
RX-family C/C++ Compiler Package Application Notes

RX-family C/C++ Compiler Package
REJ06J0100-0100

Rev.1.00
Apr 20, 2010

Application Notes: Compiler Usage Guide
Languages Edition (C89, C99)

This document introduces the C99 language specifications added to version 1.0 of the RX-family C/C++ compiler.

Table of contents

1. Introduction.. 2

2. New functionality in C99.. 3
2.1 Primitive types ... 3

2.1.1 Logical types ... 3
2.1.2 Complex number types ... 4
2.1.3 long long types .. 7
2.1.4 Variable-length array types ... 8
2.1.5 Flexible array members... 9

2.2 Keywords... 11
2.2.1 inline .. 11
2.2.2 restrict.. 13
2.2.3 _Pragma.. 14

2.3 Literals... 16
2.3.1 Floating-point hexadecimal notation ... 16
2.3.2 enum ... 17
2.3.3 Array and structure initialization .. 18
2.3.4 Compound literals ... 19

2.4 Syntax ... 20
2.4.1 One-line comments ... 20
2.4.2 Wide character concatenation... 21
2.4.3 Variable arity macros... 22
2.4.4 Empty arguments in function type macros.. 23
2.4.5 Characters that can be used in identifiers... 24
2.4.6 Variable declaration positions ... 25

2.5 Standard include files.. 26
2.5.1 complex.h .. 26
2.5.2 fenv.h... 27
2.5.3 inttypes.h ... 28
2.5.4 stdbool.h.. 30
2.5.5 stdint.h... 31
2.5.6 tgmath.h .. 33

2.6 Macros... 35
2.6.1 Predefined macros .. 35
2.6.2 __func__.. 36

2.7 Pragmas .. 37
2.7.1 #pragma STDC FP_CONTRACT.. 37
2.7.2 #pragma STDC FENV_ACCESS.. 38
2.7.3 #pragma STDC CX_LIMITED_RANGE .. 39

3. Precautions regarding migration from C89 to C99.. 40
3.1 Implicit type declarations... 40
3.2 Negative integer division ... 41
Website and Support ... 42

REJ06J0100-0100 Rev.1.00 Page 1 of 44

2010.04.20

RX-family C/C++ Compiler Package Application Notes

1. Introduction

Version 1.0 of the RX-family C/C++ compiler works not only with the ANSI-standard C language C89 and the

ANSI-standard C++ language and EC++ language, but also with the successor to C89, the ANSI-standard C language

C99 (except for variable-length arrays). This document explains the new functionality in C99, and the precautions

necessary when migrating from C89 to C99.

The RX-family C/C++ compiler compiles source programs for C89 by default (the -lang=c compile option). To

compile for C99 from the command line, specify the -lang=c99 compile option. This option can be set in the RX

Standard Toolchain dialog box displayed by choosing the Build and then RX Standard Toolchain menus in

High-performance Embedded Workshop.

Figure 1-1 Compiler options for C99

Some of the standard libraries added to C99 require setup using the standard library configuration tool. For the

command line, use the -lang=c99 and -head options, which can be set in the RX Standard Toolchain dialog box in

High-performance Embedded Workshop. For details, see 2.5 Standard include files.

Figure 1-2 Standard library configuration tool option for C99

REJ06J0100-0100 Rev.1.00 Page 2 of 44

2010.04.20

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 3 of 44

2010.04.20

2. New functionality in C99

2.1 Primitive types

The primitive types added to C99 include logical types, complex number types, long long types, variable-length

array types, and flexible array members.

2.1.1 Logical types

 Overview

Logical types indicating either true or false have been added.

 Description

The bool type and _Bool type have been added to C99 as logical types indicating true or false. The values that can be

used for the bool type (_Bool type) are true, indicating truth, and false, indicating falsity. To use the bool type, _Bool

type, true, and false, include stdbool.h.

 Example usage

(1) Using the bool types true and false

The following example uses a bool type variable.
#include <stdbool.h>

int func(bool b, bool c)
{
 if (b == true) {
 return 1;
 }

 if (c == false) {
 return -1;
 }

 return 0;
}

(2) Conditional expressions

The following example returns the results of comparing int type variables as a bool type.
#include <stdbool.h>

bool func(int a, int b)
{
 return (a==b);
}

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 4 of 44

2010.04.20

2.1.2 Complex number types
 Overview

The _Complex type has been added to handle complex numbers, and the _Imaginary type has been added to

represent the imaginary component of a complex number.

 Description

Types have been added to C99 to handle complex numbers. Complex numbers consist of a real component and an

imaginary component. The three types that can be used as complex number types are the float _Complex type, double

_Complex type, and long double _Complex type. For example, the float _Complex type represents a complex number

type where both the real component and imaginary component are a float type. Also, the three types that can be used as

the imaginary component of a complex number are the float _Imaginary type, double _Imaginary type, and long double

_Imaginary type. For example, the float _Imaginary type means that the float type is imaginary. __I__ can also be used

as the imaginary unit (defined mathematically as i, where i^2=-1). Note that "complex" can be used in place of

"_Complex", "imaginary" can be used in place of "_Imaginary", and "I" can be used in place of "__I__". To use

complex number types, include complex.h.

The -head=complex option must be specified for the standard library configuration tool in order to use the complex

number calculation library.

 Example usage

(1) Using complex number types
#include <complex.h>

float _Complex cf;
double _Complex cd;
long double _Complex cld;

void func()
{
 /* A float type complex number with a real component of 1.0 and an imaginary component of 2.0
*/
 cf = 1.0f + __I__ * 2.0f;

 /* A double type complex number with a real component of 10.0 and an imaginary component of 20.0*/
 cd = 10.0 + __I__ * 20.0;

 /* A long double type complex number with a real component of 100.0 and an imaginary component
of 200.0 */
 cld = 100.0 + __I__ * 200.0;
}

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 5 of 44

2010.04.20

(2) Calculating complex number types
#include <complex.h>

float _Complex cf1, cf2, cf3;

void func1()
{
 /* Adding complex numbers */
 cf1 = cf2 + cf3;
}

void func2()
{
 /* Subtracting complex numbers */
 cf1 = cf2 - cf3;
}

void func3()
{
 /* Multiplying complex numbers */
 cf1 = cf2 * cf3;
}

void func4()
{
 /* Dividing complex numbers */
 cf1 = cf2 / cf3;
}

int func5()
{
 /* Comparing complex numbers */
 if (cf1 == cf2) return 1;
 else if (cf1 != cf2) return -1;
}

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 6 of 44

2010.04.20

(3) Converting types
#include <complex.h>

float _Complex cf;
double _Complex cd;
float fr;
float _Imaginary fi;

void func1()
{
 /* Converting a float_Complex to a float type to obtain the real component */
 fr = (float)cf;
}

void func2()
{
 /* Converting a float_Complex to a float Imaginary type to obtain the imaginary component */
 fi = (float _Imaginary)cf;
}

void func3()
{
 /* Converting a float to a float_Complex type, where the imaginary component for cf is 0 */
 cf = (float _Complex)fr;
}

void func4()
{
 /* Converting a float Imaginary to a float Complex type, where the real component for cf is 0 */
 cf = (float _Complex)fi;
}

void func5()
{
 /* Converting a float_Complex to a double Complex type.
 ** Both the real component and imaginary component are converted from a float to a double type.
 */
 df = (double _Complex)cf;
}

(4) Imaginary units
#include <complex.h>

float _Complex cf1, cf2;

Void func()
{
 /* Replacing the cf2 real component with the cf1 imaginary component, and the cf2 (imaginary component
x -1) with the cf1 real component */
 cf1 = cf2 * __I__;

 /* The real component is -1, and the imaginary component is 0. */
 cf2 = __I__ * __I__;
}

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 7 of 44

2010.04.20

2.1.3 long long types
 Overview

Two long long types have been added to handle 64-bit integer types.

 Description

The long long types (signed long long type and unsigned long long type) have been officially added to the C99

language specification to handle 64-bit integer types.

The long long types can also be used by the RX-family C/C++ compiler for C89.

The following gives the value ranges that the long long types can handle.

Table 2-1 Value ranges for the long long types
Type Minimum value Maximum value

signed long long type -9,223,372,036,854,775,808 9,223,372,036,854,775,807
unsigned long long type 0 18,446,744,073,709,551,615

The following suffixes have been added to represent long long type integer constants.

Table 2-2 Constant suffixes for the long long type
Integer constant type Suffix

signed long long type LL, ll
unsigned long long type ULL, LLU, ull, llu

Formatting such as %llx, %llX, %lld, and %llu has been added for printf and sprintf to handle long long types.

Table 2-3 Formatting for the long long types
Type Format

signed long long type %lld (Changes the format of a value of the signed long long type to decimal)
%llx (Changes the format of a value of the signed long long type to hexadecimal)

unsigned long long type %llu (Changes the format of a value of an unsigned long long type to decimal)
%llX (Changes the format of a value of an unsigned long long type to hexadecimal)

 Example usage

The following example uses the long long types.
#include <stdio.h> /* for printf */

long long sll;
unsigned long long ull;

void func1()
{
 sll = 0x7FFFFFFFFFFFFFFFLL; /* Integer constant of the signed long long type */
 ull = 0xFFFFFFFFFFFFFFFFULL; /* Integer constant of the unsigned long long type */
}

void func2()
{
 printf("%lld¥n", sll); /* Outputs the value of a signed long long type variable in decimal */
 printf("%llx¥n", sll); /* Outputs the value of a signed long long type variable in hexadecimal */

 printf("%llu¥n", ull); /* Outputs the value of a unsigned long long type variable in decimal */
 printf("%llX¥n", ull); /* Outputs the value of a unsigned long long type variable in hexadecimal */
}

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 8 of 44

2010.04.20

2.1.4 Variable-length array types
 Overview

Variable-length array types are now available, but the RX-family C/C++ compiler does not support them.

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 9 of 44

2010.04.20

2.1.5 Flexible array members
 Overview

Array members with no element count specified (flexible array members) can now be declared as the last member of

a structure or union.

 Description

In C89, the element count must be specified when an array type structure or union member is declared. In C99, an

array member with no element count specified (flexible array member) can now be declared as the last member of a

structure or union.

For structures that handle image data formats like bitmap or transmission data formats like TCP/IP, header

information such as the size of the structure data is sometimes declared at the start of the structure, with the data after

the header information declared as an array type. Also, the size of the data is sometimes not known at execution.

Flexible array members can be used to facilitate handling for these kinds of data formats.

 Example usage

In the following example, the member data for structure S is a flexible array member. For C89, the dummy data[1]

needs to be declared in structure S. This means that when data is secured for structure S, the size of data[1] is subtracted

from the size calculated using sizeof(struct S).
C89

#include <stdlib.h> /* for malloc */

struct S {
 int size;
 int dummy1;
 int dummy2;
 int data[1];
};

void func(int size)
{
 struct S *p;
 int i;

 p = (struct S*)malloc(
 sizeof(struct S)
 - sizeof(int)
 + sizeof(int) * size);

 p->size = size;
 for (i=0; i<size; i++) {
 p->data[i] = 0;
 }
 ...
}

C99

#include <stdlib.h> /* for malloc */

struct S {
 int size;
 int dummy1;
 int dummy2;
 int data[]; /* Flexible array member */
};

void func(int size)
{
 struct S *p;
 int i;

 p = (struct S*)malloc(
 sizeof(struct S)

 + sizeof(int) * size);

 p->size = size;
 for (i=0; i<size; i++) {
 p->data[i] = 0;
 }
 ...
}

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 10 of 44

2010.04.20

 Notes

(1) Using the sizeof operator

The return value for the sizeof operator invoked on a structure or union containing a flexible array member does not

contain the size of flexible array members. In the following example, 12, the structure size not including data[], is stored

for x.
void func()
{
 int x = sizeof(struct S);
}

(2) Variables for structure and union types that include flexible array members

When a variable is declared for a structure or union type containing a flexible array member (does not include cases

for pointer types for structures or unions containing flexible array members), access to the flexible array members for

that variable is not guaranteed. In the following example, since the structure S type variable s only has the size,

dummy1, and dummy2 areas, access to s.data[0] is invalid.
struct S s;
void func()
{
 s.data[0] = 0;
}

(3) Copying structures and unions containing flexible array members

When a structure or union containing a flexible array member is copied, the flexible array members are not copied. In

the following example, a copy from *p to *q results in size, dummy1, and dummy2 being copied, but not the area for

data[].
void func(struct S *p, struct S *q)
{
 *q = *p;
}

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 11 of 44

2010.04.20

2.2 Keywords

The keywords inline, restrict, and _Pragma have been added to C99.

2.2.1 inline

 Overview

The inline keyword is now supported to instruct the compiler to perform inline expansion for functions.

 Description

When the inline keyword is specified for a function, the compiler is instructed to perform inline expansion of the

function. However, note that the inline keyword is only a hint that the compiler should perform inline expansion, and

whether inline expansion is actually performed depends on the compiler processing.

 Example usage

The following uses inline to instruct the compiler to perform inline expansion for the add function.
Source code

static inline int add(int x, int y)
{
 return (x + y);
}

int xxx, yyy, zzz;
void func()
{
 xxx = add(yyy, zzz);
 yyy = add(yyy, 2);
}

Compiler interpretation (when the -inline=100
option is specified)

int xxx, yyy, zzz;
void func()
{
 xxx = yyy + zzz;
 yyy = yyy + 2;
}

 Notes

When inline is specified in a declaration for a function that has external linkage (function for which extern is also

declared), the function needs to be defined within the same source file. If no function definition exists, an undefined

symbol error (L2310) may be output during linking. Make sure that functions are defined in the same source file when a

function is specified with inline.
inline int add(int x, int y); /* No definition, only declaration */

int xxx, yyy, zzz;
void func()
{
 xxx = add(yyy, zzz);
}

Even when a function is specified as inline, inline expansion might not be performed due to compiler conditions. In

this case, if extern is not specified for a function for which inline is specified, no function definition is generated. This

means that an undefined symbol error (L2310) could be output during linking. When L2310 is output for a function for

which inline is specified, make sure that an extern declaration is added for the corresponding function. For example, in

the following example, when the -inline=0 compile option is specified, since the function add is not expanded inline,

and no definition is generated for add, L2310 is output during linking. To avoid linking errors, use the extern

declaration for the add function.

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 12 of 44

2010.04.20

Before modification

inline int add(int x, int y)
{
 return (x + y);
}

int xxx, yyy, zzz;
void func()
{
 xxx = add(yyy, zzz);
}

After modification

inline extern int add(int x, int y)
{
 return (x + y);
}

int xxx, yyy, zzz;
void func()
{
 xxx = add(yyy, zzz);
}

Note that the RX-family C/C++ compiler allows the use of inline expansion, using the #pragma extension

functionality (#pragma inline). When the C99 inline keyword is used, no definition is generated for functions for which

inline is specified when extern is not declared, as shown above. However, when #pragma inline is used, function

definitions are generated regardless of whether inline expansion is possible.

Functions for which inline is specified cannot contain references to identifiers with internal linkage (static variables

within the function or static variables within the file).
inline void add1()
{
 /* This causes a C6030 error. */
 static int x = 0;
 x ++;
}

static int y;
inline void add2()
{
 /* This causes a C6031 error. */
 x ++;
}

void func()
{
 add1();
 add2();
}

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 13 of 44

2010.04.20

2.2.2 restrict
 Overview

The restrict keyword has been added to provide hints to the compiler regarding pointer optimizations.

 Description

Compilers can more easily implement pointer-oriented optimizations when areas indicated by pointers modified

using restrict are explicitly deemed unique from areas indicated by other pointers.

 Example usage

(1) When restrict is not used

Usually, a compiler will assume that the areas for *q and *r may overlap with the area for *p. Consequently, since

storing something in *p could cause *q and *r to be overwritten, the generated code must load *q and *r for each

iteration within a loop.
Source program:

void func(int * p,
 int * q, int * r,
 int n)
{
 int i;

 for (i=0; i<n; i++) {
 p[i] = *q + *r;
 }
}

int a[10], b, c;
void main()
{
 func(a, &b, &c, 10);
}

Generated code:

_func:
 MOV.L R4,R15
 MOV.L #00000000H,R4
 BRA L11
L12:
 MOV.L [R2],R5 ; Load (*q)
 ADD #01H,R4
 ADD [R3],R5 ; Load (*r)
 MOV.L R5,[R1+] ; Store in (*p)
L11:
 CMP R15,R4
 BLT L12
L13:
 RTS

(2) When restrict is used

The restrict modifier can be added to q and r to explicitly tell the compiler that the areas for *q and *r will not

overlap with the area for *p. This means that the compiler can assume that *q and *r will not be overwritten even

when a value is stored in *p, and generate optimized code in which *q and *r are only loaded once at the start of the

loop.
Source program:

void func(int * p,
 int * restrict q, int * restrict r,
 int n)
{
 int i;

 for (i=0; i<n; i++) {
 p[i] = *q + *r;
 }
}

int a[10], b, c;
void main()
{
 func(a, &b, &c, 10);
}

Generated code:

_func:
 MOV.L R4,R15
 MOV.L [R2],R4 ; Load (*q)
 MOV.L #00000000H,R5
 ADD [R3],R4 ; Load (*r)
 BRA L11
L12:
 MOV.L R4,[R1+] ; Store in (*p)
 ADD #01H,R5
L11:
 CMP R15,R5
 BLT L12
L13:
 RTS

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 14 of 44

2010.04.20

2.2.3 _Pragma
 Overview

The _Pragma keyword has been added as an operator to perform the same functionality as #pragma.

 Description

Since how #pragma is used differs depending on the processing type, how #pragma is written needs to be changed

based on the specification of the compiler used. When #pragma is used often in a source program, because #pragma

code needs to be disambiguated based on the compiler type every time the code appears, the readability of the source

program often suffers. The _Pragma keyword added to C99 makes it easier to specify #pragma.

 Example usage

(1) Switching optimization policies

Assuming a #pragma exists to switch the optimization policy for each function by declaration anywhere in an

individual file, the following example enables optimization for the function func_001, but not the function func_002. In

C89, each compiler type judgment and #pragma code needs to be included before the definitions for func_001 and

func_002, but in C99, _Pragma can be used to simplify the code.
C89

#ifdef __RX
/* Declaration for RX compilers (with
optimization) */
#pragma option optimize=2
#else
/* Declaration for other compilers (without
optimization) */
#pragma ...
#endif

int x;

void func_001()
{
 x ++;
 x ++;
}

#ifdef __RX
/* Declaration for RX compilers (without
optimization) */
#pragma option optimize=0
#else
/* Declaration for other compilers (without
optimization) */
#pragma ...
#endif

void func_002()
{
 x ++;
 x ++;
}

C99

#ifdef __RX
/* Declaration for RX compilers */
#define OPTIMIZE_ON _Pragma("option
optimize=2")
#define OPTIMIZE_OFF _Pragma("option
optimize=0")
#else
/* Declaration for other compilers */
#define OPTIMIZE_ON _Pragma("...")
#define OPTIMIZE_OFF _Pragma("...")
#endif

int x;

OPTIMIZE_ON void func_001()
{
 x ++;
 x ++;
}

OPTIMIZE_OFF void func_002()
{
 x ++;
 x ++;
}

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 15 of 44

2010.04.20

(2) Switching endianness

Assuming a #pragma exists to switch the endianness for each variable by declaration anywhere in an individual file,

the following example sets the variable x_little to little-endian, and the variable x_big to big-endian. In C89, each

compiler type judgment and #pragma code needs to be included before the definitions for x_little and x_big, but in C99,

_Pragma can be used to simplify the code.
C89

#ifdef __RX
/* Declaration for RX compilers (little endian)
*/
#pragma endian little
#else
/* Declaration for other compilers (little endian)
*/
#pragma ...
#endif

int x_little;

#ifdef __RX
/* Declaration for RX compilers (big endian) */
#pragma endian big
#else
/* Declaration for other compilers (big endian)
*/
#pragma ...
#endif

int x_big;

C99

#ifdef __RX
/* Declaration for RX compilers */
#define ENDIAN_LITTLE _Pragma("endian
little")
#define ENDIAN_BIG _Pragma("endian big")
#else
/* Declaration for other compilers */
#define ENDIAN_LITTLE _Pragma("...")
#define ENDIAN_BIG _Pragma("...")
#endif

ENDIAN_LITTLE int x_little;

ENDIAN_BIG int x_big;

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 16 of 44

2010.04.20

2.3 Literals

The following explains the literals that can now be used with C99.

2.3.1 Floating-point hexadecimal notation

 Overview

Floating-point constant values can now be represented in hexadecimal.

 Description

C99 allows floating-point numbers to be expressed in hexadecimal to provide a smaller margin of error than

expression in decimal. For example, when 0.1 is represented as a floating-point number, since it cannot be properly

expressed in hexadecimal, the compiler might change the value due to rounding or margin of error for representation as

hexadecimal. However, when a floating-point number is expressed in hexadecimal, the value can be fixed without being

affected by rounding or margin of error. The format for expressing floating-point hexadecimals is as follows:

0xaaaa.bbbbPdd (where P is case-insensitive)

The format starts with "0x", and then has the integer component aaaa, a decimal point (.), and the decimal component

bbbb. The characters following P indicate a positive or negative exponent in decimal. Note that the decimal point and

decimal component can be omitted, but the characters following P cannot.

 Example usage

When the floating-point number 0.1 is specified in decimal, the -round compile option can be used to change the

value to hexadecimal. However, values specified in hexadecimal can be fixed without specifying this option.
When a floating-point number is specified in
decimal

float x = 0.1f;

Changing the value by option

-round=zero : 0x3DCCCCCC
-round=nearest : 0x3DCCCCCD

When a floating-point number is specified in
hexadecimal

float x = 0x0.CCCCCCP-3;

Changing the value by option

-round=zero : 0x3DCCCCCC
-round=nearest : 0x3DCCCCCC

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 17 of 44

2010.04.20

2.3.2 enum
 Overview

Compilation is now performed correctly, even when a trailing comma is included in an enumeration type.

 Description

Under the C89 specification, an error occurs when an extra comma exists at the end of an enum declaration. However,

the specification in C99 has been changed so that no error occurs.

Note that the RX-family C/C++ compiler allows extra commas, even under C89.

 Example usage

No compile error occurs when a comma exists after CCC, the last item in an enum declaration.
enum E { AAA, BBB, CCC, };

enum E e = CCC;

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 18 of 44

2010.04.20

2.3.3 Array and structure initialization
 Overview

Arrays and structures can now be initialized with specific elements or members.

 Description

In C99, the element number and structure members of an array can be specified explicitly by using a format called a

specification initializer. When an array is initialized in C89, each element needs to be initialized in order from the

beginning. In C99, initial values can be set only for certain elements, with uninitialized elements being initialized as 0.

Like structure members, members need to be initialized for C89 in order from the beginning. In C99, initial values can

be set only for specific members, with uninitialized members being initialized as 0. This is useful when the elements or

members requiring initialization are limited, or when arrays have large element counts or structures with many

members.

 Example usage

(1) Example usage for arrays

In this example, the initial values are specified for the third and fourth elements in the array. Other values are set to 0.
C89

int array[5] = { 0, 0, 0, 2, 1 };

C99

int array[5] = { [3] = 2, [4] = 1 };

(2) Example usage for structures

In this example, initial values are set only for specific structure members. This is also possible for nested structures

such as structure T. Initialization can be limited to specified members, such as for structures like S1, which has many

nested members.
C89

struct S {
 int a;
 int b;
} s = { 0, 1 };

struct T {
 int a;
 int b;
 struct T1 {
 int aa;
 int bb;
 } t1;
} t = { 0, 1, { 0, 2 } };

struct S1 {
 int a;
 int b[100];
 int c;
} s1 = { 10, {0,0,...}, 20 };

C99

struct S {
 int a;
 int b;
} s = { .b = 1 };

struct T {
 int a;
 int b;
 struct T1 {
 int aa;
 int bb;
 } t1;
} t = { .b = 1, .t1.bb = 2 };

struct S1 {
 int a;
 int b[100];
 int c;
} s1 = { .a = 10, .c = 20 };

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 19 of 44

2010.04.20

2.3.4 Compound literals
 Overview

Structure and array types can be specified as immediate values.

 Description

C99 allows the creation of anonymous objects with initial values. This allows more concise code for handling

initialized array data and structure data. The compound literal format is as follows:

(type [element count]){ element1, element2, ... }

 Example usage

In C89, the temp Point type variable needs to be declared, have its members initialized, and then be passed to the

function func. However, in C99, values can be passed directly to functions without creating temporary variables like

temp.
C89

typedef struct Point {
 short x,y;
} Point;

Point x;

void func(Point *p)
{
 x = *p;
}

void func_1()
{
 Point temp = {100,200};
 func(&temp);
}

void func_2()
{
 Point temp[2] = {{100,200},{300,400}};
 func(temp);
}

C99

typedef struct Point {
 short x,y;
} Point;

Point x;

void func(Point *p)
{
 x = *p;
}

void func_1()
{

 func(&(Point){100,200});
}

void func_2()
{

 func((Point[2]){{100,200}, {300,400}});
}

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 20 of 44

2010.04.20

2.4 Syntax

The following explains the syntactical additions to C99.

2.4.1 One-line comments

 Overview

One-line comments can now be used in C++.

 Description

Until C89, comments could only be used with the /**/ format. In C99, lines that start with // and end with a line

return can be used as one-line C++ comments.

Note that the RX-family C/C++ compiler supports // comments in C89 as well.

 Example usage

The following example uses a one-line comment.
C89

void func()
{
 int a;
 a = 5; /* Comment */
}

C99

void func()
{
 int a;
 a = 5; // Comment
}

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 21 of 44

2010.04.20

2.4.2 Wide character concatenation
 Overview

The method for concatenating wide characters has been formalized.

 Description

With the C language, when two or more strings are coded consecutively, they are concatenated into a single string.

For example, when the strings "aaa" "bbb" (two strings separated by a half-width space) are specified, they are treated

as the concatenated string "aaabbb". Likewise, when wide strings such as L"aaa" L"bbb" are coded consecutively, they

are handled as the wide string L"aaabbb". In C89, the operation for concatenating consecutive strings and wide strings

is not defined, but the specification for C99 dictates that when a string and wide string exist consecutively, they are

concatenated as a wide string.

Note that the C6282 error is thrown by the RX-family C/C++ compiler for C89 when a string and wide string are

specified consecutively.

 Example usage

The string "Application" and wide string "Note" are concatenated and handled as L"ApplicationNote".
#include <wchar.h>

wchar_t *str = "Application" L"Note";

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 22 of 44

2010.04.20

2.4.3 Variable arity macros
 Overview

Macros can now be used with variable arity.

 Description

In C89, variable arity could be used for functions such as printf and scanf, but not for macros. In C99, variable arity

can also be used for macros. The format is as follows:

#define macro-name (str, ...) Specify __VA_ARGS__ in locations that use variable arity

Note that when using a macro, variable arity can also be omitted.

 Example usage

In C89, macros with different argument counts such as DEBUG1 and DEBUG2 needed to be defined separately. In

C99, macros with different argument counts can be completed with one definition.
C89

#include <stdio.h>

#define DEBUG1(fmt, val1) printf("[debug] : " ## fmt, val1);
#define DEBUG2(fmt, val1, val2) printf("[debug] : " ## fmt, val1, val2);

void func()
{
 int a = 0;
 int b = 1;

 DEBUG1("a = %d¥n", a);
 DEBUG2("a = %d¥n, b = %d", a, b);
}

C99

#include <stdio.h>

#define DEBUG(fmt, ...) printf("[debug] : " ## fmt, __VA_ARGS__);

void func()
{
 int a = 0;
 int b = 1;

 // Interpreted as printf("[debug] : a = %d¥n", a);
 DEBUG("a = %d¥n", a);

 // Interpreted as printf("[debug] : a = %d, b = %d¥n", a, b);
 DEBUG("a = %d, b = %d¥n", a, b);

 // Specifications such as the following are also possible.
 // Interpreted as printf("[debug] : message¥n");
 DEBUG("message¥n");
}

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 23 of 44

2010.04.20

2.4.4 Empty arguments in function type macros
 Overview

Empty arguments can now be passed to function type macros.

 Description

In C89, arguments could not be omitted when function type macros were used. In C99, empty arguments can now be

passed.

Note that the RX-family C/C++ compiler does not output an error for C89, but a warning (C5054). As in C99, this is

handled as an empty specification.

 Example usage

The following example shows both passing all arguments to the MESSAGE function type macro and passing only

some arguments.
#include <stdio.h>

#define MESSAGE(msg1, msg2) "msg1 is " ## msg1 ## ". msg2 is " ## msg2 ## "."

void func()
{
 // Interpreted as printf("%s¥n", "msg1 is AAA. msg2 is BBB.");
 printf("%s¥n", MESSAGE("AAA", "BBB"));

 // Interpreted as printf("%s¥n", "msg1 is CCC. msg2 is .");
 printf("%s¥n", MESSAGE("CCC"));
}

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 24 of 44

2010.04.20

2.4.5 Characters that can be used in identifiers
 Overview

Universal characters and multi-byte characters can now be used in identifiers.

 Description

In C89, the characters that could be used as identifiers were limited to alphanumerics (uppercase and lowercase

characters), numerals (except for the beginning of the identifier), and underscores (_). In C99, the characters that can be

used as identifiers have been extended to include universal characters and multi-byte characters. However, numerals

still cannot be used at the beginning of an identifier.

 Example usage

The following example uses a variable and function named using the Japanese words for "variable" and "function,"

respectively.
char ¥u6587¥u5B57; /* A variable named "character" in Japanese */

void func()
{
 ¥u6587¥u5B57 = 'a';
}

// A function named "function" in Japanese
void ¥u95A2¥u6570()
{
 func();
}

void main()
{
 ¥u95A2¥u6570();
}

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 25 of 44

2010.04.20

2.4.6 Variable declaration positions
 Overview

Variables can now be declared in the middle of a block.

 Description

In C89, variables had to be declared at the beginning of a block. From C99, variables can be declared after the

beginning of the block, but only before they are referenced.

 Example usage

The private variables i and j are declared in the function func, but in C99, the variables can be declared in any

position within the function.
C89

int a[10], b[10];

void func()
{
 int i;
 int j;

 for (i=0; i<10; i++) {
 a[i] = 10;
 }

 for (j=0; j<10; j++) {
 b[j] = j;
 }
}

C99

int a[10], b[10];

void func()
{
 int i;

 for (i=0; i<10; i++) {
 a[i] = 10;
 }

 int j;
 for (j=0; j<10; j++) {
 b[j] = j;
 }
}

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 26 of 44

2010.04.20

2.5 Standard include files

Six standard include files have been added in C99: complex.h, fenv.h, inttypes.h, stdbool.h, stdint.h, and tgmath.c.

2.5.1 complex.h

 Overview

A complex number calculation library has been added.

 Description

complex.h is a standard include file for using the complex number calculation library. The following table lists the

functions that complex.h contains. For float type complex numbers, the definition name is the function name with "f"

appended, for long double type complex numbers, the definition name is the function name with "l" appended, and for

double type complex numbers, the definition name is the same as the function name.

The -head=complex option needs to be specified in the standard library configuration tool in order to use the complex

number calculation library.

Table 2-4 Complex number calculation library
Type Definition name Description

cacos Calculates the arc cosine of a complex number.
casin Calculates the arc sine of a complex number.
catan Calculates the arc tangent of a complex number.
ccos Calculates the cosine of a complex number.
csin Calculates the sine of a complex number.
ctan Calculates the tangent of a complex number.
cacosh Calculates the arc hyperbolic cosine of a complex number.
casinh Calculates the arc hyperbolic sine of a complex number.
catanh Calculates the arc hyperbolic tangent of a complex number.
ccosh Calculates the hyperbolic cosine of a complex number.
csinh Calculates the hyperbolic sine of a complex number.
ctanh Calculates the hyperbolic tangent of a complex number.
cexp Calculates the natural logarithm of base e to the power of z for a complex number.
clog Calculates the natural logarithm of a complex number.
cabs Calculates the absolute value of a complex number.
cpow Calculates the exponent of a complex number.
csqrt Calculates the square root of a complex number.
carg Calculates a phase angle.
cimag Calculates an imaginary component.
conj Reverses the sign of the imaginary component and calculates the complex conjugate.
cproj Calculates a projection on a Riemann sphere.

Function

creal Calculates a real number.

 Example usage

The following example calculates the arc cosine of a complex number.
#include <complex.h>

double complex z, ret;

void func(void)
{
 ret = cacos(z);
}

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 27 of 44

2010.04.20

2.5.2 fenv.h
 Overview

A floating-point environment library has been added.

 Description

fenv.h is a standard include file for accessing a floating-point environment. A floating-point environment includes the

floating-point status flag, floating-point exception flag, and other flags defined in fenv.h. The following lists the macros

and functions in fenv.h.

The -head=fenv option needs to be specified in the standard library configuration tool in order to use the

floating-point environment library.

Table 2-5 Floating-point environment library
Type Definition name Description

fenv_t The type for the entire floating-point environment. Type (macro)
fexcept_t The type for a floating-point status flag.
FE_DIVBYZERO
FE_INEXACT
FE_INVALID
FE_OVERFLOW
FE_UNDERFLOW

Constant (macro)

FE_ALL_EXCEPT

Macros defined when floating-point exceptions are supported.

FE_DOWNWARD
FE_TONEAREST
FE_TOWARDZERO

Constant (macro)

FE_UPWARD

Macros for the rounding direction of floating-point numbers.

Constant (macro) FE_DEF_ENV An existing floating-point environment for programs.
feclearexcept Attempts to clear a floating-point exception.
fegetexceptflag Attempts to store a value in the status object of a floating-point flag.
feraiseexcept Attempts to generate a floating-point exception.
fesetexceptflag Attempts to set a floating-point flag.
fetestexcept Checks whether a floating-point flag is set.
fegetround Obtains the rounding direction.
fesetround Sets the rounding direction.
fegetenv Attempts to obtain a floating-point environment.
feholdexcept Saves the floating-point environment, clears the floating-point status flag, and sets

the non-hold mode for floating-point exceptions.
fesetenv Attempts to set a floating-point environment.

Function

feupdateenv Attempts to save a floating-point exception to the automatic memory area, set a
floating-point environment, and generate the saved floating-point exception.

 Example usage

The following example attempts to clear a floating-point exception.
#include <fenv.h>
#pragma STDC FENV_ACCESS ON
int ret, e;

void func()
{
 ret = feclearexcept(e);
}

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 28 of 44

2010.04.20

2.5.3 inttypes.h
 Overview

A library for converting integer type formats has been added.

 Description

inttypes.h is a standard include file for extending integer types. It also provides a format for handling integer types

defined in stdint.h. The following table lists its macros and functions.

The -head=inttypes option must be specified for the standard library configuration tool in order to use the format

conversion library.

Table 2-6 Format conversion library for integer types
Type Definition name Description

Type (macro) imaxdiv_t The type for values returned by the imaxdiv function.
PRldN
PRIdLEASTN
PRIdFASTN
PRIdMAX
PRIdPTR
PRIiN
PRIiLEASTN
PRIiFASTN
PRIiMAX
PRIiPTR
PRIoN
PRIoLEASTN
PRIoFASTN
PRIoMAX
PRIoPTR
PRIuN
PRIuLEASTN
PRIuFASTN
PRIuMAX
PRIuPTR
PRIxN
PRIxLEASTN
PRIxFASTN
PRIxMAX
PRIxPTR
PRIXN
PRIXLEASTN
PRIXFASTN
PRIXMAX
PRIXPTR
SCNdN
SCNdLEASTN
SCNdFASTN
SCNdMAX
SCNdPTR
SCNiN
SCNiLEASTN
SCNiFASTN

Variable (macro)

SCNiMAX

The format of the printf function.

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 29 of 44

2010.04.20

SCNiPTR
SCNoN
SCNoLEASTN
SCNoFASTN
SCNoMAX
SCNoPTR
SCNuN
SCNuLEASTN
SCNuFASTN
SCNuMAX
SCNuPTR
SCNxN
SCNxLEASTN
SCNxFASTN
SCNxMAX
SCNxPTR
imaxabs Calculates absolute values.
imaxdiv Calculates quotients and remainders.
strtoimax
strtoumax

Aside from converting the start of a string to an intmax_t type or
uintmax_t type expression, this is the same as the strtol, strtoll, strtoul,
and strtoull functions.

wcstoimax

 function

wcstoumax
Aside from converting the start of a wide string to an intmax_t type or
uintmax_t type expression, this is the same as the wcstol, wcstoll,
wcstoul, and wcstoull functions.

Note: N is one of 8, 16, and 32, and may also be 64 due to macros.

 Example usage

The following example outputs variable a with the int_latest32_t type. The result of printf is "value : 30".
#include <inttypes.h>
#include <stdio.h>

void func()
{
 int_least32_t a;
 a = 30;
 printf("value : %"PRIdLEAST32"¥n", a);
}

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 30 of 44

2010.04.20

2.5.4 stdbool.h
 Overview

A standard include file for defining macros related to logical types and logical values has been added.

 Description

The bool, true, and false names can be used. stdbool.h is an include file that consists only of macro name definitions.

The following table lists these definitions.

Table 2-7 Logical type macros
Type Definition name Description

Macro (variable) bool Expands to _Bool.
true Expands to 1.
false Expands to 0.

Macro (constant)

__bool_true_false_are_defined Expands to 1.

 Example usage

The following example uses stdbool.h.
#include <stdbool.h>

bool a;
int func()
{
 if (a == true) {
 return 1;
 }
 return 0;
}

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 31 of 44

2010.04.20

2.5.5 stdint.h
 Overview

A standard include file for declaring integer types of a specified width has been added.
 Description

Integer types are defined according to each condition. Since the size of an integer type does not depend on the

environment, integer types are highly portable across environments. stdint.h is an include file that consists only of

macro name definitions. The following table lists these definitions.

Table 2-8 Macros for specified-width integer type
Type Definition name Description

int_leastN_t
unt_leastN_t

A type that can store at least the size of each signed/unsigned integer type
for 8, 16, 32, and 64 bits.

int_fastN_t
uint_fastN_t

A type that can calculate at maximum speed each signed/unsigned integer
type for 8, 16, 32, and 64 bits.

intptr_t
uintptr_t

A signed/unsigned integer type that can perform round-trip conversion for
pointers to void.

intmax_t
uintmax_t

A signed/unsigned integer type that can represent all values for all
signed/unsigned integer types.

intN_t
uintN_t

A signed/unsigned integer type with a width of N bits.

INTN_MIN The minimum value of a width-specified signed integer type.
INTN_MAX The maximum value of a width-specified signed integer type.
UINTN_MAX The maximum value of a width-specified unsigned integer type.
INT_LEASTN_MIN The minimum value of the minimum-width-specified signed integer type.
INT_LEASTN_MAX The maximum value of the minimum-width-specified signed integer type.
UINT_LEASTN_MAX The maximum value of a minimum-width-specified unsigned integer type.
INT_FASTN_MIN The minimum value of the fastest minimum-width-specified signed integer

type.
INT_FASTN_MAX The maximum value of the fastest minimum-width-specified signed integer

type.
UINT_FASTN_MAX The maximum value of the fastest minimum-width-specified unsigned integer

type.
INTPTR_MIN The minimum value of a signed integer type able to hold a pointer.
INTPTR_MAX The maximum value of a signed integer type able to hold a pointer.
UINTPTR_MAX The maximum value of an unsigned integer type able to hold a pointer.
INTMAX_MIN The minimum value of the maximum-width signed integer type.
INTMAX_MAX The maximum value of the maximum-width signed integer type.
UINTMAX_MAX The maximum value of the maximum-width unsigned integer type.
PTRDIFF_MIN -65535
PTRDIFF_MAX +65535
SIG_ATOMIC_MIN -127
SIG_ATOMIC_MAX +127
SIZE_MAX 65535
WCHAR_MIN 0
WCHAR_MAX 65535U
WINT_MIN 0

Macro

WINT_MAX 4294967295U
INTN_C Expands Int_leastN_t to an integer constant expression.
UINTN_C Expands uInt_leastN_t to an integer constant expression.
INT_MAX_C Expands intmax_t to an integer constant expression.

Function (macro)

UINT_MAX_C Expands uintmax_t to an integer constant expression.
Note: N is one of 8, 16, and 32, and may also be 64 due to macros.

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 32 of 44

2010.04.20

 Example usage

In the following example, variable a is the smallest possible type able to store a 32-bit signed integer. For the

RX-family C/C++ compiler, this is the long type.
#include <stdint.h>

int_least32_t a;

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 33 of 44

2010.04.20

2.5.6 tgmath.h
 Overview

A standard include file for defining generally named macros has been added.

 Description

When tgmath.h is included and the mathematical functions listed in the following table (generally named macros) are

used, they are automatically expanded to function names according to the argument type. For example, when a float

type argument is passed to the sin function, it is expanded to the sinf function, and when a complex type argument is

passed, it is expanded to the csin function. tgmath.h is an include file that consists only of macro name definitions. The

following table lists these definitions.

Table 2-9 Generally named macros
Generally named macro math.h function complex.h function

acos acos cacos
asin asin casin
atan atan catan
acosh acosh cacosh
asinh asinh casinh
atanh atanh catanh
cos cos ccos
sin sin csin
tan tan ctan
cosh cosh ccosh
sinh sinh csinh
tanh tanh ctanh
exp exp cexp
log log clog
pow pow cpow
sqrt sqrt csqrt
fabs fabs cfabs
atan2 atan2 -
cbrt cbrt -
ceil ceil -
copysign copysign -
erf erf -
erfc erfc -
exp2 exp2 -
expm1 expm1 -
fdim fdim -
floor floor -
fma fma -
fmax fmax -
fmin fmin -
fmod fmod -
frexp frexp -
hypot hypot -
ilogb ilogb -
ldexp ldexp -
lgamma lgamma -
llrint llrint -
llround llround -

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 34 of 44

2010.04.20

log10 log10 -
log1p log1p -
log2 log2 -
logb logb -
lrint lrint -
lround lround -
nearbyint nearbyint -
nextafter nextafter -
nexttoward nexttoward -
remainder remainder -
remquo remquo -
rint rint -
round round -
scalbn scalbn
scalbln scalbln -
tgamma tgamma -
trunc trunc -
carg - carg
cimag - cimag
conj - conj
cproj - cproj
creal - creal

 Example usage

In the following example, sin is automatically expanded to sinf.
#include <tgmath.h>

float f,ret;
void func(){
 ret = sin(f);
}

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 35 of 44

2010.04.20

2.6 Macros

The following explains the macros that have been added to C99.

2.6.1 Predefined macros

 Overview

The three macros __STDC_ISO_10646__, __STDC_IEC_559__, and __STDC_IEC_559_COMPLEX__ have been

added.

 Description

__STDC_ISO_10646__ is defined when character codes represented by wchar_t comply with ISO/IEC 10646. The

time of ratification of the ISO/IEC 10646 specification to which the macro values conform is specified in yyyymmL

format (where yyyy indicates the year and mm indicates the month). For the RX-family C/C++ compiler, 199712L is

defined for C99.

__STDC_IEC_559__ indicates conformance to annex F (IEC60559 floating points). For the RX-family C/C++

compiler, this is defined for C99, but not for C89.

__STDC_IEC_559_COMPLEX__ indicates conformance to annex G (IEC60559-compatible complex numbers). For

the RX-family C/C++ compiler, this is defined for C99, but not for C89.

 Example usage

(1) __STDC_ISO_10646__

For the RX-family C/C++ compiler, 199712 is stored in variable x for C99, and 0 is stored for C89.
#ifdef __STDC_ISO_10646__
unsigned long x = __STDC_ISO_10646__;
#else
unsigned long x = 0;
#endif

(2) __STDC_IEC_559__

For the RX-family C/C++ compiler, compilation can be performed for C99, but a compile error occurs for C89.
#ifdef __STDC_IEC_559__

#else
#error incompatible float
#endif

(3) __STDC_IEC_559_COMPLEX__

For the RX-family C/C++ compiler, compilation can be performed for C99, but a compile error occurs for C89.
#ifdef __STDC_IEC_559_COMPLEX__

#else
#error incompatible complex
#endif

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 36 of 44

2010.04.20

2.6.2 __func__
 Overview

This is a macro that is replaced by the name of the function in the specified position.

 Description

__func__ is replaced by the name of the function in the specified position. It can also be used as a macro, in which

case it is replaced with the name of the function using the macro.

 Example usage

__func__ is replaced with "func_001" for function func_001, and with "func_002" for function func_002.
#include<stdio.h>

void func_001()
{
 /* "function : func_001" is output. */
 printf("function : %s¥n",__func__);
}

void func_002()
{
 /* "function : func_002" is output. */
 printf("function : %s¥n",__func__);
}

The following example uses __func__ for a macro. The results are the same as for the above example.
#include<stdio.h>

#define DEBUG() printf("function : %s¥n", __func__)

void func_001()
{
 /* "function : func_001" is output. */
 DEBUG();
}

void func_002()
{
 /* "function : func_002" is output. */
 DEBUG();
}

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 37 of 44

2010.04.20

2.7 Pragmas

The following explains the pragmas added to C99.

2.7.1 #pragma STDC FP_CONTRACT

 Overview

#pragma STDC FP_CONTRACT can be used to control whether floating-point arithmetic is omitted.

 Description

When floating-point arithmetic is omitted, the margin of error from rounding floating-point constant values is not

taken into consideration, and any exceptions that occur due to loss of precision as a result of arithmetic are not reported.

When #pragma STDC FP_CONTRACT ON is declared, subsequent floating-point arithmetic is permitted to be omitted.

Likewise, #pragma STDC FP_CONTRACT OFF can be declared to prohibit omission of subsequent floating-point

arithmetic. When #pragma STDC FP_CONTRACT DEFAULT is declared, omission of subsequent floating-point

arithmetic returns to the default specification. Whether the default specification is ON or OFF depends on the

processing type definition.

For the RX-family C/C++ compiler, any #pragma STDC FP_CONTRACT specifications are disregarded.

 Example usage

The following example uses #pragma STDC FP_CONTRACT to control whether floating-point arithmetic omission

is permitted.

float x,y,z;

#pragma STDC FP_CONTRACT ON
/* Floating-point arithmetic omission is permitted. */

void func1()
{
 x = y / z;
}

#pragma STDC FP_CONTRACT OFF
/* Floating-point arithmetic omission is prohibited. */

void func2()
{
 x = y / z;
}

#pragma STDC FP_CONTRACT DEFAULT
/* Floating-point arithmetic omission follows the default. */

void func3()
{
 x = y / z;
}

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 38 of 44

2010.04.20

2.7.2 #pragma STDC FENV_ACCESS
 Overview

#pragma STDC FENV_ACCESS can be used to control access to floating-point environments.

 Description

A floating-point environment is one with the floating-point status flag, floating-point exception flag, and other flags

defined in the filefenv.h standard include. By explicitly notifying the compiler whether access to floating-point

environments is performed, the compiler can more easily perform optimizations for floating-point environments. When

#pragma STDC FENV_ACCESS ON is declared, the compiler is notified that access to floating-point environments

may occur subsequently. Conversely, when #pragma STDC FENV_ACCESS OFF is declared, the compiler is notified

that access to floating-point environments will not occur subsequently. When #pragma STDC FENV_ACCESS

DEFAULT is declared, whether access to floating-point environments occurs subsequently returns to the default

specification. Whether the default specification is ON or OFF depends on the processing type definition.

For the RX-family C/C++ compiler, access to floating-point environments is always assumed to be possible, so any

#pragma STDC FENV_ACCESS specifications are disregarded.

 Example usage

The following example uses #pragma STDC FENV_ACCESS to control whether access to floating-point

environments exists.
#include <fenv.h>

long a, b;

#pragma STDC FENV_ACCESS ON
/* Access to floating-point environments is performed. */

void func1()
{
 a = feraiseexcept(b);
}

#pragma STDC FENV_ACCESS OFF
/* Access to floating-point environments is not performed. */

void func2()
{
 a = feraiseexcept(b);
}

#pragma STDC FENV_ACCESS DEFAULT
/* Access to floating-point environments follows the default. */

void func3()
{
 a = feraiseexcept(b);
}

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 39 of 44

2010.04.20

2.7.3 #pragma STDC CX_LIMITED_RANGE
 Overview

#pragma STDC CX_LIMITED_RANGE can be used to control mathematical formulas for complex number

arithmetic.

 Description

Multiplication and division of complex numbers, as well as mathematical formulas for absolute values, present

problems due to the handling of infinite values and improper overflows and underflows. #pragma STDC

CX_LIMITED_RANGE can be used to notify the compiler that mathematical formulas may be applied. When #pragma

STDC CX_LIMITED_RANGE ON is declared, mathematical formulas may be applied subsequently. Conversely,

when #pragma STDC CX_LIMITED_RANGE OFF is declared, mathematical formulas may not be applied

subsequently. When #pragma STDC CX_LIMITED_RANGE DEFAULT is declared, whether mathematical formulas

may be applied subsequently follows the default specification. The default specification is OFF.

For the RX-family C/C++ compiler, mathematical formulas are always used, even when #pragma STDC

CX_LIMITED_RANGE is specified.

 Example usage

The following example uses #pragma STDC CX_LIMITED_RANGE to control whether mathematical formulas may

be applied.
#include <complex.h>

float complex cf1, cf2, cf3;

#pragma STDC CX_LIMITED_RANGE ON
/* Mathematical formulas may be applied. */

void func1()
{
 cf1 = cf2 * cf3;
}

#pragma STDC CX_LIMITED_RANGE OFF
/* Mathematical formulas may not be applied. */

void func2()
{
 cf1 = cf2 * cf3;
}

#pragma STDC CX_LIMITED_RANGE DEFAULT
/* Whether mathematical formulas may be applied follows the default. */

void func3()
{
 cf1 = cf2 * cf3;
}

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 40 of 44

2010.04.20

3. Precautions regarding migration from C89 to C99

3.1 Implicit type declarations
 Overview

The specification regarding implicit function declarations and implicit type declarations has changed.

 Description

In C89, functions could be called without function prototype declarations. In the C99 specification, operation when

these functions are called is now undefined.

Also, in C89, implicit type declarations were handled as int types. In the C99 specification, implicit variable

declarations are no longer permitted.

 Example usage

(1) Implicit function calls

In the following example, the function func calls the function printf, for which no prototype has been declared

(originally, stdio.h needed to be included). When the RX-family C/C++ compiler compiles for C89 and the -message

option is specified, C5223 is output at the information level, but when it compiles for C99, C5223 is output at the

warning level.
void func(void)
{
 printf("message");
}

(2) Implicit type declarations

In the following example, the types for the return value of the function func and the temporary argument a are each

treated as int types in C89. When the RX-family C/C++ compiler compiles for C89 and the -message option is specified,

C5260 (an informational message) is output because the type of return value is not declared. When it compiles for C99,

C5260 (an informational message) is output because the type of return value is not declared, and C6051 is output at the

warning level because no type is declared for the temporary argument a. In the following example, the function is

interpreted as int func(int a) in both C89 and C99.
func(a)
{
 return a;
}

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 41 of 44

2010.04.20

3.2 Negative integer division
 Overview

The behavior for negative integer division may sometimes differ.

 Description

In C89, if either the divisor or dividend is negative for integer division, the results differed depending on the

implementation. In C99, however, the results for all types of division are rounded down. Accordingly, the behavior of

programs containing negative integer division may differ.

For the RX-family C/C++ compiler, results are also rounded down for C89.

 Example usage

A calculated result of -1/2 is -0.5, but for C89, the compiler may calculate it as -1 or 0. For C99 the result is always

calculated as 0.

int x = -1/2;

RX-family C/C++ Compiler Package Application Notes

REJ06J0100-0100 Rev.1.00 Page 42 of 44

2010.04.20

Website and Support
• Renesas Electronics Website

http://www.renesas.com/

• Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry

Revision Record
Description

Rev.

Date Page Summary
1.00 Apr.20.10 — First edition issued
— — — —
— — — —
— — — —
— — — —
— — — —
— — — —
— — — —

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and

regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product

depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for

which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;

 personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically

 designed for life support.

 "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan, R.O.C.
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2010 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0

	1. Introduction
	2. New functionality in C99
	2.1 Primitive types
	2.1.1 Logical types
	2.1.2 Complex number types
	2.1.3 long long types
	2.1.4 Variable-length array types
	2.1.5 Flexible array members

	2.2 Keywords
	2.2.1 inline
	2.2.2 restrict
	2.2.3 _Pragma

	2.3 Literals
	2.3.1 Floating-point hexadecimal notation
	2.3.2 enum
	2.3.3 Array and structure initialization
	2.3.4 Compound literals

	2.4 Syntax
	2.4.1 One-line comments
	2.4.2 Wide character concatenation
	2.4.3 Variable arity macros
	2.4.4 Empty arguments in function type macros
	2.4.5 Characters that can be used in identifiers
	2.4.6 Variable declaration positions

	2.5 Standard include files
	2.5.1 complex.h
	2.5.2 fenv.h
	2.5.3 inttypes.h
	2.5.4 stdbool.h
	2.5.5 stdint.h
	2.5.6 tgmath.h

	2.6 Macros
	2.6.1 Predefined macros
	2.6.2 __func__

	2.7 Pragmas
	2.7.1 #pragma STDC FP_CONTRACT
	2.7.2 #pragma STDC FENV_ACCESS
	2.7.3 #pragma STDC CX_LIMITED_RANGE

	3. Precautions regarding migration from C89 to C99
	3.1 Implicit type declarations
	3.2 Negative integer division

	 Website and Support

