision arithmetic operation programs using the RX's DSP instructions are described in the application note entitled Multiple precision Multiplication Program Using the DSP instructions (R01AN0226EJ). This document describes a program for finding Mersenne primes as an application example of a multiple precision arithmetic program.

For details on the multiple precision arithmetic algorithm, refer to the following document.

2. Data Representation Multiple precision Numbers

Numbers of which precision exceeds the limits of values that a computer hardware can handle directly are called multiple precision numbers. This chapter describes the data representation of multiple precision numbers that are subject to multiple precision arithmetic.

The multiple precision numbers are assumed to be unsigned integers. The RX has a 16 bits × 16 bits multiply-accumulate instruction. To take advantage of this multiply-accumulate instruction to implement a multiplication program for multiple precision numbers, a multiple precision number is assumed to be represented by an array of 16-bit unsigned integers in this application note.

A 16-bit unsigned integer representation can represent 2^{16} numbers. By regarding each element of the array as a digit in a notation system of base 2^{16}, an array of 16-bit unsigned integers with a length of N can be used to represent an integer of N digits in a notation system of base 2^{16}. In addition, it is predefined that the elements of the array for a number of N digits are arranged in the ascending order toward the uppermost digit, with the element with a subscript of 0 being designated as the lowermost digit.

This is illustrated in figure 1.

![Figure 1 Data Representation of a Multiple precision Number Using an Array of 16-bit Unsigned Integers](image)

The numerical value stored in the multiple precision number a[N] can be represented by the following expression:

$$a[N-1] \times 2^{16(N-1)} + \ldots + a[2] \times 2^{32} + a[1] \times 2^{16} + a[0]$$

An example of a C program fragment for a multiple precision number that corresponds to figure 1 is given below. In this program, the number of digits N is set to 500 and unsigned integers with a maximum of $2^{5000} - 1$ of magnitude are assumed to be handled.

```c
#include <stdint.h>
#define N 500      /* Length of multiple precision number (for an array of 16-bit unsigned integers) */
uint16_t a[N];
```

3. Mersenne Primes

A Mersenne number is a number that is equal to one less than a power of 2, or that is represented in the following form:

\[M_p = 2^p - 1 \]

A Mersenne number which is a prime number is especially called a Mersenne prime. Mersenne primes that satisfy \(p < 3000 \) are known to be the following:

\[\begin{align*}
 p &= 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281
\end{align*} \]

As conjectured from the above numerical sequence, it is known that \(p \) must be a prime number for a Mersenne number to be a prime number. The rest of this document focuses only on Mersenne numbers in which \(p \) is a prime number.

For reference's sake, on a digital computer which is based on the binary number system, the internal representation of a Mersenne number is a sequence of consecutive 1 bits. For example, the Mersenne number in which \(p = 13 \) is represented by 111111111111 in the binary system. This is equal to the value that is obtained simply by subtracting 1 from the results of shifting a 1 13 bits to the left. In this way, a digital computer can easily make Mersenne numbers using left shift and subtraction. It is, however, not so easy to determine whether a Mersenne number is a prime number.

3.1 Lucas-Lehmer Primality Test

Since Mersenne numbers generally turn to be very huge integers, it is difficult to determine if they are primary numbers with any ordinary methods. Determining if a Mersenne number is a primary is accomplished by a method that is known as the Lucas-Lehmer Primality Test. A description of the Lucas-Lehmer Primality Test follows.

First, define a numerical sequence \(S_i \) \((i = 0, 1, 2, \ldots)\) for the odd primary \(p \) as follows:

\[S_0 = 4 \]
\[S_{i+1} = S_i^2 - 2 \]

In this case, the necessary and sufficient condition for the Mersenne number \(M_p \) to be a primary number is given as follows:

\[S_{p-2} \equiv 0 \mod M_p \]

That is, \(M_p \) is a primary number if \(S_{p-2} \) is divisible by \(M_p \) (the remainder is 0).

In an actual program, however, the Lucas-Lehmer Primality Test is used in the way as shown below. First, define a numerical sequence \(S_i \) \((i = 0, 1, 2, \ldots)\) for the odd primary \(p \) as follows:

\[S_0 = 4 \]
\[S_{i+1} = \text{Remainder obtained by dividing } (S_i^2 - 2) \text{ by } M_p \]

In this case, the necessary and sufficient condition for the Mersenne number \(M_p \) to be a prime number is as follows:

\[S_{p-2} = 0 \]

Since a remainder is taken for each term with this method, \(S_i \) can never be too large to be computable.
4. Multiple precision Arithmetic Program

This chapter introduces multiple precision arithmetic programs that are used for computing Mersenne primes. This is a worked out and improved version of the arithmetic program that is explained in the application note entitled Multiple precision Multiplication Program Making Use of the DSP Instructions (R01AN0226EJ).

4.1 Zero-clearing and Copying of Values

To improve program readability, define the function long_clr that zero-clears multiple precision numbers and the function long_cpy that copies values.

```
#include <string.h>

/*
  Clears multiple precision number a to 0.
*/
void long_clr(uint16_t *a)
{
    memset(a, 0, sizeof(uint16_t) * N);
}

/*
  Copies multiple precision number b to a.
*/
void long_cpy(uint16_t *a, uint16_t *b)
{
    memcpy(a, b, sizeof(uint16_t) * N);
}
```

4.2 Addition, Subtraction, and Comparison

The program for the multiple precision addition function long_add is given below. This function adds the value of multiple precision number b to multiple precision number a and places the results in a. This function is coded in assembly language. Accordingly, the #pragma inline_asm declaration is used.

```
/*
  Adds together multiple precision numbers
  Results are placed in a.
*/
#pragma inline_asm long_add
void long_add(uint16_t *a, uint16_t *b)
{
    mov.l    #0,r4
    mov.l    #N,r5
?:
    movu.w   [r1],r3
    add       r3,r4
    movu.w   [r2+],r3
    add       r3,r4
    mov.w    r4,[r1+]
    shlr     #16,r4
    sub       #1,r5
    bnz     ?-
}
```
Next, the program for multiple precision subtraction function long_sub is shown below. This function subtracts the value of multiple precision number \(b \) from multiple precision number \(a \) and places the results in \(a \). However, the inequality \(a \geq b \) must be observed. This function is coded in assembly language. Accordingly, the \#pragma inline_asm declaration is used.

```c
/*
   Subtraction on multiple precision numbers (a >= b must be observed)
   Results are placed in a.
*/
#pragma inline_asm long_sub
void long_sub(uint16_t *a, uint16_t *b)
{
    mov.l   #0,r4
    mov.l   #N,r5
    ?:      
movu.w  [r1],r3
    add     r3,r4
    movu.w  [r2+],r3
    sub     r3,r4
    mov.w   r4,[r1+]
    shar    #16,r4
    sub     #1,r5
    bnz     ?-
}
```

Finally, the program for the multiple precision number comparison function long_cmp is given below. This function compares two multiple precision number \(a \) and \(b \) and returns 0 if \(a = b \), \(-1\) if \(a < b \), and \(1\) if \(a > b \).

```c
/*
   Compares between multiple precision numbers
   Returns 1 if a > b, 0 if a == b, and -1 if a < b.
*/
int long_cmp(uint16_t *a, uint16_t *b)
{
    int i;
    int32_t c;
    for (i = N - 1; i >= 0; i--) {
        c = (int32_t)a[i] - (int32_t)b[i];
        if (c < 0) {
            return -1;
        }
        if (c > 0) {
            return 1;
        }
    }
    return 0;
}
```
4.3 Multiplication Program

This section gives a program for the function long_mul which performs multiplications on multiple precision numbers. This function performs a multiplication on multiple precision numbers a and b and places the results in a. This function references mul16 and add16 as auxiliary function. The function mul16 is coded in assembly language. Accordingly, the #pragma inline_asm declaration is used.

```c
/*
   Multiplies multiple precision numbers
   Results are placed in a.
*/
void long_mul(uint16_t *a, uint16_t *b)
{
    int i, j;
    uint32_t x;
    static uint16_t res[N];

    memset(res, 0, sizeof res);
    for (i = 0; i < N; i++) {
        if (a[i] != 0) {
            for (j = 0; j < N; j++) {
                if (b[j] != 0 && i + j < N) {
                    x = mul16(a[i], b[j]);
                    add16(res, i + j, (x & 0xffff));
                    add16(res, i + j + 1, (x >> 16));
                }
            }
        }
    }
    memcpy(a, res, sizeof res);
}

/*
   Multiplies 16-bit unsigned integers.
   Returns a 32-bit unsigned integer as results.
*/
#pragma inline_asm mul16
static uint32_t mul16(uint16_t a, uint16_t b)
{
    push.l r6
    mov.l r1,r3
    and #7fffh,r3
    mov.l r2,r4
    and #7fffh,r4
    mov.l #0,r5
    tst #8000h,r1
    bz ?+
    mov.l r4,r6
    shll #15,r6
    add r6,r5
?
    tst #8000h,r2
    bz ?+
    mov.l r3,r6
    shll #15,r6
    add r6,r5
    tst #8000h,r1
    bz ?+
```
4.4 Division

The program for the multiple precision number division function long_div is shown below. This function divides the value of multiple precision number \(a \) by the value of multiple precision number \(b \) and places the quotient in \(q \) and the remainder in \(r \). However, the inequality \(b > 0 \) must be observed. This function references guess, lshl, lshr, and llen as auxiliary function. The function guess is coded in assembly language. Accordingly, the \#pragma inline_asm declaration is used.

```c
/* Performs division on multiple precision numbers (inequality b > 0 must be observed).
   Places the quotient in q and the remainder in r.
*/
void long_div(uint16_t *a, uint16_t *b, uint16_t *q, uint16_t *r)
{
    int i, m, n, shift;
    uint32_t u, quot;
    static uint16_t c[N], d[N], e[N];

    #define ZERO(x)         memset(x, 0, sizeof(uint16_t) * N)
    #define COPY(x, y)      memcpy(x, y, sizeof(uint16_t) * N)

    ZERO(e);
    ZERO(q);
    COPY(r, a);
    n = llen(b) - 1;
    if (long_cmp(a, b) < 0 || n < 0) {
        return;
    }
    /* normalize */
    for (shift = 0, u = b[n]; (u & 0x8000) == 0; u <<= 1) {
        shift++;
    }
    lshl(r, shift);
```
RX Family Application Example of Multiple precision Arithmetic: Computing Mersenne Primes

```c
lshl(b, shift);
/* loop */
while (long_cmp(r, b) >= 0) {
    m = llen(r) - 1;
    if (r[m] >= b[n]) {
        ZERO(c);
        for (i = 0; i <= n; i++) { c[m - n + i] = b[i]; }
        if (long_cmp(r, c) >= 0) {
            q[m - n] = 1;
            long_sub(r, c);
            continue;
        }
    }
    quot = guess(r, b, m, n);
    ZERO(c);
    for (i = 0; i <= n; i++) { c[m - n - 1 + i] = b[i]; }
    COPY(d, c);
    e[0] = quot;
    long_mul(c, e);
    while (long_cmp(r, c) < 0) {
        long_sub(r, c);
        quot--;
    }
    q[m - n - 1] = quot;
    long_sub(r, c);
}
/* unnormalize */
lshr(r, shift);
lshr(b, shift);

#undef  ZERO
#undef  COPY
}

/* Auxiliary functions for long_div */
#pragma inline_asm guess
static uint32_t guess(uint16_t *a, uint16_t *b, int c, int d) {
    shll    #01h,r3,r5
    add     r1,r5
    movu.w  [r5],r1
    sub     #02h,r5
    shll    #10h,r1
    add     [r5].uw,r1
    movu.w  [r4,r2],r5
    divu    r5,r1
    cmp     #0ffffh,r1
    bleu    ?+
    mov.l   #0ffffh,r1

 ?:
}
/*
 Shifts multiple precision number a n bits to the left.
 0 <= n <= 15 must be observed.
*/
static void lshl(uint16_t *a, int n) {
```
int i;
uint32_t c = 0;
uint32_t t;

if (n == 0) {
 return;
}
for (i = 0; i < N; i++) {
 t = (uint32_t)a[i];
 t <<= n;
 t |= c;
 a[i] = t;
 c = (t >> 16);
}

/*
 * Shifts multiple precision number a n bits to the right.
 * 0 <= n <= 15 must be observed.
 */
static void lshr(uint16_t *a, int n)
{
 int i;
 uint16_t c = 0;
 uint16_t t;

 if (n == 0) {
 return;
 }
 for (i = N - 1; i >= 0; i--) {
 t = a[i];
 a[i] = (c | (t >> n));
 c = (t << (16 - n));
 }

 /*
 * Returns number of digits of a multiple precision number
 * Returns 0 if a == 0
 */
 static int llen(uint16_t *a)
 {
 int i;

 for (i = N - 1; i >= 0; i--) {
 if (a[i] != 0) {
 return i + 1;
 }
 }
 return 0;
 }
4.5 Bit Shifting

Given below are functions `long_shl` and `long_shr` which shift a multiple precision number left or right on a bit basis. These functions shift multiple precision number `n` bits to the left or right on a bit basis. The number of bits `n` to shift may be 15 or greater. These functions reference `lshl`, `lshr`, and `llen` which are the auxiliary functions for the division program introduced in the preceding section.

```c
/*
    Shifts multiple precision number a n bits to the left
*/
void long_shl(uint16_t *a, int n)
{
    int i, j, k;
    static uint16_t t[N];

    if (n <= 15) {
        lshl(a, n);
    }
    else {
        j = n / 16;         /* Number of bits to shift left */
        n -= j * 16;        /* Number of remaining bits to shift */
        k = llen(a);        /* Number of digits of a */
        memset(t, 0, sizeof t);
        for (i = 0; i < k && i + j < N; i++) {
            t[i + j] = a[i];
        }
        lshl(t, n);
        memcpy(a, t, sizeof t);
    }
}

/*
    Shifts multiple precision number a n bits to the right
*/
void long_shr(uint16_t *a, int n)
{
    int i, j, k;
    static uint16_t t[N];

    if (n <= 15) {
        lshr(a, n);
    }
    else {
        j = n / 16;        /* Number of bits to shift right */
        n -= j * 16;        /* Number of remaining bits to shift */
        k = llen(a);        /* Number of digits of a */
        memset(t, 0, sizeof t);
        for (i = k - 1; i - j >= 0; i--) {
            t[i - j] = a[i];
        }
        lshr(t, n);
        memcpy(a, t, sizeof t);
    }
}
```
5. Computing Mersenne Primes

This chapter presents a program that finds Mersenne primes. The main program (main function) tests to determine whether Mersenne numbers \((2^p - 1)\) corresponding to the odd primes \(p\) that start at 5 and smaller than 3000 sequentially using the Lucas-Lehmer Primality Test.

The main program references the three auxiliary functions, i.e., divisor, next_prime, and print_mersenne_prime.

divisor is a function that returns the smallest divisor of integer \(n\). divisor tries to divide \(n\) by odd numbers with magnitudes from 3 up to \(\sqrt{n}\) sequentially and finds the smallest divisor (other than 1) of \(n\).

next_prime function returns the smallest prime number that is greater than the given integer \(n\). next_prime calls divisor and verifies that the smallest divisor other than 1 equals that number, whereby identifying the prime number.

print_mersenne_prime is a function that is called by the main program when a Mersenne prime is found. When the program is to be run in the integrated development environment HEW, the user can verify the Mersenne prime that has been found by setting a breakpoint in this function.

```c
#include <stdint.h>
#include <math.h>
#include "RXlong.h"

/* Returns smallest divisor of n */
static int divisor(int n)
{
    int i, root;
    root = (int)sqrt(n);
    for (i = 3; i <= root; i += 2) {
        if (n % i == 0) {
            return i;
        }
    }
    return n;
}

/* Returns smallest prime that is greater than or equal to n */
static int next_prime(int n)
{
    if (n <= 3) {
        return 3;
    }
    if (n % 2 == 0) {
        n += 1; /* Odd prime */
    }
    while (divisor(n) != n) {
        n += 2;
    }
    return n;
}

/* Displays Mersenne prime p */
static void print_mersenne_prime(int p)
{
    /* printf("mersenne prime: p = %d\n", p); */
}

void main(void)
{
    int p, i;
```
static uint16_t M[N], S[N], a[N], q[N];

/*
Uses the Lucas-Lehmer Primality Test to determine whether \((2^p - 1)\) is a
Mersenne prime for odd primes \(p\) that starts at 5 and grows in ascending order
and not exceeds 3000.
*/
for (p = 5; p < 3000; p = next_prime(p + 2)) {
 /* \(M \leftarrow 2^p - 1\) */
 long_clr(M);
 M[0] = 1;
 long_shl(M, p);
 long_clr(a);
 a[0] = 1;
 long_sub(M, a);

 /* \(S \leftarrow 4\) */
 longClr(S);
 S[0] = 4;
 for (i = 1; i < N - 1; i++) {
 /* \(S \leftarrow S^2 - 2\) */
 longcpy(a, S);
 longmul(S, a);
 longclr(a);
 a[0] = 2;
 longsub(S, a);
 /* \(S \leftarrow S \mod M\) */
 longdiv(S, M, q, a);
 longcpy(S, a);
 }
 if (long_nil(S)) {
 /* A Mersenne prime if \(S == 0\)*/
 printf("Mersenne prime\n");
 }
}
Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.
<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Page</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Mar 14, 2011</td>
<td>—</td>
<td>First edition issued</td>
</tr>
</tbody>
</table>
General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins
 Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
 The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
 Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
 After applying a reset, only release the reset line after the operating clock signal has become stable.
 When switching the clock signal during program execution, wait until the target clock signal has stabilized.
 - When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
 Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
 Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.
 - The characteristics of an MPU or MCU in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.