Introduction
This document describes measurement method of current consumption when BLE connection.

Target Device
- RL78/G1D

Note: The contents of this document are provided as a reference and differ in system structure and measurement condition.

Contents

1. Overview .. 2
 1.1 Related documents ... 2

2. Preparation for measurement ... 3
 2.1 Example of evaluation board’s connection .. 4

3. Execution of connection operation .. 6
 3.1 Connection by the sample program .. 6
 3.2 Connection by the GUI tool ... 8

4. Current consumption of operation ... 10
1. Overview

This document explains about a procedure of method for measurement of the current consumption which is at the time of a BLE connection by Generic Access Profile (GAP). This document is described by assumption that is understood about Bluetooth Low Energy and RL78/G1D Bluetooth low energy protocol stack.

Measurement method are explained by Sample Program or GUI tool execution of Bluetooth Low Energy protocol stack. The current consumption measurement provides durability time of the battery for application with useful information.

1.1 Related documents

The following document is related to this application note. Also refer to this document when using this application note.

- Bluetooth Low Energy Protocol Stack Sample Program Application Note (R01AN1375)
- Bluetooth Low Energy Protocol Stack Quick Start Guide Application Note (R01AN2767)
- Bluetooth Low Energy Protocol Stack GUI Tool Manual Application Note (R01AN2469)
- RL78/G1D User’s Manual: Evaluation Board (R30UZ0048)
2. Preparation for measurement

This section is described about measurement machine for current consumption measurement. The current consumption has to be measured with time for the current consumption amount measurement. Therefore, Not a multi-meter, but an oscilloscope is needed. The easy method to measure current consumption with an oscilloscope is the method to measure the current consumption which flows to a system directly using a current probe. When there are no current probes, it's possible to use resistance of the small resistance value for a power supply feed line of a system as shown in Figure 1 as the easy substitution means.

The voltage drop measures the difference between the two voltage probes of across the resistor with an oscilloscope. The current consumption value can be calculated by dividing the voltage drop by the resistance value \(I = \frac{V}{R} \). The better resistance value for using is 10\(\Omega \). This resistance value is the small value which doesn't influence a circuit. And, the voltage has to be a big range for measurement accuracy. It's easy of calculation to use 10\(\Omega \) of resistance value.

At the time of measurement, the power supply uses DC stabilized power source like an actual battery. DC stabilized power source can remove voltage limit.

![Figure 1 Preparation for measurement environment](image-url)
2.1 Example of evaluation board’s connection

When not using a current probe, the connection example at the evaluation board is indicated. The evaluation board opens a power supply line, and can catch measuring machines between the power supply line. When SW10 of “Figure 2 RL78/G1D evaluation board” is 1-2, power line is connected. When SW10 is 2-3, the power line is opened and can insert measurement machine and so on at the terminal of TP7 and TP8.

![Figure 2 RL78/G1D evaluation board (Switch settings of the current measurement time)](image)

The method to measure the voltage with an oscilloscope around resistance is indicated on “Figure 3 Insertion of registration and connection of oscilloscope”. Resistance is inserted between TP7 and TP8. Set SW10 switch to 2-3. Connect the voltage probe A of the oscilloscope to TP7 side. The voltage probe B connect to the TP8 side.

![Figure 3 Insertion of registration and connection of oscilloscope](image)
At the time of current measurement, to remove the leakage current of the signal level shift buffer between the RL78/G1D and UART-USB change IC, please set the slide switch SW9 to 1-2 and SW13 to 2-3 after the “3. Execution of connection operation”.
3. Execution of connection operation

The execution method of connection operation is explained.

Use the sample program or GUI tool, and then connect the two RL78/G1D evaluation board.

The RL78/G1D must have written a pre-built program file (Intel HEX format) of Modem configuration. Method of writing the program, please refer to the "Bluetooth Low Energy Protocol Stack Quick Start Guide Application Note (R01AN2767)".

3.1 Connection by the sample program

The execution example in the master side and the slave side is indicated by Bluetooth Low Energy Protocol Stack Software's sample program. Please refer to the "Bluetooth Low Energy Protocol Stack Sample Program Application Note (R01AN1375)".

At Slave side, execute Sample Program, select [1.GAP & SM & GATT Test]. And, execute [1.GAP Reset], execute [5.GAP Broadcast_Enable]. Please execute to transmission of Advertising data.

```
-- BLE Sample Program Menu Version 1.00.000 --
1.GAP & SM & GATT Test
2.Profile Test
3.Vendor Specific Test
4.PTS Test Case Select
5.FW Update Start
ESC Key: Menu exit
>> rBLE Mode (ACTIVE)
>> 1
-- BLE Sample Program GAP & SM & GATT Test Menu --
1.GAP Reset
2.GAP Set_Name
3.GAP Observation_Enable
4.GAP Observation_Disable
5.GAP Broadcast_Enable
...
48.GATT Set_Permission
49.GATT Set_Data
ESC Key: Menu exit
>> 1
CMD -> GAP Reset
Status(RBLE_OK)
>>
rBLE GAP EVENT (RESET RESULT) Status(RBLE_OK)
rBLE Version = Major(01),Minor(01)
>> 5
CMD -> GAP Broadcast_Enable
Select Parameter No 0
Status(RBLE_OK)
>>
rBLE GAP EVENT (BROADCAST_ENABLE_COMP) Status(RBLE_OK)
>>
```

Figure 4 Advertising execution by the sample program

The master side executes Scanning and executes connection with Slave side. The master side executes Scanning and executes Connection with the slave side. Execute Sample Program, select [1.GAP & SM & GATT Test]. And, execute [1.GAP Reset], execute [15.GAP Device_Search]. Please execute to device search. Confirm event of rBLE GAP EVENT (DEVICE_SEARCH_COMP). Execute [20.GAP Create_Connection].
When the connection with the slave side is completed, the event of "rBLE GAP EVENT (CONNECTION_COMP)" is displayed to the master side and the slave side.

```
-- BLE Sample Program Menu Version 1.00.000 --
1.GAP & SM & GATT Test
2.Profile Test
3.Vendor Specific Test
4.PTS Test Case Select
5.FW Update Start
ESC Key: Menu exit
>> rBLE Mode (ACTIVE)

>> 1
-- BLE Sample Program GAP & SM & GATT Test Menu --
1.GAP Reset
: 
15.GAP Device_Search
: 
20.GAP Create_Connection
: 
ESC Key: Menu exit
>> 1

CMD -> GAP Reset
Status(RBLE_OK)
>>
rBLE GAP EVENT (RESET RESULT) Status(RBLE_OK)
rBLE Version = Major(01),Minor(01)

>> 15

CMD -> GAP Device_Search
Execute General Discovery
Status(RBLE_OK)
>>
rBLE GAP EVENT (DEVICE_SEARCH_RESULT_IND)
EventType(0x0), AddressType(0x0)
Addr[74:90:50:00:89:59]
Data(0x10)
0x02,0x01,0x06,0xc,0x09,0x52,0x65,0x6e
0x65,0x73,0x61,0x73,2d,0x42,0x45
RSSI(-56)
>>
rBLE GAP EVENT (DEVICE_SEARCH_RESULT_IND)
EventType(0x4), AddressType(0x0)
Addr[74:90:50:00:89:59]
Data(0x0)

RSSI(-56)
>>
rBLE GAP EVENT (DEVICE_SEARCH_COMP)

>> 20

CMD -> GAP Create_Connection
Addr[74:90:50:00:89:59]
Status(RBLE_OK)
>>
rBLE GAP EVENT (CONNECTION_COMP) Status(RBLE_OK)
Connection Handle = 0, Addr[74:90:50:00:89:59]
>>
```

Figure 5 Connection Execution by the sample program
3.2 Connection by the GUI tool

The execution example in the master side and the slave side is indicated by Bluetooth Low Energy Protocol Stack Software's sample program. Please refer to the "Bluetooth® Low Energy Protocol Stack GUI Tool Manual Application Note (R01AN2469)".

Slave side, after starting the GUI tool, please execute the transmission of Advertising data by clicking the [Advertising Enable] of [Main dialog]-[GAP-Advertising tab].

![GUI Tool Interface](image)

Figure 6 Advertising execution by the GUI tool

Master side executes a scan, and executes the connection to the slave side. After starting the GUI tool, please execute the device search by clicking on the [Discover] of [Main dialog]-[GAP-Scanning tab]. Double-click on the list when the target(remote) device is displayed in the Advertising data list. BD Address of the target device is set to [Peer Addr column] of [Peer Device tab].

Please execute the Create_Connection by clicking the [Connect] in the [Peer Device-Connection tab].
When the connection is completed, RBLE_GAPEVENT_CONNECTION_COMP event is displayed on the [Log dialog] of both the master side and slave side.

Figure 7 Connection Execution by the GUI tool
4. Current consumption of operation

The current consumption is explained by actual operation example.

Bluetooth Low Energy device receives and transmits by connection event of fixed interval after connection. It's possible to do BLE device to the sleep state between all except for a connection event.

Connected communication time is short time between time of the total. “Figure 8 Bluetooth Low Energy connection operation (Overview)” is that the slave side device is executed reception and transmission operation by every 50 milliseconds (Interval of the connection event, in the BLE specification, is can be set between 4 seconds from 7.5 milliseconds). It's possible to do BLE device to the sleep state between all except for a connection event.

![Figure 8 Bluetooth Low Energy connection operation (Overview)](image)

Detail of connection event is indicated to the next page.
The operation of connection event (DCDC converter and an external slow clock is used) is explained at the slave side device.

When application operation is no need at sleep status, MCU unit can be set to STOP mode (32kHz clock output), RF unit is retained to DEEP_SLEEP mode.

Wake-up from the sleep state is set as RF part beforehand at the 32 kHz clock counter from MCU part. RF unit is switched to IDLE_MODE by the wake-up at the setting timing. RF unit begins to oscillate 26 MHz at the same time. MCU unit is waked to normal operation by interrupt from RF unit.

MCU unit begins preprocess for receive processing. The pre-process is setting RF operation to the RF unit. When MCU unit is setting to RF register at the DMA and waiting reception timing, MCU unit is switched to STOP mode for low power consumption. Therefore, there are high current and low current at the current value of the operation current consumption.

RF unit switches to reception operation and receives packets from Master side. And RF unit is executing transmission operation for response of reception packet. MCU unit can wait at STOP mode until process end.

After transmission operation, MCU unit saves register value of RF unit to MCU part, and sets register of RF unit after calculates of next wake-up timing at the latter process. RF unit is switched to DEEP_SLEEP mode. MCU unit can switch STOP mode (32 kHz clock output).

Current consumption amount is able to calculate easily by addition function of oscilloscope. The current consumption amount of above-period is 8.3μA by using addition function. When current consumption of sleep is about 1.3μA by STOP mode in MCU part (32 kHz clock output) and DEEP_SLEEP mode in RF part, average current consumption in connection interval of one second will be 8.3μA+1.3μA = 9.6 μA/sec.

Period of preprocess and others are changed by data size and others. Measure with real data and the size several times for estimate of average current consumption and calculate.

When there are no addition functions of the oscilloscope, the method of calculation is indicated to the next page.
Extract the changing point as shown in "Figure 10" from the waveform of the oscilloscope measurement results. The current consumption can be obtained by integrating the period and the current value of the change point.

![Figure 10 Bluetooth Low Energy connection operation (Detail/Calculation)](image)

<table>
<thead>
<tr>
<th></th>
<th>MCU status</th>
<th>RF operation status</th>
<th>period time [ms]</th>
<th>period current consumption [mA]</th>
<th>period current consumption integrated value [μA]</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>WakeUp</td>
<td>STANDBY_RF</td>
<td>1.00</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>②</td>
<td>RUN</td>
<td>IDLE_RF</td>
<td>0.50</td>
<td>1.80</td>
<td>0.90</td>
</tr>
<tr>
<td>③</td>
<td>HALT</td>
<td>IDLE_RF</td>
<td>0.65</td>
<td>1.40</td>
<td>0.91</td>
</tr>
<tr>
<td>④</td>
<td>RUN</td>
<td>IDLE_RF</td>
<td>0.70</td>
<td>2.00</td>
<td>1.40</td>
</tr>
<tr>
<td>⑤</td>
<td>STOP</td>
<td>IDLE_RF</td>
<td>1.00</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>⑥</td>
<td>STOP</td>
<td>SETUP_RF(RX)</td>
<td>0.10</td>
<td>1.40</td>
<td>0.14</td>
</tr>
<tr>
<td>⑦</td>
<td>STOP</td>
<td>RX</td>
<td>0.15</td>
<td>3.10</td>
<td>0.47</td>
</tr>
<tr>
<td>⑧</td>
<td>STOP</td>
<td>SETUP_RF(TX)</td>
<td>0.10</td>
<td>2.00</td>
<td>0.20</td>
</tr>
<tr>
<td>⑨</td>
<td>STOP</td>
<td>TX</td>
<td>0.15</td>
<td>4.00</td>
<td>0.60</td>
</tr>
<tr>
<td>⑩</td>
<td>RUN</td>
<td>IDLE_RF</td>
<td>1.35</td>
<td>1.85</td>
<td>2.50</td>
</tr>
<tr>
<td>⑪</td>
<td>STOP</td>
<td>IDLE_RF</td>
<td>0.30</td>
<td>0.40</td>
<td>0.12</td>
</tr>
<tr>
<td>⑫</td>
<td>STOP</td>
<td>DEEP_SLEEP</td>
<td>994.00</td>
<td>0.0013</td>
<td>1.29</td>
</tr>
</tbody>
</table>

Total 9.68 μA/sec

The calculation result is sometimes different from addition function result of oscilloscope. When calculating usable time at the battery by a system, it's recommended to consider the margin.
Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.
<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
<th>Page</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Oct 15, 2015</td>
<td>First edition issued</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>1.10</td>
<td>July 15, 2016</td>
<td>"Chapter 2" and "Figure 1" has been changed to the content using the two voltage probes.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Have appended about the test pins (TP1, TP5) for connected to the stabilized power supply to "Figure 2".</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Figure 3" and explanatory text has been changed to the content using the two voltage probes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Figure 9" and the average current value has been updated to the data measured by the BLE Software Ver.1.11 (CCRL version) using two voltage probes.</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Figure 10" and the calculation result were updated with the measurement data of the above.</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. **Handling of Unused Pins**
 - Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. **Processing at Power-on**
 - The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 - In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. **Prohibition of Access to Reserved Addresses**
 - Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. **Clock Signals**
 - After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.
 - When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. **Differences between Products**
 - Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.
 - The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.
SALES OFFICES

Renesas Electronics Corporation http://www.renesas.com

Renesas Electronics America Inc.
2501 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-0004

Renesas Electronics Europe GmbH
Arcadianstrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhongLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-6235-1155, Fax: +86-10-6235-7679

Renesas Electronics Singapore Pte. Ltd.
80Battery Road, Unit #05-02 Hyflx Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-3301

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-6208-3000, Fax: +60-3-7955-9910

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, Hall II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
12F, 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-555-3757, Fax: +82-2-558-5141

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

- “Standard”:
 - Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment, and industrial robots etc.

- “High Quality”:
 - Transportation equipment (railroad cars, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of a failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that require the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that require the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product” means any product developed or manufactured by or for Renesas Electronic.