1LENESAS Application Note

RL78/G23
Updating Firmware by Using UART Communication and Boot Swapping

Introduction

This application note describes how to update firmware in code flash memory by using an update program
that remains in the code flash memory.

In this method, the code flash memory is divided into two areas: the Execute area and the Temporary area.

Renesas Flash Driver RL78 Type0L1 is used to reprogram the flash memory and perform boot swapping.

Target Device
RL78/G23

When applying the sample program covered in this application note to another microcomputer, modify the
program according to the specifications for the target microcomputer and conduct an extensive evaluation of
the modified program.

ROLAN6255EJ0100 Rev.1.00 Page 1 of 71
Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

Contents

I Y 1= T ox o= o) L 4
1.1 Overview Of SPECIfICALIONSceiiiiiiiiiiiiie e e e e s e e e e e e s e s e e e e e e e snsnraeereeeeeeannrnneees 4
1.1.1 Overview of Renesas Flash Driver RL78 TYPEOLccccuuuieieeeieiiiieiieee e e e s e sireee e e e e e ssnnenieeee e e e e s snnsnneees 5
7 @ To [I = T TV =T 0 T oSSR 6
1.1.3 Flash Memory Self-Programming......... ... et e e e e e s s eeee e e e e s sasnsbeeeaaaeesaannreneeas 8
0 S = T To] RS- T I 0 T i o o LU RPTPPPO 8
1.1.5 Updating the FIFMWATE ...ttt e e et e et e e e e e et ettt e e e e e s e aanebeeeeaaeeeaannsbeeeeaaeesaannsnneeas 9
1.1.6 Flash Shield WINOOWcoiiiiiiiiiiiie ettt ettt et e e st e e s nnbae e e s nnbae e e e nnbeas 11
1.1.7 Obtaining Renesas Flash Driver RL78 TYPEOL.......coiiiiiiiiiiiieeie e s scirtteee e e e s s sstaen e e e e e s s snnreeeeeeeeeanennes 11
2 @ YT oV T Ao @] o T= - L1 o] o SO UPESRR 12
1.2.1 Communication SPECIfICALIONSoiieiiiiiiiie ettt e e e e e st e e e e e e e e snbbereeeaeeeaaannes 12
1.2.2 START COMIMANG ...ttt e ettt e e e e e s bbb et et e e e e s s aab e beeeeaaeaeannbebeaeaeeeaaannbbeeeaaaaesaannnes 13
1.2.3 WRITE_BOOTL COMMANGcoiiiiiiiieiiiiiieiiiietesaiteeesssteeesassaeeesssseeesssseeesassseeessssseeesasssesessssseeessnsees 13
1.2.4 WRITE_TEMP COMMANGouviiiiiiiiiiiiiieiieee e e s ssieiieer e e e e e ssteteeeeeeessssststeeeeeeesssnnstseneeeeessssnssssneneeeessnnnes 13
R I =Y | B I @o] 103 F= o o [RSP UPRP 13
1.2.6 Checksum Calculation MELNOM...........coiiiiiiiiiiiie et e s b e e e nnees 13
1.2.7 Operation of the SAMPIE PrOgram...........cooii it e e ee e e e e e s e sabbeeeeaaaeesaaanes 14
2 B @] o)Al o F- Vo IO PSP UPTPUPPPPTN 16
2. Operation Confirmation CONGITIONSuuuuuuuuiiiiiiiiii s a e e e aeas 17
3. Hardware DESCHPLIONSuuuuiiiieeii i e e e e e et e e e e e e e e et s e e e eeeeeestta s e eaeeeeeesaenas 18
3.1 Example of Hardware ConfigUrationceceiiiiciiiiriee s iiiiiie e e e e s s ssieee e e e e e s sssvntee e e e e e e s snnnrnreeeeeessennnes 18
3.2 LISt Of PINS 10 D8 USEA ...ttt ettt e s eb e e e b 19
4. Software EXPIANAtiON...........ccoiiiiiiiiii e 19
o R ST~ x g To o H®] o1 T g TN 2 V4 - SRR 19
4.2 Setting Up the Startup ROULINE.........ooiiiiiiiiiiiieeie s s s e e e e s s e e e e e e s s et eeeeae e s ssnnntanneeaeeen 20
4.2.1 Defining the Stack Area Section (.StaCK_DSS)ooiiiiiiiiiiie e 20
4.2.2 Deploying the Reprogramming Program in the RAM AF€accoiiiiiiiiiiiiiiiiae e 21
4.3 Setting the ROM Size Specification CONSIANTooi it e e e 22
4.4 ON-Chip DEDUQY SECUILY Dciiiiiiiieeie e e e et ie e e s e e e e e e e e st e e e e e e e s sn e eeeeeeeesasnnstnneeeeeessansnnanneeeeenan 22
4.5 Resources Used by the Sample Program ... e e e e s e e e nnnreneeeee s 23
4.5.1 List of Sections iN the ROM AFCac.ueii ittt ettt e et e e s st e ee e s sebeeeessnbeeeenns 23
4.5.2 List of the Sections iN the RAM ANuuiiiiiiiiiitie ettt e et e e e e e e raab e eeaaaa s 23
T I 1= o) @0 11 = | £ UTT PP PPRT 24
o A = 1W] g L=T = LT o N Y/ o 1= I PP UUTT PP 25
4.8 LISt Of VAIADIES ... ettt rh bt e e e sttt e e s et b et e e s bt e e e e e bbe e e e abaeee e e 26
e I o 0 Tod 1T o LSO PUPRPPTPRRN 26
0 O TS o 1= Tod o= L o] g S0 1] od T £ PR 27
ot I o (o 1LY = T £ PP PPPRT 33
RO1AN6255EJ0100 Rev.1.00 Page 2 of 71

Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

Y = V1 T 0T | o SRR 33
4.11.2 Processing to receive and run the firmware update command.............occouuiiiiiiiiiiiiiiiie e 35
4.11.3 Initialization processing for RFD RL78 TYPEOL.........uuiiiiiiiiiiiiiiiit ettt eee e e e ee e e 38
4.11.4 START COMMANT PrOCESSING ...uvvtteetiaaiaiiutteeteeaeeaaatttteeeaaeaaaaaababeeeaaaasaaanbeeeeeeaesaaaansbsseeeaeessaannbbnneaaaaans 39
4.11.5 END COMMANA PrOCESSING.....ccuuterreireeesiiiuteeereteeesaasntaeereeesesasteteeeeeeessaaastsrerereessaannstesreeeeessamsnsrnneeeeenes 40
4.11.6 Range erase processing for the code flash MemMOry..........ccoocuiiiiiiie e 41
4.11.7 Block erase processing for the code flash MEMOrYoooviiiiiiiiii e 42
4.11.8 Write-and-verify processing for the code flash Memory ... 43
4.11.9 Write processing for the code flash MemOry ... 44
4.11.10Verify processing for the code flash MEeMOIYoo i 45
4.11.11Sequence end processing for the code flash MeMOrY ... 46
4.11.12Sequence end processing fOr the EXIra Ar€acccuvvviiiiee i e e e e 48
4.11.13B00t SWapPiNg €XECULION PrOCESSINGeiiuurrrerereeeseiitteeereeeesiastntreereeesssaastarerreeeesaansrrreeeseessaasssreneeeeenes 50
4.11.14Callback processing at a sending completion interrupt for UARTO........ccuviiiiieiiiiiiiiiiiie e 51
4.11.15Data sending processiNg DY UARTO ...ttt e e e e e e et e e e e e e e e s e aanbbeneaaaeeas 52
4.11.16Normal response sending processing DY UARTOuuuiiiiiiiiiiiiiiiee e 53
4.11.17Processing to copy data from the TEMPOrary @r€@........eeeeiieiuiiriieeeesiiiiiieeee e e s s ssiree e e e e e e snnreeeeeee s 54
4.11.18Processing to reprogram the code flash MemOry ... 55
4.11.19Processing to receive asynchronous command PacketSc.ueevveeiiiiiiiiiiiee e 56
4.11.20Processing to obtain the size of the receive data. ..o 57
4.11.21Processing to clear the receive DUfEr......... ..o 58
4.11.22Processing to turn 0N the @rror LEDuuiiiiiii ettt e e e e e annbe e e e e e e 59
5. GUI-Based TOOI fOr WItING DALAuuuuuuiiiiiiiiiiiii e a e 60
5.1 Generating a File Required t0 WIEE Dataoiiuuiiiiiiieeaiiiiiiiee ettt e e e e e e e e eaees 60
5.1.1 Using CS+ to Generate @ BINArY Fileooi ettt e e e e 60
5.1.2 Using e2studio to Generate a BiNary Filcccuuiiiiiii oo e e e e e e re e e e e e e e 64
5.1.3 Using IAR EW to Generate @ BiNAry Filecccuviiiiiiiii et e e e e e e e e e e e e e 66
72 U £ o To [€8] o 2 7 1Yo R o o PR 68
LTS = 1101 o] L= 0T [T 70
7. REfErenCe DOCUMEBNTSouuiiii ettt e e e ettt e e e e e e e eeaeta e e e e eaeeeesneanaaeaeeeeeennnnns 70
YAV] To] T 151 (o Y2 71
RO1AN6255EJ0100 Rev.1.00 Page 3 0of 71

Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

1. Specifications
1.1 Overview of Specifications
The sample program covered in this application note updates the firmware in the code flash memory.

The boot area is reprogrammed by using the boot swapping function. The other areas are reprogrammed by
using temporary areas in which the reprogramming data is temporarily saved. This method allows the
firmware to be updated while the user program (application) is running.

The firmware is updated via UART communication by using four commands: START, WRITE_BOOT]1,
WRITE_TEMP, and END.

The execution status of the application and commands is indicated by LEDs.
Two sample projects are included in this application note, each can be replaced by firmware updates.

If you use a product with ROM size other than 128 KB or 768 KB, please refer to “1.2.8 Copy Flag” and
“4.3 Setting the ROM Size Specification Constant” and modify the sample programs.

Table 1-1 Directory of Sample Project

workspace Description
\workspace
\CS+
\e2studio
\IAR
\128KB Project for 128KB products
\LED1 Sample project 1 (Blinks LED1)
\LED8 Sample project 2 (Blinks LEDS8)
\768KB Project for 768KB products
\LED1 Sample project 1 (Blinks LED1)
\LED8 Sample project 2 (Blinks LED8)

LED output port assign differ between the project for 128KB and the project for 768KB. In this application
note, in the case of using the project for 128 KB is explained as an example. When using the project for 768
KB, please read the port numbers as shown in the table below.

Table 1-2 Assigned port for LED output

LED no. Project for 128KB products Project for 768KB products
LED1 P03 P33
LED2 P02 P34
LED3 P43 P145
LED4 P42 P106
LED5S P77 P105
LED6 P41 P104
LED7 P31 P103
LEDS P76 P46
RO1AN6255EJ0100 Rev.1.00 Page 4 of 71

Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

Table 1-3 Peripheral Function and Use

Peripheral Function Use
Serial Array Unit UARTO Data communication
P03, P02, P43, P42, P77, P41, P31, P76 Digital output controlling LED1 to LED8

Table 1-4 Application operating state and indication on LED1 to LEDS8. (Updating sample project 1
to 2)

Application operating state Indication on LED1 to LED8 Operating firmware
Application before updated is LED1 blinks Sample project 1
running

START command received LED?Z lights up

WRITE_BOOT1 command received | LED3 lights up
WRITE_TEMP command received LEDA4 lights up

END command received LEDS lights up

Temporary area being copied LEDG lights up

Error termination Only LED7 lights up

Application after updated is running | LEDS8 blinks Sample project 2

1.1.1 Overview of Renesas Flash Driver RL78 Type0Ol
Renesas Flash Driver RL78 Type01 is software that reprograms the firmware in the code flash memory
installed on an RL78 microcontroller.

The content of the code flash memory can be reprogrammed by calling Renesas Flash Driver RL78
TypeO1l from the user program.

To perform flash memory self-programming, the user program needs to perform the necessary initialization
processing and run the functions that correspond to the necessary operations in C or assembly language.

ROLAN6255EJ0100 Rev.1.00 Page 5 of 71
Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

1.1.2 Code Flash Memory

The program area (from address 08000H to the last address) is divided into two areas and the sample
program covered in this application note uses these two areas. The first area (from address 08000H to the
boundary) is called the Execute area and the second area (from the boundary to the last address) is called
the Temporary area. The address of the boundary and the last address differ depending on the size of the
ROM. The update program is written in boot cluster 1 and the Temporary area. Therefore, if you write a user
program, make sure that it is stored within boot cluster O and the Execute area.

Table 1-5 Start and End Addresses of the Two Areas According to ROM Size

ROM size Execute area Temporary area

96KB 08000H to FFFFH 10000H to 17FFFH
128KB 08000H to 13FFFH 14000H to 1FFFFH
192KB 08000H to 1BFFFH 1CO00H to 2FFFFH
256KB 08000H to 23FFFH 24000H to 3FFFFH
384KB 08000H to 33FFFH 34000H to 5FFFFH
512KB 08000H to 43FFFH 44000H to 7FFFFH
768KB 08000H to 63FFFH 64000H to BFFFFH

Figure 1-1 Memory Map

FFFFFH 1FFFFH

Special function registers (SFRs)
256 bytes

FFFOOH
FFEFFH | General-purpose registers

Program area

FFEEOH 32 bytes
FFEDFH
RAM -
EBEOOH 16 Kbytes 040CEH 07FFFH
FBEFFH] 040CDH On-chip debug security
Mirror ID setting area
35.75 Kbytes 10 bytes
F3000H Y 040C4H Y
E2FEFH 040C3H Option bytes area
Data flash memory 040COH 4 bytes Boot cluster 1
8 Kbytes
F1000H Y 040BFH CALLT table
FOFFFH 04080H 64 bytes
Reserved
0407FH
Data memory space F0800H Vec;‘;’stib'te area
FO7FFH Extended special function 04000H vies
registers (2nd SFRs) 03FFFH
FOOOOH 2 Kbytes
EEFEFH Program area
000CDH
000CEH On-chip debug security
ID setting area
Reserved 000C4H 10 bytes Boot cluster 0
000C3H Option bytes area oot cluster
000COH 4 bytes
000BFH CALLT table
20000H 00080H 64 bytes
1FFFFH 0007FH
Code flash memory Vector table area
128 Kbytes 128 bytes
00000H 00000H

Caution: If you use the boot swap function, make sure that the same value that is set in the option byte area
in boot cluster 0 (OO0OCOH to 000C3H) is also set in the option byte area in boot cluster 1 (010COH to
010C3H) because these areas are swapped by the function.

ROLAN6255EJ0100 Rev.1.00 Page 6 of 71
Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

Figure 1-2 Code Flash Memory Map

Ox1FFFF Ox1FFFF
Varies depending on ROM size
Program area
Temporary area
0x8000
Ox7FFF 0x14000
Ox13FFF
Boot cluster 1 %
0x4000 Varieé\depending on ROM size
OX3FFF Execute area
Boot cluster 0
0x0000 0x8000

The following table summarizes the features of the code flash memory of the RL78/G23 microcontroller.

Table 1-6 Features of the Code Flash Memory

Iltem

Description

Minimum unit of erasure

1 block (2,048 bytes)

Minimum unit of writing

1 word (4 bytes)

Minimum unit of verification

1 byte

Security functions

The functions for protection against erasure of blocks, writing to blocks,
and reprogramming of the boot area are provided. (All these functions are
disabled in the factory settings.)

The flash shield window is provided, which can protect all area except the
specified window range from write and erasure operations during flash
memory self-programming only.

Renesas Flash Driver RL78 Type01 can be used to change the security
settings.

Caution: The security functions that are available during flash memory self-programming are only protection
against reprogramming of the boot area and the flash shield window.

RO1AN6255EJ0100 Rev.1.00

Aug.04.22

Re Page 7 of 71
KENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

1.1.3 Flash Memory Self-Programming

The RL78/G23 microcontroller is provided with a library required for performing flash memory self-
programming. Flash memory self-programming can be performed by calling functions of Renesas Flash
Driver RL78 Type01 from the reprogramming program.

The RL78/G23 microcontroller has a sequencer, which is a circuit that only controls the flash memory. The
flash memory self-programming in the RL78/G23 microcontroller uses the sequencer to control the
reprogramming of the flash memory. Note that the code flash memory cannot be read while it is being
controlled by the sequencer. However, the user program may need to operate while the sequencer is
controlling the code flash memory. In such a case, when erasure and write operations are performed and
security flags are set for the code flash memory, certain Renesas Flash Driver RL78 Type0Ol1 segments or the
reprogramming program must be relocated to the RAM. If the user program does not need to run while the
sequencer is controlling the code flash memory, Renesas Flash Driver RL78 Type01 and the reprogramming
program located on the ROM (code flash memory) can run without relocation.

1.1.4 Boot Swap Function

If the reprogramming of the area in which any of following items are located fails for reasons such as a
temporary blackout or reset due an external factor, the data being reprogrammed is corrupted: vector table
data, basic program functions, and Renesas Flash Driver RL78 TypeO1. If data corruption occurs, the user
program can no longer be restarted or reloaded by performing a reset. This problem can be prevented by
using the boot swap function.

The boot swap function swaps the boot program area (boot cluster 0) with the swap area (boot cluster 1).
Before reprogramming starts, the boot swap function writes a new boot program boot cluster 1. The function
then swaps boot cluster 0 with boot cluster 1, causing boot cluster 1 to become the boot program area. This
ensures that the boot program can normally be started when a reset is performed the next time even if a
temporary blackout occurs while the boot program area is being reprogrammed because boot cluster 1 is
used to boot the program.

ROLAN6255EJ0100 Rev.1.00 Page 8 of 71
Aug.04.22 RENESAS

RL78/G23

Updating Firmware by Using UART Communication and Boot Swapping

1.1.5 Updating the Firmware

The following shows an overview of how a program is rewritten by flash memory self-programming. The
program that performs flash memory self-programming is deployed in boot cluster O.

The sample program covered in this application note is designed to reprogram the boot area and program

area.

Figure 1-3 Rewriting operation image (1/2)

Erase

Old Execute program

Erase

Old Boot program

(2) Write new program to Boot cluster 1 and Temporary area

Write new Execute program

New Execute program

Write new Boot program

Old Boot program

(3) Execute area (0x8000~0x13FFF)

New Execute program

Erase

New Boot program

Old Boot program

(1) Erase boot cluster 1 (0x4000~0x7FFF) and Temporary area (0x14000~0x1FFFFF)

Temporary area

Execute area

Boot cluster 1

Boot cluster 0

Temporary area

Execute area

Boot cluster 1

Boot cluster 0

Temporary area

Execute area

Boot cluster 1

Boot cluster 0

RO1AN6255EJ0100 Rev.1.00
Aug.04.22

RENESAS

Page 9 of 71

RL78/G23

Updating Firmware by Using UART Communication and Boot Swapping

Figure 1-4 Rewriting operation image (2/2)

(4) Copy new program from temporary area to execute area

New execute program

Copy new execute program

New boot program

Old boot program

(5) Execute boot swap

New Execute program

New Execute program

New Boot program

C

Old Boot program

(6) Boot swap executed

New Execute program

New Execute program

Old Boot program

New Boot program

Temporary area

Execute area

Boot cluster 1

Boot cluster 0

Temporary area

Execute area

Boot cluster 1

Boot cluster 0

Temporary area

Execute area

Boot cluster 0

Boot cluster 1

RO1AN6255EJ0100 Rev.1.00

Aug.04.22

RENESAS

Page 10 of 71

RL78/G23

Updating Firmware by Using UART Communication and Boot Swapping

1.1.6 Flash Shield Window

The flash shield window is a security function available during flash memory self-programming. This
function protects all areas except the specified window range from the write and erase operations during
flash memory self-programming only.

The following figure is an overview of the flash shield window when the start block is 08H and the end

block is 1FH.

Figure 1-5 Image of a flush shield window

1FFFFH

08000H
07FFFH

04000H
03FFFH

00000H

Block 3FH (end block)

Window area

(rewriteable)

Block 08H (start block)

Block 07H

Flash shield area
(unrewritable)

Block 00OH

1.1.7 Obtaining Renesas Flash Driver RL78 Type0Ol

Before you compile the sample program, download the latest version of flash memory self-programming
code (Renesas Flash Driver RL78 Type01), and then copy it to the RFD folder.

workspace

Description

r01an6255jj0100-
rI78g23-flash

\src

\RFD

\include

\source

\userown

Place the downloaded Renesas Flash Driver
RL78 TypeOl1

You can obtain the Renesas Flash Driver RL78 Type01 from the following URL:

https://www.renesas.com/jp/ja/document/scd/renesas-flash-driver-rl78-type-01-rl789g23

RO1AN6255EJ0100 Rev.1.00

Aug.04.22

Page 11 of 71

RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

1.2 Overview of Operation

(1) Perform initial setup for pins.

- Set the P03, P02, P43, P42, P77, P41, P31, and P76 pins to output mode.

(2) Perform initial setup for the serial array unit.

Use the UARTO serial array unit (set TXDO for P12 and RXDO for P11).
Set CKOO for the operation clock and fCLK/2 for the clock source.

Set the clock source for the transfer mode settings.

Set 8 bits for the data bit length settings.

Set LSB for the data transfer direction settings.

Set "no parity" for the parity settings.

Set 1 bit for the stop bit length settings.

Set "standard" for the send data level settings.

Set 115,200 bps for the baud rate settings.

(3) Use command communication to reprogram the data in boot cluster 1 and the program area, and then
perform boot swapping.

1.2.1 Communication Specifications

The sample program covered in this application note receives the reprogramming data via UART and
performs flash memory self-programming. The sample program then receives the START, WRITE_BOOT]1,
WRITE_TEMP, or END command. The sample program then performs the processing according to the
received command. If the processing terminates normally, the sample program returns "01H" (normal) to the
command sender. If the processing terminates abnormally, the sample program turns on the LED that
indicates abnormal termination (without returning a response) and performs no subsequent processing. The

following shows the UART communication settings and the specifications of the commands.

Table 1-7 UART Communication Settings

Data bit length (bits) 8

Data transfer direction | LSB first
Parity setting No parity
Transfer rate (bps) 115,200

RO1AN6255EJ0100 Rev.1.00

Aug.04.22

RENESAS

Page 12 of 71

RL78/G23

Updating Firmware by Using UART Communication and Boot Swapping

1.2.2 START Command

When the sample program receives the START command, it performs initial setup for flash memory self-
programming and erases the Temporary area in boot cluster 1. If the processing terminates normally, the
sample program returns "01H" (normal). If the processing terminates abnormally, the sample program turns
on the LED that indicates abnormal termination (without returning a response) and performs no subsequent

processing.
START code Data length Command Data Checksum
(01H) (0002H) (02H) (empty) (1 byte)

1.2.3 WRITE_BOOT1 Command

When the sample program receives the WRITE_BOOT1 command, it writes the received data to the boot
cluster 1 area (4000H to 7FFFH) while verifying the written data for each 256 bytes. If the processing
terminates normally, the sample program increments the write destination address by 256 bytes and returns
"01H" (normal) to the command sender. If the processing terminates abnormally, the sample program turns
on the LED that indicates abnormal termination (without returning a response) and performs no subsequent

processing.
START code Data length Command Data Checksum
(01H) (0102H) (03H) (256 bytes) (1 byte)

1.2.4 WRITE_TEMP Command

When the sample program receives the WRITE_TEMP command, it writes the received data to the
Temporary area while verifying the written data for each 256 bytes. If the processing terminates normally, the
sample program increments the write destination address by 256 bytes and returns "01H" (normal) to the
command sender. If the processing terminates abnormally, the sample program turns on the LED that
indicates abnormal termination (without returning a response) and performs no subsequent processing.

(The write destination address of the Temporary area differs depending on the product used.)

START code
(01H)

Data length
(0102H)

Command
(04H)

Data
(256 bytes)

Checksum
(1 byte)

1.2.5 END Command

When the sample program receives the END command, it erases the Execute area. If erasure terminates
normally, the sample program copies data from the Temporary area to the Execute area. If copy terminates
normally, the sample program returns "01H" (normal) to the command sender. The sample program then
reverses the boot flag to cause a reset to occur and performs boot swapping.

START code
(01H)

Data length
(0002H)

Command
(O5H)

Data
(empty)

Checksum
(1 byte)

1.2.6 Checksum Calculation Method

For checksum calculation, the 32-bit addition method is used. This method uses as a checksum the last 8

bits of the result of adding a 1-byte value from address 00000000H for the command or data.

RO1AN6255EJ0100 Rev.1.00

Aug.04.22

RENESAS

Page 13 of 71

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

1.2.7 Operation of the Sample Program
The following shows the operation of this sample program:

(1) Set up the input and output ports.

(2) Perform initial setup for SAUO channel 0.

(3) Wait for data to be sent from the command sender.

(4) Upon receiving the START command, perform initial setup for self-programming.

(5) Set the P02 pin for high-level output to turn on LED2, which indicates that the START command was
received.

(6) Callthe r_CF_EraseBlock function to erase boot cluster 1.
(7) Callthe r_CF_EraseBlock function to erase the data in the Temporary area.
(8) Send "01H" (normal) to the command sender.

(9) Setthe P02 pin for low-level output to turn off LED2, which indicates that the START command was
received.

(10) Receive the WRITE_BOOT1 command (03H) and write data (256 bytes).

(11) Set the P43 pin for high-level output to turn on LED3, which indicates that the WRITE_BOOT1
command was received.

(12) Call the r_CF_WriteData function to write the received data to the write destination address (local
variable for writing to boot cluster 1). The initial value of the local variable for writing to boot cluster 1
is the start address of boot cluster 1.

(13) Call the r_CF_VerifyData function to verify the written data against the received data.
(14) Add a 256-byte checksum to the write destination address (local variable for writing to boot cluster 1).
(15) Send "01H" (normal) to the command sender.

(16) Set the P43 pin for low-level output to turn off LED3, which indicates that the WRITE_BOOT1
command was received.

(17) Repeat steps (11) to (17) until receiving the WRITE_TEMP command (04H).
(18) Receive the WRITE_TEMP command (04H) and write data (256 bytes).

(19) Set the P42 pin for high-level output to turn on LED4, which indicates that the WRITE_BOOT1
command was received.

(20) Call the r_CF_WriteData function to write the received data to the write destination address (local
variable for writing to the Temporary area). The initial value of the local variable for writing to the
Temporary area is the start address of the Temporary area.

(21) Call the r_CF_VerifyData function to verify the written data against the received data.

(22) Add a 256-byte checksum to the write destination address (local variable for writing to the Temporary
area).

(23) Send "01H" (normal) to the command sender.

(24) Set the P42 pin for low-level output to turn off LED4, which indicates that the WRITE_TEMP
command was received.

(25) Repeat steps (19) to (25) until receiving the END command (05H).
(26) Perform the following processing if receiving the END command:

(27) Set the P77 pin for high-level output to turn on LEDS5, which indicates that the END command was
received.

(28) Call the r_CF_EraseBlock function to erase the data in the Execute area.

(29) Set the P41 pin for high-level output to turn on LEDG6, which indicates that copy to the Temporary area
is in progress.

ROLAN6255EJ0100 Rev.1.00 Page 14 of 71
Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

(30) Call the r_temp_copy function to copy data from the Temporary area to the Execute area.*

(31) Set the P41 pin for low-level output to turn off LED6, which indicates that copy to the Temporary area
is in progress.

(32) Send "01H" (normal) to the command sender.

(33) Call the r_RequestBootSwap function to reverse the value of the boot flag so that boot clusters 0 and
1 are swapped when a reset occurs. Cause an internal reset to occur.

* |If a reset occurs (due to a temporary blackout, for example) while data is being copied from the
Temporary area to the Execute area, the r_temp_copy function is called again. The r_RequestBootSwap

function is called after the copy is complete.

Caution: If the sample program receives the END command (05H) in steps (10) to (17), the sample program
copies data from the Temporary area to the Execute area unless there is an error. Then, the sample
program sends "01H" (normal), calls the r_RequestBootSwap function, and performs boot swapping. If
the sample program receives the END command (05H) while boot cluster 1 is being reprogrammed,
the sample program performs boot swapping before the reprogramming ends normally. In this case,
the sample program can no longer start after the boot area is swapped.

Caution: If flash memory self-programming does not end normally, the sample program only turns on LED6
and performs no subsequent processing.

ROLAN6255EJ0100 Rev.1.00 Page 15 of 71
Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

1.2.8 Copy Flag

The sample program covered in this application note uses a 4-byte area at the end of the Execute area as
the copy flag section in which to set a copy flag.

If a program is normally written, this copy flag is set to AAAA5555H. The copy flag is initialized when the
Execute area is erased immediately before data is copied from the Temporary area to the Execute area. If a
reset occurs (due to a temporary blackout) while data is being written, the copy flag is set to a value other
than AAAA5555H because the write processing does not terminate normally.

When the sample program starts, it checks the copy flag. If the value of the copy flag is not AAAA5555H, the
sample program writes data and then performs swapping.

The following table shows the start and end addresses of the Execute area and the address of the copy flag
section according to the ROM size.

Table 1-8 Location of the Copy Flag Section According to the ROM Size

ROM Size Execute Area Address of the Copy Flag Section
96KB 08000H to FFFFH FFFCH

128KB 08000H to 13FFFH 13FFCH

192KB 08000H to 1BFFFH 1BFFCH

256KB 08000H to 23FFFH 23FFCH

384KB 08000H to 33FFFH 33FFCH

512KB 08000H to 43FFFH 43FFCH

768KB 08000H to 63FFFH 63FFCH

RO1AN6255EJ0100 Rev.1.00 Page 16 of 71

Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

2. Operation Confirmation Conditions

The operation of the sample code provided with this application note has been tested under the

following conditions.

Table 2-1 Operation Confirmation Conditions

Item

Description

MCU used

RL78/G23 (R7TF100GLG)

Board used

[Project for 128KB products]

RL78/G23-64p Fast Prototyping Board (RTK7RLG230CLG000BJ)
[Project for 768KB products]

RL78/G23-128p Fast Prototyping Board (RTK7RLG230CSN000BJ)

Operation frequency

High-speed on-chip oscillator clock (flH): 32MHz

Operating voltage

3.3V (can be operated at 3.1V to 3.5V)

LVD operation (ViLvp): Reset mode
At rising edge TYP. 1.90 V (1.84 V to 1.95 V)
At falling edge TYP. 1.86 V (1.80 Vt0 1.91 V)

Integrated development
environment (CS+)

CS+ for CC V8.06.00 from Renesas Electronics Corp.

C compiler (CS+)

CC-RL V1.10.00 from Renesas Electronics Corp.

Integrated development
environment (e2studio)

e2studio V2021-10 from Renesas Electronics Corp.

C compiler (e2studio)

CC-RL V1.10.00 from Renesas Electronics Corp.

Integrated development
environment (IAR)

IAR Embedded Workbench for Renesas RL78 V4.21.1 from IAR Systems
Corp.

C compiler (IAR)

IAR C/C++ Compiler for Renesas RL78 V 4.21.1.2409 from IAR Systems
Corp.

RO1AN6255EJ0100 Rev.1.00 Page 17 of 71

Aug.04.22

RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

3. Hardware Descriptions

3.1 Example of Hardware Configuration
Figure 3-1 shows an example of the hardware configuration used in the application note.

Figure 3-1 Hardware Configuration

VbD VbD
EVbbp
VbD
RL78/G23 RESET
S
PO3 AR = AT
I~
P02 Wy T LED2
P43 Wy 7V LED3
N P42 Wy J LED4
S
I REGC P77 Wy TV LEDS
EVss P4l AAA S AT
Vss P31 Wy J LeED7
77 P76 Wy TV LEDS

P12/TxDO —» UART Send
P11/RxD0O |[¢—— UART Receive
P40/TOOLO [«—» On-chip Debugger

Cautions:1. The purpose of this circuit is only to provide the connection outline and the circuit is simplified
accordingly. When designing and implementing an actual circuit, provide proper pin treatment
and make sure that the hardware's electrical specifications are met (connect the input-only ports
separately to Vop or Vss via a resistor).

2. Connect any pins whose name begins with EVss to Vss and any pins whose name begins with
EVop to Vo, respectively.
3. Vop must be held at not lower than the reset release voltage (Vivp) that is specified as LVD.

ROLAN6255EJ0100 Rev.1.00 Page 18 of 71
Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

3.2 List of Pins to be Used

Table 3.1 lists the pins to be used and their functions.

Table 3-1 Pins to be Used and their Functions

Pin Input/Output | Description
P12//TxDO Output UART serial data transmit pin
P11/ RxDO Input UART serial data receive pin
P03, P02, P43, P42, P77, P41, P31, Output LED1-LEDS control pins
P76
Caution: In this application note, only the used pins are processed. When actually designing your circuit,

make sure the design includes sufficient pin processing and meets electrical characteristic

requirements.

4. Software Explanation
4.1 Setting of Option Byte

Table 4-1 shows the option byte settings.

Table 4-1 Option Byte Settings

Address Setting Value Description
000COH/040COH 11101111B Disables the watchdog timer.
(Counting stopped after reset)
000C1H/040C1H 11111110B LVD operation (VLvp): Reset mode
At rising edge TYP. 1.90 V (1.84 V to 1.95 V)
At falling edge TYP. 1.86 V (1.80 Vt0 1.91 V)
000C2H/040C2H 11101000B HS mode,
High-speed on-chip oscillator clock (fiH): 32 MHz
000C3H/040C3H 10000101B Enables on-chip debugging

The option bytes of the RL78/G23 comprise the user option bytes (000COH to 000C2H) and on-chip debug

option byte (OO0C3H).

The option bytes are automatically referenced and the specified settings are configured at power-on time or
the reset is released. When using the boot swap function for self-programming, it is necessary to set the
same values that are set in 000COH to 000C3H also in 040COH to 040C3H because the bytes in 000COH to
000C3H are swapped with the bytes in 040COH to 040C3H.

RO1AN6255EJ0100 Rev.1.00
Aug.04.22

Page 19 of 71

RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

4.2 Setting Up the Startup Routine

4.2.1 Defining the Stack Area Section (.stack_bss)

Define the stack area section (.stack _bss).

In the startup routine configuration file (cstart.asm), change the settings as follows:

;$IF (__RENESAS_VERSION__ < 0x01010000)

; W [CAUTION] !

; Set up stack size suitable for a project.
.SECTION .stack_bss, BSS

_stackend:

.DS 0x800

_stacktop:
;3ENDIF

; setting the stack pointer

$IF (_RENESAS_VERSION__ >= 0x01010000)
‘MOVW SP,#LOWW(__STACK_ADDR_START)

;$ELSE ; for CC-RL V1.00

MOVW SP,#LOWW(_stacktop)
$ENDIF

; initializing stack area

$IF (_RENESAS_VERSION__ >= 0x01010000)
‘MOVW AX,#LOWW(__STACK_ADDR_END)

;$ELSE ; for CC-RL V1.00
MOVW AX#LOWW(_stackend)

$ENDIF
CALL !I_stkinit

Comment out the line by prefixing a
semicolon (;).

Specify any stack size of your choice
by using a hexadecimal number.

Comment out the line by prefixing a
semicolon (;).

Comment out the line by prefixing a
semicolon (;).
Comment out the line by prefixing a
semicolon (;).

Comment out the line by prefixing a
semicolon (;).
Comment out the line by prefixing a
semicolon (;).

RO1AN6255EJ0100 Rev.1.00

Page 20 of 71
Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

4.2.2 Deploying the Reprogramming Program in the RAM Area
Confirm the programs that are used to reprogram the firmware and deploy them to the RAM area.

Table4-2 shows the sections where the programs used to reprogram the firmware exist and the sections in
which the programs are to be deployed.

Table4-2 Section Information

Section Destination Section Description

RFD_CMN _f RFD_CMN_fR Program section for the API functions that control the common
flash memory

RFD_CF_f RFD_CF_fR Program section for the API functions that control the code flash
memory

RFD EX f RFD EX fR Program section for the API functions that control the extra area

SMP_CMN_f SMP_CMN_fR Program section for the sample functions that control the
common flash memory

SMP_CF f SMP_CF _fR Program section for the sample functions that control the code
flash memory

To deploy the preceding sections in the RAM area, you must add the necessary processing to the cstart.asm
file.

In the cstart.asm file, locate the following lines, and then add the necessary processing after these lines:

ROM data copy

The following are the details to be added.

; copy .text to RAM (section-name)
MOV C#HIGHW(STARTOF(section-name))
MOVW HL#LOWW(STARTOF(section-name))
MOVW DE#LOWW(STARTOF(destination-section-name))
BR $.Lm2_TEXT
.Lm1 TEXT:
MOV AC
MOV ESA
MOV AES:[HL]
MOV [DELA
INCW DE
INCW HL
CLRW AX
CMPW AX,HL
SKNZ
INC
.Lm2_TEXT:
MOVW AX,HL
CMPW AX#LOWW(STARTOF(section-name) + SIZEOF(section-name))
BNZ $.Lm1_TEXT

Note 1. For section-name, specify the name of the section to be deployed.
Note 2. Add the preceding set of entries for each section to be deployed.

Note 3. For m, specify any numeric value of your choice. Make sure that you specify a different value for
each section.

ROLAN6255EJ0100 Rev.1.00 Page 21 of 71
Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

4.3 Setting the ROM Size Specification Constant

Conditional compilation allows this sample program to support several ROM sizes for the RL78/G23
microcontroller.

The following table lists the constants that correspond to the supported ROM sizes. In the r_cg_userdefine.h
file, these constants are commented out. Enable the constant for the installed ROM by uncommenting it.

Table4-3 Constants for the Supported ROM Sizes

Constant Name Supported ROM Size
ROM_SIZE_96KB 96-KB product
ROM_SIZE_128KB 128-KB product
ROM_SIZE_192KB 192-KB product
ROM_SIZE_256KB 256-KB product
ROM_SIZE_384KB 384-KB product
ROM_SIZE_512KB 512-KB product
ROM_SIZE_768KB 768-KB product

4.4 On-chip Debug Security ID

The RL78/G23 microcontroller provides the on-chip debug security ID area at addresses 000C4H to 000CDH
in the flash memory so that the memory content is not read by third parties.

If boot swapping is performed during self-programming, the area at addresses 000C4H to 000CDH and the
area at addresses 010C4H to 010CDH are swapped. Therefore, the same value that is set in the area at
000C4H to 000CDH must also be set in the area at 040C4H to 040CDH.

ROLAN6255EJ0100 Rev.1.00 Page 22 of 71
Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

4.5 Resources Used by the Sample Program

45.1 List of Sections in the ROM Area
Table4-4 lists the sections that the sample program uses in the ROM area.

Table4-4 List of the Sections in the ROM Area

Section Name Description

RFD_DATA n Data section for RFD RL78 TypeOl

RFD_CMN_f Program section for the API functions that control the common flash memory
RFD_CF_f Program section for the API functions that control the code flash memory
RFD_EX_f Program section for the API functions that control the extra area

RFD_DF_f Program section for the API functions that control the data flash memory
SMP_CMN_f Program section for the sample functions that control the common flash memory
SMP_CF _f Program section for the sample functions that control the code flash memory
BOOT_AREAl Program section for boot cluster 1

USER_APPLICATION | Program section for the user application

COPY_FLAG_f Program section for storing the copy completion flag

TEMPORARY_AREA | Program section for storing the receive data

4.5.2 List of the Sections in the RAM Area
Table4-5 lists the sections that the sample program uses in the RAM area.

Table4-5 List of the Sections in the RAM Area

Section Name Description

RFD_DATA nR Data section for RFD RL78 Type01l

RFD_CMN_fR Program section for the API functions that control the common flash memory

RFD_CF_fR Program section for the API functions that control the code flash memory

RFD_EX_fR Program section for the API functions that control the extra area

SMP_CMN_fR Program section for the sample functions that control the common flash memory

SMP_CF_fR Program section for the sample functions that control the code flash memory
RO1AN6255EJ0100 Rev.1.00 Page 23 of 71

Aug.04.22 RENESAS

RL78/G23

Updating Firmware by Using UART Communication and Boot Swapping

4.6 List of Constants

Table4-6 and Table4-7 list the constants that are used in the sample program.

Table4-6 List of Constants (1/2)

ERR_EXTRA_SEQUENCER

Constant Name Value Set By Description
This Constant

ROM_SIZE_96KB 01H Value that sets the ROM size to 96 KB
ROM_SIZE 128KB 01H Value that sets the ROM size to 128 KB
ROM_SIZE 192KB 01H Value that sets the ROM size to 192 KB
ROM_SIZE_256KB 01H Value that sets the ROM size to 256 KB
ROM_SIZE_384KB 01H Value that sets the ROM size to 384 KB
ROM_SIZE 512KB 01H Value that sets the ROM size to 512 KB
ROM_SIZE 768KB 01H Value that sets the ROM size to 768 KB
LED_ON 01H LED ON
LED_OFF OOH LED OFF
WRITE_DATA_SIZE 0100H Size of data written to the code flash memory (256

bytes)
CF_BLOCK_SIZE 0800H Block size of the code flash memory (2,048 bytes)
BT1 _START_ADDRESS 00004000H Start address of boot cluster 1
BT1 END_ADDRESS 00007FFFH End address of boot cluster 1
EXECUTE_START_ADDRESS 00008000H Start address of the Execute area
EXECUTE_END_ADDRESSNote 00013FFFH End address of the Execute area
TEMPORARY_START_ADDRESSNoe | 00014000H Start address of the Temporary area
TEMPORARY_END_ADDRESSNote 0001FFFFH End address of the Temporary area
CPU_FREQUENCY 32 CPU operating frequency
COMMAND_START 02H Command code for the START command
COMMAND_WRITE_BOOT1 03H Command code for the WRITE_BOOT1 command
COMMAND_WRITE_TEMP 04H Command code for the WRITE_TEMP command
COMMAND_END O5H Command code for the END command
VALUE_U08 MASK1 FSQ STATUS | 01H Error status mask value for the execution results of
ERR_ERASE the flash memory sequencer

Bit 0: Erase command error
VALUE_U08 MASK1 FSQ_STATUS_ | 02H Error status mask value for the execution results of
ERR_WRITE the flash memory sequencer

Bit 1: Write command error
VALUE_U08 MASK1 FSQ STATUS | 08H Error status mask value for the execution results of
ERR_BLANKCHECK the flash memory sequencer

Bit 3: Blank check command error
VALUE_U08 MASK1 FSQ_STATUS_ | 10H Error status mask value for the execution results of
ERR_CFDF_SEQUENCER the flash memory sequencer

Bit 4: Code/data flash area sequencer error
VALUE_U08_MASK1_FSQ_STATUS_ | 20H Error status mask value for the execution results of

the flash memory sequencer
Bit 5: Extra area sequencer error

Note: The address differs depending on the product used.

Table4-7 List of Constants (2/2)

VALUE_UO08 SHIFT _ADDR_TO BLO |11 Constant for bit shifting performed for calculating the

CK_CF block number of the code flash memory

VALUE_UO01_MASKO_1BIT 0 Constant for arithmetic operation (0)
RO1AN6255EJ0100 Rev.1.00 Page 24 of 71
Aug.04.22 RENESAS

RL78/G23

Updating Firmware by Using UART Communication and Boot Swapping

VALUE_U01_MASK1 1BIT 1 Constant for arithmetic operation (1)
VALUE_U08 MASKO 8BIT O0H Constant for arithmetic operation (00H)
VALUE_UO08_MASK1 8BIT FFH Constant for arithmetic operation (FFH)
COPY_FLAG_USUAL AAAA5555H Value set in the copy flag section

4.7 Enumeration Type

Table4-8 defines the enumeration-type variable used by the sample program.

Table4-8 enum e_ret (Enumeration Variable Name: e_ret_t)

Symbol Name Value | Description
ENUM_RET_STS _OK 00H | Normal status
ENUM_RET_STS RECEIVING 01H | Waiting for a command to be sent, or receiving a
command
ENUM_RET_ERR_CFDF_SEQUENCER 02H | Code/data flash area sequencer error
ENUM_RET_ERR_EXTRA_SEQUENCER 03H | Extra area sequencer error
ENUM_RET_ERR_ERASE 0O4H | Erase error
ENUM_RET_ERR_WRITE 05H | Write error
ENUM_RET_ERR_BLANKCHECK 06H | Blank error
ENUM_RET_ERR_CHECK_WRITE_DATA 07H | Error in comparison between the written data against
the read value
ENUM_RET_ERR_MODE_MISMATCHED 08H | Mode mismatch error
ENUM_RET_ERR_PARAMETER 09H | Parameter error
ENUM_RET_ERR_CONFIGURATION OAH | Device configuration error
ENUM_RET_ERR_PACKET OBH | Packet reception error
RO1AN6255EJ0100 Rev.1.00 Page 25 of 71
Aug.04.22 RENESAS

RL78/G23

Updating Firmware by Using UART Communication and Boot Swapping

4.8 List of Variables

Table4-9 lists the global variables that are used in the sample program.

Table4-9 List of Global Variables

Type Variable Name

Description

Function Supporting the Variable

uint8_t | f UARTO_sendend

Flag indicating that data
sending by the UARTO
was completed

r_Send_nByte
r_Config_ UARTO_callback sendend

uint32_t | g_copy_end

Flag indicating that data main
copy was ended normally

uint8_t | g_recv_data [261]

Receive data buffer

R_Config_ UARTO_Receive
r_AsyncRecvPacketData

uint8_t | g_soft recv_overrun

Flag indicating that data
larger than the receive
data buffer was received

r_Config_ UARTO_callback_softwareoverrun
r_ClearUARTRecvBuff
r_AsyncRecvPacketData

4.9 List of Functions

Table4-10 lists the functions that are used in the sample program.

Table4-10 List of Functions

Function Name

Summary

r_rfd_initialize

Initialization processing for RFD RL78 TypeO1l

r_cmd_start

START command processing

r_ cmd_end

END command processing

r_CF_RangeErase

Range erase processing for the code flash memory

r_ CF_EraseBlock

Block erase processing for the code flash memory

r_CF_WriteVerifySequence

Write-and-verify processing for the code flash memory

r_CF_WriteData

Write processing for the code flash memory

r_CF_VerifyData

Verify processing for the code flash memory

r_CheckCFDFSequencerEnd

Sequence end processing for the code flash memory

r_CheckExtraSequencerEnd

Sequence end processing for the extra area

r_RequestBootSwap

Boot swapping execution processing

r_Config_ UARTO_callback_sendend

Callback processing at a sending completion interrupt for
UARTO

r_Send_nByte

Data sending processing by UARTO

r_SendACK

Normal response sending processing by UARTO

r_CF_TempCopy

Processing to copy data from the Temporary area

r_CF_MemoryWrite

Processing to reprogram the code flash memory

r_AsyncRecvPacketData

Processing to receive asynchronous command packets

r_GetUARTRecvSize

Processing to obtain the size of the receive data

r_ClearUARTRecvBuff

Processing to clear the receive buffer

userApplicationLoop

Function to implement user application

updateLoop

Processing to receive and run the firmware update command

errorLedOn

Processing to turn on the error LED

RO1AN6255EJ0100 Rev.1.00
Aug.04.22

Re Page 26 of 71
KENESAS

RL78/G23

Updating Firmware by Using UART Communication and Boot Swapping

4.10 Specifications of Functions
This section describes the specifications of the functions used in the sample code.

r_rfd_initialize

Summary
Header
Declaration
Explanation
Arguments

Return values

Initialization processing for RFD RL78 Type01

r_rfd_common_api.h, r_rfd_code_flash_api.h, r_cg_userdefine.h
R_RFD_FAR_FUNC e_ret_tr_rfd_initialize(void);

This function performs the processing to initialize RFD RL78 Type01.
None

ENUM_RET_STS_OK: Normal end
ENUM_RET_ERR_CONFIGURATION: Clock configuration error
ENUM_RET_ERR_PARAMETER: Frequency setting error

r cmd_start

Summary
Header
Declaration

Explanation

Arguments

Return values

START command processing

r_rfd_common_api.h, r_cg_userdefine.h

R_RFD_FAR_FUNC e_ret_tr_cmd_start(void);

This function performs processing in response to reception of the START
command.

None

ENUM_RET_STS_OK: Normal end
ENUM_RET_ERR_MODE_MISMATCHED: Mode mismatch error
ENUM_RET_ERR_ERASE: Erase error

r_cmd_end
Summary END command processing
Header r_rfd_common_api.h, r_cg_userdefine.h
Declaration R_RFD_FAR_FUNC e_ret_tr_cmd_end(void);
Explanation This function performs processing in response to reception of the END command.
Arguments None

Return values

ENUM_RET_ERR_MODE_MISMATCHED: Mode mismatch error

r_CF_RangeErase

Summary
Header
Declaration
Explanation

Arguments

Return values

Range erase processing for the code flash memory

r_rfd_common_api.h, r_rfd_code_flash_api.h, r_cg_userdefine.h
R_RFD_FAR_FUNC e_ret tr_CF_RangeErase(uint32_t start_addr, uint32_t
end_addr);

This function erases data in the code flash memory.

Data is erased in blocks. The blocks in the range of addresses specified for
arguments will be erased.

uint32_t start_addr: Erase start address

uint32_t end_addr: Erase end address

ENUM_RET_STS_OK: Normal end
ENUM_RET_ERR_MODE_MISMATCHED: Mode mismatch error
ENUM_RET_ERR_ERASE: Erase error

RO1AN6255EJ0100 Rev.1.00

Aug.04.22

Re Page 27 of 71
KENESAS

RL78/G23

Updating Firmware by Using UART Communication and Boot Swapping

r CF_EraseBlock

Summary
Header
Declaration
Explanation

Arguments

Return values

Block erase processing for the code flash memory

r_rfd_common_api.h, r_rfd_code_flash_api.h, r_cg_userdefine.h
R_RFD_FAR_FUNC e_ret_tr_CF_EraseBlock(uint32_t start_addr);

This function erases data in the code flash memory.

A block of data is erased. The block that includes the address specified for an
argument will be erased.

uint32_t start_addr: Erase start address

ENUM_RET_STS_OK: Normal end
ENUM_RET_ERR_MODE_MISMATCHED: Mode mismatch error
ENUM_RET_ERR_ERASE: Erase error

r_CF_WriteVerifySequence

Summary
Header

Declaration

Explanation

Arguments

Return values

Write-and-verify processing for the code flash memory
r_rfd_common_api.h, r_rfd_code_flash_api.h, r_cg_userdefine.h
R_RFD_FAR_FUNC e_ret_tr_CF_WriteVerifySequence(uint32_t
write_start_addr, uintl6_t write_data_length, uint8_t __ near *write_data);
This function writes data to the code flash memory and verifies the written data.
uint32_t start_addr,: Write start address

uintl6é_t write_data_length: Size of the data to be written

uint8_t _ near *write_data: Data to be written

ENUM_RET_STS_OK: Normal end
ENUM_RET_ERR_MODE_MISMATCHED: Mode mismatch error
ENUM_RET_ERR_ERASE: Erase error

r_ CF_WriteData

Summary
Header

Declaration

Explanation

Arguments

Return values

Write processing for the code flash memory

r_rfd_common_api.h, r_rfd_code_flash_api.h, r_cg_userdefine.h
R_RFD_FAR_FUNC e_ret_tr_CF_WriteData(uint32_t start_addr, uintl6_t
write_data_length, uint8_t _ near *write_data);

This function writes data to the code flash memory.

uint32_t start_addr,: Write start address

uintl6_t write_data_length: Size of the data to be written

uint8 t _ near *write_data: Data to be written
ENUM_RET_STS_OK: Normal end
ENUM_RET_ERR_MODE_MISMATCHED: Mode mismatch error
ENUM_RET_ERR_WRITE: Write error

RO1AN6255EJ0100 Rev.1.00

Aug.04.22

RENESAS

Page 28 of 71

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

r_CF_VerifyData
Summary Verify processing for the code flash memory
Header r_cg_userdefine.h
R_RFD_FAR_FUNC e _ret tr_CF_VerifyData(uint32_t start_addr, uint16 t

Declaration data_length, uint8_t _ near * write_data);

Explanation This function verifies the data written to the code flash memory.
uint32_t start_addr: Verify start address

Arguments uintl6_t data_length: Data size

uint8_t __ near * write_data: Data to be compared with
ENUM_RET_STS_OK: Normal end (matched)

Return values ENUM_RET_ERR_CHECK_WRITE_DATA: Error in comparison between the
written data and the read value (mismatched)

r_CheckCFDFSequencerEnd

Summary Sequence end processing for the code flash memory
Header r_rfd_common_api.h, r_cg_userdefine.h
Declaration R_RFD_FAR_FUNC e_ret_tr_CheckCFDFSequencerEnd(void);
Explanation This function confirms that the code flash memory sequence has terminated.
Arguments None

ENUM_RET_STS_OK: Normal end

ENUM_RET_ERR_CFDF_SEQUENCER: Code/data flash memory sequencer
error

ENUM_RET_ERR_ERASE: Erase error
ENUM_RET_ERR_WRITE: Write error
ENUM_RET_ERR_BLANKCHECK: Blank error

Return values

r_CheckExtraSequencerEnd

Summary Sequence end processing for the extra area
Header r_rfd_common_api.h, r_cg_userdefine.h
Declaration R_RFD_FAR_FUNC e_ret_tr_CheckExtraSequencerEnd (void);
Explanation This function confirms that the extra area sequence has terminated.
Arguments None

ENUM_RET_STS_OK: Normal end

ENUM_RET_ERR_EXTRA_SEQUENCER: Extra area sequencer error
Return values ENUM_RET_ERR_ERASE: Erase error

ENUM_RET_ERR_WRITE: Write error

ENUM_RET_ERR_BLANKCHECK: Blank error

ROLAN6255EJ0100 Rev.1.00 Page 29 of 71
Aug.04.22 RENESAS

RL78/G23

Updating Firmware by Using UART Communication and Boot Swapping

r_RequestBootSwap

Summary
Header
Declaration

Explanation

Arguments
Return values

Boot swapping execution processing

r_rfd_common_api.h, r_rfd_extra_area_api.h , r_cg_userdefine.h
e_ret_tr_RequestBootSwap(void);

After a reset is performed, this function enables the boot swapping settings, and
then generates an internal reset to restart the CPU.

None

ENUM_RET_ERR_MODE_MISMATCHED: Mode mismatch error

r_Config UARTO callback_sendend()

Summary
Header
Declaration

Explanation

Arguments
Return values

Callback processing at a sending completion interrupt for UARTO
r_cg_macrodriver.h
static void r_Config_ UARTO_callback_sendend(void);

This is a callback function that is called at a sending completion interrupt for
UARTO.

None
None

I Send=n Byte
Summary Data sending processing by UARTO
Header Config_ UARTO.h, Config_ WDT.h

Declaration MD_STATUS r_Send_nByte(uint8_t *tx_buff, const uint16_t tx_num);
This function performs sending processing by UARTO.

Explanation This function waits until sending of the number of characters specified for an
argument is completed.
uint8_t *rx_buff: Pointer to the send data storage buffer

Arguments

Return values

const uintl16_t rx_num: Number of characters to be sent
MD_OK: Normal end (sending completed)
MD_ARGERROR: Parameter error

r_SendACK
Summary Normal response sending processing by UARTO
Header Config_ UARTO.h, Config WDT.h
Declaration MD_STATUS r_SendACK (void);
. This function uses UARTO to perform sending processing for normal response
Explanation
(0O1H).
Arguments None

Return values

MD_OK: Normal end (sending completed)
MD_ARGERROR: Parameter error

r_ CF_TempCopy

Summary
Header
Declaration
Explanation
Arguments

Return values

Processing to copy data from the Temporary area
r_cg_userdefine.h, string.h

R_RFD_FAR_FUNC e_ret tr CF_TempCopy(void);
This function copies data from the Temporary area.
None

ENUM_RET_STS_OK: Normal end

RO1AN6255EJ0100 Rev.1.00

Aug.04.22

RENESAS

Page 30 of 71

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

r CF_MemoryWrite

Summary Processing to reprogram the code flash memory
Header r_cg_userdefine.h
Declaration R_RFD_FAR_FUNC e_ret._t r_CF_MemoryWrite(uint32_t* write_start_addr,
uint32_t write_end_addr, uint8_t _ near * write_data);
Explanation This function writes data to memory.
uint32_t* write_start_addr: Write start address
Arguments uint32_t write_end_addr: Write end address

uint8 t _ near * write_data: Data to be written
ENUM_RET_STS_OK: Normal end

Return values ENUM_RET_ERR_MODE_MISMATCHED: Mode mismatch error
ENUM_RET_ERR_ERASE: Erase error

r_AsyncRecvPacketData

Summary Processing to receive asynchronous command packets
Header r_cg_userdefine.h
Declaration __faruint8_t r_AsyncRecvPacketData(uint8_t *p_cmd_type, uint8_t rdatal]);
Explanation This function analyzes asynchronously received data and returns the status.

uint8_t *p_cmd_type: Command information

uint8_t rdata[]: Receive data buffer
ENUM_PACKET_STATUS_OK: Normal end

Return values ENUM_PACKET_STATUS_ERROR: Packet reception error
ENUM_PACKET_STATUS_RECEIVING: Now receiving packets

Arguments

r_GetUARTRecvSize

Summary Processing to obtain the size of the receive data
r_cg_userdefine.h

Header Config_UARTO.h
Declaration uintlé_tr_ GetUARTRecvSize(void);
Explanation This function returns the length of the received data.
Arguments None
Return values Size: Length of the received data

r_ClearUARTRecvBuff

Summary Processing to clear the receive buffer
r_cg_userdefine.h

Header Config_UARTO.h
Declaration void r_ClearUARTRecvBuff(void);
Explanation This function clears the buffer that stores received data.
Arguments None
Return values None
RO1AN6255EJ0100 Rev.1.00 Page 31 of 71

Aug.04.22 RENESAS

RL78/G23

Updating Firmware by Using UART Communication and Boot Swapping

userApplicationLoop

Summary
Header
Declaration
Explanation
Arguments
Return values

Function to implement user application
r_cg_userdefine.h

void userApplicationLoop(void);

Sample application implemented that blinks LED1/LEDS.
None

None

updateLoop
Summary Processing to receive and run the firmware update command
Header r_cg_userdefine.h
Declaration e_ret_t updateLoop(void);
Explanation This function receives and runs the firmware update command.
Arguments None

Return values

ENUM_RET_STS_OK: Normal end
ENUM_RET_ERR_CONFIGURATION: Clock configuration error
ENUM_RET_ERR_PARAMETER: Frequency setting error
ENUM_PACKET_STATUS_ERROR: Packet reception error
ENUM_PACKET_STATUS_RECEIVING: Receiving packets
ENUM_RET_ERR_MODE_MISMATCHED: Mode mismatch error
ENUM_RET_ERR_ERASE: Erase error

errorLedOn
Summary Processing to turn on the error LED
Header r_cg_userdefine.h
Declaration void errorLedOn(void);
Explanation This function turns on LED7 and turns off the other LEDs if an error occurs.
Arguments None
Return values None

RO1AN6255EJ0100 Rev.1.00

Aug.04.22

RENESAS

Page 32 of 71

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

4.11 Flowcharts
4.11.1 Main Processing

Figure 4-1, Figure 4-2 shows the flowchart of the main processing.

Figure 4-1 Main Processing (1/2)

< main

Start UARTO operation
R_Config_UARTO_Start()

Enable

Interrupts

EI()

YES

Is the value of copy flag normal?

NO

\ 4

r_rfd_initialize()

RFD RL78 Type01 Initialization process

nitialization completed successful

NO

P41(LED®G): lights up

r_cmd_end
END command processing

Process completed successfull

NO

P41(LEDG®) : lights down

r_RequestBootSwap()
Request boot swap process

A

o

RO1AN6255EJ0100 Rev.1.00
Aug.04.22

RENESAS

Page 33 of 71

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

Figure 4-2 Main Processing (2/2)

Has the process been NO

successfully completed?

Clear a receive buffer
r_ClearUARTRecvBuff()

P03 (LED1) or P76 (LEDS) : Blinking
userApplicationLoop()

Processing to receive and run the
firmware update command
updateLoop()

Has the process been NO

successfully completed?

\ 4

YES | : While(1) loop

\ 4

Error process
errorLedOn()

\4

: While(1) loop

ROLAN6255EJ0100 Rev.1.00 Page 34 of 71
Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

4.11.2 Processing to receive and run the firmware update command

Figure 4-3, Figure 4-4, and Figure 4-5 shows the flowchart of processing to receive and run the firmware
update command

Figure 4-3 Processing to receive and run the firmware update command (1/3)

< updateLoop())

Is RFD initialization flag False?

r_rfd_initialize()
RFD RL78 Type01 Initialization process

Has the process been
successfully completed?

Set RFD initialization flag as True

Asynchronous command packet reception
processing
r_AsyncRecvPacketData(&cmd_type, rdata)

Is the packet reception
processing completed?

ROLAN6255EJ0100 Rev.1.00 Page 35 of 71
Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

Figure 4-4 Processing to receive and run the firmware update command (2/3)

Is received packet correct?

Clear receive buffer
r_ClearUARTRecvBuff

COMMAND_START

Writing mode
Operating mode

Normal mode

P0O2(LED2) : Lights up

Process START command
r_cmd_start()

P02(LED2) : Lights down

I
COMMAND_ WRITE BOOT1

A 4

Normal mode
Operating mode

Writing mode

P43(LED3) : Lights up

Rewrite code flash memory
r_CF_MemoryWrite(write_start_addr,
write_end_addr, write_data)

Has the process been
successfully completed?

UARTO normal response
r_SendACK()

P43(LED3) : Lights down

\ 4

ROLAN6255EJ0100 Rev.1.00 Page 36 of 71
Aug.04.22 RENESAS

RL78/G23

Updating Firmware by Using UART Communication and Boot Swapping

Figure 4-5 Processing to receive and run the firmware update command (3/3)

COMMAND_WRITE_TEMP

Normal mode

Operating mode

Writing mode

P42(LED?2) : Lights up
I

Rewrite code flash memory
r_CF_MemoryWrite(write_start_addr,
write_end_addr, write_data)

Has the process been
successfully completed?

UARTO Normal response
r_SendACK()
I

P42(LED2) : Lights down
I

A\ 4

COMMAND_END

Normal mode
Operating mode

Writing mode

P77(LEDS) : Lights up
I
P41(LEDSG) : Lights up

I
END command process
r_cmd_end()

P41(LEDG) : Lights down

UARTO Normal response
r_SendACK()

Request boot swap process

r_RequestBootSwap()

\ 4

&
€

A 4

return >

RO1AN6255EJ0100 Rev.1.00
Aug.04.22

RENESAS

Page 37 of 71

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

4.11.3 Initialization processing for RFD RL78 Type0l
Figure 4-6 shows the flowchart of Initialization processing for RFD RL78 TypeO1.

Figure 4-6 Initialization processing for RFD RL78 Type0l

< r_rfd_initialize() >

Is HOCO running?

A 4

Initialize RL78 RFD TypeO1 HOCO failed to run
R_RFD_Init(CPU_FREQUENCY) Set error status to ret_value
NO
Is initialization finished?
YES
\ 4

RFD Initialization failure
Set error status to ret_value

\ 4

< return >

ROLAN6255EJ0100 Rev.1.00 Page 38 of 71
Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

4.11.4 START command processing
Figure 4-7 shows the flowchart of START command processing

Figure 4-7 START command processing

C

r_cmd_start()

Disable Interrupts

DI()

Range erase processing for the code flash memory
r_CF_RangeErase(BT1_START_ADDRESS,
BT1 _END_ADRESS)

Enable interrupts

EI()

Has erase processing
en successfully completed?

YES

Disable interrupts

DI)

Range erase processing for the code flash memory
r_CF_RangeErase(TEMPORARY_START_ADDRE
SS, TEMPORARY_END_ADRESS)

Enable interrupts

EI()

Has erase processing
been successfully completed?

YES

Data sending processing

r_SendACK
|«
(return
RO1AN6255EJ0100 Rev.1.00 Page 39 of 71
Aug.04.22 RENESAS

RL78/G23

Updating Firmware by Using UART Communication and Boot Swapping

4.11.5 END command processing

Figure 4-8 shows the flowchart of END command processing

Figure 4-8 END command processing

C

r_cmd_end() >

Disable interrupts
DI()

Range erase processing for the code flash memory
r_CF_RangeErase(EXECUTE_START_ADDRESS,

EXECUTE_END_ADDRESS)

Enable interrupts

EI()

Y

Has erase processing
en successfully completed?

ES

Processing to copy data from the Temporary area
r_CF_TempCopy()

return)

RO1AN6255EJ0100 Rev.1.00
Aug.04.22

RENESAS

Page 40 of 71

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

4.11.6 Range erase processing for the code flash memory
Figure 4-9 shows the flowchart of range erase processing for the code flash memory

Figure 4-9 Range erase processing for the code flash memory

< r_CF_RangeErase(start_addr,end_addr) >

NO
Has the specified FW

YES

Erase processing for the code flash memory
r_CF_EraseBlock(erase_addr)

Has erase processing
een successfully completed?

A 4

(return >

ROLAN6255EJ0100 Rev.1.00 Page 41 of 71
Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

4.11.7 Block erase processing for the code flash memory
Figure 4-10 shows the flowchart of block erase processing for the code flash memory

Figure 4-10 Block erase processing for the code flash memory

< r_CF_EraseBlock(start_addr) >

Get block number from address

Change the flash memory sequencer to
programming mode
R_RFD_SetFlashMemoryMode(R_RFD_ENUM_FL
ASH_MODE_CODE_PROGRAMMING)

NO

Changed to programming mode

v

Set error status in ret_value

NO
ret_value matches the value of error status
Start erasing blocks
R_RFD_EraseCodeFlashReq(block_number)
End processing for the code flash memory
r_CheckCFDFSequencerEnd
NO

Has error check function
been successfully completed?

'

Set error status in ret_value

YES

A A

Change the flash memory sequencer to normal mode

NO

Changed to normal mode

y

YES Set error status in ret_value

< |
«

(return >

ROLAN6255EJ0100 Rev.1.00 Page 42 of 71
Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

4.11.8 Write-and-verify processing for the code flash memory
Figure 4-11 shows the flowchart of write-and-verify processing for the code flash memory

Figure 4-11 Write-and-verify processing for the code flash memory

r_CF_WriteVerifySequence(write_start_addr,
write_data_length, *write_data)

Write Data
r_CF_WriteData(write_start_addr,
write_data_length, write_data)

ret_value: error status

Has write processing
en successfully completed?

YES

Verify written data
r_CF_VerifyData(write_start_addr,
write_data_length, write_data)

»
hal

A 4

< return >

ROLAN6255EJ0100 Rev.1.00 Page 43 of 71
Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

4.11.9 Write processing for the code flash memory

Figure 4-12 shows the flowchart of write processing for the code flash memory

Figure 4-12 Write processing for the code flash memory

r_CF_WriteData(start_addr, write_data_length,
write_data)

Change the flash memory sequencer to
programming mode
R_RFD_SetFlashMemoryMode(R_RFD_ENUM_FL

ASH_MODE_CODE_PROGRAMMING)

NO

Changed to programming mode

Has the processing
writing specified size finished ?

Start 4 bytes of writing processing
R_RFD_WriteCodeFlashReq(start_addr + count,
&write_data[count])

End processing for the code flash memory
r_CheckCFDFSequencerEnd()

Has 4 bytes ofwrite processing
been successfully completed?

YES

v

Change the flash memory sequencer to normal mode

Changed to normal mode

»
Ll

A 4

YES

Set error status in ret_value

&
Bl

< return >

RO1AN6255EJ0100 Rev.1.00

Aug.04.22 RENESAS

Page 44 of 71

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

4.11.10 Verify processing for the code flash memory
Figure 4-13 shows the flowchart of verify processing for the code flash memory

Figure 4-13 Verify processing for the code flash memory

Q_ CF_VerifyData(start_addr, data_length, *write_dateD

»

Has the processing YES
verifying specified size finished?

mismatch

Compares write data with
code flash memory value

A 4

Set error status in ret_value

\ 4

Increment address

A

< return >

ROLAN6255EJ0100 Rev.1.00 Page 45 of 71
Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

4.11.11 Sequence end processing for the code flash memory
Figure 4-14 and Figure 4-15 shows the flowchart of sequence end processing for the code flash memory

Figure 4-14 Sequence end processing for the code flash memory (1/2)

(r_CheckCFDFSequencerEnd() >

Wait for the processing finished
R_RFD_CheckCFDFSequencerEndStep1()

Wait for the processing finished
R_RFD_CheckCFDFSequencerEndStep2()

Get error status
R_RFD_GetSequencerErrorStatus(&status_flag)

o

ROLAN6255EJ0100 Rev.1.00 Page 46 of 71
Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

Figure 4-15 Sequence end processing for the code flash memory (2/2)

Check the value of error status (FSASTL

VALUE_U08_MASK1 FSQ STATUS ERR_CFDF_SEQUENCER

Set ENUM_RET_ERR_CFDF_SEQUENCER
(0x10) to ret_value

VALUE_UO08_MASK1 _FSQ_STATUS_ERR_ERASE

v

Set ENUM_RET_ERR_ERASE
(0x12) to ret_value

VALUE_U08_MASK1 FSQ_STATUS_ERR_WRITE

v

Set ENUM_RET_ERR_WRITE
(0x13) to ret_value

VALUE U08 MASK1 FSQ STATUS ERR_BLANKCHECK

v

ENUM_RET_ERR_BLANKCHECK
(0x14) to ret_value

\ 4

\ 4

Set ENUM_RET_STS_OK
(0x00) to ret_value

&
i

Initialization of registers that control the sequencer
R_RFD_ClearSequencerRegister()

< return >

ROLAN6255EJ0100 Rev.1.00 Page 47 of 71
Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

4.11.12 Sequence end processing for the extra area
Figure 4-16 and Figure 4-17 shows the flowchart of sequence end processing for the extra area

Figure 4-16 Sequence end processing for the extra area (1/2)

(r_CheckExtraSequencerEnd >

Wait for the processing finished
R_RFD_CheckExtraSequencerEndStep1()

Wait for the processing finished
R_RFD_CheckExtraSequencerEndStep2()

Get error status
R_RFD_GetSequencerErrorStatus(&status_flag)

o

ROLAN6255EJ0100 Rev.1.00 Page 48 of 71
Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

Figure 4-17 Sequence end processing for the extra area (2/2)

Check the value of error status (FSASTL)

VALUE_U08_MASK1_FSQ STATUS_ERR_EXTRA_SEQUENCER

)
Set ENUM_RET_ERR_EXTRA_SEQUENCER
(0x10) to ret_value

MASK1_FSQ_STATUS_ERR_ERASE

L 4

Set ENUM_RET_ERR_ERASE
(0x12) to ret_value

VALUE_U08_MASK1 FSQ STATUS ERR_WRITE

v
Set ENUM_RET_ERR_WRITE
(0x13) to ret_value

VALUE_U08 MASK1 FSQ STATUS ERR_BLANKCHECK

VALUE_U08

A 4

A 4

Set ENUM_RET_ERR_BLANKCHECK
(0x14) to ret_value

Set ENUM_RET_STS_OK
(0x00) to ret_value

>
N

Initialization of registers that control the sequencer
R_RFD_ClearSequencerRegister()

< return >

ROLAN6255EJ0100 Rev.1.00 Page 49 of 71
Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

4.11.13 Boot swapping execution processing
Figure 4-18 shows the flowchart of boot swapping execution processing

Figure 4-18 Boot swapping execution processing

(r_RequestBootSwap() >

Get status of security flags and boot flags
R_RFD_GetSecurityAndBootFlags(&f_security _boot)

BTFLG = O: Boot cluster 1 is selected

Check the boot area currently selected

BTFLG = 1: Boot cluster 0 is selected

\ 4
Select 1 for next boot cluster Select 0 for next boot cluster
next_boot_cluster = R_RFD_ENUM_BOOT_CLUSTER_1 next_boot_cluster = R_RFD_ENUM_BOOT_CLUSTER_0O

¢ I

I‘

Change the flash memory sequencer to programming
mode
] No

Changed to programming mode v

Set error status in ret_value

A

YES

Request boot swap after reset
R_RFD_SetExtraBootAreaReq(next_boot_cluster)

»
Bl

Change the flash memory sequencer to normal mode

No

Changed to normal mode

ret_value = 0x00

YES

Invoke internal reset
R_RFD_ForceReset

v

(return >

v

Set error status in ret_value

A

ROLAN6255EJ0100 Rev.1.00 Page 50 of 71
Aug.04.22 RENESAS

RL78/G23

Updating Firmware by Using UART Communication and Boot Swapping

4.11.14

Callback processing at a sending completion interrupt for UARTO

Figure 4-19 shows the flowchart of callback processing at a sending completion interrupt for UARTO

Figure 4-19 Callback processing at a sending completion interrupt for UARTO

< r_Config_UARTO_callback_sendend() >

Set sending completed flag to 1

(return >

g_UARTO_sendend =1

RO1AN6255EJ0100 Rev.1.00

Aug.04.22

RENESAS

Page 51 of 71

RL78/G23

Updating Firmware by Using UART Communication and Boot Swapping

4.11.15

D

ata sending processing by UARTO

Figure 4-20 shows the flowchart of Data sending processing by UARTO

Figure 4-20

Data sending processing by UARTO

C

r_Send_nByte (*tx_buff, tx_num) >

Set sending completed flag to 1

Transmit data
R_Config_UARTO_Send(tx_buff, tx_num)

»]
P>

Sending completed successfully and
sending completed flag is 0

g_UARTO_sendend =0

v

return >

RO1AN6255EJ0100 Rev.1.00

Aug.04.22

RENESAS

Page 52 of 71

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

4.11.16 Normal response sending processing by UARTO
Figure 4-21 shows the flowchart of normal response sending processing by UARTO

Figure 4-21 Normal response sending processing by UARTO

(r_SendACK()

Generate ACK packet in send_buff

Data s

ending

r_Send_nByte(&send_buff, 1)

(return

RO1AN6255EJ0100 Rev.1.00
Aug.04.22

RENESAS

Page 53 of 71

RL78/G23

Updating Firmware by Using UART Communication and Boot Swapping

4.11.17

Processing to copy data from the Temporary area

Figure 4-22 shows the flowchart of processing to copy data from the Temporary area

Figure 4-22

Processing to copy data from the Temporary area

< r_CF_TempCopy(void) >

»
>

Has the copying and writing of the ES

specified size been completed?

Copy the data from temporary area to buffer
MemCpy(copy_data, tmp_offset,
WRITE_DATA_SIZE)

Write data
r_CF_WriteData(start_addr, write_data_length,
*write_data)

ret_value: error status

Has write processing

en successfully completed?
YES

v

(return >

RO1AN6255EJ0100 Rev.1.00

Aug.04.22

RENESAS

Page 54 of 71

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

4.11.18 Processing to reprogram the code flash memory
Figure 4-23 shows the flowchart of processing to reprogram the code flash memory

Figure 4-23 Processing to reprogram the code flash memory

r_CF_MemoryWrite(*write_start_addr, write_end_addr,
*write_data)

Out of write_end_addr

destination address to write

Within write_end_addr

Disable interrupts

DI)
|

Code flash memory write/verify process
r_CF_WriteVerifySequence(*write_Start_addr, WRIT
E_DATA_SIZE,write_data)

[
Enable interrupts

EI()

Has the processing been
successfully completed?

YES

Increment the write destination address
*write_start_addr += WRITE_RATA_SIZE

< return >

ROLAN6255EJ0100 Rev.1.00
Aug.04.22 RENESAS

Page 55 of 71

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

4.11.19 Processing to receive asynchronous command packets
Figure 4-24 shows the flowchart of processing to receive asynchronous command packets

Figure 4-24 Processing to receive asynchronous command packets

(r_AsyncRecvPacketData(*p_cmd_type, rdatal]) >
I

Get the number of data currently received
getUARTRecvSize()

NO
Number of data received is 5 or more

NO

g_soft_overrun is not occurring

YES
START code received NO
YES

Calculate packet length from received data
len = g_recv_data[l] << 8 || g_recv_data[2]

Number of data received is len or more

Obtain command data from received data
cmd_type = g_recv_data[3]

NO
Normal command data is received
YES

Calculate checksum from received data

NO
Matches checksum data received
ES

Y

NO
Received WRITE command
YES

Copy received data to buffer
MemCpy(rdata, &g_recv_data[4], 256)

»1

< h 4
Set packet reception error to return value
return ENUM_RET_ERR_PACKET

]
v

Set status "Packet being received” to return value
return ENUM_RET_STS_RECEIVING

<&]

(return >

A

ROLAN6255EJ0100 Rev.1.00 Page 56 of 71
Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

4.11.20 Processing to obtain the size of the receive data
Figure 4-25 shows the flowchart of processing to obtain the size of the receive data

Figure 4-25 Processing to obtain the size of the receive data

< r_getUARTRecvSize(void) >

Disable interrupts
DI()

Get received number counter
size = g_uart0_rx_count

Enable interrupts

EI()

< return >

ROLAN6255EJ0100 Rev.1.00 Page 57 of 71
Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

4.11.21 Processing to clear the receive buffer
Figure 4-26 shows the flowchart of processing to clear the receive buffer

Figure 4-26 Processing to clear the receive buffer

C

r_ClearUARTRecvBuff(void)

Clear received number counter

Clear receive error flag

Setting receive buffer and receive size
R_Config_UARTO_Receive(rx_buff, rx_num)

C

return

)

g_uart0_rx_count =0

g_soft_recv_overrun =0

RO1AN6255EJ0100 Rev.1.00
Aug.04.22

RENESAS

Page 58 of 71

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

4.11.22 Processing to turn on the error LED

Figure 4-27 shows the flowchart of processing to turn on the error LED

Figure 4-27 Processing to turn on the error LED

C

errorLedOn()

PO3(LED1) :

Lights down

PO2(LED2) :

Lights down

P43(LED3) :

Lights down

P42(LED4) :

Lights down

P77(LEDS5) :

Lights down

P41(LEDS) :

Lights down

P31(LED7) :

Lights down

P76(LEDS) :

Lights down

errorLedOn()

RO1AN6255EJ0100 Rev.1.00
Aug.04.22

RENESAS

Page 59 of 71

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

5. GUI-Based Tool for Writing Data

This chapter describes the GUI-based tool for writing data to the target device simply by running an
executable file (.exe). Select the binary file (.bin) that contains the data to be written. To perform a write
again, restart the tool.

5.1 Generating a File Required to Write Data

Before you can use the GUI-based tool, generate a binary file (.bin) that will be written. For details about how
to generate a binary file, see the following sections.

5.1.1 Using CS+to Generate a Binary File
In the [Project Tree], select [CC-RL (Build Tool)], and then open the [Hex Output Options] tab.

Figure 5-1 Generate a binary file in CS+ (1/6)

Praject Tree o x Property ==
A @ =
2 9 3 £l A, GG-RL Property al (£ |||+
=/} 101an6255(j0100-1178923-flash (Project)® ||~ Qutput File
E R7F100GLGxFB (Microcontroller) Yes e
; q Output falder ¥BuildMaodeMame¥
Dutput file name XProjectMameXbin
Division output file Division output file[1]
* Hex Format
-’ Program Analyzer (Analyze Tool) He:x file format Binary file(-~FOrm=Binary)
E--_’ﬂ File Fill unused areas in the output ranges with the value Yes{Specification value){-SPace={Numerical value>}
1 Build tool generated files Output paddine data FF
‘j main.c CGRC Operation
=1L} Smart Configurator e
- Others
i Config_PORT
er-L] Config_UARTO
: ..&] Config UARTO.c
h-| Config_UARTO.h
- ‘j Config_UARTO_user.c
-l general
| rbsp
Ll r_config Output hex file
o RFD Selects whether to output a hex file. X .
U memmap.h This option corresponds ta the —~FOrm option of the rlink command
\ Common Options { Compile Options 4 Assemble Options / SMS Assemble Options ¢ Link Options l Hex Qutput Option4{ I/O HeaderFile Gen.. / =
RO1AN6255EJ0100 Rev.1.00 Page 60 of 71

Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

In the [Hex Output Options] tab, under [Output File], set [Yes] for [Output hex file].

Select [Division output file], and then, in the dialog box that appears, enter a character string in the following
pattern:

XXXXXXXXXX . bin=0-YYYYYYYYY

For XXXXXXXXXX, specify the project name. For YYYYYYYYY, specify the last address of the code flash
memory of the device to be used.

Figure 5-2 Generate a binary file in CS+ (2/6)

4, GC-RL Property al |2 ||+

~ Qutput File
Output hex file
Output fo wEuldhodeMameX
Cutput file name %ProjectMameXhbin
Divizion output file Divizion output filel1]
~ Hex Format
Hex file format Binary file(—FOrm=Binary)
Fill unused areas in the output ranges with the value Yes(Specification value){-SPace=<{MNumerical value>)
Output padding data [Fex] FF
GRG Operation
Message
Others

Output hex file
Selectz whether to output a hex file.
Thizs option correzponds to the —FOrm option of the rlink command.

, Common Options / Compile Options | Assemble Options | SMS Assemble O... { Link Options ;, Hex Output O... | I/OHeaderFile.. /%

Figure 5-3 Generate a binary file in CS+ (3/6)

Text Edit >

Text:

rl1anG2bbji0100-r178e28-1lashbin=0-1FFFF |

Placeholder:
Flacehalder Walue =
fictiveProjectDir C¥Uzers¥ A0 Y7 00% Desk top¥r0 1anf 25 hex 0 100-rI78
BctiveProjectMicomMame RYF100GLGxFB
AictiveProjectlame r01anfi28h)0100-r 7822 3-flazh
BuildModeMame DefaultBuild w
i< >

| Cancel Help

In the [Hex Output Options: tab, under [Hex Format], set [Hex file format] to [Binary file (-FOrm=Binary)].

ROLAN6255EJ0100 Rev.1.00 Page 61 of 71
Aug.04.22 RENESAS

RL78/G23

Figure 5-4 Generate a binary file in CS+ (4/6)

4, CGC-RL Property al & |+
w Output File

Cutput hex file Yes

Cutput folder ¥BuildModeMameX

Cutput file name %ProjectMameXbin

Divizion outout file Division output file[1]

Binary file(—FOrm=Binary) v

Output padding data AT IAREEASF I 271 JL-FOrm=Hexadecimal)
GRC Operation IZI =3 S&j" ??‘fJL(FOr=Stype)
Mescage d SRR
Others

Hex file format

Select the hex file format. _ _
Thiz option corresponds to the -FOrm option of the rlink command.

\ Common Options ,(Compile Options ,(Assemnble Dptions_,(SMS Assemble O,{' Link Options), Hex Output O... / If0 HeaderFile. . _; v

RO1AN6255EJ0100 Rev.1.00

Aug.04.22 RENESAS

Updating Firmware by Using UART Communication and Boot Swapping

Page 62 of 71

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

In the [Hex Output Options] tab, under [Hex Format], set [Fill unused areas in the output ranges with the
value] to [Yes (Specification value) (-SPace=<Numerical value>)].

Figure 5-5 Generate a binary file in CS+ (5/6)

4 CC-RL Property a 2 - |+
“ Qutput File
Cutput hex file ‘ez
Cutput folder %BuildModeMamek
Cutput file name XProjectMameXbin
vz i Divizion output file[1]
Iv Hex Format I
Hex Tl Tormat Binary file(~FOrm=Binary)
Yes(Specification value){-SPace=<Mumerical valueX) o
LTpUT padding data ‘Yes(Random)(-5Pace=Fandom)
G RG Operation
Meszage [
Others

Fillunused areas in the output ranges with the value
Select whether to fill unused areasz in the output ranges with the walue.
Thiz option corresponds to the -SPace option of the rlink command.

\ Common Options ,{ Compile Options A’ Assemnble Dptions_,(SMS Assemble OX Link Options ,: Hex Qutput O... /| I/0HeaderFile... / v

In the [Hex Output Options] tab, under [Hex Format], set [Output padding data] to [FF].
Figure 5-6 Generate a binary file in CS+ (6/6)

4 GCC-RL Property a 2 -+
~ Output File

Output hex file Yes

Output folder ¥BuildModeMamek

Output file name XProjectMameXbin

Divizion output file Division output file[1]

*~ Hex Format
Hex file format

Binary file{—FOrm=Binary)
. De ifi 0 - [J - —,

Qutput paddine data

Specify the output padding data.

Specify the output paddine data in hexadecimal.

Thiz option corresponds to the ~SPace option of the rlink command.

' Common Options ,(Compile Options ,(Assemble Dptions_,(SMS Assemnble D,(Link Options , Hex Qutput O... { I/0 HeaderFile.. / ¥

A binary file is generated when you build a project.

ROLAN6255EJ0100 Rev.1.00 Page 63 of 71
Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

5.1.2 Using e2studio to Generate a Binary File
In the [Project] tab, select [Properties].

Under [C/C++ Build], select [Settings].

Figure 5-7 Generate a binary file in e2 studio (1/3)

Resource
Builders
Build Varables
Envircnment
Logging
Stack Analysis
Tool Chain Editor
C/C++ General
Project Natures
Project References
Renesas OF
Run/Debug Settings
Task Tags
Walidation

Select [Converter] and [Output] in the [Tool Settings] tab.

Figure 5-8 Generate a binary file in e2 studio (2/3)

& Tool Settings| Toolchain Devit

B3y SMS Assembler

By Common

By Compiler

B8y Assembler

By Linker

w B Converter

@ Cutput
(2 Hex format
@ CRC Operaticn
@ Miscellanecus
@ User

ROLAN6255EJ0100 Rev.1.00
Aug.04.22 RENESAS

Page 64 of 71

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

Select the [Run the load module converter] check box.

From the [Output file format] drop-down list, select [Output a binary file].

Click the [Add] button, and then enter a character string in the following pattern:
< S XXXXXX . bIn=0-YYYYYY

For XXXXXX, specify the project name. For YYYYYY, specify the last address of the code flash memory of
the device to be used.

Figure 5-9 Generate a binary file in e2 studio (3/3)

I Output hex file I

QOutput file format (-form) Binary file g

Intel HEX file
Motorola S-record file

Check whether address rang

Output file directory (-output)

Division cutput file (-ocutput= <File name>) & Ij & '{r| *,J}|

&) Edit Dialog x

Division output file

Format:

<File name,ext>{=<5tart address (hex)>- <End address (hex)>|<5ection
name=>[:...]}[/Load Address]

| ../ro1an6255]j0100-ri78g23-flash.bin=0- 1FFFF| |

“ OK Cancel

A binary file is generated when you build a project.

RO1ANG6255EJ0100 Rev.1.00 Page 65 of 71
Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

5.1.3 Using IAR EW to Generate a Binary File
In the [Project] tab, select [Options].

In the [Category] list box, select [Linker], and then select the [Checksum] tab.
Select the [Fill unused code memory] check box.

For [Fill pattern], specify OxFF. For [Start address], specify 0x0. For [End address], specify the last address
of the code flash memory of the device to be used with a hexadecimal humber prefixed by "Ox".

Figure 5-10 Generate a binary file in IAR EW (1/2)

Opticns for node "2men_kakikae_LED1_128KB" >

Categary: Factory Settings

General Options
Static Analysis
C/C++ Compiler

Assembler Config Library Input Optimizations =~ Advanced Output = List
Qutput Canverter #define Diagnostics Encodings Extra Options

Custom Build g "
[]Fill unused code memeng
Build Actions I!_
Debugger Start address: 0xd End address: 0x 1FFFF
El
E7?] Generate checksum
E20 2 bytes
E2 Lite / E2 On-board
EZ-CUBE — .
EZ-CUBE2 Result in full size Initial value
IECUBE B
Simulator Asis oo
K M5B first Use as input

Beverse byte order within word

8-bit

Cancel

ROLAN6255EJ0100 Rev.1.00 Page 66 of 71
Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

In the [Output Converter] tab, select the [Generate additional output] check box.
From the [Output format] drop-down list, select [Raw binary].

Then, click [OK]. A binary file is generated when you build a project.

Figure 5-11 Generate a binary file in IAR EW (2/2)

Options for node "2men_kakikae_LED1_128KB"

Categorny:

General Options
Static Analysis
C/C++ Compiler
Assembler
Output Converter
Custom Build
Build Actions Qutput format:
Linker
Debugger
El
E2
E20 Simple-code
EZ Lite / E2 On-board 2men_kakikae_LELT_TZ8RE.bin
EZ-CUBE
EZ-CUBE2
IECLIBE
Simulator
TR

Cutput

I Generate additional output I

Raw binary ~

Motorola S-records
Intel Extended hex

Factom Settings

Cancel

ROLAN6255EJ0100 Rev.1.00
Aug.04.22 RENESAS

Page 67 of 71

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

5.2 Using GUI-Based Tool
Run BootSwapGUI.exe.

Select the radio button for the ROM size of the device to be used.

Figure 5-12 Description of GUI (1/2)

g5 BootSwapGLI — O ot
Wer 1.00
ROM zize
() 96KE (@R
() 128KB () 512KB
) 192KE () 763KE
() 256KE
RO1AN6255EJ0100 Rev.1.00 Page 68 of 71

Aug.04.22 RENESAS

RL78/G23

Updating Firmware by Using UART Communication and Boot Swapping

From the drop-down list, select an available COM port, and then click [Connect] to connect to the target

device.

Click [Open], and then select the program (.bin) to be written.

Click [START] to start writing the program.

The progress bar shows the progress of write processing.

Figure 5-13

Description of GUI (2/2)

o BootSwapGLU)

Wer 1.00

|v I Connect I
b4
|| Open I
START
| f¢—— Progress bar |
After writing is complete, exit BootSwapGUI.exe.
RO1AN6255EJ0100 Rev.1.00 Page 69 of 71
Aug.04.22 RENESAS

RL78/G23 Updating Firmware by Using UART Communication and Boot Swapping

6. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

7. Reference Documents

RL78/G23 User's Manual: Hardware (RO1UHO0896)
RL78 family user's manual software (R01US0015)
The latest versions can be downloaded from the Renesas Electronics website.

Technical update
The latest versions can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

ROLAN6255EJ0100 Rev.1.00 Page 70 of 71
Aug.04.22 RENESAS

http://www.renesas.com/
http://www.renesas.com/contact/

RL78/G23

Updating Firmware by Using UART Communication and Boot Swapping

Revision History

Description
Rev. Date Page Summary
1.00 Aug.04.22 — First Edition
RO1AN6255EJ0100 Rev.1.00 Page 71 of 71
Aug.04.22 RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LS|, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vix (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Vix (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

Notice

1.

10.

11.

12.

13.
14.

(Notel)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2022 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Specifications
	1.1 Overview of Specifications
	1.1.1 Overview of Renesas Flash Driver RL78 Type01
	1.1.2 Code Flash Memory
	1.1.3 Flash Memory Self-Programming
	1.1.4 Boot Swap Function
	1.1.5 Updating the Firmware
	1.1.6 Flash Shield Window
	1.1.7 Obtaining Renesas Flash Driver RL78 Type01

	1.2 Overview of Operation
	1.2.1 Communication Specifications
	1.2.2 START Command
	1.2.3 WRITE_BOOT1 Command
	1.2.4 WRITE_TEMP Command
	1.2.5 END Command
	1.2.6 Checksum Calculation Method
	1.2.7 Operation of the Sample Program
	1.2.8 Copy Flag

	2. Operation Confirmation Conditions
	3. Hardware Descriptions
	3.1 Example of Hardware Configuration
	3.2 List of Pins to be Used

	4. Software Explanation
	4.1 Setting of Option Byte
	4.2 Setting Up the Startup Routine
	4.2.1 Defining the Stack Area Section (.stack_bss)
	4.2.2 Deploying the Reprogramming Program in the RAM Area

	4.3 Setting the ROM Size Specification Constant
	4.4 On-chip Debug Security ID
	4.5 Resources Used by the Sample Program
	4.5.1 List of Sections in the ROM Area
	4.5.2 List of the Sections in the RAM Area

	4.6 List of Constants
	4.7 Enumeration Type
	4.8 List of Variables
	4.9 List of Functions
	4.10 Specifications of Functions
	4.11 Flowcharts
	4.11.1 Main Processing
	4.11.2 Processing to receive and run the firmware update command
	4.11.3 Initialization processing for RFD RL78 Type01
	4.11.4 START command processing
	4.11.5 END command processing
	4.11.6 Range erase processing for the code flash memory
	4.11.7 Block erase processing for the code flash memory
	4.11.8 Write-and-verify processing for the code flash memory
	4.11.9 Write processing for the code flash memory
	4.11.10 Verify processing for the code flash memory
	4.11.11 Sequence end processing for the code flash memory
	4.11.12 Sequence end processing for the extra area
	4.11.13 Boot swapping execution processing
	4.11.14 Callback processing at a sending completion interrupt for UART0
	4.11.15 Data sending processing by UART0
	4.11.16 Normal response sending processing by UART0
	4.11.17 Processing to copy data from the Temporary area
	4.11.18 Processing to reprogram the code flash memory
	4.11.19 Processing to receive asynchronous command packets
	4.11.20 Processing to obtain the size of the receive data
	4.11.21 Processing to clear the receive buffer
	4.11.22 Processing to turn on the error LED

	5. GUI-Based Tool for Writing Data
	5.1 Generating a File Required to Write Data
	5.1.1 Using CS+ to Generate a Binary File
	5.1.2 Using e2studio to Generate a Binary File
	5.1.3 Using IAR EW to Generate a Binary File

	5.2 Using GUI-Based Tool

	6. Sample Code
	7. Reference Documents
	Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice
	Contact information
	Corporate Headquarters
	Trademarks

