
 Application Note

R01AN6255EJ0100 Rev.1.00 Page 1 of 71
Aug.04.22

RL78/G23
Updating Firmware by Using UART Communication and Boot Swapping
Introduction
This application note describes how to update firmware in code flash memory by using an update program
that remains in the code flash memory.

In this method, the code flash memory is divided into two areas: the Execute area and the Temporary area.

Renesas Flash Driver RL78 Type01 is used to reprogram the flash memory and perform boot swapping.

Target Device
RL78/G23

When applying the sample program covered in this application note to another microcomputer, modify the
program according to the specifications for the target microcomputer and conduct an extensive evaluation of
the modified program.

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 2 of 71
Aug.04.22

Contents

1. Specifications .. 4
1.1 Overview of Specifications .. 4
1.1.1 Overview of Renesas Flash Driver RL78 Type01 ... 5
1.1.2 Code Flash Memory .. 6
1.1.3 Flash Memory Self-Programming.. 8
1.1.4 Boot Swap Function .. 8
1.1.5 Updating the Firmware .. 9
1.1.6 Flash Shield Window ... 11
1.1.7 Obtaining Renesas Flash Driver RL78 Type01 ... 11
1.2 Overview of Operation ... 12
1.2.1 Communication Specifications .. 12
1.2.2 START Command ... 13
1.2.3 WRITE_BOOT1 Command ... 13
1.2.4 WRITE_TEMP Command ... 13
1.2.5 END Command ... 13
1.2.6 Checksum Calculation Method .. 13
1.2.7 Operation of the Sample Program... 14
1.2.8 Copy Flag .. 16

2. Operation Confirmation Conditions .. 17

3. Hardware Descriptions .. 18
3.1 Example of Hardware Configuration ... 18
3.2 List of Pins to be Used .. 19

4. Software Explanation ... 19
4.1 Setting of Option Byte ... 19
4.2 Setting Up the Startup Routine .. 20
4.2.1 Defining the Stack Area Section (.stack_bss) ... 20
4.2.2 Deploying the Reprogramming Program in the RAM Area ... 21
4.3 Setting the ROM Size Specification Constant ... 22
4.4 On-chip Debug Security ID .. 22
4.5 Resources Used by the Sample Program ... 23
4.5.1 List of Sections in the ROM Area .. 23
4.5.2 List of the Sections in the RAM Area .. 23
4.6 List of Constants .. 24
4.7 Enumeration Type ... 25
4.8 List of Variables ... 26
4.9 List of Functions .. 26
4.10 Specifications of Functions .. 27
4.11 Flowcharts ... 33

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 3 of 71
Aug.04.22

4.11.1 Main Processing .. 33
4.11.2 Processing to receive and run the firmware update command ... 35
4.11.3 Initialization processing for RFD RL78 Type01 ... 38
4.11.4 START command processing ... 39
4.11.5 END command processing .. 40
4.11.6 Range erase processing for the code flash memory... 41
4.11.7 Block erase processing for the code flash memory .. 42
4.11.8 Write-and-verify processing for the code flash memory .. 43
4.11.9 Write processing for the code flash memory ... 44
4.11.10 Verify processing for the code flash memory .. 45
4.11.11 Sequence end processing for the code flash memory .. 46
4.11.12 Sequence end processing for the extra area .. 48
4.11.13 Boot swapping execution processing .. 50
4.11.14 Callback processing at a sending completion interrupt for UART0 ... 51
4.11.15 Data sending processing by UART0 ... 52
4.11.16 Normal response sending processing by UART0 ... 53
4.11.17 Processing to copy data from the Temporary area ... 54
4.11.18 Processing to reprogram the code flash memory ... 55
4.11.19 Processing to receive asynchronous command packets .. 56
4.11.20 Processing to obtain the size of the receive data .. 57
4.11.21 Processing to clear the receive buffer ... 58
4.11.22 Processing to turn on the error LED .. 59

5. GUI-Based Tool for Writing Data ... 60
5.1 Generating a File Required to Write Data ... 60
5.1.1 Using CS+ to Generate a Binary File .. 60
5.1.2 Using e2studio to Generate a Binary File ... 64
5.1.3 Using IAR EW to Generate a Binary File .. 66
5.2 Using GUI-Based Tool .. 68

6. Sample Code ... 70

7. Reference Documents ... 70

Revision History .. 71

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 4 of 71
Aug.04.22

1. Specifications
1.1 Overview of Specifications
The sample program covered in this application note updates the firmware in the code flash memory.

The boot area is reprogrammed by using the boot swapping function. The other areas are reprogrammed by
using temporary areas in which the reprogramming data is temporarily saved. This method allows the
firmware to be updated while the user program (application) is running.

The firmware is updated via UART communication by using four commands: START, WRITE_BOOT1,
WRITE_TEMP, and END.

The execution status of the application and commands is indicated by LEDs.

Two sample projects are included in this application note, each can be replaced by firmware updates.

If you use a product with ROM size other than 128 KB or 768 KB, please refer to “1.2.8 Copy Flag” and
“4.3 Setting the ROM Size Specification Constant” and modify the sample programs.

Table 1-1 Directory of Sample Project

workspace Description
\workspace

\CS+
\e2studio
\IAR

 \128KB Project for 128KB products
 \LED1 Sample project 1 (Blinks LED1)
 \LED8 Sample project 2 (Blinks LED8)
 \768KB Project for 768KB products
 \LED1 Sample project 1 (Blinks LED1)
 \LED8 Sample project 2 (Blinks LED8)

LED output port assign differ between the project for 128KB and the project for 768KB. In this application
note, in the case of using the project for 128 KB is explained as an example. When using the project for 768
KB, please read the port numbers as shown in the table below.

Table 1-2 Assigned port for LED output

LED no. Project for 128KB products Project for 768KB products
LED1 P03 P33
LED2 P02 P34
LED3 P43 P145
LED4 P42 P106
LED5 P77 P105
LED6 P41 P104
LED7 P31 P103
LED8 P76 P46

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 5 of 71
Aug.04.22

Table 1-3 Peripheral Function and Use

Peripheral Function Use
Serial Array Unit UART0 Data communication
P03, P02, P43, P42, P77, P41, P31, P76 Digital output controlling LED1 to LED8

Table 1-4 Application operating state and indication on LED1 to LED8. (Updating sample project 1
to 2)

Application operating state Indication on LED1 to LED8 Operating firmware
Application before updated is
running

LED1 blinks Sample project 1

START command received LED2 lights up
WRITE_BOOT1 command received LED3 lights up
WRITE_TEMP command received LED4 lights up
END command received LED5 lights up
Temporary area being copied LED6 lights up
Error termination Only LED7 lights up
Application after updated is running LED8 blinks Sample project 2

1.1.1 Overview of Renesas Flash Driver RL78 Type01

Renesas Flash Driver RL78 Type01 is software that reprograms the firmware in the code flash memory
installed on an RL78 microcontroller.

The content of the code flash memory can be reprogrammed by calling Renesas Flash Driver RL78
Type01 from the user program.

To perform flash memory self-programming, the user program needs to perform the necessary initialization
processing and run the functions that correspond to the necessary operations in C or assembly language.

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 6 of 71
Aug.04.22

1.1.2 Code Flash Memory
The program area (from address 08000H to the last address) is divided into two areas and the sample
program covered in this application note uses these two areas. The first area (from address 08000H to the
boundary) is called the Execute area and the second area (from the boundary to the last address) is called
the Temporary area. The address of the boundary and the last address differ depending on the size of the
ROM. The update program is written in boot cluster 1 and the Temporary area. Therefore, if you write a user
program, make sure that it is stored within boot cluster 0 and the Execute area.

Table 1-5 Start and End Addresses of the Two Areas According to ROM Size

ROM size Execute area Temporary area

96KB 08000H to FFFFH 10000H to 17FFFH

128KB 08000H to 13FFFH 14000H to 1FFFFH

192KB 08000H to 1BFFFH 1C000H to 2FFFFH

256KB 08000H to 23FFFH 24000H to 3FFFFH

384KB 08000H to 33FFFH 34000H to 5FFFFH

512KB 08000H to 43FFFH 44000H to 7FFFFH

768KB 08000H to 63FFFH 64000H to BFFFFH

Figure 1-1 Memory Map

Caution: If you use the boot swap function, make sure that the same value that is set in the option byte area
in boot cluster 0 (000C0H to 000C3H) is also set in the option byte area in boot cluster 1 (010C0H to
010C3H) because these areas are swapped by the function.

Code flash memory
128 Kbytes

Reserved

Extended special function
registers (2nd SFRs)

2 Kbytes

Reserved

Data flash memory
8 Kbytes

Mirror
35.75 Kbytes

RAM
16 Kbytes

Special function registers (SFRs)
256 bytes

General-purpose registers
32 bytes　

Vector table area
128 bytes

CALLT table
64 bytes

Option bytes area
4 bytes

On-chip debug security
ID setting area

10 bytes

Program area

Vector table area
128 bytes

CALLT table
64 bytes

Option bytes area
4 bytes

On-chip debug security
ID setting area

10 bytes

Program area

Data memory space

Boot cluster 1

Boot cluster 0

1FFFFH

040CEH
040CDH

040C4H
040C3H
040C0H
040BFH

04080H
0407FH

04000H
03FFFH

000CDH
000CEH

000C4H
000C3H
000C0H
000BFH

00080H
0007FH

00000H

FFFFFH

FFF00H
FFEFFH

FFEDFH

FBF00H
FBEFFH

F3000H
F2FFFH

F1000H
F0FFFH

F0800H
F07FFH

F0000H
EFFFFH

20000H
1FFFFH

00000H

FFEE0H

07FFFH

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 7 of 71
Aug.04.22

Figure 1-2 Code Flash Memory Map

Boot cluster 0

Boot cluster 1

Program area

0x1FFFF

0x7FFF

0x3FFF

0x8000

0x4000

0x0000

Temporary area

Execute area

0x1FFFF

0x8000

0x14000
0x13FFF

Varies depending on ROM size

Varies depending on ROM size

The following table summarizes the features of the code flash memory of the RL78/G23 microcontroller.

Table 1-6 Features of the Code Flash Memory

Item Description
Minimum unit of erasure 1 block (2,048 bytes)
Minimum unit of writing 1 word (4 bytes)
Minimum unit of verification 1 byte
Security functions The functions for protection against erasure of blocks, writing to blocks,

and reprogramming of the boot area are provided. (All these functions are
disabled in the factory settings.)
The flash shield window is provided, which can protect all area except the
specified window range from write and erasure operations during flash
memory self-programming only.
Renesas Flash Driver RL78 Type01 can be used to change the security
settings.

Caution: The security functions that are available during flash memory self-programming are only protection
against reprogramming of the boot area and the flash shield window.

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 8 of 71
Aug.04.22

1.1.3 Flash Memory Self-Programming
The RL78/G23 microcontroller is provided with a library required for performing flash memory self-

programming. Flash memory self-programming can be performed by calling functions of Renesas Flash
Driver RL78 Type01 from the reprogramming program.

The RL78/G23 microcontroller has a sequencer, which is a circuit that only controls the flash memory. The
flash memory self-programming in the RL78/G23 microcontroller uses the sequencer to control the
reprogramming of the flash memory. Note that the code flash memory cannot be read while it is being
controlled by the sequencer. However, the user program may need to operate while the sequencer is
controlling the code flash memory. In such a case, when erasure and write operations are performed and
security flags are set for the code flash memory, certain Renesas Flash Driver RL78 Type01 segments or the
reprogramming program must be relocated to the RAM. If the user program does not need to run while the
sequencer is controlling the code flash memory, Renesas Flash Driver RL78 Type01 and the reprogramming
program located on the ROM (code flash memory) can run without relocation.

1.1.4 Boot Swap Function
If the reprogramming of the area in which any of following items are located fails for reasons such as a

temporary blackout or reset due an external factor, the data being reprogrammed is corrupted: vector table
data, basic program functions, and Renesas Flash Driver RL78 Type01. If data corruption occurs, the user
program can no longer be restarted or reloaded by performing a reset. This problem can be prevented by
using the boot swap function.

The boot swap function swaps the boot program area (boot cluster 0) with the swap area (boot cluster 1).
Before reprogramming starts, the boot swap function writes a new boot program boot cluster 1. The function
then swaps boot cluster 0 with boot cluster 1, causing boot cluster 1 to become the boot program area. This
ensures that the boot program can normally be started when a reset is performed the next time even if a
temporary blackout occurs while the boot program area is being reprogrammed because boot cluster 1 is
used to boot the program.

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 9 of 71
Aug.04.22

1.1.5 Updating the Firmware
The following shows an overview of how a program is rewritten by flash memory self-programming. The

program that performs flash memory self-programming is deployed in boot cluster 0.

The sample program covered in this application note is designed to reprogram the boot area and program
area.

Figure 1-3 Rewriting operation image (1/2)

Erase

Write new Boot program

Boot cluster 0

Boot cluster 1

(1) Erase boot cluster 1 (0x4000~0x7FFF) and Temporary area (0x14000~0x1FFFFF)

(2) Write new program to Boot cluster 1 and Temporary area

(3) Execute area (0x8000~0x13FFF)

Write new Execute program

New Execute program

Boot cluster 0

Boot cluster 1

Execute area

Temporary area

Old Boot program

New Boot program

 New Execute program

Old Boot program

Erase

Boot cluster 0

Boot cluster 1

Execute area

Temporary area

Execute area

Temporary area

Old Execute program

Erase

Old Boot program

Erase

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 10 of 71
Aug.04.22

Figure 1-4 Rewriting operation image (2/2)

New Boot program

Boot cluster 0

Boot cluster 1

(4) Copy new program from temporary area to execute area

(5) Execute boot swap

(6) Boot swap executed

New Execute program

New Execute program

Boot cluster 0

Boot cluster 1

Execute area

Temporary area

Old Boot program

Old Boot program

New Execute program

New Boot program

New Execute program

Boot cluster 1

Boot cluster 0

Execute area

Temporary area

Execute area

Temporary area

Copy new execute program

New boot program

Old boot program

New execute program

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 11 of 71
Aug.04.22

1.1.6 Flash Shield Window
The flash shield window is a security function available during flash memory self-programming. This

function protects all areas except the specified window range from the write and erase operations during
flash memory self-programming only.

The following figure is an overview of the flash shield window when the start block is 08H and the end
block is 1FH.

Figure 1-5 Image of a flush shield window

1FFFFH

08000H

07FFFH

04000H

03FFFH

00000H Block 00H

Block 07H

Block 08H (start block)

Block 3FH (end block)

Window area
(rewriteable)

Flash shield area
(unrewritable)

1.1.7 Obtaining Renesas Flash Driver RL78 Type01
Before you compile the sample program, download the latest version of flash memory self-programming
code (Renesas Flash Driver RL78 Type01), and then copy it to the RFD folder.

workspace Description

r01an6255jj0100-
rl78g23-flash

 \src

 \RFD

 \include
Place the downloaded Renesas Flash Driver
RL78 Type01 \source

 \userown

You can obtain the Renesas Flash Driver RL78 Type01 from the following URL:

https://www.renesas.com/jp/ja/document/scd/renesas-flash-driver-rl78-type-01-rl78g23

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 12 of 71
Aug.04.22

1.2 Overview of Operation

(1) Perform initial setup for pins.

・Set the P03, P02, P43, P42, P77, P41, P31, and P76 pins to output mode.

(2) Perform initial setup for the serial array unit.

・ Use the UART0 serial array unit (set TXD0 for P12 and RXD0 for P11).

・ Set CK00 for the operation clock and fCLK/2 for the clock source.

・ Set the clock source for the transfer mode settings.

・ Set 8 bits for the data bit length settings.

・ Set LSB for the data transfer direction settings.

・ Set "no parity" for the parity settings.

・ Set 1 bit for the stop bit length settings.

・ Set "standard" for the send data level settings.

・ Set 115,200 bps for the baud rate settings.

(3) Use command communication to reprogram the data in boot cluster 1 and the program area, and then
perform boot swapping.

1.2.1 Communication Specifications

The sample program covered in this application note receives the reprogramming data via UART and
performs flash memory self-programming. The sample program then receives the START, WRITE_BOOT1,
WRITE_TEMP, or END command. The sample program then performs the processing according to the
received command. If the processing terminates normally, the sample program returns "01H" (normal) to the
command sender. If the processing terminates abnormally, the sample program turns on the LED that
indicates abnormal termination (without returning a response) and performs no subsequent processing. The
following shows the UART communication settings and the specifications of the commands.

Table 1-7 UART Communication Settings

Data bit length (bits) 8
Data transfer direction LSB first
Parity setting No parity
Transfer rate (bps) 115,200

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 13 of 71
Aug.04.22

1.2.2 START Command
When the sample program receives the START command, it performs initial setup for flash memory self-

programming and erases the Temporary area in boot cluster 1. If the processing terminates normally, the
sample program returns "01H" (normal). If the processing terminates abnormally, the sample program turns
on the LED that indicates abnormal termination (without returning a response) and performs no subsequent
processing.

START code
(01H)

Data length
(0002H)

Command
(02H)

Data
(empty)

Checksum
(1 byte)

1.2.3 WRITE_BOOT1 Command
When the sample program receives the WRITE_BOOT1 command, it writes the received data to the boot
cluster 1 area (4000H to 7FFFH) while verifying the written data for each 256 bytes. If the processing
terminates normally, the sample program increments the write destination address by 256 bytes and returns
"01H" (normal) to the command sender. If the processing terminates abnormally, the sample program turns
on the LED that indicates abnormal termination (without returning a response) and performs no subsequent
processing.

START code
(01H)

Data length
(0102H)

Command
(03H)

Data
(256 bytes)

Checksum
(1 byte)

1.2.4 WRITE_TEMP Command
When the sample program receives the WRITE_TEMP command, it writes the received data to the

Temporary area while verifying the written data for each 256 bytes. If the processing terminates normally, the
sample program increments the write destination address by 256 bytes and returns "01H" (normal) to the
command sender. If the processing terminates abnormally, the sample program turns on the LED that
indicates abnormal termination (without returning a response) and performs no subsequent processing.

(The write destination address of the Temporary area differs depending on the product used.)

START code
(01H)

Data length
(0102H)

Command
(04H)

Data
(256 bytes)

Checksum
(1 byte)

1.2.5 END Command

When the sample program receives the END command, it erases the Execute area. If erasure terminates
normally, the sample program copies data from the Temporary area to the Execute area. If copy terminates
normally, the sample program returns "01H" (normal) to the command sender. The sample program then
reverses the boot flag to cause a reset to occur and performs boot swapping.

START code
(01H)

Data length
(0002H)

Command
(05H)

Data
(empty)

Checksum
(1 byte)

1.2.6 Checksum Calculation Method
For checksum calculation, the 32-bit addition method is used. This method uses as a checksum the last 8

bits of the result of adding a 1-byte value from address 00000000H for the command or data.

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 14 of 71
Aug.04.22

1.2.7 Operation of the Sample Program
The following shows the operation of this sample program:

(1) Set up the input and output ports.

(2) Perform initial setup for SAU0 channel 0.

(3) Wait for data to be sent from the command sender.

(4) Upon receiving the START command, perform initial setup for self-programming.

(5) Set the P02 pin for high-level output to turn on LED2, which indicates that the START command was
received.

(6) Call the r_CF_EraseBlock function to erase boot cluster 1.

(7) Call the r_CF_EraseBlock function to erase the data in the Temporary area.

(8) Send "01H" (normal) to the command sender.

(9) Set the P02 pin for low-level output to turn off LED2, which indicates that the START command was
received.

(10) Receive the WRITE_BOOT1 command (03H) and write data (256 bytes).

(11) Set the P43 pin for high-level output to turn on LED3, which indicates that the WRITE_BOOT1
command was received.

(12) Call the r_CF_WriteData function to write the received data to the write destination address (local
variable for writing to boot cluster 1). The initial value of the local variable for writing to boot cluster 1
is the start address of boot cluster 1.

(13) Call the r_CF_VerifyData function to verify the written data against the received data.

(14) Add a 256-byte checksum to the write destination address (local variable for writing to boot cluster 1).

(15) Send "01H" (normal) to the command sender.

(16) Set the P43 pin for low-level output to turn off LED3, which indicates that the WRITE_BOOT1
command was received.

(17) Repeat steps (11) to (17) until receiving the WRITE_TEMP command (04H).

(18) Receive the WRITE_TEMP command (04H) and write data (256 bytes).

(19) Set the P42 pin for high-level output to turn on LED4, which indicates that the WRITE_BOOT1
command was received.

(20) Call the r_CF_WriteData function to write the received data to the write destination address (local
variable for writing to the Temporary area). The initial value of the local variable for writing to the
Temporary area is the start address of the Temporary area.

(21) Call the r_CF_VerifyData function to verify the written data against the received data.

(22) Add a 256-byte checksum to the write destination address (local variable for writing to the Temporary
area).

(23) Send "01H" (normal) to the command sender.

(24) Set the P42 pin for low-level output to turn off LED4, which indicates that the WRITE_TEMP
command was received.

(25) Repeat steps (19) to (25) until receiving the END command (05H).

(26) Perform the following processing if receiving the END command:

(27) Set the P77 pin for high-level output to turn on LED5, which indicates that the END command was
received.

(28) Call the r_CF_EraseBlock function to erase the data in the Execute area.

(29) Set the P41 pin for high-level output to turn on LED6, which indicates that copy to the Temporary area
is in progress.

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 15 of 71
Aug.04.22

(30) Call the r_temp_copy function to copy data from the Temporary area to the Execute area.*

(31) Set the P41 pin for low-level output to turn off LED6, which indicates that copy to the Temporary area
is in progress.

(32) Send "01H" (normal) to the command sender.

(33) Call the r_RequestBootSwap function to reverse the value of the boot flag so that boot clusters 0 and
1 are swapped when a reset occurs. Cause an internal reset to occur.

* If a reset occurs (due to a temporary blackout, for example) while data is being copied from the
Temporary area to the Execute area, the r_temp_copy function is called again. The r_RequestBootSwap
function is called after the copy is complete.

Caution: If the sample program receives the END command (05H) in steps (10) to (17), the sample program
copies data from the Temporary area to the Execute area unless there is an error. Then, the sample
program sends "01H" (normal), calls the r_RequestBootSwap function, and performs boot swapping. If
the sample program receives the END command (05H) while boot cluster 1 is being reprogrammed,
the sample program performs boot swapping before the reprogramming ends normally. In this case,
the sample program can no longer start after the boot area is swapped.

Caution: If flash memory self-programming does not end normally, the sample program only turns on LED6
and performs no subsequent processing.

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 16 of 71
Aug.04.22

1.2.8 Copy Flag
The sample program covered in this application note uses a 4-byte area at the end of the Execute area as
the copy flag section in which to set a copy flag.

If a program is normally written, this copy flag is set to AAAA5555H. The copy flag is initialized when the
Execute area is erased immediately before data is copied from the Temporary area to the Execute area. If a
reset occurs (due to a temporary blackout) while data is being written, the copy flag is set to a value other
than AAAA5555H because the write processing does not terminate normally.

When the sample program starts, it checks the copy flag. If the value of the copy flag is not AAAA5555H, the
sample program writes data and then performs swapping.

The following table shows the start and end addresses of the Execute area and the address of the copy flag
section according to the ROM size.

Table 1-8 Location of the Copy Flag Section According to the ROM Size

ROM Size Execute Area Address of the Copy Flag Section

96KB 08000H to FFFFH FFFCH

128KB 08000H to 13FFFH 13FFCH

192KB 08000H to 1BFFFH 1BFFCH

256KB 08000H to 23FFFH 23FFCH

384KB 08000H to 33FFFH 33FFCH

512KB 08000H to 43FFFH 43FFCH

768KB 08000H to 63FFFH 63FFCH

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 17 of 71
Aug.04.22

2. Operation Confirmation Conditions
The operation of the sample code provided with this application note has been tested under the

following conditions.

Table 2-1 Operation Confirmation Conditions

Item Description
MCU used RL78/G23 (R7F100GLG)
Board used [Project for 128KB products]

RL78/G23-64p Fast Prototyping Board (RTK7RLG230CLG000BJ)
[Project for 768KB products]
RL78/G23-128p Fast Prototyping Board (RTK7RLG230CSN000BJ)

Operation frequency High-speed on-chip oscillator clock (fIH): 32MHz
Operating voltage 3.3V (can be operated at 3.1V to 3.5V)

LVD operation (VLVD): Reset mode
 At rising edge TYP. 1.90 V (1.84 V to 1.95 V)
 At falling edge TYP. 1.86 V (1.80 V to 1.91 V)

Integrated development
environment (CS+)

CS+ for CC V8.06.00 from Renesas Electronics Corp.

C compiler (CS+) CC-RL V1.10.00 from Renesas Electronics Corp.
Integrated development
environment (e2studio)

e2studio V2021-10 from Renesas Electronics Corp.

C compiler (e2studio) CC-RL V1.10.00 from Renesas Electronics Corp.
Integrated development
environment (IAR)

IAR Embedded Workbench for Renesas RL78 V4.21.1 from IAR Systems
Corp.

C compiler (IAR) IAR C/C++ Compiler for Renesas RL78 V 4.21.1.2409 from IAR Systems
Corp.

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 18 of 71
Aug.04.22

3. Hardware Descriptions
3.1 Example of Hardware Configuration
Figure 3-1 shows an example of the hardware configuration used in the application note.

Figure 3-1 Hardware Configuration

VDD

VDD
RESET

P40/TOOL0

VDD

On-chip Debugger

RL78/G23

REGC

EVSS

VSS

EVDD

P12/TxD0
P11/RxD0

UART Send

UART Receive

P77

P42

P43

P02

P03 LED1

LED2

LED3

LED4

LED5

P41

P31

P76

LED6

LED7

LED8

Cautions: 1. The purpose of this circuit is only to provide the connection outline and the circuit is simplified

accordingly. When designing and implementing an actual circuit, provide proper pin treatment
and make sure that the hardware's electrical specifications are met (connect the input-only ports
separately to VDD or VSS via a resistor).

 2. Connect any pins whose name begins with EVSS to VSS and any pins whose name begins with
EVDD to VDD, respectively.

 3. VDD must be held at not lower than the reset release voltage (VLVD) that is specified as LVD.

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 19 of 71
Aug.04.22

3.2 List of Pins to be Used
Table 3.1 lists the pins to be used and their functions.

Table 3-1 Pins to be Used and their Functions

Pin Input/Output Description
P12//TxD0 Output UART serial data transmit pin
P11/ RxD0 Input UART serial data receive pin
P03, P02, P43, P42, P77, P41, P31,
P76

Output LED1-LED8 control pins

Caution: In this application note, only the used pins are processed. When actually designing your circuit,
make sure the design includes sufficient pin processing and meets electrical characteristic
requirements.

4. Software Explanation
4.1 Setting of Option Byte
 Table 4-1 shows the option byte settings.

Table 4-1 Option Byte Settings

Address Setting Value Description
000C0H/040C0H 11101111B Disables the watchdog timer.

(Counting stopped after reset)
000C1H/040C1H 11111110B LVD operation (VLVD): Reset mode

 At rising edge TYP. 1.90 V (1.84 V to 1.95 V)
 At falling edge TYP. 1.86 V (1.80 V to 1.91 V)

000C2H/040C2H 11101000B HS mode,
High-speed on-chip oscillator clock (fIH): 32 MHz

000C3H/040C3H 10000101B Enables on-chip debugging

The option bytes of the RL78/G23 comprise the user option bytes (000C0H to 000C2H) and on-chip debug
option byte (000C3H).

The option bytes are automatically referenced and the specified settings are configured at power-on time or
the reset is released. When using the boot swap function for self-programming, it is necessary to set the
same values that are set in 000C0H to 000C3H also in 040C0H to 040C3H because the bytes in 000C0H to
000C3H are swapped with the bytes in 040C0H to 040C3H.

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 20 of 71
Aug.04.22

4.2 Setting Up the Startup Routine
4.2.1 Defining the Stack Area Section (.stack_bss)

Define the stack area section (.stack_bss).

In the startup routine configuration file (cstart.asm), change the settings as follows:

;$IF (__RENESAS_VERSION__ < 0x01010000) Comment out the line by prefixing a
semicolon (;).

;---
;
;---
; !!! [CAUTION] !!!
; Set up stack size suitable for a project.
.SECTION .stack_bss, BSS
_stackend:
.DS 0x800 Specify any stack size of your choice

by using a hexadecimal number.
_stacktop:
;$ENDIF Comment out the line by prefixing a

semicolon (;).

;--
; setting the stack pointer
;--
$IF (__RENESAS_VERSION__ >= 0x01010000)
;MOVW SP,#LOWW(__STACK_ADDR_START) Comment out the line by prefixing a

semicolon (;).
;$ELSE ; for CC-RL V1.00 Comment out the line by prefixing a

semicolon (;).
MOVW SP,#LOWW(_stacktop)
$ENDIF

;--
; initializing stack area
;--
$IF (__RENESAS_VERSION__ >= 0x01010000)
;MOVW AX,#LOWW(__STACK_ADDR_END) Comment out the line by prefixing a

semicolon (;).
;$ELSE ; for CC-RL V1.00 Comment out the line by prefixing a

semicolon (;).
MOVW AX,#LOWW(_stackend)
$ENDIF
CALL !!_stkinit

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 21 of 71
Aug.04.22

4.2.2 Deploying the Reprogramming Program in the RAM Area
Confirm the programs that are used to reprogram the firmware and deploy them to the RAM area.

Table4-2 shows the sections where the programs used to reprogram the firmware exist and the sections in
which the programs are to be deployed.

Table4-2 Section Information

Section Destination Section Description
RFD_CMN_f RFD_CMN_fR Program section for the API functions that control the common

flash memory
RFD_CF_f RFD_CF_fR Program section for the API functions that control the code flash

memory
RFD_EX_f RFD_EX_fR Program section for the API functions that control the extra area
SMP_CMN_f SMP_CMN_fR Program section for the sample functions that control the

common flash memory
SMP_CF_f SMP_CF_fR Program section for the sample functions that control the code

flash memory

To deploy the preceding sections in the RAM area, you must add the necessary processing to the cstart.asm
file.

In the cstart.asm file, locate the following lines, and then add the necessary processing after these lines:

 ;--
 ; ROM data copy
 ;--

The following are the details to be added.

 ; copy .text to RAM (section-name)
 MOV C,#HIGHW(STARTOF(section-name))
 MOVW HL,#LOWW(STARTOF(section-name))
 MOVW DE,#LOWW(STARTOF(destination-section-name))
 BR $.Lm2_TEXT
.Lm1_TEXT:
 MOV A,C
 MOV ES,A
 MOV A,ES:[HL]
 MOV [DE],A
 INCW DE
 INCW HL
 CLRW AX
 CMPW AX,HL
 SKNZ
 INC
.Lm2_TEXT:
 MOVW AX,HL
 CMPW AX,#LOWW(STARTOF(section-name) + SIZEOF(section-name))
 BNZ $.Lm1_TEXT

Note 1. For section-name, specify the name of the section to be deployed.
Note 2. Add the preceding set of entries for each section to be deployed.

Note 3. For m, specify any numeric value of your choice. Make sure that you specify a different value for
each section.

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 22 of 71
Aug.04.22

4.3 Setting the ROM Size Specification Constant
Conditional compilation allows this sample program to support several ROM sizes for the RL78/G23
microcontroller.

The following table lists the constants that correspond to the supported ROM sizes. In the r_cg_userdefine.h
file, these constants are commented out. Enable the constant for the installed ROM by uncommenting it.

Table4-3 Constants for the Supported ROM Sizes

Constant Name Supported ROM Size

ROM_SIZE_96KB 96-KB product

ROM_SIZE_128KB 128-KB product

ROM_SIZE_192KB 192-KB product

ROM_SIZE_256KB 256-KB product

ROM_SIZE_384KB 384-KB product

ROM_SIZE_512KB 512-KB product

ROM_SIZE_768KB 768-KB product

4.4 On-chip Debug Security ID
The RL78/G23 microcontroller provides the on-chip debug security ID area at addresses 000C4H to 000CDH
in the flash memory so that the memory content is not read by third parties.

If boot swapping is performed during self-programming, the area at addresses 000C4H to 000CDH and the
area at addresses 010C4H to 010CDH are swapped. Therefore, the same value that is set in the area at
000C4H to 000CDH must also be set in the area at 040C4H to 040CDH.

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 23 of 71
Aug.04.22

4.5 Resources Used by the Sample Program
4.5.1 List of Sections in the ROM Area
Table4-4 lists the sections that the sample program uses in the ROM area.

Table4-4 List of the Sections in the ROM Area

Section Name Description
RFD_DATA_n Data section for RFD RL78 Type01
RFD_CMN_f Program section for the API functions that control the common flash memory
RFD_CF_f Program section for the API functions that control the code flash memory
RFD_EX_f Program section for the API functions that control the extra area
RFD_DF_f Program section for the API functions that control the data flash memory
SMP_CMN_f Program section for the sample functions that control the common flash memory
SMP_CF_f Program section for the sample functions that control the code flash memory
BOOT_AREA1 Program section for boot cluster 1
USER_APPLICATION Program section for the user application
COPY_FLAG_f Program section for storing the copy completion flag
TEMPORARY_AREA Program section for storing the receive data

4.5.2 List of the Sections in the RAM Area
Table4-5 lists the sections that the sample program uses in the RAM area.

Table4-5 List of the Sections in the RAM Area

Section Name Description
RFD_DATA_nR Data section for RFD RL78 Type01
RFD_CMN_fR Program section for the API functions that control the common flash memory
RFD_CF_fR Program section for the API functions that control the code flash memory
RFD_EX_fR Program section for the API functions that control the extra area
SMP_CMN_fR Program section for the sample functions that control the common flash memory
SMP_CF_fR Program section for the sample functions that control the code flash memory

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 24 of 71
Aug.04.22

4.6 List of Constants
Table4-6 and Table4-7 list the constants that are used in the sample program.

Table4-6 List of Constants (1/2)

Constant Name Value Set By
This Constant

Description

ROM_SIZE_96KB 01H Value that sets the ROM size to 96 KB
ROM_SIZE_128KB 01H Value that sets the ROM size to 128 KB
ROM_SIZE_192KB 01H Value that sets the ROM size to 192 KB
ROM_SIZE_256KB 01H Value that sets the ROM size to 256 KB
ROM_SIZE_384KB 01H Value that sets the ROM size to 384 KB
ROM_SIZE_512KB 01H Value that sets the ROM size to 512 KB
ROM_SIZE_768KB 01H Value that sets the ROM size to 768 KB
LED_ON 01H LED ON
LED_OFF 00H LED OFF
WRITE_DATA_SIZE 0100H Size of data written to the code flash memory (256

bytes)
CF_BLOCK_SIZE 0800H Block size of the code flash memory (2,048 bytes)
BT1_START_ADDRESS 00004000H Start address of boot cluster 1
BT1_END_ADDRESS 00007FFFH End address of boot cluster 1
EXECUTE_START_ADDRESS 00008000H Start address of the Execute area
EXECUTE_END_ADDRESSNote 00013FFFH End address of the Execute area
TEMPORARY_START_ADDRESSNote 00014000H Start address of the Temporary area
TEMPORARY_END_ADDRESSNote 0001FFFFH End address of the Temporary area
CPU_FREQUENCY 32 CPU operating frequency
COMMAND_START 02H Command code for the START command
COMMAND_WRITE_BOOT1 03H Command code for the WRITE_BOOT1 command
COMMAND_WRITE_TEMP 04H Command code for the WRITE_TEMP command
COMMAND_END 05H Command code for the END command
VALUE_U08_MASK1_FSQ_STATUS_
ERR_ERASE

01H Error status mask value for the execution results of
the flash memory sequencer
Bit 0: Erase command error

VALUE_U08_MASK1_FSQ_STATUS_
ERR_WRITE

02H Error status mask value for the execution results of
the flash memory sequencer
Bit 1: Write command error

VALUE_U08_MASK1_FSQ_STATUS_
ERR_BLANKCHECK

08H Error status mask value for the execution results of
the flash memory sequencer
Bit 3: Blank check command error

VALUE_U08_MASK1_FSQ_STATUS_
ERR_CFDF_SEQUENCER

10H Error status mask value for the execution results of
the flash memory sequencer
Bit 4: Code/data flash area sequencer error

VALUE_U08_MASK1_FSQ_STATUS_
ERR_EXTRA_SEQUENCER

20H Error status mask value for the execution results of
the flash memory sequencer
Bit 5: Extra area sequencer error

Note: The address differs depending on the product used.

Table4-7 List of Constants (2/2)

VALUE_U08_SHIFT_ADDR_TO_BLO
CK_CF

11 Constant for bit shifting performed for calculating the
block number of the code flash memory

VALUE_U01_MASK0_1BIT 0 Constant for arithmetic operation (0)

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 25 of 71
Aug.04.22

VALUE_U01_MASK1_1BIT 1 Constant for arithmetic operation (1)
VALUE_U08_MASK0_8BIT 00H Constant for arithmetic operation (00H)
VALUE_U08_MASK1_8BIT FFH Constant for arithmetic operation (FFH)
COPY_FLAG_USUAL AAAA5555H Value set in the copy flag section

4.7 Enumeration Type
Table4-8 defines the enumeration-type variable used by the sample program.

Table4-8 enum e_ret (Enumeration Variable Name: e_ret_t)

Symbol Name Value Description
ENUM_RET_STS_OK 00H Normal status
ENUM_RET_STS_RECEIVING 01H Waiting for a command to be sent, or receiving a

command
ENUM_RET_ERR_CFDF_SEQUENCER 02H Code/data flash area sequencer error
ENUM_RET_ERR_EXTRA_SEQUENCER 03H Extra area sequencer error
ENUM_RET_ERR_ERASE 04H Erase error
ENUM_RET_ERR_WRITE 05H Write error
ENUM_RET_ERR_BLANKCHECK 06H Blank error
ENUM_RET_ERR_CHECK_WRITE_DATA 07H Error in comparison between the written data against

the read value
ENUM_RET_ERR_MODE_MISMATCHED 08H Mode mismatch error
ENUM_RET_ERR_PARAMETER 09H Parameter error
ENUM_RET_ERR_CONFIGURATION 0AH Device configuration error
ENUM_RET_ERR_PACKET 0BH Packet reception error

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 26 of 71
Aug.04.22

4.8 List of Variables
Table4-9 lists the global variables that are used in the sample program.

Table4-9 List of Global Variables

Type Variable Name Description Function Supporting the Variable
uint8_t f_UART0_sendend Flag indicating that data

sending by the UART0
was completed

r_Send_nByte
r_Config_UART0_callback_sendend

uint32_t g_copy_end Flag indicating that data
copy was ended normally

main

uint8_t g_recv_data [261] Receive data buffer R_Config_UART0_Receive
r_AsyncRecvPacketData

uint8_t g_soft_recv_overrun Flag indicating that data
larger than the receive
data buffer was received

r_Config_UART0_callback_softwareoverrun
r_ClearUARTRecvBuff
r_AsyncRecvPacketData

4.9 List of Functions
Table4-10 lists the functions that are used in the sample program.

Table4-10 List of Functions

Function Name Summary
r_rfd_initialize Initialization processing for RFD RL78 Type01
r_cmd_start START command processing
r_cmd_end END command processing
r_CF_RangeErase Range erase processing for the code flash memory
r_CF_EraseBlock Block erase processing for the code flash memory
r_CF_WriteVerifySequence Write-and-verify processing for the code flash memory
r_CF_WriteData Write processing for the code flash memory
r_CF_VerifyData Verify processing for the code flash memory
r_CheckCFDFSequencerEnd Sequence end processing for the code flash memory
r_CheckExtraSequencerEnd Sequence end processing for the extra area
r_RequestBootSwap Boot swapping execution processing
r_Config_UART0_callback_sendend Callback processing at a sending completion interrupt for

UART0
r_Send_nByte Data sending processing by UART0
r_SendACK Normal response sending processing by UART0
r_CF_TempCopy Processing to copy data from the Temporary area
r_CF_MemoryWrite Processing to reprogram the code flash memory
r_AsyncRecvPacketData Processing to receive asynchronous command packets
r_GetUARTRecvSize Processing to obtain the size of the receive data
r_ClearUARTRecvBuff Processing to clear the receive buffer
userApplicationLoop Function to implement user application
updateLoop Processing to receive and run the firmware update command
errorLedOn Processing to turn on the error LED

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 27 of 71
Aug.04.22

4.10 Specifications of Functions
This section describes the specifications of the functions used in the sample code.

r_rfd_initialize
Summary Initialization processing for RFD RL78 Type01
Header r_rfd_common_api.h, r_rfd_code_flash_api.h, r_cg_userdefine.h

Declaration R_RFD_FAR_FUNC e_ret_t r_rfd_initialize(void);
Explanation This function performs the processing to initialize RFD RL78 Type01.
Arguments None

Return values
ENUM_RET_STS_OK: Normal end
ENUM_RET_ERR_CONFIGURATION: Clock configuration error
ENUM_RET_ERR_PARAMETER: Frequency setting error

r_cmd_start
Summary START command processing
Header r_rfd_common_api.h, r_cg_userdefine.h

Declaration R_RFD_FAR_FUNC e_ret_t r_cmd_start(void);

Explanation This function performs processing in response to reception of the START
command.

Arguments None

Return values
ENUM_RET_STS_OK: Normal end
ENUM_RET_ERR_MODE_MISMATCHED: Mode mismatch error
ENUM_RET_ERR_ERASE: Erase error

r_cmd_end
Summary END command processing
Header r_rfd_common_api.h, r_cg_userdefine.h

Declaration R_RFD_FAR_FUNC e_ret_t r_cmd_end(void);
Explanation This function performs processing in response to reception of the END command.
Arguments None

Return values ENUM_RET_ERR_MODE_MISMATCHED: Mode mismatch error

r_CF_RangeErase

Summary Range erase processing for the code flash memory
Header r_rfd_common_api.h, r_rfd_code_flash_api.h, r_cg_userdefine.h

Declaration R_RFD_FAR_FUNC e_ret_t r_CF_RangeErase(uint32_t start_addr, uint32_t
end_addr);

Explanation
This function erases data in the code flash memory.
Data is erased in blocks. The blocks in the range of addresses specified for
arguments will be erased.

Arguments uint32_t start_addr: Erase start address
uint32_t end_addr: Erase end address

Return values
ENUM_RET_STS_OK: Normal end
ENUM_RET_ERR_MODE_MISMATCHED: Mode mismatch error
ENUM_RET_ERR_ERASE: Erase error

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 28 of 71
Aug.04.22

r_CF_EraseBlock
Summary Block erase processing for the code flash memory
Header r_rfd_common_api.h, r_rfd_code_flash_api.h, r_cg_userdefine.h

Declaration R_RFD_FAR_FUNC e_ret_t r_CF_EraseBlock(uint32_t start_addr);

Explanation
This function erases data in the code flash memory.
A block of data is erased. The block that includes the address specified for an
argument will be erased.

Arguments uint32_t start_addr: Erase start address

Return values
ENUM_RET_STS_OK: Normal end
ENUM_RET_ERR_MODE_MISMATCHED: Mode mismatch error
ENUM_RET_ERR_ERASE: Erase error

r_CF_WriteVerifySequence
Summary Write-and-verify processing for the code flash memory
Header r_rfd_common_api.h, r_rfd_code_flash_api.h, r_cg_userdefine.h

Declaration R_RFD_FAR_FUNC e_ret_t r_CF_WriteVerifySequence(uint32_t
write_start_addr, uint16_t write_data_length, uint8_t __near *write_data);

Explanation This function writes data to the code flash memory and verifies the written data.

Arguments
uint32_t start_addr,: Write start address
uint16_t write_data_length: Size of the data to be written
uint8_t __near *write_data: Data to be written

Return values
ENUM_RET_STS_OK: Normal end
ENUM_RET_ERR_MODE_MISMATCHED: Mode mismatch error
ENUM_RET_ERR_ERASE: Erase error

r_CF_WriteData

Summary Write processing for the code flash memory
Header r_rfd_common_api.h, r_rfd_code_flash_api.h, r_cg_userdefine.h

Declaration R_RFD_FAR_FUNC e_ret_t r_CF_WriteData(uint32_t start_addr, uint16_t
write_data_length, uint8_t __near *write_data);

Explanation This function writes data to the code flash memory.

Arguments
uint32_t start_addr,: Write start address
uint16_t write_data_length: Size of the data to be written
uint8_t __near *write_data: Data to be written

Return values
ENUM_RET_STS_OK: Normal end
ENUM_RET_ERR_MODE_MISMATCHED: Mode mismatch error
ENUM_RET_ERR_WRITE: Write error

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 29 of 71
Aug.04.22

r_CF_VerifyData
Summary Verify processing for the code flash memory
Header r_cg_userdefine.h

Declaration R_RFD_FAR_FUNC e_ret_t r_CF_VerifyData(uint32_t start_addr, uint16_t
data_length, uint8_t __near * write_data);

Explanation This function verifies the data written to the code flash memory.

Arguments
uint32_t start_addr: Verify start address
uint16_t data_length: Data size
uint8_t __near * write_data: Data to be compared with

Return values
ENUM_RET_STS_OK: Normal end (matched)
ENUM_RET_ERR_CHECK_WRITE_DATA: Error in comparison between the
written data and the read value (mismatched)

r_CheckCFDFSequencerEnd
Summary Sequence end processing for the code flash memory
Header r_rfd_common_api.h, r_cg_userdefine.h

Declaration R_RFD_FAR_FUNC e_ret_t r_CheckCFDFSequencerEnd(void);
Explanation This function confirms that the code flash memory sequence has terminated.
Arguments None

Return values

ENUM_RET_STS_OK: Normal end
ENUM_RET_ERR_CFDF_SEQUENCER: Code/data flash memory sequencer
error
ENUM_RET_ERR_ERASE: Erase error
ENUM_RET_ERR_WRITE: Write error
ENUM_RET_ERR_BLANKCHECK: Blank error

r_CheckExtraSequencerEnd

Summary Sequence end processing for the extra area
Header r_rfd_common_api.h, r_cg_userdefine.h

Declaration R_RFD_FAR_FUNC e_ret_t r_CheckExtraSequencerEnd (void);
Explanation This function confirms that the extra area sequence has terminated.
Arguments None

Return values

ENUM_RET_STS_OK: Normal end
ENUM_RET_ERR_EXTRA_SEQUENCER: Extra area sequencer error
ENUM_RET_ERR_ERASE: Erase error
ENUM_RET_ERR_WRITE: Write error
ENUM_RET_ERR_BLANKCHECK: Blank error

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 30 of 71
Aug.04.22

r_RequestBootSwap
Summary Boot swapping execution processing
Header r_rfd_common_api.h, r_rfd_extra_area_api.h , r_cg_userdefine.h

Declaration e_ret_t r_RequestBootSwap(void);

Explanation After a reset is performed, this function enables the boot swapping settings, and
then generates an internal reset to restart the CPU.

Arguments None
Return values ENUM_RET_ERR_MODE_MISMATCHED: Mode mismatch error

r_Config_UART0_callback_sendend()
Summary Callback processing at a sending completion interrupt for UART0
Header r_cg_macrodriver.h

Declaration static void r_Config_UART0_callback_sendend(void);

Explanation This is a callback function that is called at a sending completion interrupt for
UART0.

Arguments None
Return values None

r_Send_nByte
Summary Data sending processing by UART0
Header Config_UART0.h, Config_WDT.h

Declaration MD_STATUS r_Send_nByte(uint8_t *tx_buff, const uint16_t tx_num);

Explanation
This function performs sending processing by UART0.
This function waits until sending of the number of characters specified for an
argument is completed.

Arguments uint8_t *rx_buff: Pointer to the send data storage buffer
const uint16_t rx_num: Number of characters to be sent

Return values MD_OK: Normal end (sending completed)
MD_ARGERROR: Parameter error

r_SendACK

Summary Normal response sending processing by UART0
Header Config_UART0.h, Config_WDT.h

Declaration MD_STATUS r_SendACK (void);

Explanation This function uses UART0 to perform sending processing for normal response
(01H).

Arguments None

Return values MD_OK: Normal end (sending completed)
MD_ARGERROR: Parameter error

r_CF_TempCopy

Summary Processing to copy data from the Temporary area
Header r_cg_userdefine.h, string.h

Declaration R_RFD_FAR_FUNC e_ret_t r_CF_TempCopy(void);
Explanation This function copies data from the Temporary area.
Arguments None

Return values ENUM_RET_STS_OK: Normal end

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 31 of 71
Aug.04.22

r_CF_MemoryWrite
Summary Processing to reprogram the code flash memory
Header r_cg_userdefine.h

Declaration R_RFD_FAR_FUNC e_ret_t r_CF_MemoryWrite(uint32_t* write_start_addr,
uint32_t write_end_addr, uint8_t __near * write_data);

Explanation This function writes data to memory.

Arguments
uint32_t* write_start_addr: Write start address
uint32_t write_end_addr: Write end address
uint8_t __near * write_data: Data to be written

Return values
ENUM_RET_STS_OK: Normal end
ENUM_RET_ERR_MODE_MISMATCHED: Mode mismatch error
ENUM_RET_ERR_ERASE: Erase error

r_AsyncRecvPacketData

Summary Processing to receive asynchronous command packets
Header r_cg_userdefine.h

Declaration __far uint8_t r_AsyncRecvPacketData(uint8_t *p_cmd_type, uint8_t rdata[]);
Explanation This function analyzes asynchronously received data and returns the status.

Arguments uint8_t *p_cmd_type: Command information
uint8_t rdata[]: Receive data buffer

Return values
ENUM_PACKET_STATUS_OK: Normal end
ENUM_PACKET_STATUS_ERROR: Packet reception error
ENUM_PACKET_STATUS_RECEIVING: Now receiving packets

r_GetUARTRecvSize

Summary Processing to obtain the size of the receive data

Header r_cg_userdefine.h
Config_UART0.h

Declaration uint16_t r_GetUARTRecvSize(void);
Explanation This function returns the length of the received data.
Arguments None

Return values Size: Length of the received data

r_ClearUARTRecvBuff
Summary Processing to clear the receive buffer

Header r_cg_userdefine.h
Config_UART0.h

Declaration void r_ClearUARTRecvBuff(void);
Explanation This function clears the buffer that stores received data.
Arguments None

Return values None

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 32 of 71
Aug.04.22

userApplicationLoop
Summary Function to implement user application
Header r_cg_userdefine.h

Declaration void userApplicationLoop(void);
Explanation Sample application implemented that blinks LED1/LED8.
Arguments None

Return values None

updateLoop

Summary Processing to receive and run the firmware update command
Header r_cg_userdefine.h

Declaration e_ret_t updateLoop(void);
Explanation This function receives and runs the firmware update command.
Arguments None

Return values

ENUM_RET_STS_OK: Normal end
ENUM_RET_ERR_CONFIGURATION: Clock configuration error
ENUM_RET_ERR_PARAMETER: Frequency setting error
ENUM_PACKET_STATUS_ERROR: Packet reception error
ENUM_PACKET_STATUS_RECEIVING: Receiving packets
ENUM_RET_ERR_MODE_MISMATCHED: Mode mismatch error
ENUM_RET_ERR_ERASE: Erase error

errorLedOn
Summary Processing to turn on the error LED
Header r_cg_userdefine.h

Declaration void errorLedOn(void);
Explanation This function turns on LED7 and turns off the other LEDs if an error occurs.
Arguments None

Return values None

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 33 of 71
Aug.04.22

4.11 Flowcharts
4.11.1 Main Processing
Figure 4-1, Figure 4-2 shows the flowchart of the main processing.

Figure 4-1 Main Processing (1/2)

main

Start UART0 operation
R_Config_UART0_Start()

Enable Interrupts
EI()

A

IE = 1

Is the value of copy flag normal?

r_rfd_initialize()
RFD RL78 Type01 Initialization process

NO

YES

Initialization completed successfully

r_cmd_end
END command processing

P41(LED6): lights up

P41(LED6) : lights down

Process completed successfully

r_RequestBootSwap()
Request boot swap process

NO

YES

YES

NO

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 34 of 71
Aug.04.22

Figure 4-2 Main Processing (2/2)

Has the process been
successfully completed?

YES

NO

A

Error process
errorLedOn()

Clear a receive buffer
 r_ClearUARTRecvBuff()

：While(1) loop

P03 (LED1) or P76 (LED8) : Blinking
userApplicationLoop()

Has the process been
successfully completed?

Processing to receive and run the
firmware update command

 updateLoop()

：While(1) loopYES

NO

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 35 of 71
Aug.04.22

4.11.2 Processing to receive and run the firmware update command
Figure 4-3, Figure 4-4, and Figure 4-5 shows the flowchart of processing to receive and run the firmware
update command

Figure 4-3 Processing to receive and run the firmware update command (1/3)

Is RFD initialization flag False?

YES

NO

updateLoop()

r_rfd_initialize()
RFD RL78 Type01 Initialization process

Has the process been
successfully completed?

Set RFD initialization flag as True

A

B

YES

NO

Asynchronous command packet reception
processing

r_AsyncRecvPacketData(&cmd_type, rdata)

Is the packet reception
processing completed?

YES

NO

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 36 of 71
Aug.04.22

Figure 4-4 Processing to receive and run the firmware update command (2/3)

Is received packet correct?

YES

NO

Received command

Operating mode

Process START command
r_cmd_start()

COMMAND_START

Operating mode

COMMAND_WRITE_BOOT1

Normal mode

Writing mode

Writing mode

Normal mode

A

Clear receive buffer

r_ClearUARTRecvBuff

P02(LED2) : Lights up

P02(LED2) : Lights down

P43(LED3) : Lights up

P43(LED3) : Lights down

UART0 normal response
r_SendACK()

Has the process been
successfully completed?

NO

YES

B

C D E

 Rewrite code flash memory
r_CF_MemoryWrite(write_start_addr,

write_end_addr, write_data)

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 37 of 71
Aug.04.22

Figure 4-5 Processing to receive and run the firmware update command (3/3)

P41(LED6) : Lights down

Operating mode

END command process
r_cmd_end()

COMMAND_END

YES

NO

D

return

P77(LED5) : Lights up

COMMAND_WRITE_TEMP

P42(LED2) : Lights up

P42(LED2) : Lights down

Operating mode

Writing mode

Normal mode

P41(LED6) : Lights up

UART0 Normal response
r_SendACK()

Request boot swap process
r_RequestBootSwap()

UART0 Normal response
r_SendACK()

Has the process been
successfully completed?

Writing mode

Normal mode

EC

Rewrite code flash memory
r_CF_MemoryWrite(write_start_addr,

write_end_addr, write_data)

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 38 of 71
Aug.04.22

4.11.3 Initialization processing for RFD RL78 Type01
Figure 4-6 shows the flowchart of Initialization processing for RFD RL78 Type01.

Figure 4-6 Initialization processing for RFD RL78 Type01

r_rfd_initialize()

Is HOCO running?

Initialize RL78 RFD Type01
R_RFD_Init(CPU_FREQUENCY)

Is initialization finished?

return

HOCO failed to run
Set error status to ret_value

RFD Initialization failure
Set error status to ret_value

YES

NO

YES

NO

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 39 of 71
Aug.04.22

4.11.4 START command processing
Figure 4-7 shows the flowchart of START command processing

Figure 4-7 START command processing

r_cmd_start()

Disable Interrupts
DI()

Range erase processing for the code flash memory
r_CF_RangeErase(BT1_START_ADDRESS,

BT1_END_ADRESS)

Enable interrupts
EI()

Has erase processing
been successfully completed?

Data sending processing
r_SendACK

return

YES

NO

IE = 0

IE = 1

Disable interrupts
DI()

Range erase processing for the code flash memory
r_CF_RangeErase(TEMPORARY_START_ADDRE

SS, TEMPORARY_END_ADRESS)

Enable interrupts
EI()

Has erase processing
been successfully completed?

NO

YES

IE = 1

IE = 0

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 40 of 71
Aug.04.22

4.11.5 END command processing
Figure 4-8 shows the flowchart of END command processing

Figure 4-8 END command processing

r_cmd_end()

Processing to copy data from the Temporary area
r_CF_TempCopy()

return

Range erase processing for the code flash memory
r_CF_RangeErase(EXECUTE_START_ADDRESS,

EXECUTE_END_ADDRESS)

Enable interrupts
EI() IE = 1

Disable interrupts
DI() IE = 0

Has erase processing
been successfully completed?

YES

NO

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 41 of 71
Aug.04.22

4.11.6 Range erase processing for the code flash memory
Figure 4-9 shows the flowchart of range erase processing for the code flash memory

Figure 4-9 Range erase processing for the code flash memory

r_CF_RangeErase(start_addr,end_addr)

return

Has the specified range been erased?

Has erase processing
been successfully completed?

YES

YES

NO

NO

Erase processing for the code flash memory
r_CF_EraseBlock(erase_addr)

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 42 of 71
Aug.04.22

4.11.7 Block erase processing for the code flash memory
Figure 4-10 shows the flowchart of block erase processing for the code flash memory

Figure 4-10 Block erase processing for the code flash memory

r_CF_EraseBlock(start_addr)

return

Changed to programming mode

ret_value matches the value of error status

YES

YES

NO

NO

Set error status in ret_value

NO

End processing for the code flash memory
r_CheckCFDFSequencerEnd

Has error check function
been successfully completed?

Set error status in ret_value

Change the flash memory sequencer to normal mode

Changed to normal mode

Set error status in ret_valueYES

Start erasing blocks
R_RFD_EraseCodeFlashReq(block_number)

NO

YES

Change the flash memory sequencer to
programming mode

R_RFD_SetFlashMemoryMode(R_RFD_ENUM_FL
ASH_MODE_CODE_PROGRAMMING)

Get block number from address

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 43 of 71
Aug.04.22

4.11.8 Write-and-verify processing for the code flash memory
Figure 4-11 shows the flowchart of write-and-verify processing for the code flash memory

Figure 4-11 Write-and-verify processing for the code flash memory

r_CF_WriteVerifySequence(write_start_addr,
write_data_length, *write_data)

return

Has write processing
been successfully completed?

YES

ret_value: error status

Write Data
r_CF_WriteData(write_start_addr,

write_data_length, write_data)

Verify written data
r_CF_VerifyData(write_start_addr,

write_data_length, write_data)

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 44 of 71
Aug.04.22

4.11.9 Write processing for the code flash memory
Figure 4-12 shows the flowchart of write processing for the code flash memory

Figure 4-12 Write processing for the code flash memory

r_CF_WriteData(start_addr, write_data_length,
write_data)

return

Changed to programming mode

YES

YES

NO

Has the processing
writing specified size finished ?

Start 4 bytes of writing processing
R_RFD_WriteCodeFlashReq(start_addr + count,

&write_data[count])

YES

End processing for the code flash memory
r_CheckCFDFSequencerEnd()

Has 4 bytes ofwrite processing
been successfully completed?

Change the flash memory sequencer to normal mode

Changed to normal mode

NO

YES

Change the flash memory sequencer to
programming mode

R_RFD_SetFlashMemoryMode(R_RFD_ENUM_FL
ASH_MODE_CODE_PROGRAMMING)

NO

NO

Set error status in ret_value

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 45 of 71
Aug.04.22

4.11.10 Verify processing for the code flash memory
Figure 4-13 shows the flowchart of verify processing for the code flash memory

Figure 4-13 Verify processing for the code flash memory

r_CF_VerifyData(start_addr, data_length, *write_data)

return

Has the processing
verifying specified size finished?

Compares write data with
code flash memory value

Set error status in ret_value

Increment address

NO

match

YES

mismatch

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 46 of 71
Aug.04.22

4.11.11 Sequence end processing for the code flash memory
Figure 4-14 and Figure 4-15 shows the flowchart of sequence end processing for the code flash memory

Figure 4-14 Sequence end processing for the code flash memory (1/2)

r_CheckCFDFSequencerEnd()

Get error status
R_RFD_GetSequencerErrorStatus(&status_flag)

A

Wait for the processing finished
R_RFD_CheckCFDFSequencerEndStep1()

Wait for the processing finished
R_RFD_CheckCFDFSequencerEndStep2()

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 47 of 71
Aug.04.22

Figure 4-15 Sequence end processing for the code flash memory (2/2)

A

VALUE_U08_MASK1_FSQ_STATUS_ERR_CFDF_SEQUENCER

VALUE_U08_MASK1_FSQ_STATUS_ERR_ERASE

VALUE_U08_MASK1_FSQ_STATUS_ERR_WRITE

VALUE_U08_MASK1_FSQ_STATUS_ERR_BLANKCHECK

return

Check the value of error status (FSASTL)

Set ENUM_RET_ERR_CFDF_SEQUENCER
(0x10) to ret_value

Set ENUM_RET_ERR_ERASE
(0x12) to ret_value

Set ENUM_RET_ERR_WRITE
(0x13) to ret_value

ENUM_RET_ERR_BLANKCHECK
(0x14) to ret_value

Set ENUM_RET_STS_OK
(0x00) to ret_value

Initialization of registers that control the sequencer
R_RFD_ClearSequencerRegister()

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 48 of 71
Aug.04.22

4.11.12 Sequence end processing for the extra area
Figure 4-16 and Figure 4-17 shows the flowchart of sequence end processing for the extra area

Figure 4-16 Sequence end processing for the extra area (1/2)

r_CheckExtraSequencerEnd

Get error status
R_RFD_GetSequencerErrorStatus(&status_flag)

A

Wait for the processing finished
R_RFD_CheckExtraSequencerEndStep1()

Wait for the processing finished
R_RFD_CheckExtraSequencerEndStep2()

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 49 of 71
Aug.04.22

Figure 4-17 Sequence end processing for the extra area (2/2)

A

VALUE_U08_MASK1_FSQ_STATUS_ERR_EXTRA_SEQUENCER

VALUE_U08_MASK1_FSQ_STATUS_ERR_ERASE

VALUE_U08_MASK1_FSQ_STATUS_ERR_WRITE

VALUE_U08_MASK1_FSQ_STATUS_ERR_BLANKCHECK

return

Check the value of error status (FSASTL)

Set ENUM_RET_ERR_EXTRA_SEQUENCER
(0x10) to ret_value

Set ENUM_RET_ERR_ERASE
(0x12) to ret_value

Set ENUM_RET_ERR_WRITE
(0x13) to ret_value

Set ENUM_RET_ERR_BLANKCHECK
(0x14) to ret_value

Set ENUM_RET_STS_OK
(0x00) to ret_value

Initialization of registers that control the sequencer
R_RFD_ClearSequencerRegister()

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 50 of 71
Aug.04.22

4.11.13 Boot swapping execution processing
Figure 4-18 shows the flowchart of boot swapping execution processing

Figure 4-18 Boot swapping execution processing

r_RequestBootSwap()

return

Check the boot area currently selected

Select 0 for next boot cluster
next_boot_cluster = R_RFD_ENUM_BOOT_CLUSTER_0

BTFLG = 1: Boot cluster 0 is selected

Get status of security flags and boot flags
R_RFD_GetSecurityAndBootFlags(&f_security_boot)

Select 1 for next boot cluster
next_boot_cluster = R_RFD_ENUM_BOOT_CLUSTER_1

Change the flash memory sequencer to programming
mode

Changed to programming mode

Set error status in ret_valueYes

ret_value = 0x00

YES

Request boot swap after reset
R_RFD_SetExtraBootAreaReq(next_boot_cluster)

Change the flash memory sequencer to normal mode

Changed to normal mode

Set error status in ret_valueYes

ret_value = 0x00

YES

Invoke internal reset
R_RFD_ForceReset

BTFLG = 0: Boot cluster 1 is selected

No

NO

No

NO

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 51 of 71
Aug.04.22

4.11.14 Callback processing at a sending completion interrupt for UART0
Figure 4-19 shows the flowchart of callback processing at a sending completion interrupt for UART0

Figure 4-19 Callback processing at a sending completion interrupt for UART0

r_Config_UART0_callback_sendend()

return

Set sending completed flag to 1 g_UART0_sendend = 1

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 52 of 71
Aug.04.22

4.11.15 Data sending processing by UART0
Figure 4-20 shows the flowchart of Data sending processing by UART0

Figure 4-20 Data sending processing by UART0

r_Send_nByte(*tx_buff, tx_num)

return

Sending completed successfully and
 sending completed flag is 0

YES

NO

Set sending completed flag to 1

Transmit data
R_Config_UART0_Send(tx_buff, tx_num)

g_UART0_sendend = 0

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 53 of 71
Aug.04.22

4.11.16 Normal response sending processing by UART0
Figure 4-21 shows the flowchart of normal response sending processing by UART0

Figure 4-21 Normal response sending processing by UART0

r_SendACK()

Data sending
r_Send_nByte(&send_buff, 1)

return

Generate ACK packet in send_buff

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 54 of 71
Aug.04.22

4.11.17 Processing to copy data from the Temporary area
Figure 4-22 shows the flowchart of processing to copy data from the Temporary area

Figure 4-22 Processing to copy data from the Temporary area

r_CF_TempCopy(void)

return

Has the copying and writing of the
specified size been completed?

Has write processing
 been successfully completed?

YES

YES

NO

ret_value: error status

Copy the data from temporary area to buffer
MemCpy(copy_data, tmp_offset,

WRITE_DATA_SIZE)

Write data
r_CF_WriteData(start_addr, write_data_length,

*write_data)

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 55 of 71
Aug.04.22

4.11.18 Processing to reprogram the code flash memory
Figure 4-23 shows the flowchart of processing to reprogram the code flash memory

Figure 4-23 Processing to reprogram the code flash memory

r_CF_MemoryWrite(*write_start_addr, write_end_addr,
*write_data)

Disable interrupts
DI()

Code flash memory write/verify process
r_CF_WriteVerifySequence(*write_Start_addr,WRIT

E_DATA_SIZE,write_data)

Has the processing been
successfully completed?

Increment the write destination address
*write_start_addr += WRITE_RATA_SIZE

return

YES

NO

destination address to write
Out of write_end_addr

Within write_end_addr

Enable interrupts
EI()

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 56 of 71
Aug.04.22

4.11.19 Processing to receive asynchronous command packets
Figure 4-24 shows the flowchart of processing to receive asynchronous command packets

Figure 4-24 Processing to receive asynchronous command packets

r_AsyncRecvPacketData(*p_cmd_type, rdata[])

return

Number of data received is 5 or more

Set status "Packet being received” to return value
return ENUM_RET_STS_RECEIVING

NO

Get the number of data currently received
getUARTRecvSize()

Calculate packet length from received data
len = g_recv_data[1] << 8 || g_recv_data[2]

Number of data received is len or more

Calculate checksum from received data

Matches checksum data received

Received WRITE command

YES

g_soft_overrun is not occurring

START code received

Obtain command data from received data
cmd_type = g_recv_data[3]

Normal command data is received

Copy received data to buffer
MemCpy(rdata, &g_recv_data[4], 256)

Set packet reception error to return value
return ENUM_RET_ERR_PACKET

NO

YES

NO

YES

NO

YES

NO

YES

NO

YES
NO

YES

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 57 of 71
Aug.04.22

4.11.20 Processing to obtain the size of the receive data
Figure 4-25 shows the flowchart of processing to obtain the size of the receive data

Figure 4-25 Processing to obtain the size of the receive data

r_getUARTRecvSize(void)

return

Get received number counter
size = g_uart0_rx_count

Disable interrupts
DI()

Enable interrupts
EI()

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 58 of 71
Aug.04.22

4.11.21 Processing to clear the receive buffer
Figure 4-26 shows the flowchart of processing to clear the receive buffer

Figure 4-26 Processing to clear the receive buffer

r_ClearUARTRecvBuff(void)

return

Clear received number counter

Setting receive buffer and receive size
R_Config_UART0_Receive(rx_buff, rx_num)

g_uart0_rx_count = 0

Clear receive error flag g_soft_recv_overrun = 0

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 59 of 71
Aug.04.22

4.11.22 Processing to turn on the error LED
Figure 4-27 shows the flowchart of processing to turn on the error LED

Figure 4-27 Processing to turn on the error LED

errorLedOn()

P03(LED1) : Lights down

P02(LED2) : Lights down

P43(LED3) : Lights down

errorLedOn()

P77(LED5) : Lights down

P42(LED4) : Lights down

P76(LED8) : Lights down

P31(LED7) : Lights down

P41(LED6) : Lights down

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 60 of 71
Aug.04.22

5. GUI-Based Tool for Writing Data
This chapter describes the GUI-based tool for writing data to the target device simply by running an
executable file (.exe). Select the binary file (.bin) that contains the data to be written. To perform a write
again, restart the tool.

5.1 Generating a File Required to Write Data
Before you can use the GUI-based tool, generate a binary file (.bin) that will be written. For details about how
to generate a binary file, see the following sections.

5.1.1 Using CS+ to Generate a Binary File
In the [Project Tree], select [CC-RL (Build Tool)], and then open the [Hex Output Options] tab.

Figure 5-1 Generate a binary file in CS+ (1/6)

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 61 of 71
Aug.04.22

In the [Hex Output Options] tab, under [Output File], set [Yes] for [Output hex file].

Select [Division output file], and then, in the dialog box that appears, enter a character string in the following
pattern:

XXXXXXXXXX.bin=0-YYYYYYYYY

For XXXXXXXXXX, specify the project name. For YYYYYYYYY, specify the last address of the code flash
memory of the device to be used.

Figure 5-2 Generate a binary file in CS+ (2/6)

Figure 5-3 Generate a binary file in CS+ (3/6)

In the [Hex Output Options: tab, under [Hex Format], set [Hex file format] to [Binary file (-FOrm=Binary)].

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 62 of 71
Aug.04.22

Figure 5-4 Generate a binary file in CS+ (4/6)

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 63 of 71
Aug.04.22

In the [Hex Output Options] tab, under [Hex Format], set [Fill unused areas in the output ranges with the
value] to [Yes (Specification value) (-SPace=<Numerical value>)].

Figure 5-5 Generate a binary file in CS+ (5/6)

In the [Hex Output Options] tab, under [Hex Format], set [Output padding data] to [FF].

Figure 5-6 Generate a binary file in CS+ (6/6)

A binary file is generated when you build a project.

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 64 of 71
Aug.04.22

5.1.2 Using e2studio to Generate a Binary File
In the [Project] tab, select [Properties].

Under [C/C++ Build], select [Settings].

Figure 5-7 Generate a binary file in e2 studio (1/3)

Select [Converter] and [Output] in the [Tool Settings] tab.

Figure 5-8 Generate a binary file in e2 studio (2/3)

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 65 of 71
Aug.04.22

Select the [Run the load module converter] check box.

From the [Output file format] drop-down list, select [Output a binary file].

Click the [Add] button, and then enter a character string in the following pattern:

../XXXXXX.bin=0-YYYYYY

For XXXXXX, specify the project name. For YYYYYY, specify the last address of the code flash memory of
the device to be used.

Figure 5-9 Generate a binary file in e2 studio (3/3)

A binary file is generated when you build a project.

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 66 of 71
Aug.04.22

5.1.3 Using IAR EW to Generate a Binary File
In the [Project] tab, select [Options].

In the [Category] list box, select [Linker], and then select the [Checksum] tab.

Select the [Fill unused code memory] check box.

For [Fill pattern], specify 0xFF. For [Start address], specify 0x0. For [End address], specify the last address
of the code flash memory of the device to be used with a hexadecimal number prefixed by "0x".

Figure 5-10 Generate a binary file in IAR EW (1/2)

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 67 of 71
Aug.04.22

In the [Output Converter] tab, select the [Generate additional output] check box.

From the [Output format] drop-down list, select [Raw binary].

Then, click [OK]. A binary file is generated when you build a project.

Figure 5-11 Generate a binary file in IAR EW (2/2)

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 68 of 71
Aug.04.22

5.2 Using GUI-Based Tool
Run BootSwapGUI.exe.

Select the radio button for the ROM size of the device to be used.

Figure 5-12 Description of GUI (1/2)

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 69 of 71
Aug.04.22

From the drop-down list, select an available COM port, and then click [Connect] to connect to the target
device.

Click [Open], and then select the program (.bin) to be written.

Click [START] to start writing the program.

The progress bar shows the progress of write processing.

Figure 5-13 Description of GUI (2/2)

Progress bar

After writing is complete, exit BootSwapGUI.exe.

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 70 of 71
Aug.04.22

6. Sample Code
Sample code can be downloaded from the Renesas Electronics website.

7. Reference Documents
RL78/G23 User’s Manual: Hardware (R01UH0896)
RL78 family user's manual software (R01US0015)
The latest versions can be downloaded from the Renesas Electronics website.

Technical update
The latest versions can be downloaded from the Renesas Electronics website.

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

R01AN6255EJ0100 Rev.1.00 Page 71 of 71
Aug.04.22

Revision History

Rev. Date
Description
Page Summary

1.00 Aug.04.22 — First Edition

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2022 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Specifications
	1.1 Overview of Specifications
	1.1.1 Overview of Renesas Flash Driver RL78 Type01
	1.1.2 Code Flash Memory
	1.1.3 Flash Memory Self-Programming
	1.1.4 Boot Swap Function
	1.1.5 Updating the Firmware
	1.1.6 Flash Shield Window
	1.1.7 Obtaining Renesas Flash Driver RL78 Type01

	1.2 Overview of Operation
	1.2.1 Communication Specifications
	1.2.2 START Command
	1.2.3 WRITE_BOOT1 Command
	1.2.4 WRITE_TEMP Command
	1.2.5 END Command
	1.2.6 Checksum Calculation Method
	1.2.7 Operation of the Sample Program
	1.2.8 Copy Flag

	2. Operation Confirmation Conditions
	3. Hardware Descriptions
	3.1 Example of Hardware Configuration
	3.2 List of Pins to be Used

	4. Software Explanation
	4.1 Setting of Option Byte
	4.2 Setting Up the Startup Routine
	4.2.1 Defining the Stack Area Section (.stack_bss)
	4.2.2 Deploying the Reprogramming Program in the RAM Area

	4.3 Setting the ROM Size Specification Constant
	4.4 On-chip Debug Security ID
	4.5 Resources Used by the Sample Program
	4.5.1 List of Sections in the ROM Area
	4.5.2 List of the Sections in the RAM Area

	4.6 List of Constants
	4.7 Enumeration Type
	4.8 List of Variables
	4.9 List of Functions
	4.10 Specifications of Functions
	4.11 Flowcharts
	4.11.1 Main Processing
	4.11.2 Processing to receive and run the firmware update command
	4.11.3 Initialization processing for RFD RL78 Type01
	4.11.4 START command processing
	4.11.5 END command processing
	4.11.6 Range erase processing for the code flash memory
	4.11.7 Block erase processing for the code flash memory
	4.11.8 Write-and-verify processing for the code flash memory
	4.11.9 Write processing for the code flash memory
	4.11.10 Verify processing for the code flash memory
	4.11.11 Sequence end processing for the code flash memory
	4.11.12 Sequence end processing for the extra area
	4.11.13 Boot swapping execution processing
	4.11.14 Callback processing at a sending completion interrupt for UART0
	4.11.15 Data sending processing by UART0
	4.11.16 Normal response sending processing by UART0
	4.11.17 Processing to copy data from the Temporary area
	4.11.18 Processing to reprogram the code flash memory
	4.11.19 Processing to receive asynchronous command packets
	4.11.20 Processing to obtain the size of the receive data
	4.11.21 Processing to clear the receive buffer
	4.11.22 Processing to turn on the error LED

	5. GUI-Based Tool for Writing Data
	5.1 Generating a File Required to Write Data
	5.1.1 Using CS+ to Generate a Binary File
	5.1.2 Using e2studio to Generate a Binary File
	5.1.3 Using IAR EW to Generate a Binary File

	5.2 Using GUI-Based Tool

	6. Sample Code
	7. Reference Documents
	Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice
	Contact information
	Corporate Headquarters
	Trademarks

