
 APPLICATION NOTE

R01AN2014EJ0110 Ver.1.10 Page 1 of 64
2022.9.9

RL78/L13
Integrate External EEPROM IC Functionality into MCU by Using Data Flash
Memory (EEPROM Emulation Library)
Introduction
Self-programming is a function that the microcontroller to rewrite the internal flash memory by itself. RL78/L13 is
equipped with the data flash memory which is suitable for data storage. Rewriting of data flash memory can be realized
by the Flash Data Library (FDL) and the EEPROM Emulation Library (EEL) from Renesas Electronics Corp.
This application note explains how to hold non-volatile data simply by data flash memory and the EEL without using
external EEPROM IC. It also explains how to save data to data flash memory quickly after detecting low voltage to
prepare for power interruption.
User can integrate the function of external EEPROM IC into microcontroller by applying this application note.

Correspondence between Compiler and EEL
This application note has a sample code (excluding the EEL). In order to operate this sample code, it is required to
download and link EEL to the project. Refer to “6.9 How to import EEL” for details on method of linking EEL to the
project.
EEL has a CubeSuite+ version. However, the version of EEL supported by each sales company (each area) is different.
Confirm the supported version by selecting the area on the Renesas Electronics Website (http://www.renesas.com).
Please check the manual of the EEL, and the release note (or README.txt on the download source page) before using
the EEL.

Correspondence between Compiler and EEL

 EEL Download Link
CubeSuite+
version

EEPROM Emulation Library Pack02 for the
RL78 Family Ver.1.01

https://www.renesas.com/software-tool/data-fla
sh-libraries#overview

RENESAS_EEL_RL78_T02E_V1.10
(Use it after linking with the following FDL
which is available in the same place.
FDLRENESAS_FDL_RL78_T02E_V1.10)

http://www.renesas.eu/updates?oc=EEPROM_
EMULATION_RL78

Target Device
RL78/L13

EEL used in this application note supports other devices of RL78.

RL78/D1A, RL78/F12, RL78/F13, RL78/F14, RL78/G13, RL78/G14, RL78/G1A, RL78/G1E,
RL78/I1A, RL78/L1C

Confirm by the latest user’s manual of the EEL about the supported device of EEL.
When applying the sample program covered in this application note to another RL78 microcontroller, conduct an
extensive evaluation of the modified program.

R01AN2014EJ0110
Ver.1.10
2022.9.9

http://www.renesas.com/
http://www.renesas.com/products/tools/flash_prom_programming/flash_libraries/data_flash_lib/downloads.jsp
http://www.renesas.com/products/tools/flash_prom_programming/flash_libraries/data_flash_lib/downloads.jsp
http://www2.renesas.eu/products/micro/download/index.html/file/download/id/389/package/5188

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 2 of 64
2022.9.9

Contents

1. Overview ... 4
1.1 Outline of the EEL ... 4
1.2 Outline of the FDL ... 4
1.3 Proper Use of the FDL and the EEL .. 5
1.4 Benefits and Caution Points When EEPROM IC is Replaced ... 8

1.4.1 Benefits form Replacing EEPROM IC .. 8
1.4.2 Difference from EEPROM IC .. 8

2. Specifications ... 9
2.1 Shortening of the Write Time of EEL .. 12
2.2 EEL Architecture ... 14

2.2.1 EEL Pool ... 14
2.2.2 EEL Block .. 16

2.3 EEL Initial Values to be Set by User .. 18
2.4 Number of Stored User Data Items and Total User Data Size .. 21
2.5 Notes for Using EEL ... 22

3. Operation Check Conditions ... 23

4. Related Application Notes ... 24

5. Description of the Hardware .. 25
5.1 Hardware Configuration Example ... 25
5.2 List of Pins to be Used ... 25

6. Description of Software ... 26
6.1 Operation Outline .. 26
6.2 File Configuration ... 29
6.3 List of Option Byte Settings ... 30
6.4 List of Constants ... 31
6.5 List of Variables .. 32
6.6 List of Functions ... 33
6.7 Function Specifications .. 34
6.8 Flowcharts ... 42

6.8.1 Overall Flowchart .. 42
6.8.2 Initialization of Peripheral Functions ... 42
6.8.3 Initialization of Ports .. 43
6.8.4 Initialization of CPU Clock ... 44
6.8.5 Initialization of TAU0 ... 45
6.8.6 Initialization of INTP .. 47
6.8.7 Initialization of LVD ... 47

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 3 of 64
2022.9.9

6.8.8 Main Processing.. 48
6.8.9 Initialization of the Main Processing.. 50
6.8.10 Initialization of EEL ... 51
6.8.11 Read Processing by EEL .. 52
6.8.12 Valid Range Check of LED blinking Data ... 52
6.8.13 EEL Function Status Check .. 53
6.8.14 Enabling TAU01 .. 54
6.8.15 TAU01 Interrupt Handler ... 55
6.8.16 Disabling TAU01 ... 56
6.8.17 Enabling INTP0 ... 56
6.8.18 INTP0 Interrupt Handler .. 57
6.8.19 Enabling TAU00 .. 57
6.8.20 TAU00 interrupt handler .. 58
6.8.21 Write by EEL ... 59
6.8.22 Disabling TAU00 ... 59
6.8.23 Disabling INTP0 .. 59
6.8.24 Enabling LVD Interrupt .. 60
6.8.25 LVD interrupt handler .. 60

6.9 How to Import EEL into the Software Project .. 61
6.9.1 CubeSuite+ Version .. 61

6.10 Modification of the Sample Code .. 62

7. Sample Code .. 64

8. Documents for Reference .. 64

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 4 of 64
2022.9.9

1. Overview
There are three types of Self Programming Library; the Flash Self Programming library (FSL), the FDL, and the EEL
shown in .
As libraries using data flash memory, the outline of the EEL is indicated in 1.1 Outline of the EEL and the outline
of FDL is indicated in 1.2 Outline of the FDL. This application note explains the EEL which is indicated with the
bold font in .

Table 1.1 List of Self Programing Library

Name of
library Target flash memory Description

FSL Code flash memory Rewrites data in code flash memory.
FDL

Data flash memory
Rewrites and reads data in data flash memory.

EEL Uses data flash library just like EEPROM to rewrite
and read data.

1.1 Outline of the EEL
The EEL is a software library to store the data in internal data flash memory of the RL78 microcontroller in the same
way as EEPROM. In order to rewrite data flash memory with the EEL, the corresponding functions of EEL
initialization and other purpose, would be called from the user-created program.
The EEL allows the user to assign a 1-byte identifier (data ID: 1 to 64) to each block of data and to perform read or
write operations in units of 1 to 255 bytes for each ID that is assigned (a maximum of 64 data items can be assigned to
an ID).

1.2 Outline of the FDL
The FDL is a software library to perform operations to the data flash memory with the firmware installed on the RL78
microcontroller. In order to rewrite data flash memory with the FDL, the corresponding functions of FDL
initialization and other purpose, would be called from the user-created program.

The fundamental usage of the FDL is to write data byte by byte to the data flash memory’s address, which has not
been written(in the blank state). However, it cannot overwrite the same address. In order to overwrite the same
address, data erasing per block is required in advance.

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 5 of 64
2022.9.9

1.3 Proper Use of the FDL and the EEL
There are some differences such as rewriting method, resources required, execution time, data management
mechanism and so on between using the FDL and the EEL. Main features of the FDL and the EEL are shown in
Since FDL is only a fundamental access function to data flash memory, it can be customized to manage data flexibly
according to the user-created program. On the other hand, EEL has the feature that development load is low because
the mechanism of data management was decided in advance by the EEL.
Select the FDL or the EEL according to the requirements for application.

Table 1.2 Features of the FDL and the EEL
 FDL EEL

Rewriting method Depends on user-created
program.

Writes after changing
address.

Resources required Small Large
Data size Up to 1024 bytes Up to 255 bytes

Execution time Short Long

Data management
mechanism

None
(User manage data by

address)

Managed
(By data number)

Caution: The feature of the FDL is dependent on the upper-class layer, the application (the specification of data

management).

(1) Rewriting Method

Writing is permitted only when the target write address of data flash memory is in the blank state. It is necessary
to erase data in units of one block in advance in order to overwrite the same address.
FDL itself does not have a mechanism in which data can be managed. It is necessary to consider how to manage
data in the application layer (by user). On the other hand, EEL has a mechanism to manage data, and writes data
with keeping changing the variable which contains an address that marks the memory in the blank state in data
flash memory. Since data can be written in until the block for writing is filled with data, it is suitable for mass
data storage and frequent data writing.

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 6 of 64
2022.9.9

(2) Resources required
Software resources required by the FDL and the EEL are shown in . The Self-RAM, stack, and data buffer have
to use RAM. Since the EEL uses the FDL, the amount of the EEL ROM resources is larger than the FDL ROM
resources.

Table 1.3 Software Resources of FDL/EEL (e.g. RL78/L13)

Item Size (byte)
FDL EEL

Self-RAM Note 1 0 to 1024 0 to 1024
Stack MAX 46 MAX 80
Data buffer Note 2 1 to 1024 1 to 255
Library size ROM : MAX 177 ROM :MAX 3400

(FDL : 600, EEL : 2800)

Note 1: An area used as the working area by the EEL is called self-RAM. The self-RAM requires no user setting
because it is an area that is not mapped and automatically used at execution of the EEL (previous data is
discarded).

Note 2: A RAM space required in order to input the data read and written is called a data buffer. Required size

changes by the reading and writing unit. When performing 1 byte of reading and writing, a needed data
buffer is 1 byte.

Note 3: The resources given in this table are according to FDL RL78 Type04 Ver1.05 and EEL RL78 Pack02

Ver1.01. The library may change by upgrade etc. Confirm the manual of each library for the latest resource
information.

(3) Data Size

The FDL is able to read and write data up to 1024 bytes (1 block of a data flash memory). The EEL is able to
read and write data up to 255 bytes. The FDL has an advantage when saving big data.
The data buffer of expresses the size of the data which can be read and written at a time.

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 7 of 64
2022.9.9

(4) Execution Time
The execution time of the library function of FDL and EEL is shown in Table 1.4. The FDL without data
management mechanism can read and write data at high speed.

Table 1.4 The Execution Time of the Library Function of FDL/EEL

Processing FDL (255 bytes) EEL (255 bytes)
Write
FDL : PFDL_Execute(Write)
EEL : EEL_Execute(Write)

519.7[μs] 11399.7[μs]

Read
FDL : PFDL_Execute(Read)
EEL : EEL_Execute(Read)

167.7[μs] 179.7[μs]

Verify
FDL : PFDL_Execute(IVerify)
EEL : EEL_Execute(Verify)

959.7[μs] 3919.7[μs]

Remark. The execution time described in this application note is the actual measured value calculated on operating

FDL RL78 Type04 Ver1.05 or EEL RL78 Pack02 Ver1.01 on the integrated development environment
CubeSuite+. The value would be different according to the individual specificities of the device and the
execution condition.

(5) Data Management Mechanism

The FDL uses address to access data flash memory. Since the address in which the newest data is stored is
changed, it needs to manage the address. On the other hand, EEL manages data by data ID. Therefore, it is not
necessary to manage the address in which the newest data is stored when using the EEL.

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 8 of 64
2022.9.9

1.4 Benefits and Caution Points When EEPROM IC is Replaced
This section explains benefits when replacing the function of EEPROM IC with data flash memory by using EEL, and
the difference from EEPROM IC.

1.4.1 Benefits form Replacing EEPROM IC

The benefits of replacing from EEPROM IC are shown below.

 Since external EEPROM IC becomes unnecessary, parts cost reduction and small footprint are realizable.
 Since it is the operation completed inside device, it is not necessary to perform serial communication. The serial

communication pins of microcontroller can be used by other functions. In addition, the value which was written
can be confirmed directly with a debugger at the time of the software development.

 Since serial communication is unnecessary, processing time can be reduced. (However, it is dependent on data
structure.) In EEPROM IC, the serial communication time + the write completion time (several milliseconds)
are taken for the processing time.

 Since data is managed by data ID, it is not necessary to care about address.

1.4.2 Difference from EEPROM IC

The difference with the case where EEPROM IC is used is shown below.

 Since it is emulation, the size of the flash memory which can be used by user decreases.
Refer to “2.4 Number of stored user data items and total user data size” for how to calculate the space
available to the user.

 The program which communicates with EEPROM IC is not required. Instead, a program just like the FDL or the
EEL is necessary.

 The maximum number of data items is 64 and the maximum size of one data item is 255 byte. Refer to the
user’s manual of the EEL for more information about the number of data items.

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 9 of 64
2022.9.9

2. Specifications
In this application, LED0 or LED1 blinks 10 times by a keypress. The data used for LED blinking is saved to data flash
memory when the supply voltage becomes too low. The saved data is read when system restarts, and the interrupted
blinking processing is continued.

When reset is ended, the system reads the blinking state data (target LED for blinking, and the remaining times of LED
blinking) by EEL from data flash memory where the data has been saved.

Next, after completing 10 times blinking at intervals of 500 ms according to the blinking state data, the LED stops
blinking and the system becomes the waiting state for keypress.
If the key is pressed in a state in which no LED is blinking, the LED that had not been blinking just before will start to
blink. The keypress becomes invalid while LED is blinking.

The fall of power supply voltage is detected by LVD function. If the fall of power supply voltage is detected, the LED
blinking state data (target LED for blinking, and the remaining times of LED blinking) is saved to data flash memory by
the EEL, LED3 which shows the completion of data saving will be lit up, and then the mode moves to the STOP mode.

Moreover, if an error occurs when accessing data flash memory with EEL functions, LED0 and LED1 will be lit up and
the mode shifts into the STOP mode.

The structure of the data to be saved is shown in Figure 2.1. Higher 4 bits of this one byte user data indicates target
LED for blinking and lower 4 bits indicate the remaining times of LED blinking. The example data in Figure 2.1shows
that the rest of the LED1's blinking times is 5.
.

0 0 0 1 0 1 0 1

User data (1-byte)

Target LED for blinking (4-bit)
LED0 : 0000B
LED1 : 0001B

The remaining times of LED blinking
(4-bit)

0000B to 1010B

Figure 2.1 Stored Data

Table 2.1shows the required peripheral functions and their uses. Figure 2.2 shows overall picture of application.
Figure 2.3 shows operation outline.

Table 2.1 Peripheral Functions to be Used and their Uses

Peripheral Function Use
LVD Supply voltage (VDD) monitoring
External interrupt (INTP0) Key for operation switching
P05 LED lighting control (LED0)
P45 LED lighting control (LED1)
P41 LED lighting control (LED3)
Timer array unit (TAU) 0 channel 0 Generation of the wait time for chattering evasion of

keypress（10ms）
TAU0 channel 1 Generation of LED blinking interval time (500ms)

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 10 of 64
2022.9.9

User application

FDL

Data flash memory

EEL

Read
Write

User application function

FDL_Execute
FDL_Handler

EEL_Execute
EEL_Handler

R_EEL_Initialize
R_EEL_ReadData
R_EEL_WriteData
R_EEL_CheckStatus

EEL_Init
EEL_Open

FDL_Init
FDL_Open

Figure 2.2 Overall Picture of Application

It is necessary to set data flash memory to the state that accessing data flash memory is permitted, or to secure the
resource used by FDL/EEL by performing Init/Open of FDL/EEL, in order to access data flash memory from user
application. The reading and writing to data flash memory are enabled by performing Startup of EEL after the Init/Open
processing.

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 11 of 64
2022.9.9

Reset Is released

First time start-up

Every time except the
first time start-up

LED blinking data setup

Event Internal Processing LED

Startup errors

LED off

Blink according to the saved data

LED0 is on, LED1 is on

Keypress Processing according to LED state

LED is not blinking.

10 times blinking

LED is blinking.

The remaining times of LED blinking
will not change

The fall of supply voltage Data saving

VDD is
VLVDH (3.98V) or less.

Only the LED which shows the blinking
completion is on

LED0 LED1

LED0 LED1

LED0 LED1

LED0 LED1

LED0 LED1

LED0 LED1

The Remaining times of LED
blinking ← 10 times
The target LED for blinking
switches to another LED when its
blinking is over

Keypress is ignored

Data flash memory　
← Data of the target LED for
 blinking,
 Data of the remaining times of
LED blinking

Target LED for blinking ← LED0
The remaining times of LED
blinking ← 0 time

Target LED for blinking ← Saved
data
The remaining times of LED
blinking ← Saved data

The LED blinking data is not set.

LED3

LED3

LED3

LED3

LED3

LED3

Figure 2.3 Operation Outline

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 12 of 64
2022.9.9

2.1 Shortening of the Write Time of EEL
In order to access data flash memory from user application using the EEL, it is necessary to set data flash memory to the
state that accessing the data flash memory is permitted, or to secure the resource used by FDL/EEL. Therefore, the EEL
realizes the above-mentioned processes by calling some library functions. Required processes are as follows.

 FDL_Init function: Initialization of RAM used by FDL.
 FDL_Open function: Set data flash memory to the state that accessing the data flash memory is permitted.
 EEL_Init function: Initialization of RAM used by EEL.
 EEL_Open function: Set data flash memory to the state that can be managed.
 EEL_Execute function (STARTUP command): Changing into the state in which EEPROM emulation execution is

possible.

However, if the above-mentioned preparation processings are performed at a low voltage, it may become power
disconnect during the data saving processing. Therefore, in this application note, in order to shorten the data saving time,
the data saving processing done by EEL is divided into two phases which are executed separately, the preparation phase
and the saving phase.
Figure 2.4 shows the data saving processing when it is performed by a batch processing. Figure 2.5 shows the data
saving processsing when it is performed by a two-step processing. The saving phase takes 991[µs] in the case of batch
processing, and takes 683[μs] in the case of two-step processing.

Remark. The measurements described in this application note are the actual measured value calculated by using EEL

RL78 Pack02 Ver1.01 on the integrated development environment CubeSuite+.

Power Supply
Voltage (VDD)

Time

VLVDH

VLVDL

FDL_Init FDL_Open EEL_Init EEL_Open EEL_Execute(STARTUP) EEL_Execute(READ)

Read out

EEL_Execute(SHUTDOWN) FDL_CloseEEL_Close

FDL_Init FDL_Open EEL_Init EEL_Open EEL_Execute(STARTUP) EEL_Execute(WRITE)

43.0[us] 11.2[us] 0.33[us] 227.5[us] 674.2[us]

Data Saving: 991.21[us]

EEL_Execute(SHUTDOWN)

25.9[us] 7.7[us]

FDL_CloseEEL_Close

0.46[us] 0.92[us]

Preparation processing: 307.93[us]

Figure 2.4 Data Saving Processing (by a batch processing)

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 13 of 64
2022.9.9

Power Supply
Voltage (VDD)

Time

VLVDH

VLVDL

FDL_Init FDL_Open EEL_Init EEL_Open EEL_Execute(STARTUP) EEL_Execute(READ)

Preparation phase

EEL_Execute(WRITE)

674.2[us]

Saving phase: 683.28[us]

EEL_Execute(SHUTDOWN)

7.7[us]

FDL_CloseEEL_Close

0.46[us] 0.92[us]

Figure 2.5 Data Saving Processing (by a two-step processing)

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 14 of 64
2022.9.9

2.2 EEL Architecture
The operation principle of the EEL is explained. The EEL manages data in the data area and manages data ID in the
reference area. These areas are configured in the same block and managed by each block. The next block will be used if
unused area of the block currently used is run out. This chapter explains how to use the data flash memory in the EEL.

2.2.1 EEL Pool
The EEL pool is a user-defined data flash area that is accessible by the EEL. The user-created program can access the
data flash only by using this EEL pool in the data flash via the EEL.
The EEL pool size must be specified with the number of blocks in the data flash of the target device. For the procedure
to specify the number of blocks, see Section 2.3 EEL Initial Values to be set by User.

The EEL pool is divided into 1024-byte blocks. Each block has a state which indicates the current usage of the block.

State Description

Active
Only a single EEL block is active at a time to store defined data. The active block
circulates in data flash blocks allocated in the EEL pool.

Invalid
No data is stored in invalid blocks. EEL blocks are marked as invalid by the EEL or
become invalid in the case of erasure blocks.

Figure 2.6 shows an exemplary pool configuration for a device with 4 KB data flash.

When no writable area is remaining in the active block (block 1 in the example) and data can no longer be stored
(failure in write command), a new active block is selected in a cyclic manner and the current valid data set is copied to
this new active block. This process is referred to as refresh. After the EEL_CMD_REFRESH command is executed, the
previous active block becomes invalid and only a single active block exists.

Data Flash Memory

EEL Pool

A ＩActive Block Invalid Block

AＩ Ｉ I

Ph
ys
ic
al
 B
lo
ck

0

Ph
ys
ic
al
 B
lo
ck

1

Ph
ys
ic
al
 B
lo
ck

2

Ph
ys
ic
al
 B
lo
ck

3

EE
L
Bl
oc
k

0

EE
L
Bl
oc
k

1

EE
L
Bl
oc
k

2

EE
L
Bl
oc
k

3

Figure 2.6 EEL Pool Structure

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 15 of 64
2022.9.9

The overall life cycle of a block in the EEL pool is shown in Figure 2.7. The EEL block switches between active and
invalid state.

Ｉ A

In
va
lid
 B
lo
ck

Ac
tiv
e
Bl
oc
k

Figure 2.7 Life Cycle of an EEL Block

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 16 of 64
2022.9.9

2.2.2 EEL Block
Figure 2.8 EEL Block Structure (Example of RL78/L13 (R5F10WMG)) shows detailed block structure used by
the EEL. The EEL block is divided into three utilized areas: the block header, the reference area and the data area.

Block header

Reference area

Separator (2 bytes)

Unused area
(all bytes 0xFF)

Data area

Increment

F1000H

F13FFH

00000H

F1000H

F1FFFH

FFFFFH

Data flash memory
4K bytes

Code flash memory
128K bytes

Reserved

Special function registers
（2nd SFR） 2KB

Reserved

Mirror
47.75K bytes

RAM
8K bytes

General-purpose register
32 bytes

Special function registers （SFR）
256 bytes

Block header

Reference area

Separator (2 bytes)

Unused area
(all bytes 0xFF)

Data area

F17FFH
Block header

Reference area

Separator (2 bytes)

Unused area
(all bytes 0xFF)

Data area

F1CFFH
Block header

Reference area

Separator (2 bytes)

Unused area
(all bytes 0xFF)

F1FFFH

Decrement

Data area

Figure 2.8 EEL Block Structure (Example of RL78/L13 (R5F10WMG))

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 17 of 64
2022.9.9

Table 2.1 Components of EEL Block

Name Description
Block header The block header contains all block status information needed for the block management

within the EEL-pool. It has a fixed size of 8 bytes.
Reference area The reference area contains reference data which are required for the management of data.

When data is written, this area extends in the address increment direction.
Data area The data area contains user data. When data is written, this area extends in the address

decrement direction.

Between reference area and data area, there is an unused area. With each EEL data update (i.e. the data is written), this
area is reduced successively. However, at least two bytes of space is always required in between reference area and data
area for management and separation of these areas. This is indicated by the separator in Figure 2.8.

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 18 of 64
2022.9.9

2.3 EEL Initial Values to be Set by User
As the initial values for the EEL, be sure to set the items indicated below. In addition, before executing the EEL, be sure
to execute the high-speed on-chip oscillator. The high-speed on-chip oscillator must also be activated when using the
external clock. Parentheses indicated on the right-hand side of each setup are connected with the numbers in the
following page.
Setup of each item has been tailored to this application.

<FDL user include file (fdl_descriptor.h)> Note 1,2
#define FDL_SYSTEM_FREQUENCY 24000000 :(1) Operation frequency
#define FDL_WIDE_VOLTAGE_MODE :(2) Voltage mode
#define FDL_POOL_BLOCKS 0 :(3) FDL pool size
#define EEL_POOL_BLOCKS 4 :(4) EEL pool size

<EEL user include file (eel_descriptor.h)>Note 1, 2
#define EEL_VER_NO 1 :(5) Number of stored data items

＜EEL user type include file (eel_user_types.h)> Note 1, 2
typedef eel_u08 type_A; :(6) Data size

<EEL user-created progaram file (eel_descriptor.c)> Note 1, 2
__far const eel_u08 eel_descriptor[EEL_VAR_NO+2] =
{
 (eel_u08)(EEL_VAR_NO), /* variable count */ \
 (eel_u08)(sizeof(type_A)), /* id = 1 */ \
 (eel_u08) (0x00), /* zero terminator */ \
};

:(7) Data size of the data ID

Note 1: The macros and macro names that are being used have common parameters with the EEL, so changes should be

made to numerical values only.
Note 2: After initializing the EEPROM emulation blocks (after executing the EEL_CMD_FORMAT command), do not

change the values. If the values are changed, reinitialize the EEL blocks (by executing the
EEL_CMD_FORMAT command).

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 19 of 64
2022.9.9

(1) Operation frequency
This sets an operation frequency which is used in RL78 microcontrollers. Note1

The setting value is set to the FDL_Init frequency parameter by the following expressions.
In this application note, since the operation frequency of CPU is 24 MHz, it is set to 24.

Note1: This setting is a value required to control data flash memory. This setting does not change the operation

frequency of RL78 microcontrollers. In addition, this operation frequency is not the frequency of the high-
speed on-chip oscillator.

(2) Voltage mode

This sets the voltage mode of data flash memory. Note 2
FDL_WIDE_VOLTAGE_MODE is not defined: Full-speed mode
FDL_WIDE_VOLTAGE_MODE is defined: Wide voltage mode

This application note does not define FDL_WIDE_VOLTAGE_MODE because it is operated in full speed mode.

Note 2: For details of the voltage mode, see the corresponding RL78 microcontrollers user’s manual.

(3) FDL pool size Note 3
Specify 0.

Note 3: A user defined data flash area which is accessible by the FDL.

(4) EEL pool size Note 4
The number of blocks in the data flash memory of the target device must be specified as the number of blocks in
the EEL pool.

Note 4: Specify 3 (3 blocks) or a greater value (recommended).

(5) Number of stored data items

Specify the number of data items to be used in the EEPROM emulation. A value of 1 to 64 can be set. In this
application note, since one kind of data is managed, the number of stored data items is set to 1.

(6) Data size registration

The data size of every data ID is registered into an EEL descriptor table.
There are 8 standarized sizes: type_A, type_B, type_C, type_D, type_E, type_F, type_X, and type_Z. It is
necessary to change size according to the size of the user data.
In this application note, since one data type of 1-byte (LED blinking state) is managed, type_A which is 1-byte
long, is used for data ID1.

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 20 of 64
2022.9.9

(7) Data size of data ID
A table to define the data size of each data ID is provided below. This is called an EEL descriptor table.
The EEL can only add identifiers while the program is running. Data to be written must be registered in the
EEL descriptor table in advance like the processing described in (6).

EEL Descriptor Table

__far const eel_u08 eel_descriptor [Number of stored data items (1) + 2]
EEL_VAR_NO

Byte size of data ID1 (type_A)
0x00

・EEL_VAR_NO

User-specified number of data items used in the EEL

・Byte size of Data IDx

User-specified size of user data (in bytes)

・Termination area (0x00)

Specify 0 as the termination information.

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 21 of 64
2022.9.9

2.4 Number of Stored User Data Items and Total User Data Size
The total size of user data that can be used in the EEPROM emulation is limited. If refresh processing is taken into
consideration, it is need to place all of the user data and an unused area which is big enough for one or more data in
one block.
The number of stored data items that can be used differs depending on the size of user data that is actually stored.
The following shows the calculation method of the size which can actually be used in the writing of user data, and the
maximum number of times one block can be written with user data.

[Maximum usable size of one block that can be used to write the user data]
Size of one block of data flash memory: 1024 bytes
Size required for EEPROM emulation block management: 8 bytes
Free space necessary as termination information (separator): 2 bytes

Maximum usable size of one block = 1024 bytes - 8 bytes - 2 bytes = 1014 bytes

[Calculating the size for writing each user data item]

Size of each written user data item = data size + reference data size (2 bytes)
Since the size of the data written in in this application note is 1 byte, the size of user data will be 3 bytes.

[Number of times one block can be written]
Because the maximum usable size of one block is 1014 bytes and the user data size is 3 bytes:

Number of times one block can be written = 1014 / 3 = 338 times

It is necessary to perform refresh processing for every 338 times writing in this application note. Refresh processing
is performed within preparation processing (Refer to 2.1 Shortening of the Write Time of EEL). At the time of
doing refresh processing, preparation processing time is longer for 6.74[ms] in comparison with usual time.

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 22 of 64
2022.9.9

2.5 Notes for Using EEL
Notes when using EEL are shown below.

 The data flash memory cannot be read during data flash memory operation by the EEL.
 The watchdog timer does not stop during the execution of the EEL.
 The EEL does not support multitask execution. Do not execute the EEL functions during interrupt processing.
 Before starting the EEPROM emulation, be sure to start up the high-speed on-chip oscillator first. The high-speed

on-chip oscillator must also be activated when using the external clock.
 In address above 0xFFE20 (0xFE20), do not place data buffer (argument) or stack which is used by EEL functions

and FDL functions.
 To use the data flash memory for EEPROM emulation, it is necessary to execute the EEL_CMD_FORMAT

command upon first starting up to initialize the data flash memory and make it usable as EEPROM emulation
blocks.

 It is recommended to use at least three blocks of the data flash memory in order to use the EEL.
 The EEL does not support multitask execution. When executing an EEL function on the OS, do not execute in

from two or more tasks.
 About an operation frequency of RL78 microcontrollers and an operation frequency value set by the initializing

function (FDL_Init), be aware of the following points:
- When using a frequency lower than 4 MHz as an operation frequency of RL78 microcontrollers, only 1 MHz,

2 MHz and 3 MHz can be used (frequencies other than integer values like a 1.5 MHz cannot be used). Also,
set an integer value 1, 2, or 3 to the operation frequency value set by the initializing function.

- When using a frequency of 4 MHz or higher Note as an operation frequency of RL78 microcontrollers, a
certain frequency can be used as an operation frequency of RL78 microcontrollers.

- This operation frequency is not the frequency of the high-speed on-chip oscillator.

Note: For a maximum frequency, see the target RL78 microcontroller user’s manual.

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 23 of 64
2022.9.9

3. Operation Check Conditions
The sample code described in this application note has been checked under the conditions listed in the table below.

Table 3.1 Operation Check Conditions

Item Description
Microcontroller used RL78/L13(R5F10WMGA)
Operating frequency  High-speed on-chip oscillator (fHOCO) clock: 24 MHz (Standard)

 CPU/peripheral hardware clock (fCLK): 24 MHz
Operating voltage 5.0V (Operation is possible over a voltage range of 4.1V to 5.5V)

LVD operation (VLVI): Reset mode
VLVDH(rising edge 4.06V / falling edge 3.98V)
VLVDL(falling edge 2.75V)

CubeSuite+ Ver. development
environment

Integrated development environment CubeSuite+ V2.01.00 from Renesas Electronics Corp.
C compiler CA78K0R V1.70 from Renesas Electronics Corp.
・EEL EELRL78 Pack02 Ver1.01NOTE

Board to be used Renesas Starter Kit for RL78/L13 (R0K5010WMC000BR)

Note: Use and evaluate the latest version.

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 24 of 64
2022.9.9

4. Related Application Notes
The application notes that are related to this application note are listed below for reference.
RL78 Family EEPROM Emulation Library Pack02 (R01US0068EJ) User Manual
Data Flash Access Library (Type T02 (Tiny), European Release) (R01US0061ED0100) Application Note
EEPROM Emulation Library (Type T02 (Tiny), European Release) (R01US0070ED0102) Application Note

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 25 of 64
2022.9.9

5. Description of the Hardware
5.1 Hardware Configuration Example
Figure 5.1 shows an example of the hardware connection.

RL78/L13

VDD

REGC

VDD

RESET

Cautions: 1. The purpose of this circuit is only to provide the connection outline and the circuit is simplified
 accordingly. When designing and implementing an actual circuit, provide proper pin treatment
 and make sure that the hardware's electrical specifications are met (connect the input-only ports
 separately to VDD or VSS via a resistor).
 2. VDD must be held at not lower than the reset release voltage (VLVDH) that is specified as LVD.

P05

P45

VDDLED0

LED1

VDD

P40/TOOL0For on-chip debugger

VSS

VDD
RES
(Implemented on the CPU)

P137/INTP0

SW1

VDD
P41

VDD

LED3

Figure 5.1 Connection Example

5.2 List of Pins to be Used
Table 5.1 lists pins to be used and their functions.

Table 5.1 Pins to be Used and their Functions

Pin Name I/O Description
P05 Output LED On (LED0) control port
P45 Output LED On (LED1) control port
P41 Output LED On (LED3) control port
P137/INTP0 Input Key input (SW1) port

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 26 of 64
2022.9.9

6. Description of Software
6.1 Operation Outline
In this application, LED0 or LED1 blinks 10 times by a keypress. The data used for LED blinking is saved to data flash
memory when the supply voltage becomes too low. The saved data is read when system restarts, and the interrupted
blinking processing is continued.

When reset is ended, the system reads the blinking state data (target LED for blinking, and the remaining times of LED
blinking) by EEL from data flash memory where the data has been saved.

Next, after completing 10 times blinking at intervals of 500 ms according to the blinking state data, the LED stops
blinking and the system becomes the waiting state for keypress.
If the key is pressed in a state in which no LED is blinking, the LED that had not been blinking just before will start to
blink. The keypress becomes invalid while LED is blinking.

The fall of power supply voltage is detected by LVD function. If the fall of power supply voltage is detected, the LED
blinking state data (target LED for blinking, and the remaining times of LED blinking) is saved to data flash memory by
the EEL, LED3 which shows the completion of data saving will be lit up, and then the mode moves to the STOP mode.

Moreover, if an error occurs when accessing data flash memory with an EEL function, LED0 and LED1 will be lit up
and the mode shifts into the STOP mode.

1. Sets the input and output ports.
 LED lighting control (for LED0, LED1, LED3): Configure P05, P45, and P41as the output ports. (LED0,

LED1, and LED3 are off.)
 Keypress: Configure P137/INTP0 for detecting INTP0 falling edges. (Interrupt servicing disabled)

2. Start EEPROM emulation by doing the RAM initialization processing of FDL/EEL and the preparation
processing.
Specifically, functions are called in following order.
FDL_Init, FDL_Open, EEL_Init, EEL_Open, EEL_Execute(Startup)

3. LED blinking state (Data ID: 1) is read and then the target LED will blinked at intervals of 500 ms according to
this LED blinking state.
 Higher 4 bits of the read data show the target LED for blinking (0000B: LED0, 0001B: LED1). And lower 4

bits show the data (Range: 0000B - 1010B) of remaining times of LED blinking.
 The target LED for blinking to is set as LED0 and the data of remaining times of LED blinking is set as 0,

when data does not exist.
 Blinking according to the read data is started.
 EEL_Execute (Read) function is used for reading of data.

4. Ensure the space for data writing via evaluating the free space in a block before writing the data.
 If free space is lower than 3 bytes (smaller than the size of user data), perform refresh processing to secure a

space in another block and move the latest data.
 If free space is 3 bytes or more, refresh processing is not performed.

5. A push on a switch will blink LED 10 times.
 Interrupt processing is started upon detection of a P137/INTP0 falling edge. Chattering is detected and, if the

on state of the input lasts about 10 ms, it is recognized as a valid keypress and the LED blinking is started.
 Target LED for blinking is changed at every keypress.
 The next keypress can’t be accepted during the period from pressing key to the end of the LED blinking.

6. When a LVD interrupt occurs, the remaining times of LED blinking and the number of the target LED for
blinking will be saved to data flash memory. The LED3 turns on to show completion of data saving. Then
FDL/EEL will be stopped and system will go into STOP mode. Specifically, after functions are called in
following order, STOP command is executed.
EEL_Execute(Write), EEL_Execute(Shutdown), EEL_Close、FDL_Close

7. If an error occurs when accessing data flash memory by the EEL, it will go to the stop mode after stopping
FDL/EEL and turning on both LED0 and LED1.
Specifically, after functions are called in following order, STOP command is executed.
EEL_Execute(Shutdown), EEL_Close, FDL_Close

8. If reset occurs, it will return to 1.

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 27 of 64
2022.9.9

Figure 6.1 shows the timing chart.

Supply voltage (VDD)

Processing state

VLVDH（4.06V / 3.98V）
VLVDL（2.75V）

Reset Normal processing Normal processing

PIF0

Reset

TMIF00

10ms

P05
(LED0)

P45
(LED1)

(2) (3) (4) (5) (6)(1)

Remark １．Preparation Processing: It get prepared to write data flash memory by using EEL for saving data. The saved
data is read and the LED blinking is started. The free space of a block is checked. It will refresh if there is no
space for writing.

Remark ２．Normal processing: Waiting for keypress. If a key is pressed, the target LED will blink 10 times
 and then waits for keypress again. The target LED for blinking changes to another by keypress.

 Remark ３．Data saving: Dada of the remaining times of LED blinking and targeted LED for blinking is saved into
 data flash memory. It turns LED off and turns LED3 on which shows the completion of data saving.
 It invalidates INTP0 interruption and goes into STOP mode.

P137
(SW1)

TE00

10 times
blinking The remain 3 times blinking

LVIIF

TMIF01

TE01

10ms

LVD interrupt occurs at the
8th of 10 blinkings.
(Max is 10 times)

10ms

Preparation
phase

Preparation
processing

Saving
phase

PMK0

A keypress of
less than 10ms.

A keypress of
10ms or longer

that 10ms.

Operation
by hardware

Operation
by software

P41
(LED3)

LED which shows the
completion of data saving is

turned on.

Figure 6.1 Timing Chart

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 28 of 64
2022.9.9

(1) Release from the reset state
After reset is ended the CPU starts running, initialization of RAM used by FDL/EEL and the LED blinking data
reading are performed. Then LED linking is started according to the read data.

(2) Keypress of SW1
The count of the interval timer for chattering evasion is started.

(3) Detection of keypress
It will be regarded as a valid keypress if the detection performed 10 ms after the previous keypress shows that SW1
is still being pressed. The interval timer of 500 ms is started, and LED goes to blink.

(4) Low voltage detection
LED blinking data (the remaining times of LED blinking, the target LED for blinking) will be written in data flash
memory (Data ID: 1), and the blinking LED will be off. Moreover, after turning on LED (LED3) which shows the
completion of data saving, It invalidates INTP0 interruption (operation of SW1 is ignored), and goes into STOP
mode. In the example of Figure 6.1, LED blinking data is set to 03H (the rest of the LED0's blinking times is 3).

(5) Reset occurring
If voltage becomes below 2.75V (VLVDL falling edge), reset by LVD will occur.

(6) Data saving
LED corresponding to the data saving blinks when the reset is ended. In the example of Figure 6.1, LED0 blinks 3
times.

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 29 of 64
2022.9.9

6.2 File Configuration
The files used for the sample code is shown in Table 6.1. Files that are automatically generated by the integrated
development environment are excluded.

Table 6.1 List of Additional Functions and Files

File Name Outline Remarks
r_eel_function.c Source file for the data saving

function
Additional functions:
R_EEL_Initialize
R_EEL_CheckStatus
R_EEL_ReadData
R_EEL_CheckDataRange
R_EEL_WriteData

r_eel_function.h Header file for the data saving
function

-

fdl_descriptor.c FDL descriptor source file CubeSuite+ version
fdl_descriptor.h FDL descriptor header file CubeSuite+ version
eel_descriptor.c EEL descriptor source file CubeSuite+ version
eel_descriptor.h EEL descriptor header file CubeSuite+ version
fdl.hNote 1 Header file of FDL CubeSuite+ version
eel.hNote 1 Header file of EEL CubeSuite+ version
eel_types.h Header file of EEL type

definition
CubeSuite+ version

eel_user_types.h Header file of EEL user type
definition

CubeSuite+ version

fdl.libNote 1 FDL CubeSuite+ version
eel.libNote 1 EEL CubeSuite+ version
r_eel.dr Note 2 Link directive file CubeSuite+ version

Note 1: It is a file which needs to be added separately. Refer to the cover sheet “Correspondence between
Compiler and EEL” for more information.

Note 2: Depending on the device to be used, change may be required for the contents.

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 30 of 64
2022.9.9

6.3 List of Option Byte Settings
Table 6.2 summarizes the settings of the option bytes.

Table 6.2 Option Byte Settings

Address Setting Description
000C0H/010C0H 11101111B Disables the watchdog timer.

(Stops counting after the release from the reset status.)
000C1H/010C1H 01110010B LVD interrupt & Reset Mode

Detection voltage VLVDH:

Rising edge 4.06V/Falling edge 3.98V
VLVDL:
Rising edge 2.75V

000C2H/010C2H 11100000B high-speed on-chip oscillator HS mode 24MHz
000C3H/010C3H 10000100B Enables the on-chip debugger

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 31 of 64
2022.9.9

6.4 List of Constants
Table 6.3 lists the constants for the sample program.

Table 6.3 Constants
Constant Setting Description

DATA_ID 0x01 Data ID of EEL
RET_OK 0x00 Normal response
RET_NG_DEVICE 0x01 Device exception
RET_NG_NODATA 0x02 No stored data
RET_NG_RANGE 0x03 The data is out of the valid range.
USER_DATA_SIZE 0x03 User data size
SHIFT_NUM 0x04 The number of bits to be shifted for LED

blinking data
STATUS_PENDING 0xFF Pending status
BLINK_LED_MAX 0x01 The maximum of the blinking LED’s number
BLINK_NUM_MAX 0x0A The maximum of LED blinking times
BLINK_LED0 0x00 Target LED for blinking: LED0
BLINK_LED1 0x01 Target LED for blinking: LED1

LED0 P0.5 LED0 control port (CubeSuite+ version)
P0_bit.no5 LED0 control port (IAR version)

LED1 P4.5 LED1 control port (CubeSuite+ version)
P4_bit.no5 LED1 control port (IAR version)

LED3 P4.1 LED3 control port (CubeSuite+ version)
P4_bit.no1 LED3 control port (IAR version)

LED_ON 0 LED ON level
LED_OFF 1 LED OFF level

SW1 P13.7 SW1 control port (CubeSuite+ version)
P13_bit.no7 SW1 control port (IAR version)

SW_ON 0 Keypress level of SW
SW_OFF 1 Not the keypress level of SW
BLINK_LED_MASK 0xF0 Mask for blinking target in LED blinking data
BLINK_NUM_MASK 0x0F Mask for blinking times in LED blinking data

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 32 of 64
2022.9.9

6.5 List of Variables
Table 6.4 lists the global variables.

Table 6.4 Global Variables
Type Variable Name Contents Function Used

volatile uint8_t g_blink_led Target LED for blinking main
r_tau0_channel0_interrupt
r_tau0_channel1_interrupt

volatile uint8_t g_blink_num Blink count main
r_tau0_channel0_interrupt
r_tau0_channel1_interrupt

volatile uint8_t g_lvd_flag Supply voltage fall detection flag main
r_lvd_interrupt

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 33 of 64
2022.9.9

6.6 List of Functions
Table 6.5 gives a list of functions that are used by this sample program.

Table 6.5 Functions
Function Name Outline

R_Systeminit Initialization of peripheral functions
R_PORT_Create Initialization of the port
R_CGC_Create Initialization of CPU clock
R_TAU0_Create Initialization of TAU0
R_INTC_Create Initialization of INTP
R_LVD_Create Initialization of LVD
main Main processing
R_MAIN_UserInit Initialization of the main processing
R_EEL_Initialize Initialization of EEL
R_EEL_ReadData Read by EEL
R_EEL_CheckDataRange Valid range check of LED blinking data
R_EEL_CheckStatus EEL function status check
R_TAU0_Channel1_Start Enabling TAU01
r_tau0_channel1_interrupt TAU01 interrupt handler
R_TAU0_Channel1_Stop Disabling TAU01
R_INTC0_Start Enabling INTP0
r_intc0_interrupt INTP0 interrupt handler
R_TAU0_Channel0_Start Enabling TAU00
r_tau0_channel0_interrupt TAU00 interrupt handler
R_EEL_WriteData Write by EEL
R_TAU0_Channel0_Stop Disabling TAU00
R_INTC0_Stop Disabling INTP0
R_LVD_InterruptMode_Start Enabling LVD interruption
r_lvd_interrupt LVD interrupt handler
FDL_Init Initialization of FDL
FDL_Open FDL set up
FDL_Close Stop FDL
EEL_Init Initialization of RAM used by EEL
EEL_Open EEL set up
EEL_Close Stop EEL
EEL_Execute Execution of the data flash operation by each command
EEL_Handler Control of EEL during program execution
EEL_GetSpace Confirmation of free space of EEL block

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 34 of 64
2022.9.9

6.7 Function Specifications
This section describes the specifications for the functions that are used in the sample code.
Each function has included r_cg_macrodriver.hHeader.

R_Systeminit
Synopsis Initialization of peripheral functions
Header None
Declaration void R_Systeminit(void)
Explanation Initializes peripheral functions used in this application note.
Arguments None
Return value None

R_PORT_Create
Synopsis Initialization of ports
Header r_cg_port.h
Declaration void R_PORT_Create(void)
Explanation Initializes ports.
Arguments None
Return value None

R_CGC_Create
Synopsis Initialization of CPU clock
Header r_cg_cgc.h
Declaration void R_CGC_Create(void)
Explanation Initializes the CPU clock.
Arguments None
Return value None

R_TAU0_Create
Synopsis Initialization of TAU0
Header r_cg_timer.h
Declaration void R_TAU0_Create(void)
Explanation Initializes TAU0 in order to use TAU00 and TAU01 as interval timers.
Arguments None
Return value None

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 35 of 64
2022.9.9

R_INTC_Create
Synopsis Initialization of INTP
Header r_cg_intc.h
Declaration void R_INTC_Create(void)
Explanation Initializes INTP.
Arguments None
Return value None

R_LVD_Create
Synopsis Initialization of LVD
Header r_cg_lvd.h
Declaration void R_LVD_Create(void)
Explanation Initializes LVD.
Arguments None
Return value None

main
Synopsis Main Processing
Header r_cg_tau.h

r_cg_intc.h
r_eel_function.h
r_cg_userdefine.h

Declaration void main(void)
Explanation Main processing is performed.
Arguments None
Return value None

R_MAIN_UserInit
Synopsis Initialization of the Main Processing
Header r_lvd.h

r_eel_function.h
Declaration void R_MAIN_UserInit(void)
Explanation Initializes the main function.
Arguments None
Return value None

R_EEL_Initialize
Synopsis Initialization of EEL
Header r_eel_function.h

r_cg_userdefine.h
Declaration uint8_t R_EEL_Initialize(void)
Explanation Performs the preparation processing like initialization of RAM before starting

EEPROM emulation.
Arguments None
Return value  Normal response: RET_OK

 Abnormal termination: RET_NG_DEVICE

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 36 of 64
2022.9.9

R_EEL_ReadData
Synopsis Read by EEL
Header r_eel_function.h

r_cg_userdefine.h
Declaration uint8_t R_EEL_ReadData(uint8_t id, uint8_t* pdata)
Explanation Reads data from data flash memory.
Arguments uint8_t id Data ID to be read
 uint8_t* pdata The pointer of the buffer where the read data is stored.
Return value  Normal response: RET_OK

 Abnormal termination: RET_NG_DEVICE
 No data: RET_NG_NODATA

R_EEL_CheckDataRange
Synopsis Valid range check of LED blinking data
Header r_eel_function.h
Declaration uint8_t R_EEL_CheckDataRange(uint8_t data)
Explanation Checks whether LED blinking data is in the valid range.
Arguments uint8_t data Object data of the check
Return value Within the range: RET_OK

Outside of the range: RET_NG_RANGE

R_EEL_CheckStatus
Synopsis EEL Function Status Check
Header r_eel_function.h

r_cg_userdefine.h
Declaration uint8_t R_EEL_CheckStatus(eel_request_t* request_pstr)
Explanation Checks the execution status of EEL.

It is called immediately after performing EEL_Execute.
Arguments eel_request_t*

request_pstr
The argument when EEL_Execute is executed.

Return value  Normal response: RET_OK
 Abnormal termination: RET_NG_DEVICE
 No data: RET_NG_NODATA

R_TAU0_Channel1_Start
Synopsis Enabling TAU01
Header r_cg_timer.h
Declaration void R_TAU0_Channel1_Start(void)
Explanation Starts the count of TAU01.
Arguments None
Return value None

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 37 of 64
2022.9.9

r_tau0_channel1_interrupt
Synopsis TAU01 interrupt handler
Header r_cg_timer.h

r_eel_function.h
Declaration __interrupt static void r_tau0_channel1_interrupt(void)
Explanation Switches LED between ON/OFF and decrements the remaining times of LED

blinking
Target LED for blinking is switches to another LED when blinking is completed.

Arguments None
Return value None

R_TAU0_Channel1_Stop
Synopsis Disabling TAU01
Header r_cg_timer.h
Declaration void R_TAU0_Channel1_Stop(void)
Explanation Stops the count of TAU01.
Arguments None
Return value None

R_INTC0_Start
Synopsis Enabling INTP0
Header r_cg_intp.h
Declaration void R_INTC0_Start(void)
Explanation Enables INTP0 interruption.
Arguments None
Return value None

r_intc0_interrupt
Synopsis INTP0 interrupt handler
Header r_cg_intp.h

r_cg_timer.h
Declaration __interrupt static void r_intc0_interrupt(void)
Explanation Starts the operation of TAU00.
Arguments None
Return value None

R_TAU0_Channel0_Start
Synopsis Enabling TAU00
Header r_cg_timer.h
Declaration void R_TAU0_Channel0_Start(void)
Explanation Starts the count of TAU00.
Arguments None
Return value None

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 38 of 64
2022.9.9

r_tau0_channel0_interrupt
Synopsis TAU00 interrupt handler
Header r_cg_timer.h

r_eel_function.h
Declaration __interrupt static void r_tau0_channel0_interrupt(void)
Explanation Checks the state of SW1 and starts to blink LED.
Arguments None
Return value None

R_EEL_WriteData
Synopsis Write by EEL
Header r_eel_function.h

r_cg_userdefine.h
Declaration uint8_t R_EEL_WriteData(uint8_t id, uint8_t* pdata)
Explanation Writes data to the data flash memory.
Arguments uint8_t id Data ID to be written
 uint8_t* pdata The pointer of the buffer where the data is written.
Return value  Normal response: RET_OK

 Abnormal termination: RET_NG_DEVICE

R_TAU0_Channel0_Stop
Synopsis Disabling TAU00
Header r_cg_timer.h
Declaration void R_TAU0_Channel0_Stop(void)
Explanation Stops the count of TAU00.
Arguments None
Return value None

R_INTC0_Stop
Synopsis Disabling INTP0
Header r_cg_intp.h
Declaration void R_INTC0_Stop(void)
Explanation Disables INTP0 interruption.
Arguments None
Return value None

R_LVD_InterruptMode_Start
Synopsis Enabling LVD interruption
Header r_cg_lvd.h
Declaration void R_LVD_InterruptMode_Start(void)
Explanation Enables LVD interruption.
Arguments None
Return value None

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 39 of 64
2022.9.9

r_lvd_interrupt
Synopsis LVD interrupt handler
Header r_cg_lvd.h

r_eel_function.h
Declaration __interrupt static void r_lvd_interrupt(void)
Explanation Sets the low voltage detection flag
Arguments None
Return value None

FDL_Init
Synopsis Initialization of FDL
Header fdl.h
Declaration fdl_status_t __far FDL_Init(const __far descriptor_t* descriptor_pstr)
Explanation Initializes FDL.

(This is a FDL library function.)
Arguments const __far descriptor_t*

descriptor_pstr
It is a pointer to the descriptor table.

Return value  Normal termination: FDL_OK
 Initialization error: FDL_ERR_CONFIGURATION

FDL_Open
Synopsis FDL set up
Header fdl.h
Declaration void __far FDL_Open(void)
Explanation Sets up FDL.

(This is a FDL library function.)
Arguments None
Return value None

FDL_Close
Synopsis Stop FDL
Header fdl.h
Declaration void __far FDL_Close(void)
Explanation Stops FDL.

(This is a FDL library function.)
Arguments None
Return value None

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 40 of 64
2022.9.9

EEL_Init
Synopsis Initialization of RAM used by EEL
Header eel.h
Declaration eel_status_t __far EEL_Init(void)
Explanation Initializes RAM which is used for EEPROM emulation.

(This is an EEL library function.)
Arguments None
Return value Normal termination: EEL_OK

Initialization error: EEL_ERR_CONFIGURATION

EEL_Open
Synopsis EEL set up
Header eel.h
Declaration void __far EEL_Open(void)
Explanation Changes into the state where EEPROM emulation can be performed.

(This is an EEL library function.)
Arguments None
Return value None

EEL_Close
Synopsis Stop EEL
Header eel.h
Declaration void __far EEL_Close(void)
Explanation This function makes the EEPROM emulation unexecutable.

 (This is an EEL library function.)
Arguments None
Return value None

EEL_Execute
Synopsis Execution of the data flash operation by each command
Header eel.h
Declaration void __far EEL_Execute(__near eel_request_t* request_pstr)
Explanation Each type of processing for performing EEPROM emulation operations is specified

for this function as an argument in the command format, and the processing is
executed.
(This is an EEL library function.)

Arguments __near eel_request_t*
request_pstr

It is a pointer to the request structure.

Return value None

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 41 of 64
2022.9.9

EEL_Handler
Synopsis Controls the EEL while it is running
Header eel.h
Declaration void __far EEL_Handler(void)
Explanation This function continues executing the EEPROM emulation processing specified for

the EEL_Execute function.
(This is an EEL library function.)

Arguments None
Return value None

EEL_GetSpace
Synopsis Checks free space in the EEL block
Header eel.h
Declaration eel_status_t __far EEL_GetSpace(__near eel_u16* space_pu16)
Explanation This obtains the free EEL block space.

(This is an EEL library function.)
Arguments __near eel_u16*

space_pu16
The address at which the free space information of the
current active block is input.

Return value Normal termination: EEL_OK
EEL_Init has not been executed: EEL_ERR_INITIALIZATION
The EEL_CMD_STARTUP command
has not finished normally: EEL_ERR_ACCESS_LOCKED
A command is being executed: EEL_ERR_REJECTED

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 42 of 64
2022.9.9

6.8 Flowcharts
6.8.1 Overall Flowchart
Figure 6.2 shows the overall flow of the sample program described in this application note.

Start

Initialization function
hdwinit()

End

main()

The option bytes are referenced
before the initialization function is
called.

Figure 6.2 Overall Flowchart

6.8.2 Initialization of Peripheral Functions
Figure 6.3 shows the initialization of peripheral function.

R_Systeminit

Disable redirection of peripheral
I/O PIOR register← 00H

Initialize CPU clock
R_CGC_Create()

Initialize TAU0
R_TAU0_Create()

return

Initialize LVD
R_LVD_Create()

Initialize ports
R_PORT_Create()

Initialize INTP
R_INTC_Create()

Disable flash memory CRC
control CRC0CTL register← 00H

Disable illegal memory access
detection control IAWCTL register← 00H

Read out Pmn register value
when port mode output PMS register← 00H

Figure 6.3 Initialization of Peripheral Functions

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 43 of 64
2022.9.9

6.8.3 Initialization of Ports
Figure 6.4 shows the initialization of ports.

R_PORT_Create

Use P50-P53
 as ports

PFSEG0 register ← 00H

Use P54-P57 and P70-P73
as ports

PFSEG1 register ← 00H

Use P74-P77 and P30-P33 as
ports

PFSEG2 register ← 00H

Use P34-P37, P45-P475, P130
and P22-23 as ports

PFSEG3 register ← 00H

PFSEG4 register ← 00H
Use P24-P27 and P10-P13

as ports

Set up P15 for high level Note 1

Set up P15 for output modeNote 1

P1 register ← 20H
 P15 bit = 1 : Output 1
PM1 register ← 00H
　PM15 bit = 0 ：Output mode

Set up unused port Note2

Set up P05 for high level
Set up P41 & P45 for high level
Set up P05 for output mode
Set up P41 & P45 for output mode

P0 register ← 20H
 P05 bit = 1 : Output 1
P4 register ← 22H
　P41 bit = 1　　　　　 : Output 1
 P45 bit = 1 : Output 1
PM0 register ← 00H
 PM05 bit = 0 : Output mode
PM4 register ← 01H
 PM41 bit = 0 : Output mode
 PM45 bit = 0 : Output mode

Enable the digital input of
P125-P127

ISCLCD register← 03H

return

Use P14-P17 and P00-P03
as ports

Use P04-P07
as ports

PFSEG5 register ← 00H

PFSEG6 register ← 00H

Figure 6.4 Initialization of ports

Note 1: This is a setup which makes unused LED switch off.
Note 2: Refer to “RL78/L13 User's Manual: Hardware” for the setup of the unused ports.
Caution: Provide proper treatment for unused pins so that their electrical specifications are observed. Connect each of
any unused input-only ports to VDD or VSS via a separate resistor.

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 44 of 64
2022.9.9

6.8.4 Initialization of CPU Clock
Figure 6.5 shows the initialization of CPU clock.

R_CGC_Create

return

Stop high-speed system clock CSC register
 MSTOP bit ← 1 : Stop X1 oscillator circuit.

Set up main system clock CKC register
 MCM0 bit ← 0 : Set up high-speed on-chip oscillation clock

Stop subsystem clock CSC register
 XTSTOP bit ← 1 : Stop XT1 oscillator circuit.

CKC register
 CSS bit ← 0 : Set up the main system clock

Set up CPU/peripheral
hardware clock

High-speed on-chip oscillator
circuit operation

CSC register
 HIOSTOP bit ← 0

Real time clock and operation
clock of interval timer

OSMC register ← 10H
 RTCLPC bit = 0 : Supply permission of subsystem clock to peripheral
 functions.
 WUTMMCK0 bit = 1 : Low-speed on-chip oscillator clock

Set up unused X1 oscillator
circuit and unused XT1

oscillator circuit

CMC register ← 00H
 EXCLK bit = 0 : Operation mode of high-speed system clock pin:
 OSCSEL bit = 0 Input port mode
 EXCLKS bit = 0 : Operation mode of sub-system clock pin:
 OSCSELS bit = 0 Input port mode
 AMPHS1-AMPHS0 bit = 00B : Oscillation mode of XT1 oscillator circuit : Low power

oscillation

Figure 6.5 Initialization of CPU Clock

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 45 of 64
2022.9.9

6.8.5 Initialization of TAU0
Figure 6.6 and Figure 6.7 show the initialization of TAU0.

R_TAU0_Create

Set up timer clock selection
register 0

TPS0 register ← 0082H
PRS031-PRS030 bit = 00B : fCLK/28

PRS021-PRS020 bit = 00B : fCLK/2
PRS013-PRS010 bit = 1000B : CK01 = fCLK/28(93750Hz)
PRS003-PRS000 bit = 0010B : CK00 = fCLK/22(6MHz)

Supply permission of clock to
TAU0

PER0 register
 TAU0EN bit ← 1

Stop TAU00 count
Stop TAU01 count

TT0 register ← 0AFFH
 TT00 bit = 1
 TT01 bit = 1

IF0H register
TMIF00 bit ← 0 : Clear interrupt request flag of INTTM00

Disable TAU00 interrupt
MK0H register

TMMK00 bit ← 1 : Disable INTTM00 interrupt

IF1L register
TMIF01 bit ← 0 : Clear interrupt request flag of INTTM01

Disable TAU01 interrupt
MK1L register

TMMK01 bit ← 1 : Disable INTTM01 interrupt

IF0H register
TMIF01H bit ← 0 : Clear interrupt request flag of INTTM01H

Disable TAU01 higher 8 bits
interrupt

MK0H register
TMMK01H bit ← 1 : Disable INTTM01H interrupt

Set up TAU00 operation mode TMR00 register ← 0000H
CKS001-CKS000 bit = 00B : Operation clock: Operation clock (CK00) which is set by timer

clock selection register 0 (TPS0)
CCS00 bit = 0 : Count clock: Operation clock which are specified by CKS001

and CKS000 bit.
STS002-STS000 bit = 000B : Start trigger set up: Only software trigger start is enable.

(Other trigger factors are made deselect.)
 MD003-MD001 bit = 000B : Operation mode: Interval timer mode
 MD00 bit = 0 : Timer interrupt is not generated when counting is started.

Set TAU00 counter value TDR00 register ← EA5FH : measure for 10 ms (1/6MHz × 60000 = 10ms)

Disable TAU00 output TO0 register
TO00 bit ← 0

TOE0 register
TOE00 bit ← 0

A

Figure 6.6 Initialization of TAU0 (1/2)

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 46 of 64
2022.9.9

A

Set up TAU01 operation mode TMR01 register 8001H
CKS011-CKS010 bit = 01B : Operation clock: Operation clock (CK01) which is set by timer

clock selection register 0 (TPS0)
 CCS01 bit = 0 : Count clock: Operation clock which are specified by CKS011

 and CKS010 bit.
　SPLIT01 bit = 0 : Operate as 16-bit timer

STS012-STS010 bit = 000B : Start trigger set up: Only software trigger start is valid.
(Other trigger sources are unselected.)

 MD013-MD011 bit = 000B : Operation mode: Interval timer mode
 MD01 bit = 1 : Timer interrupt is generated at the time of a count start.

Set up TAU01 counter value TDR01 register B71AH : measure for 500 ms (1/93750Hz × 46875 = 500ms)

Disable TAU01 output TOM0 register
TOM01 bit 0

TOL0 register
TOL01 bit 0

TO0 register
TO01 bit 0

TOE0 register
TOE01 bit 0

Set up unused timer

return

Figure 6.7 Initialization of TAU0 (2/2)

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 47 of 64
2022.9.9

6.8.6 Initialization of INTP
Figure 6.8 shows the initialization of INTP.

R_INTC_Create

Clear interrupt request flag of
INTP0

IF0L register
PIF0 bit ← 0

Disable INTP0 interrupt MK0L register
 PMK0 bit ← 1

Set interrupt priority level of
INTP0 to 3

PR00L register
PPR10 bit ← 1

PR10L register
　PPR00 bit ← 1

The enable edge of INTP0 pin is
set as a falling edge.

EGN0 register
EGN0 bit ← 1

return

Set up unused INTP

Figure 6.8 Initialization of INTP

6.8.7 Initialization of LVD
Figure 6.9 shows the initialization of LVD.

R_LVD_Create

Clear interrupt request flag of
LVD

IF0L register
LVIIF bit ← 0

Disable LVD interrupt MK0L register
 LVIMK bit ← 1

Set interrupt priority level of LVD
to 0

PR00L register
LVIPR1 bit ← 0

PR10L register
　LVIPR0 bit ← 0

return

Figure 6.9 Initialization of LVD

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 48 of 64
2022.9.9

6.8.8 Main Processing
Figure 6.10 and Figure 6.11 show the main processing.

main

Is there read data?

Yes

No (No data / Access error)

Initialization of EEL
R_EEL_Initialize()

Read by EEL
R_EEL_ReadData()

g_blink_led ← BLINK_LED0
g_blink_num ← 00H

led_data ← Read data
ret ← Read is successful / No data / Access error

Store the LED blink data
g_blink_led
 ← Higher 4 bits of read data
g_blink_num
 ← Lower 4 bits of read data

Free space is 3 bytes or more?

Yes

No (The space is less than 3 bytes.)

space ← Free space
ret ← EEL_OK / EEL_ERR_INITIALIZATION /
 EEL_ERR_ACCESS_LOCKED / EEL_ERR_REJECTED

B

request_pstr.command_enu
　← EEL_CMD_REFRESH

Is initialization completed?

Yes

No (Access error)

ret ← Normal termination / Access error

Initialization of the main processing
R_MAIN_UserInit()

ret ← Completion of initialization / Access error

Valid range check of LED blink data
R_EEL_CheckDataRange() ret ← Within the range / Out of the range

Is data in the valid range?

Yes

No (Out of the range)

ret ← RET_OK

Obtain the free EEL block space
EEL_GetSpace()

Obtain the free space
successfully?

Yes

No (It is not EEL_OK)

No read data?

Yes

No (Access error)

Is LED blink data set
completed?

Yes

No (Access error)

Set the return value to the normal
response ret ← RET_OK

ret ← RET_NG_DEVICE“Abnormality of a device” is set to
the return value.

EEL function status check
R_EEL_CheckStatus()

Set arguments

Refresh processing of EEL block
EEL_Execute(Refresh)

Does the number of times
of blink remain?

No (The number of times of blink is 0.)

Enabling TAU01
R_TAU0_Channel1_Start()

Yes

Clear the LED blinking data

Set the return value to the normal
response

TAU01 interruption is performed every 500 ms, and on/off
lighting of LED are repeated until the remaining times of
LED blinking has been set to 0.
INTP0 interruption will be valid when the remaining times
of LED blinking has been set to 0.

Figure 6.10 Main Processing (1/2)

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 49 of 64
2022.9.9

Does the supply voltage
become too low?

Disable TAU01
R_TAU0_Channel1_Stop()

Disable TAU00
R_TAU0_Channel0_Stop()

Disable INTP0
R_INTC0_Stop()

EEL write
R_EEL_WriteData()

Shift to STOP mode

Yes

No (g_lvd_flag = UNDETECT_LOW_VOLTAGE)

B

Disable maskable interrupt IE ← 0

Prepare the data to be saved led_data ← Higher 4 bits: g_blink_led
 Lower 4 bits: g_blink_num

LVD interrupt is started and DETECT_LOW_VOLTAGE is
set to g_lvd_flag when the supply voltage becomes equal to
or lower than VLVDH.

Set arguments request_pstr.command_enu
 ← EEL_CMD_SHUTDOWN

Shutdown EEL
EEL_Execute(Shutdown)

Stop EEL
EEL_Close()

Stop FDL
FDL_Close()

Enabling INTP0
R_INTC0_Start()

INTP0 interruption is started and LED starts to
blink when SW1 was pressed.

Turn off LED0 and LED1
Turn on LED3

LED0 ← LED_OFF
LED1 ← LED_OFF
LED3 ← LED_ON

Is write preparation completed?

Yes

No (Access error)

Disable maskable interrupt IE ← 0

Turn on LED0 and LED1
LED0 ← LED_ON
LED1 ← LED_ON

Figure 6.11 Main Processing (2/2)

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 50 of 64
2022.9.9

6.8.9 Initialization of the Main Processing
Figure 6.12 shows the initialization of the main processing.

R_MAIN_UserInit

return

Set target LED for blinking
 to LED0

Enable maskable interrupt IE ← 1

Enable LVD interruption
R_LVD_Interrupt

Mode_Start()

g_blink_led ← BLINK_LED0

Set 0 to the remaining times of
LED blinking

g_blink_num ← 0

Clear low voltage detection flag g_lvd_flag ←UNDETECT_LOW_VOLTAGE

Figure 6.12 Initialization of the Main Processing

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 51 of 64
2022.9.9

6.8.10 Initialization of EEL
Figure 6.13 shows the initialization of EEL.

R_EEL_Initialize

return(ret)

Start execution of EEL
EEL_Execute(Startup)

Set up of EEL
EEL_Open()

Initialization of EEL
EEL_Init()

Set up of FDL
FDL_Open()

Initialization of FDL
FDL_Init()

Set up arguments request_pstr.command_enu
 ← EEL_CMD_STARTUP

Correctly complete?

Yes

Correctly complete?

Yes

EEL function status check
R_EEL_CheckStatus() ret ← Correctly complete / Access error

No (Other than EEL_OK)

No (FDL_ERR_CONFIGURATION)

Set up arguments
request_pstr.address_pu08 ← 00H
request_pstr.identifier_u08 ← 00H
request_pstr.command_enu ← 00H
request_pstr.status_enu ← 00H

ret ← EEL_OK /
 EEL_ERR_CONFIGURATION

ret ← FDL_OK /
 FDL_ERR_CONFIGURATION

ret ← RET_NG_DEVICESet “Abnormal termination” to the
return value.

Figure 6.13 Initialization of EEL

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 52 of 64
2022.9.9

6.8.11 Read Processing by EEL
Figure 6.14 shows how to read data by EEL.

R_EEL_ReadData

Read by EEL
EEL_Execute(Read)

return(ret)

Argument uint8_t id : ID of reading out data
　　　　 uint8_t* pdata ：The pointer of the buffer in where read
 data is stored.

EEL function status check
R_EEL_CheckStatus()

Set up arguments
request_pstr.address_pu08 ← pdata
request_pstr.identifier_u08 ← id
request_pstr.command_enu ← EEL_CMD_READ

Ret ← Correctly complete / No data / Access error

Figure 6.14 Read by EEL

6.8.12 Valid Range Check of LED blinking Data
Figure 6.15 shows the valid range check of LED blinking data.

R_EEL_CheckDataRange

return(ret)

Argument uint8_t data ： Data to be checked

Extraction of data Led (local variable) ← Higher 4 bits of data to be checked
Num (local variable) ← Lower 4 bits of data to be checked

Is LED data within
the valid range?

Set “normal response” to the
return value. ret ← RET_OK ret ← RET_NG_RANGE

Yes

No (blinking LED number or the remaining times
of LED blinking is out of the range.)

Set “out of the valid range” to the
return value.

Figure 6.15 Valid Range Check of LED Blinking Data

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 53 of 64
2022.9.9

6.8.13 EEL Function Status Check
Figure 6.16 shows the EEL function status check.

R_EEL_CheckStatus

Function
processing finish?

EEL status check
EEL_Handler()

Yes

No (The status is BUSY.)

EEL_OK

EEL_ERR_POOL_FULL
EEL_ERR_VERIFY

EEL_ERR_POOL_INCONSISTENT
EEL_ERR_POOL_EXHAUSTED

Argument　request_pstr : argument of EEL_Execute function

EEL_ERR_NO_INSTANCE

ret ← RET_OK

ret ← RET_NG_NODATA

Status Identify by request_pstr.status_enu.

Set “No-write-data error” to the return
value

Yes

No (The command is other than FORMAT or WRITE.)

ret ←
 RET_NG_DEVICE

Set up arguments request_pstr.command_enu ← EEL_CMD_REFRESH

Refresh processing of EEL
EEL_Execute(Refresh)

Formatting of EEL block
EEL_Execute(Format)

Set up arguments request_pstr.command_enu
 ← EEL_CMD_FORMAT

return(ret)

“Pending” is set to the return value. ret ← STATUS_PENDING

Format successful?

Set up arguments
request_pstr.command_enu
 ← EEL_CMD_STARTUP

Startup of EEL
EEL_Execute(Startup)

Yes

No (The comand is not FORMAT.)

Set “normal response” to the return
value.

default

Is the command
FORMAT or WRITE？

Set “Abnormal termination” to the
return value.

Is the return value not
“Pending”?

Yes

No (ret = STATUS_PENDING)

Figure 6.16 EEL Function Status Check

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 54 of 64
2022.9.9

6.8.14 Enabling TAU01
Figure 6.17 shows how to enable TAU01.

R_TAU0_Channel1_Start

return

TAU0 channel 1
Enable count

TS0 register
 TS01 bit ← 1

TAU0 channel 1
Clear interrupt request flag

IF1L register
 TMIF01 bit ← 0

TAU0 channel 1
Enable interrupt

MK1L register
 TMMK01 bit ← 0

Figure 6.17 Enabling TAU01

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 55 of 64
2022.9.9

6.8.15 TAU01 Interrupt Handler
Figure 6.18 shows the flowchart of the TAU01 interrupt handler.

r_tau0_channel1_interrupt

LED0 ^= 1

return

Is LED0 the target
for blinking？

Yes

No (Target for blinking is LED1.)

Toggle LED0 LED1 ^= 1Toggle LED1

Neither of LEDs(LED0 or LED1)
is on?

Decrement the number of times
of blink

g_blink_num
 ← g_blink_num - 1

Yes

No (either one of two LEDs goes out.)

End of blinking?

Change of target LED for blink

Yes

No (g_blink_num is other than 0.)

g_blink_led ^= 01H

Disable TAU0 channel 1 count
TT0 register
 TT01 bit ← 1

Disable TAU0 channel 1 interrupt
MK1L register
 TMMK01 bit ← 1

Enable INTP0 interrupt MK0L register
 PMK0 bit ←0

Clear interrupt request flag of
INTP0

IF0L register
 PIF0 bit ← 0

Enable maskable interrupt IE ← 1

Figure 6.18 TAU01 Interrupt Handler

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 56 of 64
2022.9.9

6.8.16 Disabling TAU01
Figure 6.19 shows how to disable TAU01.

R_TAU0_Channel1_Stop

return

Disable TAU0 channel 1 count TT0 register
 TT01 bit ← 1

Clear interrupt request flag of
TAU0 channel 1

IF0L register
 TMIF01 bit ← 0

Disable TAU0 channel 1 interrupt
MK0L register
 TMMK01 bit ← 1

Figure 6.19 Disabling TAU01

6.8.17 Enabling INTP0
Figure 6.20 shows how to enable INTP0.

R_INTC0_Start

Enable INTP0 interrupt MK0L register
 PMK0 bit ← 0

return

Clear interrupt request flag of
INTP0

IF0L register
 PIF0 bit ← 0

Figure 6.20 Enabling INTP0

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 57 of 64
2022.9.9

6.8.18 INTP0 Interrupt Handler
Figure 6.21 shows the flowchart of the INTP0 interrupt handler.

r_intc0_interrupt

return

Enable TAU0 channel 0 count
TS0 register
 TS00 bit ← 1

Clear interrupt request flag of
TAU0 channel 0

IF0H register
 TMIF00 bit ← 0

Enable TAU0 channel 0 interrupt
MK0H register
 TMMK00 bit ← 0

IE ← 1Enable maskable interrupt

Figure 6.21 INTP0 Interrupt Handler

6.8.19 Enabling TAU00
Figure 6.22 shows how to enable TAU00.

R_TAU0_Channel0_Start

return

Enable TAU0 channel 0 count
TS0 register
 TS00 bit ← 1

Clear interrupt request flag of
TAU0 channel 0

IF0H register
 TMIF00 bit ← 0

Enable TAU0 channel 0 interrupt
MK0H register
 TMMK00 bit ← 0

Figure 6.22 Enabling TAU00

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 58 of 64
2022.9.9

6.8.20 TAU00 interrupt handler
Figure 6.23 shows the flowchart of the TAU00 interrupt handler.

r_tau0_channel0_interrupt

Set 10 to the remaining times of
LED blinking

g_blink_num ← 10

return

 A keypress of SW1?

Yes

No (SW1 = SW_OFF)

Enable maskable interrupt IE ← 1

Disable INTP0 interrupt MK0L register
 PMK0 bit ← 1

Clear interrupt request flag of
INTP0

IF0L register
 PIF0 bit ← 0

Enable TAU0 channel 1 count
TS0 register
 TS01 bit ← 1

Clear interrupt request flag of
TAU0 channel 1

IF1L register
 TMIF01 bit ← 0

Enable TAU0 channel 1 interrupt
MK1L register
 TMMK01 bit ← 0

Clear interrupt request flag of
INTP0

IF0L register
 PIF0 bit ← 0

Disable TAU0 channel 0 count
TT0 register
 TT00 bit ← 1

Disable TAU0 channel 0 interrupt
MK0H register
 TMMK00 bit ← 1

Figure 6.23 TAU00 interrupt handler

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 59 of 64
2022.9.9

6.8.21 Write by EEL
Figure 6.24 shows how to write data by EEL.

R_EEL_WriteData

Write by EEL
EEL_Execute(Write)

Argument uint8_t id : ID of reading out data
　　　　 uint8_t* pdata ：The pointer of the buffer in where read
 data is stored.

return

Set up arguments request_pstr.address_pu08 ← pdata
request_pstr.identifier_u08 ← id
request_pstr.command_enu ← EEL_CMD_WRITE

EEL function status check
R_EEL_CheckStatus() ret ← write successfully / access error

Figure 6.24 Write by EEL

6.8.22 Disabling TAU00
Figure 6.25 shows how to disable TAU00.

R_TAU0_Channel0_Stop

return

Disable TAU0 channel 0 count
TT0 register
 TT00 bit ← 1

Clear interrupt request flag of
TAU0 channel 0

IF0H register
 TMIF00 bit ← 0

Disable TAU0 channel 0 interrupt
MK0H register
 TMMK00 bit ← 1

Figure 6.25 Disabling TAU00

6.8.23 Disabling INTP0
Figure 6.26 shows how to disable INTP0.

R_INTC0_Stop

Disable INTP0 interrupt MK0L register
 PMK0 bit ← 1

return

Clear interrupt request flag of
INTP0

IF0L register
 PIF0 bit ← 0

Figure 6.26 Disabling INTP0

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 60 of 64
2022.9.9

6.8.24 Enabling LVD Interrupt
Figure 6.27 shows how to enable LVD interrupt.

R_LVD_InterruptMode_Start

Clear interrupt request flag of
LVD IF0L register

　LVIIF bit ← 0

return

Enable LVD interrupt MK0L register　
LVIMK bit ← 0

Figure 6.27 Enabling LVD Interrupt

6.8.25 LVD interrupt handler
Figure 6.28 shows the flowchart of the LVD interrupt handler.

r_lvd_interrupt

Set a flag for detection of low
voltage

g_lvd_flag ←
 DETECT_LOW_VOLTAGE

return

Figure 6.28 LVD interrupt handler

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 61 of 64
2022.9.9

6.9 How to Import EEL into the Software Project
How to import EEL files used by this application into the software project is indicated below.

6.9.1 CubeSuite+ Version

(1) The following files are copied to the root directory of a project.
 fdl.h
 fdl_types.h
 fdl.lib
 eel.h
 eel_types.h
 eel.lib

(2) Right-clicks “File” at the project tree of CubeSuite+ and select the file copied according to the extension (.h, .lib,
dr) by clicking “Add” and “Add an existing file”.

Caution

Please do not import the file in the directory smprl78 included in EEL. Be sure to use the file included in the sample
code. (e.g. eel_descriptor.c)
When the file has been overwritten, correct according to “0 EEL Initial Values to be Set by User”.

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 62 of 64
2022.9.9

6.10 Modification of the Sample Code
When re-execute code generation, correction of files and projects may be needed as follows.

Environment: CubeSuite+ version
File name: r_eel.dr
Modification required: ■ Set up build-target

Open the property by right-click on r_eel.dr in the project tree of CubeSuite+.
Change “No” to “Yes” on “set up as build-target”.

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 63 of 64
2022.9.9

Environment: CubeSuite+ version
File name: r_cg_port.c
Modification required: ■PFSEG3 register set-up code

Modify “_04_PFDEG_DEFAULT” to ”_00_PFDEG_PORT”.
■PFSEG6 register set-up codel
Add it before ISCLED register set-up code.

Environment: CubeSuite+ version
File name: r_cg_port.h
Modification required: ■PFDEG set-up macro

Add ”_00_PFDEG_PORT” before “_04_PFDEG_DEFAULT” by 0x00U as macro definition.

RL78/L13 Integrate External EEPROM IC Functionality into MCU by Using Data
Flash Memory (EEPROM Emulation Library)

R01AN2014EJ0110 Ver.1.10 Page 64 of 64
2022.9.9

7. Sample Code
The sample code is available on the Renesas Electronics Website.

8. Documents for Reference
RL78/L13 User's Manual: Hardware
RL78 Family User's Manual: Software
(The latest versions of the documents are available on the Renesas Electronics Website.)

Technical Updates/Technical Brochures

(The latest versions of the documents are available on the Renesas Electronics Website.)

All trademarks and registered trademarks are the property of their respective owners.

Revision History

Rev. Date
Description
Page Summary

1.00 2014.6.25 - First edition issued
1.10 2022.9.9 1 Table Download link for CubeSuite+ version was changed

and IAR version was deleted
 23 Table 3.1 IAR Ver. Development was deleted.
 29 Table 6.1 IAR version was deleted.
 61 6.9.2 IAR version was deleted.
 63 IAR version was deleted from Environment.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2022 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

	1. Overview
	1.1 Outline of the EEL
	1.2 Outline of the FDL
	1.3 Proper Use of the FDL and the EEL
	1.4 Benefits and Caution Points When EEPROM IC is Replaced
	1.4.1 Benefits form Replacing EEPROM IC
	1.4.2 Difference from EEPROM IC

	2. Specifications
	2.1 Shortening of the Write Time of EEL
	2.2 EEL Architecture
	2.2.1 EEL Pool
	2.2.2 EEL Block

	2.3 EEL Initial Values to be Set by User
	2.4 Number of Stored User Data Items and Total User Data Size
	2.5 Notes for Using EEL

	3. Operation Check Conditions
	4. Related Application Notes
	5. Description of the Hardware
	5.1 Hardware Configuration Example
	5.2 List of Pins to be Used

	6. Description of Software
	6.1 Operation Outline
	6.2 File Configuration
	6.3 List of Option Byte Settings
	6.4 List of Constants
	6.5 List of Variables
	6.6 List of Functions
	6.7 Function Specifications
	6.8 Flowcharts
	6.8.1 Overall Flowchart
	6.8.2 Initialization of Peripheral Functions
	6.8.3 Initialization of Ports
	6.8.4 Initialization of CPU Clock
	6.8.5 Initialization of TAU0
	6.8.6 Initialization of INTP
	6.8.7 Initialization of LVD
	6.8.8 Main Processing
	6.8.9 Initialization of the Main Processing
	6.8.10 Initialization of EEL
	6.8.11 Read Processing by EEL
	6.8.12 Valid Range Check of LED blinking Data
	6.8.13 EEL Function Status Check
	6.8.14 Enabling TAU01
	6.8.15 TAU01 Interrupt Handler
	6.8.16 Disabling TAU01
	6.8.17 Enabling INTP0
	6.8.18 INTP0 Interrupt Handler
	6.8.19 Enabling TAU00
	6.8.20 TAU00 interrupt handler
	6.8.21 Write by EEL
	6.8.22 Disabling TAU00
	6.8.23 Disabling INTP0
	6.8.24 Enabling LVD Interrupt
	6.8.25 LVD interrupt handler

	6.9 How to Import EEL into the Software Project
	6.9.1 CubeSuite+ Version

	6.10 Modification of the Sample Code

	7. Sample Code
	8. Documents for Reference

