

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

APPLICATION NOTE

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 1 of 35

H8/300H Tiny Series
ROM Correction

Introduction
ROM correction is a function to fix defective parts or modify specifications of the ROM. This function is implemented
by use of the address break function that generates an interrupt when a specific execution address is reached, and
external memory such as an EEPROM.

Target Device
H8/300H Tiny Series H8/36014 CPU

Contents

1. Specifications.. 2

2. Description of Functions ... 3

3. Description of Operation ... 6

4. Description of Software... 10

5. Flowchart... 18

6. Program Listing... 28

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 2 of 35

1. Specifications
• Figure 1 illustrates the specification of a ROM correction task.

ROM correction function
Defective parts found after mask ROM production waste considerable time and money for reproducing mask
ROMs, collecting defective ROMs, and storage of dead stock. H8/3664 incorporates the address break interrupt
function that generates an interrupt when the pre-defined address matches the execution address. Use of the address
break interrupt function combined with external memory such as EEPROM enables simple replacement of defective
parts and modification of specifications of the ROM. This is called the ROM correction function.

 Activating the program assigns P75 for output to perform the port output processing.
 If an IRQ1 interrupt occurs during P75 switchover, downloads the correction program from the external

EEPROM.
 Then, uses the address break function to change the execution address to the on-chip RAM that contains the

downloaded correction program.
 The correction program assigns P75 for input and P74 for output to change the port output processing from P75

to P74.
 After the correction is made, returns to the address set by the correction program.
 Assigns P75 and P74 for output, changes them to a low level, and then terminates the function.

EEPROM

H8/3664

(External) On-chip RAM

On-chip ROM

Downloading

(Uses the I2C bus.)

Correction
program

Correction
program

Correction
section

Address
break

interrupt

The return
address is set

by the program.
The correction program is

downloaded from EEPROM to
the on-chip RAM by IRQ1

interrupt handling.

Figure 1 Specification of ROM Correction

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 3 of 35

2. Description of Functions

2.1 I2C Bus Interface
• Figure 2 illustrates the block diagram of the I2C bus interface described in this subsection.

 I2C bus control register (ICCR)
Consists of the control bits and interrupt request flags of the I2C bus interface.

 I2C bus mode register (ICMR)
Sets the transfer format and transfer rate. It can be accessed only when the ICE bit in ICCR is 1.

 I2C bus status register (ICSR)
Consists of the status flags.

 I2C bus data register (ICDR)
This is an 8-bit readable/writable register that is used as a transmit data register when transmitting and a receive
data register when receiving.

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 4 of 35

PSS

ICDRR

ICDRS

ICDRT

ICSR

ICMR

ICCR

SDA

SCL

ICDR

φ

Interrupt
request

Noise
canceller

Noise
canceller

Output data
control
circuit

Clock
control

Address
comparator

Interrupt
generator

Arbitration
decision
circuit

Bus state
decision
circuit

In
te

rn
al

 d
at

a
bu

s
ICCR : I2C bus control register
ICMR : I2C mode register
ICSR : I2C bus status register
ICDR : I2C bus data register
PSS : Prescaler

Figure 2 I2C Bus Interface Block Diagram

• Table 1 lists the pins used by the I2C bus interface.

Table 1 I2C Bus Interface Pins

Name Abbreviation Input/Output Function
Serial clock pin SCL Input/Output I2C serial clock input/output
Serial data pin SDA Input/Output I2C serial data input/output

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 5 of 35

2.2 Address Break
• Figure 3 illustrates the block diagram of the address break interrupt handling described in this subsection.

 Address break control register (ABRKCR)
Sets address break conditions.

 Address break status register (ABRKSR)
Consists of the address break interrupt request flags and their enable bits.

 Break address register (BAR (BARL, BARH))
This is a 16-bit readable/writable register that sets the address for generating an address break interrupt. BARH
indicates upper eight bits and BARL lower eight bits.

BARLBARH

ABRKCR

ABRKSR

BAR

Address break function

Internal address bus

Address match
Address

comparison

Sets instruction execution cycles
of the address break function.

Sets the address break
request flag (ABIF).

Activates address break
interrupt handling.

Comparator

The address break
conditions are satisfied.

Address Break
Enable (ABIE)

Interrupt
generation

control circuit

Figure 3 Block Diagram of Address Break Interrupt Handling

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 6 of 35

3. Description of Operation
• Figure 4 to Figure 7 illustrate the operation of a ROM correction task example described in this subsection.

Activates the H8/3664 program.
1. Generates the IRQ1 interrupt handling and reads the data (shown in Figure 4) from the EEPROM address

H’0000.
• Sets the downloaded break address (H’011E) to the break address register (BAR).
• Downloads the correction program size (H’52) to H’FC00 in the on-chip RAM.

Set the address break conditions (other than the break address register) after reading the data.

H’0018 H’FC00
H’0000

H’0100
H’0001

H’011E
H’0002

H’0003

H’0148

H’0054

H’FC00

H’FC51

1

H8/3664 EEPROM

Memory address

On-chip
ROM

On-chip
RAM

main function

Correction
program

Correction program

Upper break
address (H’01)

Lower break
address (H’1E)

Correction program
size (H’52)

Stored data Memory address Stored data

Figure 4 ROM Correction 1

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 7 of 35

2. When the address break conditions are satisfied (after executing the instruction at the address H’011E), an
address break interrupt is generated and the address is changed to the vector address H’0018.

2H’0018 H’FC00
H’0000

H’0100 main function
H’0001

H’011E
H’0002

H’0003

H’0148

H’0054

H’FC00

H’FC51

H8/3664 EEPROM

Memory address Stored data

Correction program

Correction
program

Upper break
address (H’01)
Lower break
address (H’1E)

Correction program
size (H’52)

Memory address Stored data

On-chip
ROM

On-chip
RAM

Figure 5 ROM Correction 2

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 8 of 35

3. Changes to the address (H’FC00) set for the vector address H’0018 and activates the correction program.

3

H’0018 H’FC00
H’0000

H’0100 main function
H’0001

H’011E
H’0002

H’0003

H’0148

H’0054

H’FC00

H’FC51

H8/3664 EEPROM

Memory address

Correction
program

Correction program

Stored data Memory address Stored data

Upper break
address (H’01)
Lower break
address (H’1E)

Correction program
size (H’52)On-chip

ROM

On-chip
RAM

Figure 6 ROM Correction 3

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 9 of 35

4. Executes the correction program and then returns to the address (H’0148) set by the correction program.

4

H’0018 H’FC00
H’0000

H’0100 main function
H’0001

H’011E
H’0002

H’0003

H’0148

H’0054

H’FC00

H’FC51

H8/3664 EEPROM

Memory address Stored data Memory address Stored data

Upper break
address (H’01)

Lower break
address (H’1E)

Correction program
size (H’52)

Correction
program

Correction program

On-chip
ROM

On-chip
RAM

Figure 7 ROM Correction 4

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 10 of 35

4. Description of Software

4.1 Description of Modules
• Table 2 lists the modules in this task example.

Table 2 Modules

Module Label Function
Main routine main Sets an IRQ1 interrupt and switches P75 between high

and low.
IRQ1 interrupt routine irq1int Calls the Read_EEPROM function from the EEPROM

and sets address break conditions.
Download setting routine Read_EEPROM Calls the Set_Adrs and Recv_data functions.
Download routine Recv_data Downloads the correction program from the EEPROM.
Slave address setting routine Set_Adrs Sets a slave address.

4.2 Description of Arguments
• Table 3 lists the arguments used in this task example.

Table 3 Arguments

Label Argument Description
unsigned short adrs Start address of the EEPROM for reading data
unsigned char *rd_data Read data

Read_EEPROM

unsigned short *br_ad Break address pointer
unsigned char *rd_data Read dataRecv_data
unsigned short *br_ad Break address pointer

Set_Adrs unsigned short adrs Start address of the EEPROM for reading data

4.3 Description of Return Values
• Table 4 lists the return values used in this task example.

Table 4 Return Values for Each Module

Module Label Return Value
Download setting routine Read_EEPROM 0: Normal termination

1: Abnormal termination
Download routine Recv_data 0: Normal termination

1: Abnormal termination
Slave address setting routine Set_Adrs 0: Normal termination

1: Abnormal termination

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 11 of 35

4.4 Description of Variables
• Table 5 lists the variables used in this task example.

Table 5 Variables

Label Variables Description
volatile unsigned long i Wait countmain
unsigned char j P75 high/low switchover count
unsigned short adrs Start address of the EEPROM for reading data
unsigend short bar Stores break addresses.
unsigned short *br_ad Break address pointer
unsigned char tmp Error check

irq1int

unsigned char *rd_data Read data
Read_EEPROM unsigned char tmp Error check

unsigned char recv Reads dummy data and stores the correction program size
data.

Recv_data

unsigend char cnt Read count of the correction program

4.5 Description of Constants
• Table 6 lists the constants used in this task example.

Table 6 Constants

Constant name Constant Description
DEVICE_CODE H’A0 Device code
SLAVE_ADRS H’00 Device address code
IIC_DATA_W H’00 WRITE code
IIC_DATA_R H’01 READ code
EP_ADRS H’0000 Start address of the EEPROM for reading data
RAM_AREA H’FC00 Start address for storing the data read from the EEPROM

4.6 Description of RAM
• In this task example, the start address for storing the correction program downloaded from the EEPROM is

H’FC00.

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 12 of 35

4.7 Description of Internal Register
• This subsection describes the internal registers used in this task example.

 ICCR I2C Bus Control Register (ICCR) Address: H’FFC4

Bit Bit name Set value R/W Description
7 ICE 1 R/W I2C Bus Interface Enable

When this bit is set to 1, the I2C bus interface module is
enabled to send/receive data and drive the bus since it is
connected to the SCL and SDA pins. ICMR and ICDR can
be accessed.
When this bit is cleared, the module is halted and separated
from the SCL and SDA pins.

6 IEIC 0 R/W I2C Bus Interface Interrupt Enable
When this bit is 1, interrupt requests are enabled by IRIC.

5
4

MST
TRS

1
1

R/W
R/W

Master/Slave Select
Transmit/Receive Select
00: Slave receive mode
01: Slave transmit mode
10: Master receive mode
11: Master transmit mode

3 ACKE 1 R/W Acknowledge Bit Judgment Selection
1: If the received acknowledge bit is 1, transfer is

interrupted.
0: The value of the received acknowledge bit is ignored, and

transfer is performed. The value of the received
acknowledge bit is not indicated by the ACKB bit, which
is always 0.

2 BBSY 0 R/W Bus Busy
In the master mode, this bit is used to issue the start and
stop conditions.
Issuing the start conditions:Writes 1 to the BBSY and 0 to

the SCP. It is the same for
retransmitting the start
conditions. The conditions are
recognized to be issued when
the level of SDA is changed from
high to low while SCL = High.
After issuing them, this bit is set
to 1.

Issuing the stop conditions: Writes 0 to the BBSY and 0 to
the SCP. The conditions are
recognized to be issued when
the level of SDA is changed from
low to high while SCL = High.
After issuing them, this bit is
cleared to 0.

The MOV instruction is used for issuing the start or stop
conditions. The I2C bus interface must be set to the master
transmit mode before issuing the start conditions.

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 13 of 35

Bit Bit name Set value R/W Description
1 IRIC 0 R/W I2C Bus Interface Interrupt Request Flag

[Setting conditions]
(In master mode with I2C bus format)
• When a start condition is detected in the bus line state

after a start condition is issued
• When a wait is inserted between the data and

acknowledge bit when WAIT = 1
• When terminating data transfer
• When a slave address is received after the device loses

arbitration
• When 1 is received as the acknowledge bit when the

ACKE bit is 1(when the ACKB bit is set to 1)
[Clearing condition]
• When 0 is written in IRIC after reading IRIC = 1

0 SCP 1 W Start Condition/Stop Condition Prohibit
The SCP bit controls the issue of start/stop conditions in
master mode.
To issue a start condition, write 1 to BBSY and 0 to SCP. A
retransmit start condition is issued in the same way. To issue
a stop condition, write 0 to BBSY and 0 to SCP. This bit is
always read as 1. If 1 is written, the data is not stored.

 ICSR I2C Bus Status Register (ICSR) Address: H’FFC5

Bit Bit name Set value R/W Description
0 ACKB 0 R/W Acknowledge bit

In transmit mode, acknowledge data returned from the
receive device is loaded.
In receive mode, data is received for the transmit device and
then the acknowledge data set previously to this bit is
transmitted.
By reading this bit, the loaded value (returned from the
receive device) is read at transmission and the set value is
read at reception.

 ICDR I2C Bus Data Register (ICDR) Address: H’FFC6
ICDR is an 8-bit readable/writable register that is used as a transmit data register when transmitting and a
receive data register when receiving. ICDR is divided internally into a shift register (ICDRS), receive buffer
(ICDRR), and transmit buffer (ICDRT).
Data transfers among the three registers are performed automatically in coordination with changes in the bus
state, and affect the status of internal flags such as TDRE and RDRF.
• When TDRE is 1 the transmit buffer is empty and TDRE shows that the next transmit data can be written

from the CPU.
• When RDRF is 1, it shows that the valid receive data is stored in the receive buffer.
• If the device is in transmit mode and the next data is in ICDRT (the TDRE flag is 0) following

transmission/reception of one frame of data using ICDRS, data is transferred automatically from ICDRT to
ICDRS.

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 14 of 35

• If the device is in receive mode and no previous data remains in ICDRR (the RDRF flag is 0) following
transmission/reception of one frame of data using ICDRS, data is transferred automatically from ICDRS to
ICDRR.

 ICMR I2C Bus Mode Register (ICMR) Address: H’FFC7

Bit Bit name Set value R/W Description
7 MLS 0 R/W MSB-First/LSB-First Select

0: MSB-first
1: LSB-first
Set this bit to 0 when the I2C bus format is used.

6 WAIT 0 R/W Wait Insertion Bit
This bit is valid only in master mode with the I2C bus format.
When WAIT is set to 1, after the fall of the clock for the final
data bit and the IRIC flag is set to 1 in ICCR, a wait state
begins (with SCL at the low level). When the IRIC flag is
cleared to 0 in ICCR, the wait ends and the acknowledge bit
is transferred.
If WAIT is cleared to 0, data and acknowledge bits are
transferred consecutively with no wait inserted. The IRIC flag
in ICCR is set to 1 on completion of the acknowledge bit
transfer, regardless of the WAIT setting.

5
4
3

CKS2
CKS1
CKS0

0
0
1

R/W
R/W
R/W

Serial Clock Select 2 to 0
This bit is valid only in master mode.
These bits select the required transfer rate, together with the
IICX bit in TSCR.

2
1
0

BC2
BC1
BC0

0
0
0

R/W
R/W
R/W

Bit Counter 2 to 0
These bits specify the number of bits to be transferred next.
With the I2C bus format, the data is transferred with one
additional acknowledge bit. Bit BC2 to BC0 settings should
be made during an interval between transfer frames. If bits
BC2 to BC0 are set to a value other than 000, the setting
should be made while the SCL line is low. The value
automatically returns to 000 at the end of data transfer,
including the acknowledge bit.

I2C bus formats
000: 9 bits
011: 4 bits
110: 7 bits

001: 2 bits
100: 5 bits
111: 8 bits

010: 3 bits
101: 6 bits

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 15 of 35

 TSCR Timer Serial Control Register Address: H’FFFC

Bit Bit name Set value R/W Description
7 to 2 — All 1 — Reserved. These bits are always read as 1.
1 IICRST 0 R/W Resets the control unit except for the I2C registers. When a

hang up occurs due to illegal communication during I2C
operation, setting IICRST to 1 can set a port or reset the I2C
control unit without initializing registers.

0 IICX 0 R/W Selects the transfer rate in master mode, together with bits
CKS2 to CKS0 in ICMR.

Table 7 Transfer Rate for This Task

TSCR ICMR
Bit 0 Bit 5 Bit 4 Bit 3

Transfer rate

IICX CKS2 CKS1 CKS0

Clock

φ = 16MHz
0 0 0 1 φ /40 400kHz

 ABRKCR Address Break Control Register Address: H’FFC8

Bit Bit name Set value R/W Description
7 RTINTE 1 R/W RTE Interrupt Enable

When this bit is 0, the interrupt immediately after executing
an RTE instruction is masked and then one instruction must
be executed.
When this bit is 1, the interrupt is not masked.

6
5

CSEL1
CSEL0

0
0

R/W
R/W

Condition Select 1 and 0
These bits set address break conditions.
CSEL1 = 0, CSEL0 = 0: Instruction execution cycle

4
3
2

ACMP2
ACMP1
ACMP0

0
0
0

R/W
R/W
R/W

Address Compare 2 to 0
These bits set comparison conditions between BAR and the
internal address bus.
ACMP2 = 0, ACMP1 = 0, ACMP0 = 0: Compares 16-bit
addresses.

1
0

DCMP1
DCMP0

0
0

R/W
R/W

Data Compare 1 and 0
These bits set the comparison conditions between BDR and
the internal data bus.
DCMP1 = 0, DCMP0 = 0: No data comparison

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 16 of 35

 ABRKSR Address Break Status Register Address: H’FFC9

Bit Bit name Set value R/W Description
7 ABIF 0 R/W Address Break Interrupt Request Flag

ABIF = 1: When the condition set in ABRKCR is satisfied
ABIF = 0: Initial value. When 0 is written after ABIF = 1 is
read

6 ABIE 1 R/W Address Break Interrupt Request Enable
ABIE = 0: An address break interrupt request is masked.
ABIE = 1: An address break interrupt request is enabled.

5 to 0 — All 1 — Reserved. These bits are always read as 1.

 BAR Break Address Register Address: H’FFCA
(BARH break address register H Address: H’FFCA)
(BARL break address register L Address: H’FFCB)
Function: Sets the address at which an address break interrupt handling occurs in 16-bit units.

 PMR1 Port Mode Register 1 Address: H’FFE0

Bit Bit name Set value R/W Description
5 IRQ1 1 R/W P15/IRQ1 Pin Function Switch

0: General input/output port
1: IRQ1 input pin

 IEGR1 Interrupt Edge Select Register 1 Address: H’FFF2

Bit Bit name Set value R/W Description
1 IEG1 1 R/W IRQ1 Edge Select

0: Detects the falling edge of the IRQ1 pin input.
1: Detects the rising edge of the IRQ1 pin input.

 IENR1 Interrupt Enable Register Address: H’FFF4

Bit Bit name Set value R/W Description
1 IEN1 1 R/W IRQ1 Interrupt Request Enable

When this bit is set to 1, the interrupt request of the IRQ1 pin
is enabled.

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 17 of 35

 IRR1 Interrupt Flag Register 1 Address: H’FFF6

Bit Bit name Set value R/W Description
1 IRRI1 0 R/W IRQ1 Interrupt Request Flag

[Setting condition]
When the IRQ1 pin is designated for interrupt input and the
designated signal edge is detected.
[Clearing condition]
When IRRI1 is cleared by writing 0.

 PCR7 Port Control Register 7 Address: H’FFEA

Bit Bit name Set value R/W Description
5
4

PCR75
PCR74

0
0

W
W

Setting a PCR7 bit to 1 makes the corresponding pin an
output port, while clearing the bit to 0 makes the pin an input
port.

 PDR7 Port Data Register 7 Address: H’FFDA

Bit Bit name Set value R/W Description
5
4

P75
P74

0
0

R/W
R/W

PDR7 stores output values for general output ports.
When PDR7 is read while PCR7 bits are set to 1, the value
stored in PDR7 is read. If PDR7 is read while PCR7 bits are
cleared to 0, the pin states are read regardless of the value
stored in PDR7.

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 18 of 35

5. Flowchart

5.1 Main Routine

main

j ! = 0

j--

j = 100

P74 = 0

P75 = 0

Yes

Yes
i--

i = 100000

No

No

set_ccr (H’80)
Disable interrupts.

set_imask_ccr (0)
Enable interrupts.

PCR7 = H’20
Set P75 for output.

PCR7 = H’30
Set P74 and P75 for output.

i > 0
Wait for switchover.

P75 = P75
Switch P75 between high and low.

IEG1 = 1
IRRI1 = 0
IRQ1 = 1
IEN1 = 1

Set the IRQ1 interrupt.

Address break
interrupt address

(Activate the
correction program

after data reception.)

Address break
return address

(Return to the address after
executing the correction

program.)

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 19 of 35

5.2 IRQ1 Interrupt Routine

irq1int

Yes

No

end

IRRI1 = 0
Clear the interrupt request flag.

tmp = 0?
No error?

ABRKCR = H’80
Set the address break conditions.

BAR = bar
Set the break address.

ABIE = 1
Enable address break interrupts.

rd_data = (unsigned char *)RAM_AREA
RAM area that contains the correction

program

br_ad = &bar
Set the pointer of variable that contains

break addresses.

tmp = Read_EEPROM()
Read the data from the

EEPROM.

adrs = EP_ADRS
Destination address of the EEPROM for

reading data

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 20 of 35

5.3 Download Setting Routine

Read_EEPROM

Yes

No

IRIC = 0?

return (1)

IRIC = 0

return (tmp)

Yes

No

No

Yes

ICCR = H’89
ICMR = H’08
TSCR = H’FC

Set the I2C bus.

BBSY = 0?
Release I2C bus?

tmp = 0?
No error?

tmp = Set_Adrs ()
Set the slave address.

tmp = Recv_data ()
Read the data.

ICCR &= H’FA
Issue the stop conditions.

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 21 of 35

5.4 Download Routine

Recv_data

IRIC = 0?

Yes

No

IRIC = 0

return (1)

1

IRIC = 0

Yes

No

No

Yes

No

Yes

ICCR |= H’30
Set the master transmit mode.

ICCR = ((ICCR & H’FE) | H’04)
Issue the start conditions.

TRS = 0
WAIT = 1
ACKB = 0

Switch to the master receive
mode.

IRIC = 1?
Transmission completed?

ACKB = 0?
Normally transmitted?

ICDR = (unsigned char) (DEVICE_CODE | SLAVE_ADRS | IIC_DATA_R)
Device addressing

IRIC = 1?
The start condition

transmission completed?

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 22 of 35

1

2

IRIC = 0

IRIC = 1?
WAIT

IRIC = 0

IRIC = 1?
WAIT

No

Yes

No

Yes

No

Yes

No

Yes

recv = ICDR
Perform dummy read.

IRIC = 0
Release WAIT.

IRIC = 0
Release WAIT.

*br_ad = ICDR
Read the upper break addresses.

IRIC = 1?
Reception completed?

IRIC = 1?
Reception completed?

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 23 of 35

2

IRIC = 0

IRIC = 0

IRIC = 1?
WAIT

3

No

Yes

No

Yes

No

Yes

*br_ad <<= 8
Shift to the upper bits.

IRIC = 0
Release WAIT.

recv = ICDR
Read the correction program size.

IRIC = 1?
Reception completed?

IRIC = 1?
Reception completed?

*br_ad |= ICDR
Read the lower break addresses.

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 24 of 35

3

cnt < (recv - 1)

IRIC = 0

IRIC = 1?
WAIT

rd_data++

cnt ++

4

cnt = 0

No

Yes

No

Yes

No

Yes

IRIC = 0
Release WAIT.

*rd_data = ICDR
Read the data.

IRIC = 1?
Reception completed?

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 25 of 35

4

IRIC = 0

return (0)

No

Yes

ACKB = 1
TRS = 1

Set the acknowledge data for final
reception.

IRIC = 0
Release WAIT.

WAIT = 0
Release the WAIT mode.

*rd_data = ICDR
Read the final reception data.

ICCR &= H’FA
Issue the stop conditions.

IRIC = 1?
Reception completed?

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 26 of 35

5.5 Slave Address Setting Routine

Set_Adrs

return (1)

IRIC = 0

Yes

Yes

No

No

No

Yes

1

ICCR |= H’30
Set the master transmit mode.

ICDR = (unsigned char) (DEVICE_CODE | SLAVE_ADRS | IIC_DATA_W)
Device addressing

IRIC = 1?
The start condition

transmitted completely?

ICCR = ((ICCR & H’FE) | H’04)
Issue the start conditions.

IRIC = 1?
Transmission completed?

ACKB = 0?
Normally transmitted?

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 27 of 35

return (1)

IRIC = 0

Yes

No

No

Yes

1

return (1)

IRIC = 0

Yes

No

No

Yes

return (0)

ICDR = (unsigned char) (adrs >> 8)
Set the upper addresses of the

EEPROM for reading data.

ICDR = (unsigned char) (adrs & H’00FF)
Set the lower addresses of the

EEPROM for reading data.

IRIC = 1?
Transmission completed?

IRIC = 1?
Transmission completed?

ACKB = 0?
Normally transmitted?

ACKB = 0?
Normally transmitted?

• Link address specification
Section name Address
CV1 H’0000
CV2 H’0018
CV3 H’001E
P H’0100

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 28 of 35

6. Program Listing
/***/

/* */

/* H8/300HN Series -H8/3664- */

/* Application Note */

/* */

/* 'ROM CORRECTION' */

/* */

/* External Clock : 16MHz */

/* Internal Clock : 16MHz */

/* Sub Clock : 32.768kHz */

/* */

/***/

#include <machine.h>

/***/

/* Symbol Definition */

/***/

struct BIT {

unsigned char b7:1; /* bit7 */

unsigned char b6:1; /* bit6 */

unsigned char b5:1; /* bit5 */

unsigned char b4:1; /* bit4 */

unsigned char b3:1; /* bit3 */

unsigned char b2:1; /* bit2 */

unsigned char b1:1; /* bit1 */

unsigned char b0:1; /* bit0 */

};

#define ABRKCR *(volatile unsigned char *)0xFFC8 /* Address Break Control Register */

#define ABRKSR_BIT (*(struct BIT *)0xFFC9) /* Address Break Status Register */

#define ABIE ABRKSR_BIT.b6 /* Address Break Interrupt Enable */

#define BAR *(volatile unsigned short *)0xFFCA /* Break Address Register H */

#define PCR7 *(volatile unsigned char *)0xFFEA

#define PCR7_BIT (*(struct BIT *)0xFFEA) /* Port Control Register 7 */

#define PDR7 *(volatile unsigned char *)0xFFDA

#define PDR7_BIT (*(struct BIT *)0xFFDA) /* Port Data Register 7 */

#define P75 PDR7_BIT.b5 /* Port Data Register 7 bit5 */

#define P74 PDR7_BIT.b4 /* Port Data Register 7 bit4 */

#define PDR5 *(volatile unsigned char *)0xFFD8

#define PDR5_BIT (*(struct BIT *)0xFFD8) /* Port Data Register 7 */

#define SCL PDR5_BIT.b7 /* IIC serial clock input output */

#define SDA PDR5_BIT.b6 /* IIC serial data input output */

#define ICCR *(volatile unsigned char *)0xFFC4

#define ICCR_BIT (*(struct BIT *)0xFFC4) /* IIC bus control register */

#define TRS ICCR_BIT.b4 /* Transmission, reception choice */

#define BBSY ICCR_BIT.b2 /* Bus busy */

#define IRIC ICCR_BIT.b1 /* IIC bus interface interrupt, requirement flag */

#define SCP ICCR_BIT.b0 /* start/stop condition prohibition bit */

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 29 of 35

#define ICSR *(volatile unsigned char *)0xFFC5

#define ICSR_BIT (*(struct BIT *)0xFFC5) /* IIC bus status register */

#define ACKB ICSR_BIT.b0 /* Acknowledge bit */

#define ICDR *(volatile unsigned char *)0xFFC6

#define ICDR_BIT (*(struct BIT *)0xFFC6) /* IIC bus data register */

#define ICMR *(volatile unsigned char *)0xFFC7

#define ICMR_BIT (*(struct BIT *)0xFFC7) /* IIC bus mode register */

#define WAIT ICMR_BIT.b6 /* WAIT insertion bit */

#define TSCR *(volatile unsigned char *)0xFFFC

#define TSCR_BIT (*(struct BIT *)0xFFFC) /* Timer serial control register */

#define PMR1 *(volatile unsigned char *)0xFFE0 /* Port Mode Register 1 */

#define PMR1_BIT (*(struct BIT *)0xFFE0) /* Port Mode Register 1 */

#define IRQ1 PMR1_BIT.b5 /* P15/IRQ1 Select */

#define IEGR1_BIT (*(struct BIT *)0xFFF2) /* Interrupt Edge Select Register 1 */

#define IEG1 IEGR1_BIT.b1 /* IEG1 Edge Select */

#define IENR1_BIT (*(struct BIT *)0xFFF4) /* Interrupt Enable Register 1 */

#define IEN1 IENR1_BIT.b1 /* IEN1 Interrupt Enable */

#define IRR1_BIT (*(struct BIT *)0xFFF6) /* Interrupt Request Register 1 */

#define IRRI1 IRR1_BIT.b1 /* IRRI1 Interrupt Request Register */

#define DEVICE_CODE 0xA0 /* EEPROM DEVICE CODE:1010 */

#define SLAVE_ADRS 0x00 /* SLAVE ADRS:000 */

#define IIC_DATA_W 0x00 /* WRITE_DATA:0 */

#define IIC_DATA_R 0x01 /* READ_DATA:1 */

#define EP_ADRS 0x0000 /* The first address to read EEPROM

*/

#define RAM_AREA 0xFC00 /* Modification program storage address

*/

#pragma interrupt (irq1int)

/***/

/* Function define */

/***/

void main (void);

unsigned char Read_EEPROM(unsigned short adrs, unsigned char *rd_data, unsigned short *br_ad);

unsigned char Recv_data(unsigned char *rd_data, unsigned short *br_ad);

unsigned char Set_Adrs(unsigned short adrs);

void irq1int(void);

/***/

/* Vector Address */

/***/

#pragma section V1 /* VECTOR SECTION SET */

void (*const VEC_TBL1[])(void) = {

 main

};

#pragma section V2 /* VECTOR SECTION SET */

void (*const VEC_TBL2[])(void) = {

 (void *)RAM_AREA /* Address Break */

};

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 30 of 35

#pragma section V3 /* VECTOR SECTION SET */

void (*const VEC_TBL3[])(void) = {

irq1int /* IRQ1 interrupt */

};

#pragma entry main(sp=0xFF80)

#pragma section /* P */

/***/

/* Main Program */

/***/

void main (void)

{

volatile unsigned long i;

unsigned char j=100;

set_ccr(0x80); /* Initialize CCR/Interrupt Disable */

IEG1 = 1; /* Initialize IRQ1 Terminal Input Edge */

IRRI1 = 0; /* Initialize IRQ1 Interrupt Request Flag */

IRQ1 = 1;

IEN1 = 1; /* IRQ1 Interrupt Enable */

set_imask_ccr(0);

do{

PCR7 = 0x20; /* P75 output set */

P75 = ~P75; /* LED2 ON/OFF */

for(i=100000; i>0; i--); /* wait */

}while(j--);

PCR7 = 0x30; /* P74, P75 output set */

P74 = 0; /* LED2 ON */

P75 = 0; /* LED3 ON */

while(1);

}

/**/

/* IRQ1 Interrupt */

/**/

void irq1int(void)

{

unsigned short adrs, bar, *br_ad;

unsigned char tmp, *rd_data;

IRRI1 = 0; /* Initialize IRQ1 Interrupt Request Flag */

adrs = EP_ADRS; /* initialize EEPROM read address */

rd_data = (unsigned char *)RAM_AREA; /* modification program start address */

br_ad = &bar; /* Break Address */

tmp = Read_EEPROM(adrs, rd_data, br_ad); /* modification program read */

if(tmp != 0)

while(1);

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 31 of 35

ABRKCR = 0x80; /* A setup of Address Break condition */

BAR = bar; /* A setup of Address Break */

ABIE = 1; /* A setup of Address Break Enable */

}

unsigned char Read_EEPROM(unsigned short adrs, unsigned char *rd_data, unsigned short *br_ad)

{

unsigned char tmp;

ICCR = 0x89; /* ICE=1, ACKE=1, SCP=1 */

ICMR = 0x08; /* CKS0=1 */

TSCR = 0xFC; /* trace rate 400kHz */

while(BBSY != 0); /* Bus Busy? */

tmp = Set_Adrs(adrs); /* Address set */

if(tmp != 0){

if(IRIC == 1)

IRIC = 0;

ICCR &= 0xFA /* stop condition */

return(1);

}

tmp = Recv_data(rd_data, br_ad); /* modification program data read */

return(tmp);

}

unsigned char Recv_data(unsigned char *rd_data, unsigned short *br_ad)

{

unsigned char recv, cnt=0;

if(IRIC ==1)

IRIC = 0;

ICCR |= 0x30; /* master trace mode (MST=1, TRS=1) */

ICCR = ((ICCR & 0xFE) | 0x04); /* start condition */

while(IRIC == 0);

ICDR = (unsigned char)(DEVICE_CODE | SLAVE_ADRS | IIC_DATA_R);

/* slave address set */

IRIC = 0;

while(IRIC == 0); /* trace OK? */

if(ACKB != 0) /* ACK? */

return(1);

TRS = 0; /* Master Receive */

WAIT = 1; /* WAIT mode ON */

ACKB = 0; /* set ACK = 0 */

recv = ICDR; /* dummy read */

IRIC = 0;

while(IRIC == 0); /* dummy recv end? */

IRIC = 0; /* WAIT OFF */

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 32 of 35

while(IRIC == 0); /* dummy recv OK? */

br_ad = ICDR; / Break high Address receive */

IRIC = 0;

while(IRIC == 0); /* receive end? */

IRIC = 0; /* WAIT OFF */

while(IRIC == 0); /* receive OK? */

br_ad <<= 8; / high bit shift */

br_ad |= ICDR; / Break low Address receive */

IRIC = 0;

while(IRIC == 0); /* receive end? */

IRIC = 0; /* WAIT OFF */

while(IRIC == 0); /* receive OK? */

recv = ICDR; /* modification program size receive */

IRIC = 0;

while(IRIC == 0); /* receive end? */

while(cnt < (recv - 1)){ /* (size - 1) LOOP */

IRIC = 0; /* WAIT OFF */

while(IRIC == 0); /* receive OK? */

rd_data = ICDR; / modification program receive */

IRIC = 0;

while(IRIC == 0); /* receive end? */

rd_data++;

cnt++;

}

ACKB = 1; /* ACK=1 */

TRS = 1; /* trace mode set */

IRIC = 0; /* WAIT OFF */

while(IRIC == 0); /* receive OK? */

WAIT = 0; /* WAIT mode OFF */

rd_data = ICDR; / Last data receive */

IRIC = 0;

ICCR &= 0xFA; /* stop condition */

return(0);

}

unsigned char Set_Adrs(unsigned short adrs)

{

ICCR |= 0x30; /* master trace mode (MST=1, TRS=1) */

ICCR = ((ICCR & 0xFE) | 0x04); /* start condition */

while(IRIC == 0);

ICDR = (unsigned char)(DEVICE_CODE | SLAVE_ADRS | IIC_DATA_W);

/* slave address set */

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 33 of 35

IRIC = 0;

while(IRIC == 0); /* trace end? */

if(ACKB != 0){ /* ACK OK? */

return(1);

}

ICDR = (unsigned char)(adrs >> 8); /* high address set */

IRIC = 0;

while(IRIC == 0) /* trace end? */

if(ACKB != 0){ /* ACK OK? */

return(1);

}

ICDR = (unsigned char)(adrs & 0x00FF); /* low address set */

IRIC = 0;

while(IRIC == 0); /* trace end? */

if(ACKB != 0){ /* ACK OK? */

return(1);

}

return(0);

}

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 34 of 35

Revision Record
Description

Rev. Date Page Summary
1.00 Dec.20.03 — First edition issued

H8/300H Tiny Series
ROM Correction

REJ06B0229-0100Z/Rev.1.00 December 2003 Page 35 of 35

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corp. product best suited to the customer's application; they do not convey any license
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or
a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corp. without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or
an authorized Renesas Technology Corp. product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising
from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means,
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and
more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

	Introduction
	Specifications
	Description of Functions
	I2C Bus Interface
	Address Break

	Description of Operation
	Description of Software
	Description of Modules
	Description of Arguments
	Description of Return Values
	Description of Variables
	Description of Constants
	Description of RAM
	Description of Internal Register

	Flowchart
	Main Routine
	IRQ1 Interrupt Routine
	Download Setting Routine
	Download Routine
	Slave Address Setting Routine

	Program Listing
	Revision Record

