

RL78/G14

APPLICATION NOTE

R01AN2860EJ0100 Rev. 1.00 Dec. 15, 2015

Operation in Conjunction with Three Combined Events Using the ELC CC-RL

Abstract

This document describes a method to mutually connect (link) the external interrupt (hereinafter called INTP0), timer array unit 0 (hereinafter called TAU0), and A/D converter using the RL78/G14 event link controller (hereinafter called ELC).

Product

RL78/G14

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.

Contents

1.	Specific	cations	3
2.	Operati	on Confirmation Conditions	4
3.	Referer	nce Application Note	4
	4.1 Hai	are rdware Configuration s Used	5
	5.1 Op 5.2 Op 5.3 Var 5.4 Fur 5.5 Fur		6 8 8 9 12 12 12 12 12 12 12 13 12 33 38 38 42 44 46
6.	Sample	Code	47
7.	Referer	nce Documents	47

1. Specifications

The following operation is performed using the ELC without going through the CPU. A 2 ms count is started in TAU0 channel 0 (hereinafter called TAU00) at the rising edge input to the P137/INTP0 pin. After the count is completed, input voltage of the P20/ANI0 pin is A/D converted by the A/D converter and the converted result is stored to RAM.

Table 1.1 lists the Peripheral Functions and Their Applications. Figure 1.1 shows the Operation Overview.

Table 1.1	Peripheral	Functions	and Their	Applications
-----------	------------	------------------	-----------	--------------

Peripheral Function	Application
ELC	Connect (link) INTP0, TAU00, and the A/D converter.
External interrupt	Detect an external interrupt edge.
Timer array unit	Measure the A/D converter start timing.
A/D converter	Perform A/D conversion on analog input voltage.

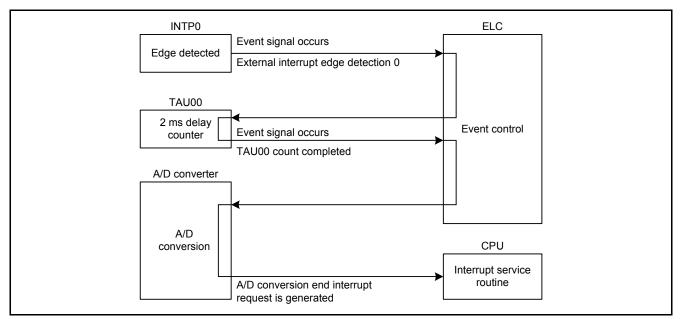


Figure 1.1 Operation Overview

2. Operation Confirmation Conditions

The sample code accompanying this application note has been run and confirmed under the conditions below.

Item	Contents
MCU used	RL78/G14 (R5F104LEA)
Operating frequencies	• High-speed on-chip oscillator clock (f _{HOCO}): 64 MHz (typical)
Operating frequencies	• CPU/peripheral hardware clock (f _{CLK}): 32 MHz
	5.0 V (2.9 to 5.5 V)
Operating voltage	LVD operation (V_{LVD}): 2.81 V at the rising edge or 2.75 V at the falling edge
	in reset mode
Integrated development	Renesas Electronics Corporation
environment (CS+)	CS+ V3.01.00
C compiler (CS+)	Renesas Electronics Corporation
	CC-RL V1.01.00
Integrated development	Renesas Electronics Corporation
environment (e ² studio)	e ² studio V4.0.0.26
C compiler (e ² studio)	Renesas Electronics Corporation
	CC-RL V1.01.00

 Table 2.1
 Operation Confirmation Conditions

3. Reference Application Note

For additional information associated with this document, refer to the following application note.

• RL78/G14 How to Use the ELC for the RL78/G14 (R01AN0862E)

4. Hardware

4.1 Hardware Configuration

Figure 4.1 shows the Hardware Configuration used in this document.

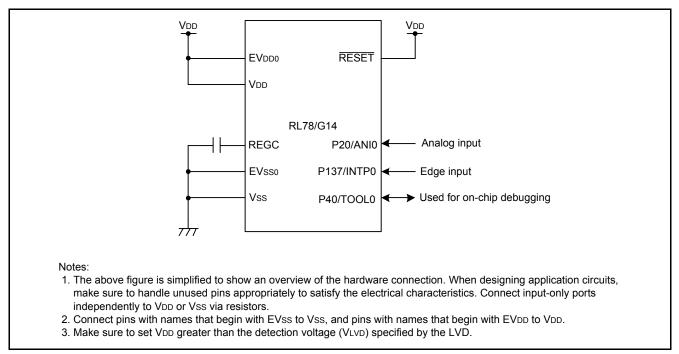


Figure 4.1 Hardware Configuration

4.2 Pins Used

Table 4.1 lists the Pins Used and Their Functions.

Table 4.1 Pins Used and Their Functions

Pin Name	I/O	Function
P20/ANI0	Input	Analog input of the A/D converter
P137/INTP0	Input	External interrupt input

5. Software

5.1 Operation Overview

Rising edge input detection to the P137/INTP0 pin is linked to TAU00 as the event generator and TAU00 starts counting 2 ms as the delay counter. Next, count completion of TAU00 is linked to the A/D converter as the event generator, and input voltage of the P20/ANI0 pin is A/D converted. When A/D conversion is completed, an interrupt request is generated, and the A/D converted result is stored to RAM in the interrupt service routine.

Table 5.1 lists the ELC Settings.

Table 5.1 ELC Settings

Event Generator	Link Destination Peripheral Function	Operation When Receiving Event
External interrupt edge detection 0 (INTP0)	TAU00 input source	Count for the delay counter is started
TAU00 count completion (INTTM00)	A/D converter	A/D conversion is started

- (1) Perform the initial setting for INTP0, TAU00, and the A/D converter. Set TAU00 for the INTP0 event signal reception, and the A/D converter for the TAU00 event signal reception using the ELC.
- (2) When the rising edge of the INTPO pin is detected, the ELC is activated.
- (3) The ELC is linked to TAU00, and TAU00 starts operating as the delay counter.
- (4) The ELC is activated after 2 ms.
- (5) The ELC is linked to the A/D converter, and the A/D converter starts A/D conversion.
- (6) When A/D conversion is completed, an A/D conversion end interrupt request is generated, and the A/D converted result is stored to RAM in the interrupt service routine.
- (7) Repeat steps (2) to (6) every time the rising edge is input to the INTPO pin.

Figure 5.1 shows the Timing Diagram of the ELC and Peripheral Functions.

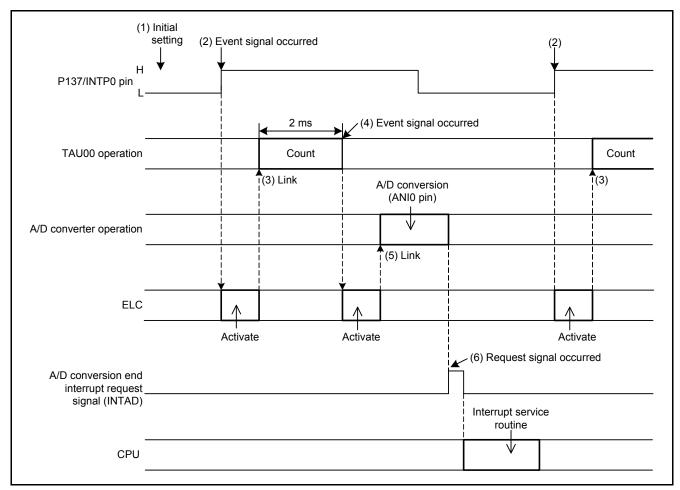


Figure 5.1 Timing Diagram of the ELC and Peripheral Functions

5.2 Option Byte Settings

Table 5.2 lists the Option Byte Settings. When necessary, set a value suited to the user system.

Table 5.2 Option Byte Settings

Address	Setting Value	Contents
000C0H/010C0H	11101111B	Watchdog timer operation is stopped (count is stopped after reset)
000C1H/010C1H	01111111B	LVD reset mode Detection voltage: Rising edge 2.81 V/falling edge 2.75 V
000C2H/010C2H	11111000B	Internal high-speed oscillation HS mode: 64 MHz
000C3H/010C3H	10000100B	On-chip debugging enabled

5.3 Variable

Table 5.3 lists the Global Variable.

Table 5.3 Global Variable

Туре	Variable Name	Contents	Function Used
uint16_t	ad_value	A/D converted value	r_adc_Interrupt

5.4 Functions

Table 5.4 lists the Functions.

Table 5.4 Functions

Function Name	Outline
hdwinit	Initial setting
R_Systeminit	Initial setting of peripheral functions
R_CGC_Create	Initial setting of CPU
R_ADC_Create	Initial setting of A/D converter
R_TAU0_Create	Initial setting of TAU0
R_INTC_Create	Initial setting of INTP0
R_ELC_Create	Initial setting of ELC
main	Main processing
R_TAU0_Channel0_Start	TAU00 start enable setting
R_ADC_Start	A/D conversion operation enable setting
r_adc_interrupt	A/D conversion interrupt
R_ADC_Get_Result	Obtain A/D conversion result

5.5 Function Specifications

The following tables list the sample code function specifications.

hdwinit	
Outline	Initial setting
Header	None
Declaration	void hdwinit(void)
Description	Perform the initial setting of peripheral functions.
Argument	None
Return Value	None
R_Systeminit	
Outline	Initial setting of peripheral functions
Header	None
Declaration	void R_Systeminit(void)
Description	Perform the initial setting of peripheral functions used in this document.
Argument	None
Return Value	None
R_CGC_Create	
Outline	Initial setting of CPU
Header	None
Declaration	void R_CGC_Create(void)
Description	Perform the initial setting of the CPU.
Argument	None
Return Value	None

R_ADC_Create	
Outline	Initial setting of A/D converter
Header	None
Declaration	void R_ADC_Create(void)
Description	Perform the initial setting of the A/D converter to start A/D conversion by an event input signal from the ELC.
Argument	None
Return Value	None

R_TAU0_Create	
Outline	Initial setting of TAU0
Header	None
Declaration	void R_TAU0_Create(void)
Description	Perform the initial setting of TAU0 to operate as the delay counter by an event input signal from the ELC.
Argument	None
Return Value	None

R_INTC_Create	
Outline	Initial setting of INTP0
Header	None
Declaration	void R_INTC_Create(void)
Description	Enable the external interrupt rising edge as the ELC event generator.
Argument	None
Return Value	None
D. ELC. Create	
R_ELC_Create	
Outline	Initial setting of ELC
Header	None
Declaration	void R_ELC_Create(void)
Description	Perform the initial setting of the ELC to link INTP0 to TAU00, and TAU00 to the A/D
•	converter.
Argument	None
Return Value	None

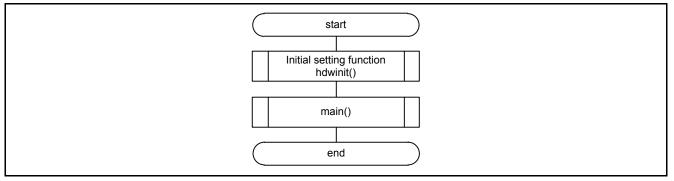
main

Outline	Main processing
Header	None
Declaration	void main(void)
Description	Perform main processing.
Argument	None
Return Value	None

R_TAU0_Channel0	_Start
Outline	TAU00 operation enable setting
Header	None
Declaration	void R_TAU0_Channel0_Start(void)
Description	Enable TAU00 count operation.
Argument	None
Return Value	None

R_ADC_Start	
Outline	A/D conversion operation enable setting
Header	None
Declaration	void R_ADC_Start(void)
Description	Enable A/D conversion operation.
Argument	None
Return Value	None

Outline	A/D conversion interrupt
Header	None
Declaration	static voidnear r_adc_interrupt(void)
Description	Perform an A/D conversion interrupt service routine.
Argument	None
Return Value	None


R_ADC_Get_Result	
Outline	Obtain A/D conversion result
Header	None
Declaration	void R_ADC_Get_Result(void)
Description	Obtain the A/D converted result and store it to the address specified as an argument.
Argument	uint16_t *buffer: Address where the A/D converted value is stored
Return Value	None

5.6 Flowcharts

5.6.1 Overall Flowchart

Figure 5.2 shows the Overall Flowchart.

5.6.2 Initial Setting

Figure 5.3 shows the Initial Setting.

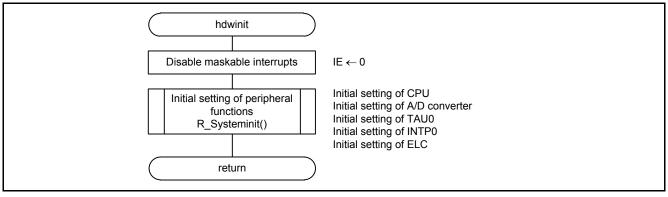


Figure 5.3 Initial Setting

5.6.3 Initial Setting of Peripheral Functions

Figure 5.4 shows the Initial Setting of Peripheral Functions.

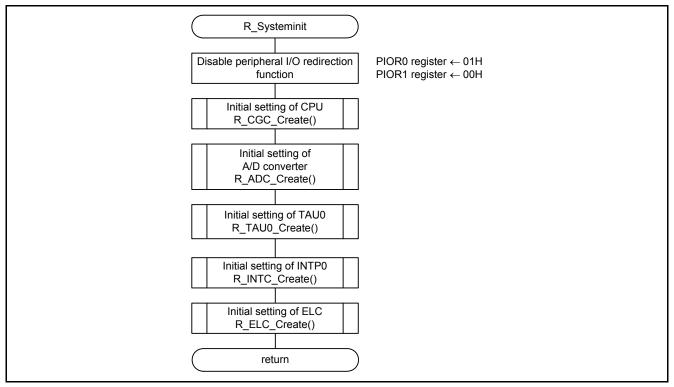


Figure 5.4 Initial Setting of Peripheral Functions

5.6.4 Initial Setting of CPU

Figure 5.5 shows the Initial Setting of the CPU.

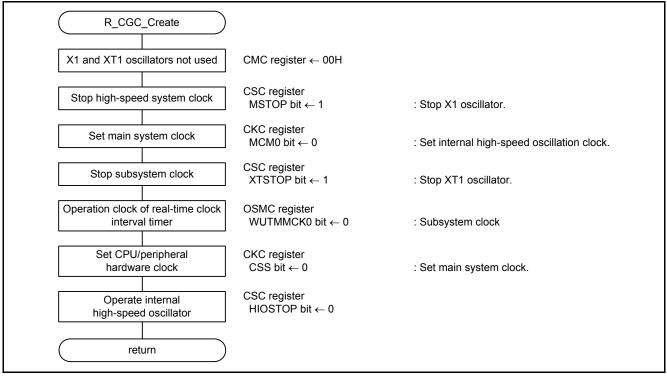
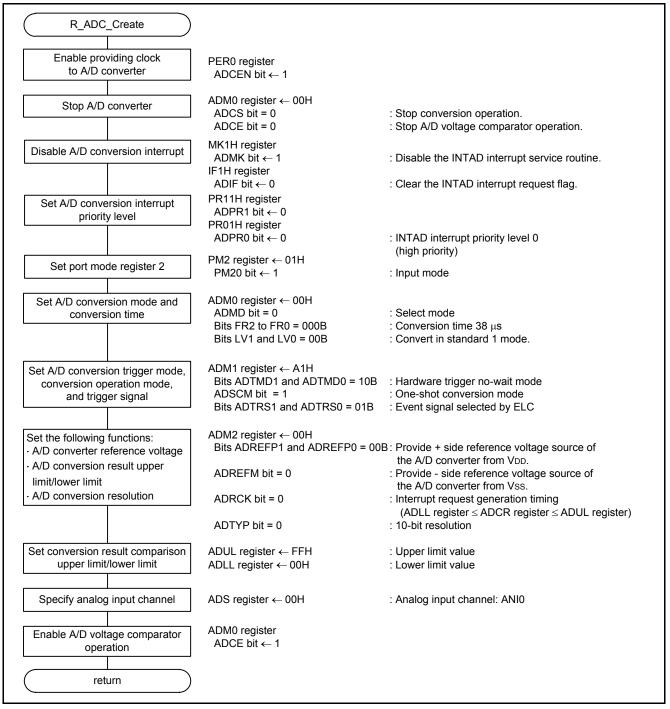



Figure 5.5 Initial Setting of the CPU

5.6.5 Initial Setting of the A/D Converter

Figure 5.6 shows the Initial Setting of the A/D Converter.

Enable providing a clock to the A/D converter.

• Peripheral Enable Register 0 (PER0)

Enable providing a clock to the A/D converter.

Symbol	7	6	5	4	3	2	1	0
PER0	RTCEN	IICA1EN	ADCEN	IICA0EN	SAU1EN	SAU0EN	TAU1EN	TAU0EN
Setting Value	х	x	1	х	x	х	х	

Bit 5

ADCEN	Control of A/D converter input clock supply
0	Stops input clock supply.SFR used by the A/D converter cannot be written.The A/D converter is in the reset status.
1	Enables input clock supply. • SFR used by the A/D converter can be read/written.

Stop the A/D converter.

• A/D Converter Mode Register 0 (ADM0) Stop A/D conversion operation

Stop A/D conversion operation.

Symbol	7	6	5	4	3	2	1	0
ADM0	ADCS	ADMD	FR2	FR1	FR0	LV1	LV0	ADCE
Setting Value	0							0

Bit 7

ADCS	A/D conversion operation control
0	Stops conversion operation [When read] Conversion stopped/standby status
1	Enables conversion operation [When read] While in the software trigger mode: Conversion operation status While in the hardware trigger wait mode: Stabilization wait status + conversion operation status

Bit 0

ADCE	A/D voltage comparator operation control
0	Stops A/D voltage comparator operation
1	Enables A/D voltage comparator operation

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

Disable an A/D conversion interrupt.

• Interrupt Mask Flag Register (MK1H)

Disable the INTAD interrupt.

Symbol	7	6	5	4	3	2	1	0
MK1H	TMMK10	TRJMK0	SRMK3 CSIMK31 IICMK31	STMK3 CSIMK30 IICMK30	KRMK	ITMK	RTCMK	ADMK
Setting Value	х	х	х	х	х	х	х	1
Bit 0	1							

ADMK	Interrupt servicing control
0	Interrupt servicing enabled
1	Interrupt servicing disabled

• Interrupt Request Flag Register (IF1H)

Clear the INTAD interrupt request flag.

Symbol	7	6	5	4	3	2	1	0
IF1H	TMIF10	TRJIF0	SRIF3 CSIIF31 IICIF31	TIF3 CSIIF30 IICIF30	KRIF	ITIF	RTCIF	ADIF
Setting Value	х	х	х	x	х	х	х	0

Bit	0
-----	---

ADIF	Interrupt request flag						
0	No interrupt request signal is generated						
1	Interrupt request is generated, interrupt request status						

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

Set the A/D conversion interrupt priority level.

• Priority Specification Flag Registers (PR11H and PR01H)

Set the INTAD interrupt priority level to level 0 (high priority).

Symbol	7	6	5	4	3	2	1	0
PR11H	TMPR110	TRJPR10	SRPR13 CSIPR131 IICPR131	STPR13 CSIPR130 IICPR130	KRPR1	ITPR1	RTCPR1	ADPR1
Setting Value	х	х	x	x	х	x	х	0
O: make al	7	0	-	4	0	0	4	0
Symbol	1	6	5	4	3	2	1	0
PR01H	TMPR010	TRJPR00	SRPR03 CSIPR031 IICPR031	STPR03 CSIPR030 IICPR030	KRPR0	ITPR0	RTCPR0	ADPR0
Setting Value	х	х	х	х	х	х	х	0

ADPR1	ADPR0	Priority level selection
0	0	Specify level 0 (high priority level)
0	1	Specify level 1
1	0	Specify level 2
1	1	Specify level 3 (low priority level)

Set port mode register 2.

• Port Mode Register 2 (PM2) Set the P20 pin to input mode.

Symbol	7	6	5	4	3	2	1	0
PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	PM20
Setting Value	х	х	х	х	х	х	х	1

Bit 0

PM20	P20 pin I/O mode selection
0	Output mode (output buffer on)
1	Input mode (output buffer off)

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

Set A/D conversion mode and conversion time.

• A/D Converter Mode Register 0 (ADM0)

Set A/D conversion mode and conversion time.

	Symbol	7	6	5	4	3	2	1	0
Setting Value 0 0 0 0 0	ADM0	ADCS	ADMD	FR2	FR1	FR0	LV1	LV0	ADCE
	Setting Value		0	0	0	0	0	0	

Bit 6

ADMD	Specification of the A/D conversion channel selection mode
0	Select mode
1	Scan mode

A	VD Conv	erter Moo (ADM0)	de Regist	ter 0	Mode		Conversion Time Selection						
FR2	FR1	FR0	LV1	LV0	Wode	f _{ськ} = 1 MHz	f _{ськ} = 2 MHz	f _{ськ} = 4 MHz	f _{ськ} = 8 MHz	f _{ськ} = 16 MHz	f _{ськ} = 32 MHz	Clock (f_{AD})	
0	0	0						Setting	Setting	Setting prohibited	38 µs	f _{ськ} /64	
0	0	1						prohibited	prohibited	38 μs	19 μs	f _{ськ} /32	
0	1	0				Setting prohibited		38 μs	19 μs	9.5 μs	f _{ськ} /16		
0	1	1					38 μs	19 μs	9.5 μs	4.75 μs	f _{ськ} /8		
1	0	0	0	0	Normal	prohibited		28.5 μs	14.25 μs	7.125 μs	3.5625 μs	f _{clк} /6	
1	0	1			1			23.75 μs	11.875 μs	5.938 μs	2.9688 μs	f _{clk} /5	
1	1	0					38 μs	19 μs	9.5 μs	4.75 μs	2.375 μs	f _{clk} /4	
1	1	1				38 μs	19 μs	9.5 μs	4.75 μs	2.375 μs	Setting prohibited	f _{clk} /2	
0	0	0							Setting	Setting prohibited	34 μs	f _{ськ} /64	
0	0	1				Setting I prohibited	Setting prohibited d	Setting prohibited	prohibited	34 μs	17 μs	f _{clk} /32	
0	1	0							34 μs	17 μs	8.5 μs	f _{ськ} /16	
0	1	1	0	1	Normal			34 μs	17 μs	8.5 μs	4.25 μs	f _{clk} /8	
1	0	0	0	1	2			25.5 μs	12.75 μs	6.375 μs	3.1875 μs	f _{clk} /6	
1	0	1						21.25 μs	10.625 μs	5.3125 μs	2.6563 μs	$f_{\text{CLK}}/5$	
1	1	0					34 μs	17 μs	8.5 μs	4.25 μs	2.125 μs	f _{CLK} /4	
1	1	1				34 μs	17 μs	8.5 μs	4.25 μs	2.125 μs	Setting prohibited	$f_{\text{CLK}}/2$	
×	×	×	1	0	Low voltage 1		Setting prohibited						
×	×	×	1	1	Low voltage 2		Setting prohibited						

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

Set A/D conversion trigger mode, conversion operation mode, and trigger signal.

• A/D Converter Mode Register 1 (ADM1)

Select A/D conversion trigger mode, A/D conversion operation mode, and hardware trigger signal.

Symbol	7	6	5	4	3	2	1	0
ADM1	ADTMD1	ADTMD0	ADSCM	0	0	0	ADTRS1	ADTRS0
Setting Value	1	0	1	_	_	_	0	1

Bits 7 and 6

ADTMD1	ADTMD0	Selection of the A/D conversion trigger mode
0	—	Software trigger mode
1	0	Hardware trigger no-wait mode
1	1	Hardware trigger wait mode

Bit 5

ADSCM	Specification of the A/D conversion mode
0	Sequential conversion mode
1	One-shot conversion mode

Bits 1 and 0 ADTRS1 ADTRS0 Selection of the hardware trigger signal 0 0 End of timer channel 1 count or capture interrupt signal (INTTM01) 0 1 Event signal selected by ELC 0 1 Real-time clock interrupt signal (INTRTC) 1 1 Interval timer interrupt signal (INTIT)

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

Set the A/D converter reference voltage, upper limit and lower limit conversion results, and resolution.

• A/D Converter Mode Register 2 (ADM2)

Set the A/D converter reference voltage, upper limit and lower limit conversion results, and resolution.

Symbol	7	6	5	4	3	2	1	0
ADM2	ADREFP1	ADREFP0	ADREFM	0	ADRCK	AWC	0	ADTYP
Setting Value	0	0	0	—	0	х	—	0

Bits 7 and 6

ADREFP1ADREFP0Selection of the + side reference voltage source of the A/D converter00Supplied from V_{DD} 01Supplied from P20/AV_{REFP}/ANIO10Supplied from the internal reference voltage (1.45 V) Note11Setting prohibitedWhen ADREFP1 or ADREFP0 bit is rewritten, this must be configured in accordance with the following procedures.(1) Set ADCE = 0(2) Change the values of ADREFP1 and ADREFP0(3) Reference voltage stabilization wait time (A)(4) Set ADCE = 1(5) Reference voltage stabilization wait time (B)	Bite i ana e											
0 1 Supplied from P20/AV _{REFP} /ANI0 1 0 Supplied from the internal reference voltage (1.45 V) Note 1 1 Setting prohibited When ADREFP1 or ADREFP0 bit is rewritten, this must be configured in accordance with the following procedures. (1) Set ADCE = 0 (2) Change the values of ADREFP1 and ADREFP0 (3) Reference voltage stabilization wait time (A) (4) Set ADCE = 1	ADREFP1	ADREFP0	P0 Selection of the + side reference voltage source of the A/D converter									
1 0 Supplied from the internal reference voltage (1.45 V) Note 1 1 Setting prohibited When ADREFP1 or ADREFP0 bit is rewritten, this must be configured in accordance with the following procedures. (1) Set ADCE = 0 (2) Change the values of ADREFP1 and ADREFP0 (3) Reference voltage stabilization wait time (A) (4) Set ADCE = 1	0	0	0 Supplied from V _{DD}									
1 0 Supplied from the internal reference voltage (1.45 v) 1 1 Setting prohibited When ADREFP1 or ADREFP0 bit is rewritten, this must be configured in accordance with the following procedures. (1) Set ADCE = 0 (2) Change the values of ADREFP1 and ADREFP0 (3) Reference voltage stabilization wait time (A) (4) Set ADCE = 1	0	1	Supplied from P20/AV _{REFP} /ANI0									
 When ADREFP1 or ADREFP0 bit is rewritten, this must be configured in accordance with the following procedures. (1) Set ADCE = 0 (2) Change the values of ADREFP1 and ADREFP0 (3) Reference voltage stabilization wait time (A) (4) Set ADCE = 1 	1	0	0 Supplied from the internal reference voltage (1.45 V) Note									
 (1) Set ADCE = 0 (2) Change the values of ADREFP1 and ADREFP0 (3) Reference voltage stabilization wait time (A) (4) Set ADCE = 1 	1	1 Setting prohibited										
 (2) Change the values of ADREFP1 and ADREFP0 (3) Reference voltage stabilization wait time (A) (4) Set ADCE = 1 			FP0 bit is rewritten, this must be configured in accordance with the following procedures.									
(5) Potoroneo voltago stabilization wait timo (P)	(2) Change t (3) Referenc	he values of A e voltage stab										
When ADREFP1 and ADREFP0 are set to 1 and 0, the setting is changed to A = 5μ s, B = 1μ s. When ADREFP1 and ADREFP0 are set to 0 and 0 or 0 and 1, A needs no wait and B = 1μ s. When ADREFP1 and ADREFP0 are set to 1 and 0, respectively, A/D conversion cannot be performed on the temperature sensor output voltage and internal reference voltage.	(5) Referenc When ADRE When ADRE When ADRE	e voltage stab FP1 and ADR FP1 and ADR FP1 and ADR	REFP0 are set to 1 and 0, the setting is changed to A = 5μ s, B = 1μ s. REFP0 are set to 0 and 0 or 0 and 1, A needs no wait and B = 1μ s. REFP0 are set to 1 and 0, respectively, A/D conversion cannot be performed on the									

Be sure to perform A/D conversion while ADISS = 0.

Note Operation is possible only in HS (high-speed main) mode.

Bit 5

ADREFM	Selection of the – side reference voltage source of the A/D converter
0	Supplied from V _{ss}
1	Supplied from P21/AV _{REFM} /ANI1

Bit 3

ADRCK	Checking the upper limit and lower limit conversion result values
0	The interrupt signal (INTAD) is output when the ADLL register \leq the ADCR register \leq the ADUL register
1	The interrupt signal (INTAD) is output when the ADCR register \leq the ADLL register or the ADUL register \leq the ADCR register

Bit 0

ADTYP	Selection of the A/D conversion resolution
0	10-bit resolution
1	8-bit resolution

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

Set the conversion result comparison upper limit/lower limit.

Conversion Result Comparison Upper Limit Setting Register (ADUL)

Set FFH to the conversion result comparison upper limit.

Symbol	7	6	5	4	3	2	1	0
ADUL	ADUL7	ADUL6	ADUL5	ADUL4	ADUL3	ADUL2	ADUL1	ADUL0
Setting Value	1	1	1	1	1	1	1	1

• Conversion Result Comparison Lower Limit Setting Register (ADLL) Set 00H to the conversion result comparison lower limit.

Symbol	7	6	5	4	3	2	1	0
ADLL	ADLL7	ADLL6	ADLL5	ADLL4	ADLL3	ADLL2	ADLL1	ADLL0
Setting Value	0	0	0	0	0	0	0	0

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

Set analog input channels.

• Analog Input Channel Specification Register (ADS) Set analog input channels to ANI0.

Symbol	I	7	7 6		5	5			3	2	1	0	
ADS	Г	ADISS		0		А	DS4	A	ADS3	ADS2	ADS1	ADS0	
Setting Va	lue	0		_			0		0	0	0	0	
Bits 7, 4 to 0													
ADISS	ADS	4 AI	DS3	ADS2	ADS	51	ADS)		g input Innel	Input s	ource	
0	0		0	0	0		0		A	010	P20/ANI0/#	VREFP pin	
0	0		0	0	0		1		A	NI1	P21/ANI1/A	VREFM pin	
0	0		0	0	1		0		A	NI2	P22/AM	II2 pin	
0	0		0	0	1		1		A	NI3	P23/AN	II3 pin	
0	0		0	1	0		0		A	NI4	P24/AN	II4 pin	
0	0		0	1	0		1		ANI5		P25/ANI5 pin		
0	0		0	1	1 1		0		ANI6		P26/ANI6 pin		
0	0		0	1	1	1		1		NI7	P27/ANI7 pin		
0	0		1	0	0	0		0		NI8	P150/ANI8 pin		
0	0		1	0	0		1		A	VI9	P151/A	NI9 pin	
0	0		1	0	1		0		AN	I I10	P152/AN	II10 pin	
0	0		1	0	1		1		AN	I I11	P153/AN	II11 pin	
0	0		1	1	0		0		AN	II12	P154/ANI	12 pin	
0	0		1	1	0		1		AN	II13	P155/ANI	13 pin	
0	0		1	1	1		0		AN	I I14	P156/ANI	14 pin	
0	1		0	0	0		0		AN	II16	P03/ANI	16 pin	
0	1		0	0	0		1		AN	I I17	P02/ANI	17 pin	
0	1		0	0	1		0		AN	N18	P147/AN	18 pin	
0	1		0	0	1		1		AN	N19	P120/AN	19 pin	
0	1		0	1	0		0		AN	1120	P100/AN	•	
1	0		0	0	0		0		-	_	Temperature outp	ut	
1	0		0	0	0		1		-	_	Internal reference voltage output (1.44 V)		
	Other than the above									Setting prohibited			

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

Enable A/D voltage comparator operation.

• A/D Converter Mode Register 0 (ADM0)

Enable A/D voltage comparator operation.

Symbol	7 6 5 4 3 2 1 0												
ADM0	ADCS ADMD FR2 FR1 FR0 LV1 LV0 AD												
Setting Value	1												
Bit 0													
ADCE			A/D vol	tage compara	ator operation	control							
0	Stops A/D v	oltage compa	arator operati	on									
1	Enables A/[D voltage con	nparator oper	ation									

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.
Initial values of individual bits
x: Bits not used in this application; blank spaces: bits that do not change; —: reserved bits or bits that have nothing assigned.

5.6.6 Initial Setting of TAU0

Figure 5.7 shows the Initial Setting of TAU0.

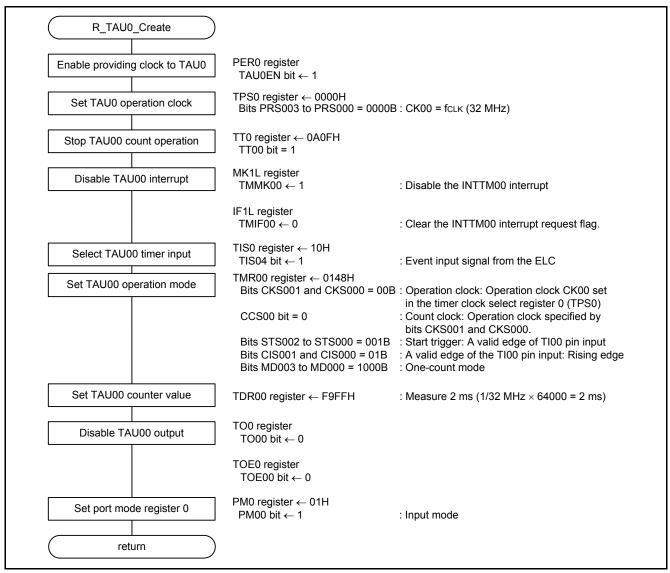


Figure 5.7 Initial Setting of TAU0

Enable providing a clock to TAU0.

- Peripheral Enable Register 0 (PER0)
- Enable providing a clock to TAU0.

Symbol	7	6	5	4	3	2	1	0
PER0	RTCEN	IICA1EN	ADCEN	IICA0EN	SAU1EN	SAU0EN	TAU1EN	TAU0EN
Setting Value	х	х		х	х	х	х	1

Bit 0

TAU0EN	Control of timer array unit 0 input clock supply
0	Stops input clock supply.SFR used by timer array unit 0 cannot be written.Timer array unit 0 is in the reset status.
1	Enables input clock supply. • SFR used by timer array unit 0 can be read and written.

Refer to the RL78/G14 user's manual (hardware) for details on individual registers. Initial values of individual bits X: Bits not used in this application; blank spaces: bits that do not change; —: reserved bits or bits that have nothing assigned.

Set the TAU0 operation clock.

• Timer Clock Select Register 0 (TPS0)

Set the TAU0 operation clock.

Sym	bol	15	14		13		12		11	10	9	8
TT	0	0	0		PRS 031		PRS 030		0	0	PRS 021	PRS 020
Setting	Value		_		х		х		_	—	х	х
Sym	bol	7	6		5		4		3	2	1	0
тт	0	PRS 013	PR: 012		PRS 011		PRS 010		PRS 003	PRS 002	PRS 001	PRS 000
Setting	Value	х	х		х		х		0	0	0	0
Bits 3 to 0)											
550	000	550	000				S	Selec	ction of opera	ation clock (CK	00)	
PRS 003	PRS 002	PRS 001	PRS 000				f _{clk} = 2 MHz		f _{clk} = 5 MHz	f _{ськ} = 10 MHz	f _{clk} = 20 MHz	f _{ськ} = 32 MHz
0	0	0	0		f _{clk}	:	2 MHz		5 MHz	10 MHz	20 MHz	32 MHz
0	0	0	1	1	f _{ськ} /2		1 MHz	2	2.5 MHz	5 MHz	10 MHz	16 MHz
0	0	1	0	f	с _{ск} /2 ²	5	00 kHz	1	.25 MHz	2.5 MHz	5 MHz	8 MHz
0	0	1	1	f	с _{ськ} /2 ³	2	50 kHz	6	625 kHz	1.25 MHz	2.5 MHz	4 MHz
0	1	0	0	f	_{СLК} /2 ⁴	1	25 kHz	3	12.5 kHz	625 kHz	1.25 MHz	2 MHz
0	1	0	1	f	с _{ськ} /2 ⁵	6	2.5 kHz	1	56.2 kHz	312.5 kHz	625 kHz	1 MHz
0	1	1	0	f	с _{ськ} /2 ⁶	31	.25 kHz	7	78.1 kHz	156.2 kHz	312.5 kHz	500 kHz
0	1	1	1	f	с _{ськ} /2 ⁷	15	5.62 kHz	3	39.1 kHz	78.1 kHz	156.2 kHz	250 kHz
1	0	0	0	f	с _{ськ} /2 ⁸	7	.81 kHz	1	19.5 kHz	39.1 kHz	78.1 kHz	125 kHz
1	0	0	1	f	с _{ськ} /2 ⁹	3	.91 kHz	g	9.76 kHz	19.5 kHz	39.1 kHz	62.5 kHz

1.95 kHz

976 Hz

488 Hz

244 Hz

122 Hz

61 Hz

4.88 kHz

2.44 kHz

1.22 kHz

610 Hz

305 Hz

153 Hz

9.76 kHz

4.88 kHz

2.44 kHz

1.22 kHz

610 Hz

305 Hz

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

 $f_{\text{CLK}}/2^{10}$

 $f_{CLK}/2^{11}$

 $f_{\text{CLK}}/2^{12}$

f_{CLK}/2¹³

f_{CLK}/2¹⁴

f_{CLK}/2¹⁵

Initial values of individual bits

1

1

1

1

1

1

0

0

1

1

1

1

1

1

0

0

1

1

0

1

0

1

0

1

x: Bits not used in this application; blank spaces: bits that do not change; —: reserved bits or bits that have nothing assigned.

19.5 kHz

9.76 kHz

4.88 kHz

2.44 kHz

1.22 kHz

610 Hz

31.25 kHz

15.63 kHz

7.81 kHz

3.91 kHz

1.95 kHz

976 Hz

 Stop TAU00 count operation. Timer Channel Stop Register 0 (TT0) Stop TAU00 count operation. 								
Symbol	15	14	13	12	11	10	9	8
TT0	0	0	0	0	TTH 03	0	TTH 01	0
Setting Value	_		_	_	х	_	х	
Symbol	7	6	5	4	3	2	1	0
TT0	0	0	0	0	TT03	TT02	TT01	TT00
Setting Value	_	_	_	_	х	Х	Х	1

Bits 3 to 0

TT00	Operation stop trigger of channel 0
0	No trigger operation
1	Operation is stopped (stop trigger is generated). This bit is the trigger to stop operation of the lower 8-bit timer for TT01 and TT03 when channel 1 or 3 is in the 8-bit timer mode.

Disable INTTM00 interrupt.

• Interrupt Mask Flag Register (MK1L) Disable the INTTM00 interrupt.

Symbol	7	6	5	4	3	2	1	0
MK1L	ТММК03	TMMK02	TMMK01	ТММК00	IICAMK0	SREMK1 TMMK03H	SRMK1 CSIMK11 IICMK11	STMK1 CSIMK10 IICMK10
Setting Value	х	х	х	1	х	х	х	х

Bit 4

ТММК00	Interrupt servicing control
0	Interrupt servicing enabled
1	Interrupt servicing disabled

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

• Interrupt Reque Clear the INTT	0 0								
Symbol	7	6	5	4	3	2	1	0	
IF1L	TMIF03	TMIF02	TMIF01	TMIF00	IICAIF0	SREIF1 TMIF03H	SRIF1 CSIIF11 IICIF11	STIF1 CSIIF10 IICIF10	
Setting Value	х	х	х	0	х	х	х	х	
Bit 4									
TMIF00		Interrupt request flag							
0	No interrupt	No interrupt request signal is generated							
1	Interrupt rec	uest is gene	rated, interrup	ot request sta	tus				

Select TAU00 timer input.

• Timer Input Select Register 0 (TIS0) Set timer input as an event input signal from the ELC.

Symbol	7	6	5	4	3	2	1	0
TIS0	0	0	0	TIS04	0	TIS02	TIS01	TIS00
Setting Value	_		_	1	_	х	x	x

Bit 4

TIS04	Selection of timer input used with channel 0
0	Input signal of timer input pin (TI00)
1	Event input signal from ELC

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

Set TAU00 operation mode.

• Timer Mode Register 00 (TMR00)

Set TAU00 operation mode.

Symbol	15	14	13	12	11	10	9	8
TMR00	CKS 001	CKS 000	0	CCS 00	0	STS 002	STS 001	STS 000
Setting Value	0	0	0	0		0	0	1
-								
Symbol	7	6	5	4	3	2	1	0
TMR00	CIS 001	CIS 000	0	0	MD 003	MD 002	MD 001	MD 000
Setting Value	0	1			1	0	0	0

Bits 15 and 14

CKS 001	CKS 000	Selection of operation clock (f_{MCK}) of channel 0					
0	0	Operation clock CK00 set by timer clock select register 0 (TPS0)					
0	1	Operation clock CK02 set by timer clock select register 0 (TPS0)					
1	0	Operation clock CK01 set by timer clock select register 0 (TPS0)					
1	1	Operation clock CK03 set by timer clock select register 0 (TPS0)					
the setting of	Operation clock (f_{mck}) is used by the edge detector. A count clock (f_{rclk}) and a sampling clock are generated depending on the setting of the CCS00 bit. The operation clocks CK02 and CK03 can only be selected for channels 1 and 3.						

Bit 12

CCS 00	Selection of count clock (f_{TCLK}) of channel 0				
0	Operation clock ($f_{\mbox{\tiny MCK}}$) specified by the CKS000 and CKS001 bits				
1	1 Valid edge of input signal input from the TI00 pin				
Count clock (f _{TCLK}) is used for the timer/counter, output controller, and interrupt controller.				

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

	0		
STS 002	STS 001	STS 000	Setting of start trigger or capture trigger of channel 0
0	0	0	Only software trigger start is valid (other trigger sources are unselected).
0	0	1	Valid edge of the TI00 pin input is used as both the start trigger and capture trigger.
0	1	0	Both the edges of the TI00 pin input are used as a start trigger and a capture trigger.
1	0	0	Interrupt signal of the master channel is used (when the channel is used as a slave channel with the simultaneous channel operation function).
Ot	Other than above		Setting prohibited

Bits 7 and 6

CIS 001	CKS 000	Selection of TI00 pin input valid edge
0	0	Falling edge
0	1	Rising edge
1	0	Both edges (when low-level width is measured) Start trigger: Falling edge, Capture trigger: Rising edge
1	1	Both edges (when high-level width is measured) Start trigger: Rising edge, Capture trigger: Falling edge
If both the ec CIS000 bits t	•	ified when the value of the STS002 to STS000 bits is other than 010B, set the CIS001 to

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

Bits 3 to	o 1						
MD 003	MD 002	MD 001	MD 000	Operation mode of channel 0	Corresponding function	Count operation of TCR	
0	0	0	1/0	Interval timer mode	Interval timer / Square wave output / Divider function / PWM output (master)	Counting down	
0	1	0	1/0	Capture mode	Input pulse interval measurement	Counting up	
0	1	1	0	Event counter mode	External event counter	Counting down	
1	0	0	1/0	One-count mode Delay counter / One-shot pulse output / PWM output (slave) Co		Counting down	
1	1	0	0	Capture & one-count mode	Measurement of high-/low-level width of input signal	Counting up	
	Other than above Setting prohibited						
The op	The operation of the MD000 bit varies depending on each operation mode (see table below).						

Bit 0		
Operation mode (Value set by the MD003 to MD001 bits (see table above))	MD 000	Setting of starting counting and interrupt
 Interval timer mode (0, 0, 0) 	0	Timer interrupt is not generated when counting is started (timer output does not change, either).
• Capture mode (0, 1, 0)	1	Timer interrupt is generated when counting is started (timer output also changes).
• Event counter mode (0, 1, 1)	0	Timer interrupt is not generated when counting is started (timer output does not change, either).
One-count mode	0	Start trigger is invalid during counting operation. At that time, interrupt is not generated, either.
(1, 0, 0)	1	Start trigger is valid during counting operation. At that time, interrupt is also generated.
Capture & one-count mode (1, 1, 0)	0	Timer interrupt is not generated when counting is started (timer output does not change, either). Start trigger is invalid during counting operation. At that time interrupt is not generated, either.
Other than above		Setting prohibited

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

Set the TAU00 • Timer Data Reg Set F9FFH as th	gister 00 (TDR	R00)	re 2 ms.					
Symbol	15	14	13	12	11	10	9	8
TDR00								
Setting Value	1	1	1	1	1	0	0	1
Symbol	7	6	5	4	3	2	1	0
TDR00								
Setting Value	1	1	1	1	1	1	1	1
Disable TAU0 • Timer Output R Set 0 as the time Symbol	Register 0 (TO	00) ie. 14	13	12	11	10	9	8
TO0	0	0	0	0	0	0	0	0
Setting Value							—	
Symbol	7	6	5	4	3	2	1	0
TO0	0	0	0	0	TO03	TO02	TO01	ТО00
Setting Value					х	x	x	0
Bit 0								
TO 00				Timer output	t of channel 0			
0	Timer outpu	ut value is "0".						

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Timer output value is "1".

Initial values of individual bits

1

• Timer Output Enable Register 0 (TOE0) Disable TO00 pin output.								
Symbol	15	14	13	12	11	10	9	8
TOE0	0	0	0	0	0	0	0	0
Setting Value	_	_	_	_	_			—
Symbol	7	6	5	4	3	2	1	0
TOE0	0	0	0	0	TOE 03	TOE 02	TOE 01	TOE 00
Setting Value	_	_	_	_	х	x	x	0

Bit 0

TOE 00	Timer output enable/disable of channel 0
0	The TO00 operation stopped by count operation (timer channel output bit). Writing to the TO00 bit is enabled. The TO00 pin functions as data output, and it outputs the level set to the TO00 bit. The output level of the TO00 pin can be manipulated by software.
1	The TO00 operation enabled by count operation (timer channel output bit). Writing to the TO00 bit is disabled (writing is ignored). The TO00 pin functions as timer output, and output from the TO00 pin is set or reset depending on the timer operation. The TO00 pin outputs the square-wave or PWM depending on the timer operation.

Set port mode register 0.

• Port Mode Register 0 (PM0)

Set the P00 pin to input mode.

Symbol	7	6	5	4	3	2	1	0
PM0	PM07	PM06	PM05	PM04	PM03	PM02	PM01	PM00
Setting Value	x	х	х	х	х	х	х	1

Bit 0

PM00	P00 pin I/O mode selection					
0	Output mode (output buffer on)					
1	Input mode (output buffer off)					

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

5.6.7 Initial Setting of INTP0

Figure 5.8 shows the Initial Setting of INTPO.

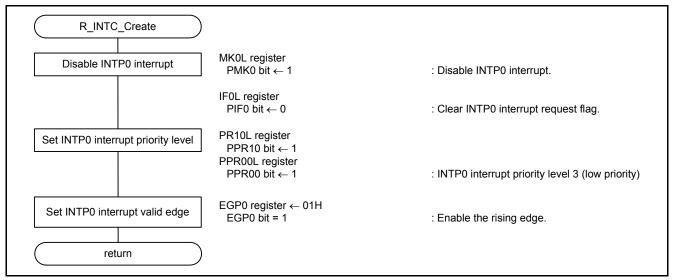


Figure 5.8 Initial Setting of INTP0

Disable the INTP0 interrupt.

• Interrupt Mask Flag Register (MK0L) Disable the INTP0 interrupt.

Symbol	7	6	5	4	3	2	1	0
MK0L	PMK5	PMK4	PMK3	PMK2	PMK1	PMK0	LVIMK	WDTIMK
Setting Value	х	х	х	х	х	1	х	х

Bit 2

PMK0	Interrupt servicing control				
0	Interrupt servicing enabled				
1	Interrupt servicing disabled				

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

• Interrupt Request Flag Register (IF0L) Clear the INTPO interrupt request flag.								
Symbol	7	6	5	4	3	2	1	0
IFOL	PIF5	PIF4	PIF3	PIF2	PIF1	PIF0	LVIIF	WDTIIF
Setting Value	х	х	х	х	х	0	х	х
Bit 2								

PIF0	Interrupt request flag				
0	No interrupt request signal is generated				
1	Interrupt request is generated, interrupt request status				

Set the INTP0 interrupt priority level.

• Priority Specification Flag Registers (PR00L, PR10L) Set the INTPO interrupt priority level to level 3 (low priority).

Symbol	7	6	5	4	3	2	1	0
PR10L	PPR15	PPR14	PPR13	PPR12	PPR11	PPR10	LVIPR1	WDTIPR1
Setting Value	х	х	х	х	х	1	х	x
Symbol	7	6	5	4	3	2	1	0
PR00L	PPR05	PPR04	PPR03	PPR02	PPR01	PPR00	LVIPR0	WDTIPR0
Setting Value	х	х	х	х	х	1	х	х

PPR10	PPR00	Priority level selection
0	0	Specify level 0 (high priority level)
0	1	Specify level 1
1	0	Specify level 2
1	1	Specify level 3 (low priority level)

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

Set the INTP0	interrupt valid	edge.
---------------	-----------------	-------

- External Interrupt Rising Edge Enable Register (EGP0).
- External Interrupt Falling Edge Enable Register (EGN0)

Set the valid edge of the INTPO pin to the rising edge.

Symbol	7	6	5	4	3	2	1	0
EGP0	EGP7	EGP6	EGP5	EGP4	EGP3	EGP2	EGP1	EGP0
Setting Value	х	х	х	х	х	х	х	1
Symbol	7	6	5	4	3	2	1	0
EGN0	EGN7	EGN6	EGN5	EGN4	EGN3	EGN2	EGN1	EGN0
Setting Value	х	x	х	х	х	х	x	0

EGP0	EGN0	INTP0 pin valid edge selection
0	0	Edge detection disabled
0	1	Falling edge
1	0	Rising edge
1	1	Both rising and falling edges

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

5.6.8 Initial Setting of the ELC

Figure 5.9 shows the Initial Setting of the ELC.

Figure 5.9 Initial Setting of the ELC

Select the e • Event Outpu Link an even	ıt Destinatio	n Select Reg	gister			216) e A/D conver	ter.				
Symbol	7	6		5		4	3	2	1		0
ELSELR16	_	-	-	_		—	ELSEL3	ELSEL2	ELSEL1	EL	SEL0
Setting Value	e —		-	_		—	0	0	0		1
	• Event Output Destination Select Register 00 (ELSELR00) Link an event signal of external interrupt edge detection 0 to the TAU00 input source.										
Symbol	7	6		5		4	3	2	1		0
ELSELR00	—	_	-	_	•	—	ELSEL3	ELSEL2	ELSEL1	EL	SEL0
Setting Value	è —	_	-			—	0	0	1		0
Bits 3 to 0											
ELSEL3 ⁽¹⁾	ELSEL2	ELSEL1	EL	SEL0			Event Link	Selection			R/W
0	0	0		0	Eve	ent link disable	ed				
0	0	0		1	Sele	ect operation	of peripheral	function to lir	nk		
0	0	1		0 Select operation of peripheral fu		function to lir	nk				
0	0	1		1 Select operation of peripheral function to link			R/W				
0	1	0		0	Sele	ect operation	of peripheral	function to lir	nk		
0	1	0		1	Sele	ect operation	of peripheral	function to lir	nk		

Select operation of peripheral function to link

Select operation of peripheral function to link

Note:

1

1

1. Only for 80-pin and 100-pin products.

1

1

0

1

1

1

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

Register Name	Event Generator	Event Description
ELSELR00	External interrupt edge detection 0	INTP0
ELSELR01	External interrupt edge detection 1	INTP1
ELSELR02	External interrupt edge detection 2	INTP2
ELSELR03	External interrupt edge detection 3	INTP3
ELSELR04	External interrupt edge detection 4	INTP4
ELSELR05	External interrupt edge detection 5	INTP5
ELSELR06	Key return signal detection	INTKR
ELSELR07	RTC fixed-cycle signal/Alarm match detection	INTRTC
ELSELR08	Timer RD0 Input capture A/Compare match A	INTTRD0
ELSELR09	Timer RD0 Input capture B/Compare match B	INTTRD0
ELSELR10	Timer RD1 Input capture A/Compare match A	INTTRD1
ELSELR11	Timer RD1 Input capture B/Compare match B	INTTRD1
ELSELR12	Timer RD1 Underflow	TRD1 underflow signal
ELSELR13	Timer RJ0 Underflow	INTTRJ0
ELSELR14	Timer RG Input capture A/Compare match A	INTTRG
ELSELR15	Timer RG Input capture B/Compare match B	INTTRG
ELSELR16	TAU channel 00 Count end/Capture end	INTTM00
ELSELR17	TAU channel 01 Count end/Capture end	INTTM01
ELSELR18	TAU channel 02 Count end/Capture end	INTTM02
ELSELR19	TAU channel 03 Count end/Capture end	INTTM03
ELSELR20 ⁽¹⁾	TAU channel 10 Count end/Capture end	INTTM10
ELSELR21 ⁽¹⁾	TAU channel 11 Count end/Capture end	INTTM11
ELSELR22 ⁽¹⁾	TAU channel 12 Count end/Capture end	INTTM12
ELSELR23 ⁽¹⁾	TAU channel 13 Count end/Capture end	INTTM13
ELSELR24 ⁽²⁾	Comparator detection 0	INTCMP0
ELSELR25 ⁽²⁾	Comparator detection 1	INTCMP1

Notes:

Only for 80-pin and 100-pin products.
 Only for products with a code flash memory size of 96 KB or more

Remarks: n = 00 to 25

Bits ELSEL3 to ELSEL0 in ELSELRn Register	Link Destination Peripheral Function	Operation When Receiving Event
0001B	A/D converter	A/D conversion starts
0010B	TAU0 channel 0 input source	Delay counter, input pulse interval measurement, external event counter
0011B	TAU0 channel 1 input source	Delay counter, input pulse interval measurement, external event counter
0100B	Timer RJ0	Count source
0101B	Timer RG	TRGIOB input capture
0110B	Timer RD0	TRDIOD0 input capture, pulse output forced cutoff
0111B	Timer RD1	TRDIOD1 input capture, pulse output forced cutoff
1000B	DA0	Real-time output (96 KB or more code flash memory products only.)
1001B	DA1	Real-time output (96 KB or more code flash memory products only.)

Remarks: n = 00 to 25

5.6.9 Main Processing

Figure 5.10 shows the Main Processing.

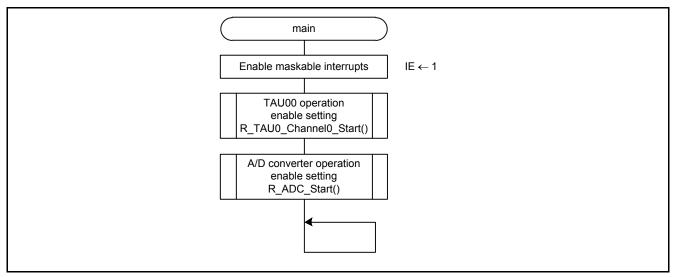


Figure 5.10 Main Processing

5.6.10 TAU00 Operation Enable Setting

Figure 5.11 shows the TAU00 Operation Enable Setting.

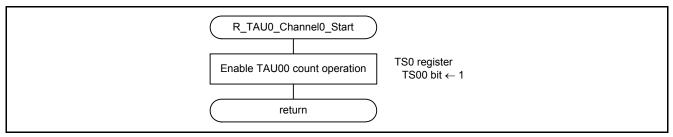


Figure 5.11 TAU00 Operation Enable Setting

Enable TAU0 • Timer Channel Set TAU00 to d	Start Register	r 0 (TS0)						
Symbol	15	14	13	12	11	10	9	8
TS0	0	0	0	0	TSH 03	0	TSH 01	0
Setting Value	_	_	_		х	_	х	_
Symbol	7	6	5	4	3	2	1	0
TS0	0	0	0	0	TS03	TS02	TS01	TS00
Setting Value	_	_	_	_	х	х	х	1
Bit 0								

TS00	Operation enable (start) trigger of channel 0
0	No trigger operation
1	The TE00 bit is set to 1 and the count operation becomes enabled. The TCR00 register count operation start in the count operation enabled state varies depending on each operation mode

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

5.6.11 A/D Conversion Operation Enable Setting

Figure 5.12 shows the A/D Conversion Operation Enable Setting.

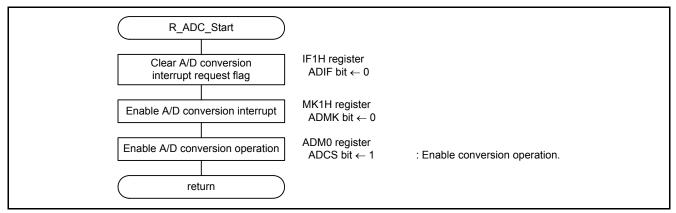


Figure 5.12 A/D Conversion Operation Enable Setting

Clear the A/D conversion interrupt request flag.

• Interrupt Request Flag Register (IF1H) Clear the INTAD interrupt request flag.

Symbol	7	6	5	4	3	2	1	0
IF1H	TMIF10	TRJIF0	SRIF3 CSIIF31 IICIF31	STIF3 CSIIF30 IICIF30	KRIF	ITIF	RTCIF	ADIF
Setting Value	x	х	x	x	х	х	x	0

Bit 0

ADIF	Interrupt request flag				
0	No interrupt request signal is generated				
1	Interrupt request is generated, interrupt request status				

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

Enable the A/D conversion interrupt.

- Interrupt Mask Flag Register (MK1H)
- Enable the INTAD interrupt.

Symbol	7	6	5	4	3	2	1	0
MK1H	TMMK10	TRJMK0	SRMK3 CSIMK31 IICMK31	STMK3 CSIMK30 IICMK30	KRMK	ITMK	RTCMK	ADMK
Setting Value	х	х	х	х	x	х	х	0

Bit 0

ADMK	Interrupt servicing control					
0	Interrupt servicing enabled					
1	Interrupt servicing disabled					

Enable A/D conversion operation.

• A/D Converter Mode Register 0 (ADM0)

Enable A/D conversion operation.

Symbol	7	6	5	4	3	2	1	0
ADM0	ADCS	ADMD	FR2	FR1	FR0	LV1	LV0	ADCE
Setting Value	1							

Bit	7
-----	---

ADCS	A/D conversion operation control		
0	Stops conversion operation [When read] Conversion stopped/standby status		
1	Enables conversion operation [When read] While in the software trigger mode: Conversion operation status While in the hardware trigger wait mode: Stabilization wait status + conversion operation status		

Refer to the RL78/G14 user's manual (hardware) for details on individual registers.

Initial values of individual bits

5.6.12 A/D Conversion Interrupt

Figure 5.13 shows the A/D Conversion Interrupt.

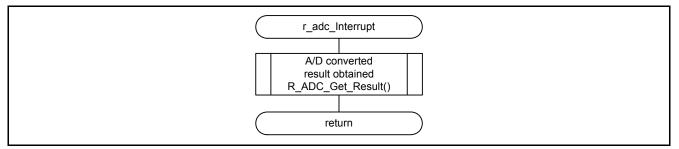


Figure 5.13 A/D Conversion Interrupt

5.6.13 Obtain A/D Converted Result

Figure 5.14 shows the A/D Converted Result Obtained.

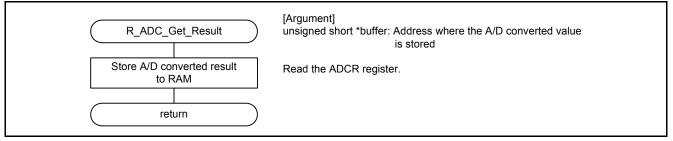


Figure 5.14 A/D Converted Result Obtained

6. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

7. Reference Documents

User's Manual: Hardware

RL78/G14 Group User's Manual: Hardware (R01UH0186E) RL78 Family User's Manual: Software (R01US0015E) The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website http://www.renesas.com

Inquiries

http://www.renesas.com/contact/

REVISION HISTORY

RL78/G14 Operation in Conjunction with Three Combined Events Using the ELC

Rev.	Date	Description			
		Page	Summary		
1.00	Dec. 15, 2015		First edition issued		

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

— The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do not access
 these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

— The characteristics of an MPU or MCU in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
- *Standard*: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electror equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended by Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for enduct is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2801 Scott Boulevand Santa Clara, CA 93050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite B309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Curope Limited Dukes Meadow, Milboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-11628-585-100, Fax: +14-1628-586-900 Renesas Electronics Europe CimbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-21-16503.0, Fax: +49-211-6503.127 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +49-21-155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghal) Co., Ltd. Room 5709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Shanghai, P. R. China 200333 Tel: +48-21-2226-0888, Fax: +86-10-8235-7679 Renesas Electronics (Shanghal) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +48-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Taiwan Co., Ltd. Unit 301, Tower A, Central Towers, 255 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +852-245-6688, Fax: +865-21+2226-0999 Renesas Electronics Taiwan Co., Ltd. Unit 305, Tow 578, Fu Shing Month Road, Taipei 10543, Taiwan Tel: +886-24175-9600, Fax: +865-2815-9670 Renesas Electronics Singapore Ple: Ltd. OB Bendemeer Road, Unit #06-02 Hyliux Innovation Centre, Singapore 339949 Tel: +650-213-0200, Fax: +650-213-03000 Renesas Electronics Isingapore Ple: Ltd. Unit 207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +603-7755-9390, Fax: +650-6370 Renesas Electronics India Pyti. Ltd. No.777C, 100 Feet Road, Hulli Singe, Indiranagar, Bangalore, India Tel: +03-755-9390, Fax: +650-63708, F