
 APPLICATION NOTE

R01AN1130EJ0120 Rev.1.20 Page 1 of 25
Sep 30, 2013

RL78/G1E Group
Sample Code for Performing SPI Communication with Analog Block

Introduction

This application note describes the sample code used to access the SPI control registers by using the 3-wire serial I/O
(CSI21) of channel 1 of serial array unit 1 incorporated in the RL78/G1E (R5F10FMx).

Target Devices

RL78/G1E (R5F10FMx (x = C, D, or E))

When the sample code shown in this application note is applied to other microcontrollers, make the necessary changes
according to the specifications of the microcontroller and verify them thoroughly.

R01AN1130EJ0120
Rev.1.20

Sep 30, 2013

RL78/G1E Group Sample Code for Performing SPI Communication with Analog Block

R01AN1130EJ0120 Rev.1.20 Page 2 of 25
Sep 30, 2013

Contents

1. Specifications ... 3
1.1 Overview... 3
1.2 Procedure for using the sample code... 4

2. Conditions for Verifying Operation ... 5

3. Related Application Notes .. 5

4. Functions .. 6

5. Return Values... 6

6. Structures ... 7
6.1 Structures Used by Byte Manipulation Functions... 7
6.2 Structures Used by Bit Manipulation Functions.. 7

7. Function Specifications .. 8
7.1 SPI Control Register Read Function .. 8
7.2 SPI Control Register Write Function... 8
7.3 SPI Control Register Write Verify Function .. 9
7.4 SPI Control Register Bit Read Function ... 10
7.5 SPI Control Register Bit Write Function ... 11
7.6 SPI Control Register Bit Write Verify Function ... 12

8. Flowcharts .. 13
8.1 SPI Control Register Read Function .. 13
8.2 SPI Control Register Write Function... 14
8.3 SPI Control Register Write Verify Function .. 15
8.4 SPI Control Register Bit Read Function ... 16
8.5 SPI Control Register Bit Write Function ... 17
8.6 SPI Control Register Bit Write Verify Function ... 18

9. Examples of Using the Sample Code... 19
9.1 Example of Using SPI Control Register Read Function ... 19
9.2 Example of Using SPI Control Register Write Function ... 20
9.3 Example of Using SPI Control Register Write Verify Function ... 21
9.4 Example of Using SPI Control Register Bit Read Function.. 22
9.5 Example of Using SPI Control Register Bit Write Function .. 23
9.6 Example of Using SPI Control Register Bit Write Verify Function.. 24

RL78/G1E Group Sample Code for Performing SPI Communication with Analog Block

R01AN1130EJ0120 Rev.1.20 Page 3 of 25
Sep 30, 2013

1. Specifications

1.1 Overview
This application note describes the sample code used to perform SPI communication with the analog block by using the
3-wire serial I/O of channel 1 of serial array unit 1 incorporated in the RL78/G1E (R5F10FMx).

The sample code used in this application note uses some of the serial interface functions generated by a code generator
(CubeSuite+). Be sure to call the serial interface initialization function (auto code generation function) before using the
sample code.

The serial interface functions (auto code generation functions) required to execute the sample code are shown below.

• R_SAU1_Create: Be sure to call this function before executing the sample code.

• R_CSI21_Create: This function is called from the R_SAU1_Create function.

• R_CSI21_Start: This function is called from the sample code.

• R_CSI21_Stop: This function is called from the sample code.

• R_CSI21_SendReceive: This function is called from the sample code.

• r_csi21_interrupt: This is the CSI21 interrupt handler.

• r_csi21_callback_receiveend: This function is called from the r_csi21_interrupt function.

• r_csi21_callback_error: This function is called from the r_csi21_interrupt function.

RL78/G1E Group Sample Code for Performing SPI Communication with Analog Block

R01AN1130EJ0120 Rev.1.20 Page 4 of 25
Sep 30, 2013

1.2 Procedure for using the sample code
How to use the sample code described in this application note is shown below.

(1) Use the CubeSuite+ code generator to generate the functions required to run the sample code. At this time,
be sure to specify the following settings:

• Enable the overrun error callback feature. Select the check box for the overrun error in the callback
feature settings for the 3-wire serial I/O (CSI21) that uses channel 1 of serial array unit 1.

• Set the output level of the reset pin to “H”.
Enable the port to which the reset pin is connected and set the output level to High (1).

(2) Add r_sa_spi_control_register.c (and r_sa_spi_control_register.h) to the project.
(3) Add the following source code to the automatically generated file.

r_cg_serial_user.c file

//Include a header file.
#include "r_sa_spi_control_register.h"

//Declare a global variable for the overrun error flag.
volatile uint8_t g_csi21_overrun_flag;

//Add the following processing to the r_csi21_callback_error function.

static void r_csi21_callback_error(uint8_t err_type)
{
 /* Start user code. Do not edit comment generated here */
 uint8_t dummy;

 /* Clear overrun flag of R5F10FMx register */
 dummy = SIO21;
 dummy = (uint8_t)(SSR11 & _0001_SAU_OVERRUN_ERROR);
 SIR11 = (uint16_t)dummy;

 /* Set overrun flag of global variable */
 g_csi21_overrun_flag = 1;

 /* Set CS output level high and stop CSI21 */
 SPI_CS = 1;
 R_CSI21_Stop();
 /* End user code. Do not edit comment generated here */
}

//Add the following processing to the r_csi21_callback_receiveend function.

static void r_csi21_callback_receiveend(void)
{
 /* Start user code. Do not edit comment generated here */
 /* Set CS output level high and stop CSI21 */
 SPI_CS = 1;
 R_CSI21_Stop();
 /* End user code. Do not edit comment generated here */
}

RL78/G1E Group Sample Code for Performing SPI Communication with Analog Block

R01AN1130EJ0120 Rev.1.20 Page 5 of 25
Sep 30, 2013

2. Conditions for Verifying Operation

The operation of the sample code shown in this application note has been verified under the conditions shown below.

Table 2.1 Conditions for Verifying Operation

Item Description
Microcontroller used RL78/G1E (R5F10FME)
Operating frequency • High-speed on-chip oscillator (high-speed OCD) clock: 32 MHz

• CPU/peripheral hardware clock: 32 MHz
Operating voltage VDD, DVDD, AVDD1, AVDD2, AVDD3: 5.0 V

AVDD: 3.3 V
LVD detection voltage (VLVIH): 4.06 V when rising, 3.98 V when falling

External devices used None

Integrated development
environment

CubeSuite+ V1.01.01 [31 Jan 2012] made by Renesas Electronics

C compiler (build tool) CA78K0R V1.30 made by Renesas Electronics
RL78/G1A code library CodeGenerator for RL78/G1A E1.00.00c [22 Dec 2011]

made by Renesas Electronics

3. Related Application Notes

Related application notes are shown below. Also refer to these documents when using this application note.

 RL78/G13 Initialization (R01AN0451E) Application Note
 RL78/G13 Serial Array Unit for 3-Wire Serial I/O (Master Transmission/Reception) (R01AN0460E)

Application Note

RL78/G1E Group Sample Code for Performing SPI Communication with Analog Block

R01AN1130EJ0120 Rev.1.20 Page 6 of 25
Sep 30, 2013

4. Functions

The functions used in the sample code described in this application note are listed in Table 4.1 below.

Table 4.1 Functions

Access Function Name Overview
R_SPI_SmartAnalogRead SPI control register read function
R_SPI_SmartAnalogWrite SPI control register write function

Byte
manipulation
(8-bit access) R_SPI_SmartAnalogWriteVerify SPI control register write verify function

R_SPI_SmartAnalogReadBit SPI control register bit read function
R_SPI_SmartAnalogWriteBit SPI control register bit write function

Bit
manipulation
(1-bit access) R_SPI_SmartAnalogWriteVerifyBit SPI control register bit write verify function

5. Return Values

The return values used in the sample code described in this application note are listed in Table 5.1 below.

Table 5.1 Return Values

Return Values Data Type
Macro name Value Description
SPI_OK 00H Success
SPI_ERR_PARAM 01H Parameter error
SPI_ERR_COM 02H SPI communication error

(overrun error, timeout error)

Spi_status_t

(uint8_t)

SPI_ERR_VERIFY 03H Verification error

RL78/G1E Group Sample Code for Performing SPI Communication with Analog Block

R01AN1130EJ0120 Rev.1.20 Page 7 of 25
Sep 30, 2013

6. Structures

The structures used in the sample code described in this application note are shown below.

6.1 Structures Used by Byte Manipulation Functions
The structures used by byte manipulation (8-bit access) functions are shown in Table 6.1 below.

Table 6.1 Structures Used by Byte Manipulation Functions

Structure data type
name

spi_data_t

Overview Data format for reading and writing SPI control registers
Data type size 2 bytes

Data type Name Description
uint8_t address Address of the SPI control register

Member variables

uint8_t data Data in the SPI control register

6.2 Structures Used by Bit Manipulation Functions
The structures used by bit manipulation (1-bit access) functions are shown in Table 6.2 below.

Table 6.2 Structures Used by Bit Manipulation Functions

Structure data type
name

Spi_data_bit_t

Overview Data format for bit-reading and bit-writing SPI control registers
Data type size 3 bytes

Data type Name Description
uint8_t address Address of the SPI control register
uint8_t bitNum Number of bit in SPI control register (0 to 7)

Member variables

uint8_t bitData Setting of bit in SPI control register (0 or 1)

RL78/G1E Group Sample Code for Performing SPI Communication with Analog Block

R01AN1130EJ0120 Rev.1.20 Page 8 of 25
Sep 30, 2013

7. Function Specifications

The specifications of the functions used in the sample code described in this application note are described below.

7.1 SPI Control Register Read Function
The specifications of the SPI control register read function (R_SPI_SmartAnalogRead) are shown in Table 7.1 below.

Table 7.1 Specifications of SPI Control Register Read Function

Function name R_SPI_ControlRegister_Read

Overview SPI control register read function
Header file r_sa_spi_control_register.h

Declaration spi_status_t R_SPI_SmartAnalogRead(spi_data_t *data, unit8_t num)

Function
description

Reads the data from an SPI control register in the analog block by using CSI21.

Data type Name Description
spi_data_t * data Pointer to buffer storing the SPI control

register address and read data bits

Parameters

uint8_t num Number of spi_data_t elements
Macro name Value Description
SPI_OK 00H Success

Return value

SPI_ERR_COM 02H SPI communication error (overrun error,
timeout error)

7.2 SPI Control Register Write Function
The specifications of the SPI control register write function (R_SPI_SmartAnalogWrite) are shown in Table 7.2 below.

Table 7.2 Specifications of SPI Control Register Write Function

Function name R_SPI_SmartAnalogWrite

Overview SPI control register write function
Header file r_sa_spi_control_register.h

Declaration spi_status_t R_SPI_SmartAnalogWrite(spi_data_t *data, unit8_t num)

Function
description

Writes data to an SPI control register in the analog block by using CSI21.

Data type Name Description
spi_data_t * data Pointer to buffer storing the SPI control

register address and data bits to be written

Parameters

uint8_t num Number of spi_data_t elements
Macro name Value Description
SPI_OK 00H Success

Return value

SPI_ERR_COM 02H SPI communication error (overrun error,
timeout error)

RL78/G1E Group Sample Code for Performing SPI Communication with Analog Block

R01AN1130EJ0120 Rev.1.20 Page 9 of 25
Sep 30, 2013

7.3 SPI Control Register Write Verify Function
The specifications of the SPI control register write verify function (R_SmartAnalogWriteVerify) are shown in Table 7.3
below.

Table 7.3 Specifications of SPI Control Register Write Verify Function

Function name R_SPI_ControlRegisterWriteVerify

Overview SPI control register write verify function
Header file r_ra_spi_control_register.h

Declaration spi_status_t R_SPI_SmartAnalogWriteVerify(spi_data_t *data,
unit8_t num, uint8_t *errIndex)

Function
description

Writes data to an SPI control register in the analog block by using CSI21, and then verifies
that the data has been written.
Data type Name Description
spi_data_t * data Pointer to buffer storing the SPI control

register address and data bits to be written
uint8_t num Number of spi_data_t elements

Parameters

uint8_t * errIndex Pointer to buffer storing the number of the
spi_data_t element that caused the verify
error (0 to num − 1)

Macro name Value Description
SPI_OK 00H Success
SPI_ERR_COM 02H SPI communication error (overrun error,

timeout error)

Return value

SPI_ERR_VERIFY 03H Verification error

RL78/G1E Group Sample Code for Performing SPI Communication with Analog Block

R01AN1130EJ0120 Rev.1.20 Page 10 of 25
Sep 30, 2013

7.4 SPI Control Register Bit Read Function
The specifications of the SPI control register bit read function (R_SPI_SmartAnalogReadBit) are shown in Table 7.4
below.

Table 7.4 Specifications of SPI Control Register Bit Read Function

Function name R_SPI_SmartAnalogReadBit

Overview SPI control register bit read function
Header file r_sa_spi_control_register.h

Declaration Spi_status_t R_SPI_SmartAnalogReadBit(SPI_DATA_BIT *data, unit8_t
num, uint8_t *errIndex)

Function
description

Reads the bit data from an SPI control register in the analog block by using CSI21.

Data type Name Description
spi_data_bit_t * data Pointer to buffer storing the SPI control

register address, bit number, and read data
bit

uint8_t num Number of spi_data_bit_t elements

Parameters

uint8_t * errIndex Pointer to buffer storing the number of the
spi_data_t element that caused the
parameter error (0 to num − 1)

Macro name Value Description
SPI_OK 00H Success
SPI_ERR_PARAM 01H Parameter error (illegal bit)

Return value

SPI_ERR_COM 02H SPI communication error (overrun error,
timeout error)

RL78/G1E Group Sample Code for Performing SPI Communication with Analog Block

R01AN1130EJ0120 Rev.1.20 Page 11 of 25
Sep 30, 2013

7.5 SPI Control Register Bit Write Function
The specifications of the SPI control register bit write function (R_SPI_SmartAnalogWriteBit) are shown in Table 7.5
below.

Table 7.5 Specifications of SPI Control Register Bit Write Function

Function name R_SPI_SmartAnalogWriteBit

Overview SPI control register bit write function
Header file SPI_ControlRegister.h

Declaration SPI_STATUS SPI_ControlRegister_Write_Bit(SPI_DATA_BIT *data,
unit8_t num, uint8_t *errIndex)

Function
description

Writes bit data to an SPI control register in the analog block by using CSI21.

Data type Name Description
spi_data_bit_t * data Pointer to buffer storing the SPI control

register address, bit number, and write data
bit

uint8_t num Number of spi_data_bit_t elements

Parameters

uint8_t * errIndex Pointer to buffer storing the number of the
spi_data_bit_t element that caused the
parameter error (0 to num − 1)

Macro name Value Description
SPI_OK 00H Success
SPI_ERR_PARAM 01H Parameter error (invalid bit number or bit

data)

Return value

SPI_ERR_COM 02H SPI communication error (overrun error,
timeout error)

RL78/G1E Group Sample Code for Performing SPI Communication with Analog Block

R01AN1130EJ0120 Rev.1.20 Page 12 of 25
Sep 30, 2013

7.6 SPI Control Register Bit Write Verify Function
The specifications of the SPI control register bit write verify function (R_SPI_SmartAnalogWriteVerifyBit) are shown in
Table 7.6 below.

Table 7.6 Specifications of SPI Control Register Bit Write Verify Function

Function name R_SPI_SmartAnalogWriteVerifyBit

Overview SPI control register bit write verify function
Header file r_sa_spi_control_register.h

Declaration spi_status_t R_SPI_SmartAnalogWriteVerifyBit(spi_data_bit_t *data,
unit8_t num, uint8_t *errIndex)

Function
description

Writes bit data to an SPI control register in the analog block by using CSI21, and then
verifies that the data has been written.
Data type Name Description
spi_data_bit_t * data Pointer to buffer storing the SPI control

register address, bit number, and write data
bit

uint8_t num Number of spi_data_bit_t elements

Parameters

uint8_t * errIndex Pointer to buffer storing the number of the
spi_data_bit_t element that caused the
parameter error or verification error (0 to num
− 1)

Macro name Value Description
SPI_OK 00H Success
SPI_ERR_PARAM 01H Parameter error (invalid bit number or bit

data)
SPI_ERR_COM 02H SPI communication error (overrun error,

timeout error)

Return value

SPI_ERR_VERIFY 03H Verification error

RL78/G1E Group Sample Code for Performing SPI Communication with Analog Block

R01AN1130EJ0120 Rev.1.20 Page 13 of 25
Sep 30, 2013

8. Flowcharts

The flowcharts for the sample code described in this application note are shown below.

8.1 SPI Control Register Read Function
The flowchart for the SPI control register read function is shown in Figure 8.1 below.

R_SPI_SmartAnalogRead

Read counter = 0

Read counter value <
Number of read elements?

Yes

No

Specify the settings for register to be
read (address, data buffer)

R_CSI21_Start()
(starts CSI21 operation)

Set output level of CS# pin to Low

R_CSI21_Send_Receive()
(performs CSI21 transmission/reception)

return (SPI_OK)

CS pin = High?

Overrun?

Store received data in buffer

Read counter ++

No

Yes

Timeout?

return (SPI_ERR_COM) Set output level of CS# pin to High

R_CSI21_Stop()
(stops CSI21 operation)

return (SPI_ERR_COM)

Yes

No

Yes

No

Figure 8.1 Flowchart for SPI Control Register Read Function

RL78/G1E Group Sample Code for Performing SPI Communication with Analog Block

R01AN1130EJ0120 Rev.1.20 Page 14 of 25
Sep 30, 2013

8.2 SPI Control Register Write Function
The flowchart for the SPI control register write function is shown in Figure 8.2 below.

R_SPI_SmartAnalogWrite

Write counter = 0

Write counter value <
Number of write elements?

Yes

No

Specify the setting for register to be
written (address, data buffer)

R_CSI21_Start()
(starts CSI21 operation)

Set output level of CS# pin to Low

R_CSI21_Send_Receive()
(performs CSI21 transmission/reception)

return (SPI_OK)

CS pin = High?

Overrun?

Write counter ++

No

Yes

Timeout?

return (SPI_ERR_COM) Set output level of CS# pin to High

R_CSI21_Stop()
(stops CSI21 operation)

return (SPI_ERR_COM)

Yes

No

Yes

No

Figure 8.2 Flowchart for SPI Control Register Write Function

RL78/G1E Group Sample Code for Performing SPI Communication with Analog Block

R01AN1130EJ0120 Rev.1.20 Page 15 of 25
Sep 30, 2013

8.3 SPI Control Register Write Verify Function
The flowchart for the SPI control register write verify function is shown in Figure 8.3 below.

R_SPI_SmartAnalogWriteVerify

R_SPI_SmartAnalogWrite
(writes to the SPI control register)

Write successful?

Yes

No

Specify the setting for
register to be read

R_SPI_SmartAnalogRead
(reads the SPI control register)

Read successful?

Yes

No

return (SPI_ERR_COM)

return (SPI_ERR_COM)

Written data = Read data?

Check counter ++
Store value of check counter

in error index

Yes

No

return (SPI_ERR_VERIFY)

Write counter = 0

Write counter value <
Number of write elements?

Yes

No

return (SPI_OK)

Figure 8.3 Flowchart for SPI Control Register Write Verify Function

RL78/G1E Group Sample Code for Performing SPI Communication with Analog Block

R01AN1130EJ0120 Rev.1.20 Page 16 of 25
Sep 30, 2013

8.4 SPI Control Register Bit Read Function
The flowchart for the SPI control register bit read function is shown in Figure 8.4 below.

R_SPI_SmartAnalogReadBit

Read counter = 0

Read counter value <
Number of read elements?

Yes

No

return (SPI_OK)

Bit number OK?

Yes

No

Store value of read counter
in error index

return (SPI_ERR_PARAM)

Specify the setting for
register to be read

R_spi_SmartAnalogRead
(reads the SPI control register)

Read successful?

Yes

No

return (SPI_ERR_COM)

Extract bit data from read register

Store bit data in buffer

Read counter ++

Figure 8.4 Flowchart for SPI Control Register Bit Read Function

RL78/G1E Group Sample Code for Performing SPI Communication with Analog Block

R01AN1130EJ0120 Rev.1.20 Page 17 of 25
Sep 30, 2013

8.5 SPI Control Register Bit Write Function
The flowchart for the SPI control register bit write function is shown in Figure 8.5 below.

R_SPI_SmartAnalogWriteBit

Write counter = 0

Write counter value <
Number of write elements?

Yes

No

return (SPI_OK)

Bit number OK and
bit data OK?

Yes

No

Store value of write counter
in error index

return (SPI_ERR_PARAM)

Specify the setting for
register to be read

R_SPI_SmartAnalogRead
(reads the SPI control register)

Read successful?

Yes

No

return (SPI_ERR_COM)

Set data in write register (reflect bit
data to be written in read data)

Write counter ++

R_SPI_SmartAnalogWrite
(writes to the SPI control register)

Write successful?

Yes

No

return (SPI_ERR_COM)

Figure 8.5 Flowchart for SPI Control Register Bit Write Function

RL78/G1E Group Sample Code for Performing SPI Communication with Analog Block

R01AN1130EJ0120 Rev.1.20 Page 18 of 25
Sep 30, 2013

8.6 SPI Control Register Bit Write Verify Function
The flowchart for the SPI control register bit write verify function is shown in Figure 8.6 below.

R_SPI_SmartAnalogWriteVerifyBit

Write counter = 0

Write counter value <
Number of write elements?

Yes

No

return (SPI_OK)

Bit number OK and
bit data OK?

Yes

No

Store value of write counter
in error index

return (SPI_ERR_PARAM)
Specify the setting for register to be

read

R_SPI_SmartAnalogRead
(reads the SPI control register)

Read successful?

Yes

No

return (SPI_ERR_COM)

Set data in write register (reflect bit
data to be written in read data)

R_SPI_SmartAnalogWrite
(writes to the SPI control register)

Write successful?

Yes

No

return (SPI_ERR_COM)

Written data = Read data?

Check counter ++

Store value of check counter
in error indexYes

No

return (SPI_ERR_VERIFY)

R_SPI_SmartAnalogRead
(reads the SPI control register)

Read successful?

Yes

No

return (SPI_ERR_COM)

Figure 8.6 Flowchart for SPI Control Register Bit Write Verify Function

RL78/G1E Group Sample Code for Performing SPI Communication with Analog Block

R01AN1130EJ0120 Rev.1.20 Page 19 of 25
Sep 30, 2013

9. Examples of Using the Sample Code

Examples of using the sample code described in this application note are described below.

9.1 Example of Using SPI Control Register Read Function
An example of using the SPI control register read function (R_SPI_SmartAnalogRead) is shown in Figure 9.1 below.

 Example of use
(1) Address 00H is read.
(2) Address 01H is read.
(3) Address 03H is read.
(4) Address 04H is read.
(5) Address 05H is read.

#include "r_cg_macrodriver.h"
#include "r_sa_control_register.h"

void main(void)
{

uint8_t errCode; // For storing the function's return value
uint8_t temp[5];

// Prepare a buffer for read data and specify the address
// (Any value can be specified as the initial value of the data when read)
spi_data_t readData[5] = {

{0x00, 0x00}, // address: 00H, data: 00H(dummy)
{0x01, 0x00}, // address: 01H, data: 00H(dummy)
{0x03, 0x00}, // address: 03H, data: 00H(dummy)
{0x04, 0x00}, // address: 04H, data: 00H(dummy)
{0x05, 0x00} // address: 05H, data: 00H(dummy)

};

// Read the SPI control register
errCode = R_SPI_SmartAnalogRead(readData, 5);

// Error check
if (errCode != SPI_OK) {

// Error handling
}
else {

// Obtain read data
temp[0] = readData[0].data; // Obtain data at address 00H
temp[1] = readData[1].data; // Obtain data at address 01H
temp[2] = readData[2].data; // Obtain data at address 03H
temp[3] = readData[3].data; // Obtain data at address 04H
temp[4] = readData[4].data; // Obtain data at address 05H

}
while(1);

}

Figure 9.1 Example of Using SPI Control Register Read Function

RL78/G1E Group Sample Code for Performing SPI Communication with Analog Block

R01AN1130EJ0120 Rev.1.20 Page 20 of 25
Sep 30, 2013

9.2 Example of Using SPI Control Register Write Function
An example of using the SPI control register write function (R_SPI_SmartAnalogWrite) is shown in Figure 9.2 below.

 Example of use
(1) Data 57H is written to address 11H.

#include "r_cg_macrodriver.h"
#include "r_sa_spi_control_register.h"

void main(void)
{

uint8_t errCode; // For storing the function's return value

// Prepare a buffer for write data and specify the address
spi_data_t writeData[1] = {

{0x11, 0x57} // address: 11H, data: 57H
};

// Write to the SPI control register
errCode = R_SPI_SmartAnalogWrite(writeData, 1);

// Error check
if (errCode != SPI_OK) {

// Error handling
}
else {

// Normal processing
}

while(1);
}

Figure 9.2 Example of Using SPI Control Register Write Function

RL78/G1E Group Sample Code for Performing SPI Communication with Analog Block

R01AN1130EJ0120 Rev.1.20 Page 21 of 25
Sep 30, 2013

9.3 Example of Using SPI Control Register Write Verify Function
An example of using the SPI control register write verify function (R_SPI_SmartAnalogWriteVerify) is shown in Figure
9.3 below.

 Example of use
(4) Data 0DH is written to address 0BH.
(5) Data 02H is written to address 12H.
(6) After (1) and (2) are executed, verify processing is executed.

#include "r_cg_macrodriver.h"
#include "r_sa_spi_control_register.h"

void main(void)
{

uint8_t errCode; // For storing the function's return value
uint8_t errIndex; // For storing error index
uint8_t temp;

// Prepare a buffer for write data and specify the address
spi_data_t writeData[2] = {

{0x0B, 0x0D}, // address: 0BH, data: 0DH
{0x12, 0x02} // address: 12H, data: 02H

};

// Verify that data has been written to the SPI control register
errCode = R_SPI_SmartAnalogWriteVerify(writeData, 2, &errIndex);

// Error check
if (errCode == SPI_OK) {

// Normal processing
}
else if (errCode == SPI_ERR_VERIFY){

// If a verification error occurs
temp = errIndex; // Obtain the index of the cause of the verification error

}
else {

// Other error handling
}

while(1);
}

Figure 9.3 Example of Using SPI Control Register Write Verify Function

RL78/G1E Group Sample Code for Performing SPI Communication with Analog Block

R01AN1130EJ0120 Rev.1.20 Page 22 of 25
Sep 30, 2013

9.4 Example of Using SPI Control Register Bit Read Function
An example of using the SPI control register bit read function (R_SPI_SmartAnalogReadBit) is shown in Figure 9.4
below.

 Example of use
(1) Bit 6 of address 01H is read.

#include "r_cg_macrodriver.h"
#include "r_sa_spi_control_register.h"

void main(void)
{

uint8_t errCode; // For storing the function's return value
uint8_t errIndex; // For storing error index
uint8_t temp;

// Prepare a buffer for read data and specify the address and bit number
// (Any value can be specified as the initial value of the bit data when read)
spi_data_bit_t readData[1] = {

{0x01, 6, 0} // address: 01H, bitNum: 6, bitData: 0(dummy)
};

// Read the specified bit of the SPI control register
errCode = R_SPI_SmartAnalogReadBit(readData, 1, &errIndex);

// Error check
if (errCode == SPI_OK) {

// Obtain the read bit data
temp = readData[0].bitData; // Obtain the data of bit 6 of address 01H

}
else if (errCode == SPI_ERR_PARAM){

// If a parameter error occurs
temp = errIndex; // Obtain the index of the cause of the parameter error

}
else {

// Other error handling
}

while(1);
}

Figure 9.4 Example of Using SPI Control Register Bit Read Function

RL78/G1E Group Sample Code for Performing SPI Communication with Analog Block

R01AN1130EJ0120 Rev.1.20 Page 23 of 25
Sep 30, 2013

9.5 Example of Using SPI Control Register Bit Write Function
An example of using the SPI control register bit write function (R_SPI_SmartAnalogWriteBit) is shown in Figure 9.5
below.

 Example of use
(1) 1 is written to bit 2 of address 11H.
(2) 0 is written to bit 4 of address 12H.

#include "r_cg_macrodriver.h"
#include "r_sa_spi_control_register.h"

void main(void)
{

uint8_t errCode; // For storing the function's return value
uint8_t errIndex; // For storing error index
uint8_t temp;

// Prepare a buffer for write data and specify the address, bit number, and bit data
spi_data_bit_t writeData[2] = {

{0x11, 2, 1}, // address: 11H, bitNum: 2, bitData: 1
{0x12, 4, 0} // address: 12H, bitNum: 4, bitData: 0

};

// Write to the specified bit of the SPI control register
errCode = R_SPI_SmartAnalogWriteBit(writeData, 2, &errIndex);

// Error check
if (errCode == SPI_OK) {

// Normal processing
}
else if (errCode == SPI_ERR_PARAM){

// If a parameter error occurs
temp = errIndex; // Obtain the index of the cause of the parameter error

}
else {

// Other error handling
}

while(1);
}

Figure 9.5 Example of Using SPI Control Register Bit Write Function

RL78/G1E Group Sample Code for Performing SPI Communication with Analog Block

R01AN1130EJ0120 Rev.1.20 Page 24 of 25
Sep 30, 2013

9.6 Example of Using SPI Control Register Bit Write Verify Function
An example of using the SPI control register bit write verify function
(SPI_ControlRegister_Write_Verify_Bit) is shown in Figure 9.6 below.

 Example of use
(1) 1 is written to bit 1 of address 01H.
(2) 0 is written to bit 2 of address 11H.
(3) 1 is written to bit 3 of address 12H.
(4) After (1), (2) and (3) are executed, verify processing is executed.

#include "r_cg_macrodriver.h"
#include "r_sa_spi_control_register.h"

void main(void)
{

uint8_t errCode; // For storing the function's return value
uint8_t errIndex; // For storing error index
uint8_t temp;

// Prepare a buffer for write data and specify the address, bit number, and bit data
spi_data_bit_t writeData[3] = {

{0x01, 1, 1}, // address: 01H, bitNum: 1, bitData: 1
{0x11, 2, 0}, // address: 11H, bitNum: 2, bitData: 0
{0x12, 3, 1} // address: 12H, bitNum: 3, bitData: 1

};

// Verify that the specified bit of the SPI control register has been written
errCode = R_SPI_SmartAnalogWriteVerifyBit(writeData, 3, &errIndex);

// Error check
if (errCode == SPI_OK) {

// Normal processing
}
else if (errCode == SPI_ERR_PARAM){

// If a parameter error occurs
temp = errIndex; // Obtain the index of the cause of the parameter error

}
else if (errCode == SPI_ERR_VERIFY){

// If a verification error occurs
temp = errIndex; // Obtain the index of the cause of the verification error

}
else {

// Other error handling
}

while(1);
}

Figure 9.6 Example of Using SPI Control Register Bit Write Verify Function

RL78/G1E Group Sample Code for Performing SPI Communication with Analog Block

R01AN1130EJ0120 Rev.1.20 Page 25 of 25
Sep 30, 2013

Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

A-1

Revision Record

Description

Rev. Date Page Summary
1.00 Sep. 30, 2012 — First edition issued.
1.10 Mar. 29, 2013 — Change of descriptions
1.20 Sep. 30, 2013 — Addition of 1.2 Procedure for using the sample code

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description
in the body of the manual takes precedence.

1. Handling of Unused Pins
• Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
• The state of the product is undefined at the moment when power is supplied.
⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and pins

are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins are
not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are
not guaranteed from the moment when power is supplied until the power reaches the level at which
resetting has been specified.

3. Prohibition of Access to Reserved Addresses
• Access to reserved addresses is prohibited.
⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
• After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has
stabilized.

⎯ When the clock signal is generated with an external resonator (or from an external oscillator) during
a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover,
when switching to a clock signal produced with an external resonator (or by an external oscillator)
while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
• Before changing from one product to another, i.e. to one with a different part number, confirm that the

change will not lead to problems.
⎯ The characteristics of MPU/MCU in the same group but having different part numbers may differ

because of the differences in internal memory capacity and layout pattern. When changing to
products of different part numbers, implement a system-evaluation test for each of the products.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2012 Renesas Electronics Corporation. All rights reserved.
Colophon 2.2

	Introduction
	Target Devices
	1. Specifications
	1.1 Overview
	1.2 Procedure for using the sample code

	2. Conditions for Verifying Operation
	3. Related Application Notes
	4. Functions
	5. Return Values
	6. Structures
	6.1 Structures Used by Byte Manipulation Functions
	6.2 Structures Used by Bit Manipulation Functions

	7. Function Specifications
	7.1 SPI Control Register Read Function
	7.2 SPI Control Register Write Function
	7.3 SPI Control Register Write Verify Function
	7.4 SPI Control Register Bit Read Function
	7.5 SPI Control Register Bit Write Function
	7.6 SPI Control Register Bit Write Verify Function

	8. Flowcharts
	8.1 SPI Control Register Read Function
	8.2 SPI Control Register Write Function
	8.3 SPI Control Register Write Verify Function
	8.4 SPI Control Register Bit Read Function
	8.5 SPI Control Register Bit Write Function
	8.6 SPI Control Register Bit Write Verify Function

	9. Examples of Using the Sample Code
	9.1 Example of Using SPI Control Register Read Function
	9.2 Example of Using SPI Control Register Write Function
	9.3 Example of Using SPI Control Register Write Verify Function
	9.4 Example of Using SPI Control Register Bit Read Function
	9.5 Example of Using SPI Control Register Bit Write Function
	9.6 Example of Using SPI Control Register Bit Write Verify Function

	Revision Record
	Notice

