

RL78/G14, M16C/62P Group

Migration Guide from M16C to RL78: Interrupts

R01AN1998EJ0100 Rev.1.00 Mar. 3, 2014

Abstract

This application note explains how to migrate the interrupt function of the M16C/62P Group to that in RL78/G14.

Target Devices

RL78/G14, M16C/62P Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.

Contents

1. Diff	erences between the M16C/62P Group and RL78/G14	3
1.1 lı	nterrupts	3
1.2	Differences in INT Interrupts	4
1.3	Differences in Key Input Interrupts	5
2. Reg	gister Compatibility	6
2.1 lı	nterrupts	6
2.2 F	Registers Associated with INT Interrupts	6
2.3 F	Registers Associated with Key Input Interrupts	6
3. Coi	mparison of Interrupt Operation Settings	7
3.1 N	Naskable Interrupts	7
3.1.1	M16C/62P Group	7
3.1.2	RL78/G14	9
3.2 II	NT Interrupts	11
3.2.1	M16C/62P	11
3.2.2	RL78/G14	12
3.3 K	Cey Input Interrupts	15
3.3.1	M16C/62P Group	15
3.3.2	RL78/G14	15
3.4 lı	nterrupt Priority Level	16
3.4.1	M16C/62P Group	16
3.4.2	RL78/G14	16
3.5 F	Register Saving	16
3.5.1	M16C/62P Group	16
3.5.2	RL78/G14	16
3.6 N	IMI Interrupts	17
3.6.1	M16C/62P Group	17
3.6.2	RL78/G14	17
4. Inte	errupt Vectors	19
4.1 N	/116C/62P Group	19
4.1.1	Fixed Vector Tables	19
4.1.2	Relocatable Vector Table	19
4.2 F	RL78/G14	21
5. Ref	ference Documents	24

1. Differences between the M16C/62P Group and RL78/G14

1.1 Interrupts

Table 1.1 lists the general differences in interrupts.

Table 1.1 General Differences in Interrupts

Item	M16C/62P Group	RL78/G14
Maskable interrupts	Peripheral function interrupts (Note 1)	Peripheral function interrupts
Non-maskable	Software interrupt	Software interrupt
interrupts	 Undefined instruction (UND instruction) 	 BRK instruction
	 Overflow (INTO instruction 	
	 BRK instruction 	
	 INT instruction 	
	Special interrupts	_
	- NMI	
	- DBC (Note 2)	
	 Watchdog time 	
	 Oscillation stop detection and 	
	re-oscillation detection	
	 Low voltage detection 	
	– Single step (Note 2)	
	- Address match	
Interrupt priority levels	0 to 7 ^(Note 3)	0 to 3 ^(Note 4)
Type of vector table	Fixed vector table	Vector table
	Relocatable vector table	
Vector table	Fixed address is in the fixed vector table	Fixed address is in the vector table
address	Relocatable address is in the relocatable	
N	vector table: (optional)	

Notes

- 1. Peripheral function interrupts are generated by the peripheral functions in the MCU.
- 2. Do not use these interrupts. These are provided exclusively for use by development tools.
- 3. Level 0 is given low priority (interrupt disabled) and level 7 is given high priority
- 4. Level 3 is given low priority and level 0 is given high priority.

1.2 Differences in INT Interrupts

Table 1.2 lists the differences in $\overline{\text{INT}}$ interrupts.

Table 1.2 Differences on INT Interrupts

Item	M16C/62P Group	RL78/G14
INT interrupt pin	INTO to INT5 (refer to Table 1.3.)	INTP0 to INTP11 (refer to Table 1.4 .)
Digital filter	N/A	N/A

Table 1.3 INT Interrupt Pin Configuration in the M16C/62P Group

Pin name	Assigned pin					
	80-pin product	100-pin product	128-pin product			
ĪNT0	P8_2					
ĪNT1	P8_3					
ĪNT2		P8_4				
ĪNT3	N/A P1_5					
ĪNT4	N/A P1_6					
ĪNT5	N/A P1_7					

Table 1.4 INTP Interrupt Pin Configuration in RL78/G14

	Assigned pin									
Pin name	30-pin	32-pin	36-pin	40-pin	44-pin	48-pin	52-pin	64-pin	80-pin	100-pin
	product	product	product	product	product	product	product	product	product	product
INTP0					P1	37				
INTP1				P50				P:	50	P46
								(P:	52)	(P56)
INTP2				P51				P:	51	P47
								(P:	53)	
INTP3				P30				P:	30	P30
								(P:	54)	(P57)
INTP4				P31				P:	31	P31
								(P:	55)	(P146)
INTP5				P16					P16	
									(P12)	
INTP6			N/A				P1	40		P140
										(P84)
INTP7				N/A				P1	41	P141
										(P85)
INTP8			N/A			P	74	P.	74	P74
								(P	42)	(P86)
INTP9			N/A			P	75	P.	75	P75
								(P	43)	(P87)
INTP10			N.	/A		•	P76	P76	P.	76
								(P05)	(P1	00)
INTP11			N.	/A			P77	P77	P.	77
								(P06)	(P1	10)

Note

^{1.} Functions in parentheses can be assigned via settings in the peripheral I/O redirection register 0 (PIOR 0). For more details, refer to 3.2.2 in this application note or the RL78/G14 User's Manual: Hardware.

1.3 Differences in Key Input Interrupts

Differences in key input interrupts are shown in Table 1.5.

Table 1.5 Differences in Key Input Interrupts

Item	M16C/62P Group	RL78/G14		
Number of input		30-pin product		
channels		32-pin product	N/A	
		36-pin product		
		40-pin product	4 channels	
	4 channels	44-pin product	4 Charmers	
		48-pin product	6 channels	
		52-pin product		
		64-pin product	8 channels	
		80-pin product	o chamileis	
		100-pin product		
Key input interrupt pin	KIO to KI3 (refer to Table 1.6.)	KR0 to KR7 (refer	to Table 1.7.)	
Key input polarity	Falling edge	Falling edge	_	

Table 1.6 Key Input Interrupt Pin Configuration in the M16C/62P Group

Pin name	Assigned pin
KI0 KI1	P10_4
KI1	P10_5
KI2	P10_6
KI3	P10_7

Table 1.7 Key Input Interrupt Pin Configuration in RL78/G14

		Assigned pin								
	30-pin	32-pin	36-pin	40-pin	44-pin	48-pin	52-pin	64-pin	80-pin	100-pin
Pin name	product	product	product	product	product	product	product	product	product	product
KR0	N/A					P70				
KR1	N/A			P71						
KR2	N/A			P72						
KR3	N/A			P73						
KR4	N/A			P74						
KR5	N/A			P75						
KR6	N/			N/A P76						
KR7	N			/A				b.	77	

2. Register Compatibility

2.1 Interrupts

Table 2.1 lists the compatibility of registers associated with interrupts.

Table 2.1 Compatibility of Registers Associated with Interrupts

Item	M16C/62P Group	RL78/G14
Interrupt priority level select	Bits ILVL0 to ILVL2 in the interrupt control register	Bits XXPR1X and XXPR0X in the priority specification flag register
Interrupt request flag	IR bit in the interrupt control register	XXIFX bit in the interrupt request flag register
Interrupt handling control	Bits ILVL0 to ILVL2 in the interrupt control register (Level 0: interrupt disabled)	XXMKX bit in the interrupt mask flag register
Maskable interrupt enable control	I flag in the FLG register	IE flag in the PSW register
Processor interrupt priority specification	FLG register IPL	ISP1 and ISP0 in the PSW register

Note: For details on bits XXPR1X, XXPR0X, XXIFX, and XXMKX, refer to 3.1.2 in this application note or the RL78/G14 User's Manual: Hardware.

2.2 Registers Associated with INT Interrupts

Table 2.2 lists the compatibility of registers associated with INT interrupts.

Table 2.2 Compatibility of Registers Associated with INT Interrupts

Item	M16C/62P Group	RL78/G14
INT input polarity switch	POL bit in the INTilC registerIFSRi bit in the IFSR register	 EGPn bit in the registers EGP0 and EGP1 EGNn bit in the registers EGN0 and EGN1
INT pin select	_	PIOR0 register
INT input enable	Use the IFSRk bit in the IFSR regiter to select INT4 and INT5 as interrupt source.)	 EGPn bit in the registers EGP0 and EGP1 EGNn bit in the registers EGN0 and EGN1 (Edge detection is disabled when bits EGPn and EGNn are 0.)

⁻: No register is applicable. i = 0 to 5, k = 6 to 7, n = 0 to 11

2.3 Registers Associated with Key Input Interrupts

Table 2.3 lists the compatibility of registers associated with key input interrupts.

Table 2.3 Compatibility of Registers Associated with Key Input Interrupts

Item	M16C/62P Group	RL78/G14
Key input enable	PD10_i bit in the PD10 register	KRMn bit in the KRM register
		PM7n bit in the PM7 register

i = 4 to 7, n = 0 to 7

3. Comparison of Interrupt Operation Settings

3.1 Maskable Interrupts

3.1.1 M16C/62P Group

In the M16C/62P Group, maskable interrupts are enabled or disabled by setting the I flag in the FLG register, IPL, and bits ILVL0 to ILVL2 in interrupt control registers. The IR bit in interrupt control registers indicates whether there is an interrupt request or not.

Table 3.1 lists the functions of the I flag. Table 3.2 lists the functions of IPL. Table 3.3 lists the functions of the IR bit in the interrupt control register. Table 3.4 lists the functions of the interrupt priority level select bits.

Table 3.1 I Flag Functions

I flag	Maskable interrupt enable/disable			
0	Disable maskable interrupts.			
1	Enable maskable interrupts.			

Table 3.2 IPL Functions

IPL	Maskable interrupt enable/disable
000b	Maskable interrupts at interrupt level 1 and above are enabled.
001b	Maskable interrupts at interrupt level 2 and above are enabled.
010b	Maskable interrupts at interrupt level 3 and above are enabled.
011b	Maskable interrupts at interrupt level 4 and above are enabled.
100b	Maskable interrupts at interrupt level 5 and above are enabled.
101b	Maskable interrupts at interrupt level 6 and above are enabled.
110b	Maskable interrupts at interrupt level 7 and above are enabled.
111b	All maskable interrupts are disabled.

Table 3.3 Interrupt Request Bit Functions

IR	Function		
0	No interrupt requested		
1	Interrupt requested		

Table 3.4 Interrupt Priority Level Select Bits Functions

ILVL2	ILVL1	ILVL0	Interrupt priority level	Priority
0	0	0	Level 0 (interrupt disabled)	-
0	0	1	Level 1	Low
0	1	0	Level 2	
0	1	1	Level 3	
1	0	0	Level 4	
1	0	1	Level 5]
1	1	0	Level 6	•
1	1	1	Level 7	High

Interrupts are acknowledged when:

- I flag = 1,
- IR bit = 1, and
- Interrupt priority level > IPL

Example: Interrupts of the timer A0 are acknowledged when:

I flag: I flag in the FLG register is 1,

IR bit: IR bit (bit 3) in the TA0IC register is 1, and

Interrupt priority level: Bits ILV2 to ILV0 in the TA0IC register > IPL in the FLG register.

3.1.2 RL78/G14

In RL78/G14, maskable interrupts are enabled or disabled by setting the flags IE, ISP0, and ISP1 in the PSW register, bits XXPR1X and XXPR0X in the priority specification flag register and the XXMKX bit in the interrupt mask flag register. The XXIFX bit in the interrupt request flag registers indicates whether there is an interrupt request or not.

Table 3.5 lists the functions of the IE flag. Table 3.6 lists the functions of flags ISP1 and ISP0. Table 3.7 lists the functions of the interrupt request flag. Table 3.8 lists the functions of the interrupt servicing control bit. Table 3.9 lists the functions of priority level select bits.

Table 3.5 IE Flag Functions

IE flag	Interrupt request acknowledge enable/disable
0	Disabled
1	Enabled

Table 3.6 ISP1 and ISP0 Flag Functions

ISP1	ISP0	Priority of interrupts being handled
0	0	Interrupt at level 0 is enabled. (Interrupt at level 1 or 0 is being handled.)
0	1	Interrupts at levels 0 and 1 are enabled. (Interrupt at level 2 is being handled.)
1	0	Interrupts at level 0 to 2 are enabled. (Interrupt at level 3 is being handled.)
1	1	All interrupts are enabled. (Wait for an acknowledgment of interrupt)

Table 3.7 Interrupt Request Flag Functions

XXIFX	Interrupt request flag		
0	No interrupt request signal is generated.		
1	Interrupt request is generated, interrupt request status		

Note: For details of the XXIFX bit, refer to the RL78/G14 User's Manual: Hardware.

Table 3.8 Interrupt Handling Control Bit Functions

XXMKX	Interrupt handling control
0	Interrupt handling enabled
1	Interrupt handling disabled

Note: For details of the XXMKX bit, refer to the RL78/G14 User's Manual: Hardware.

Table 3.9 Priority Level Select Bits Functions

XXPR1X	XXPR0X	Priority level select
0	0	Specify level 0 (high priority level).
0	1	Specify level 1.
1	0	Specify level 2.
1	1	Specify level 3 (low priority level).

Note: For details on bits XXPR1X and XXPR0X, refer to the RL78/G14 User's Manual: Hardware.

Interrupts are acknowledged when:

- Interrupt request flag = 1,
- Interrupt mask flag = 0,
- IE flag = 1, and
- Interrupt priority level ≤ (ISP1, ISP0)

Example: Interrupts of channel 0 of the timer array unit 0 are acknowledged when:

Interrupt request flag: TMIF00 bit (bit 4) in the IF1L register is 1, Interrupt mask flag: TMMK00 bit (bit 4) in the MK1L register is 0,

IE flag: IE flag in PSW is 1, and

Interrupt priority level:

Bits TMPR100 and TMPR000 in the registers PR11L and PR01L ≤ Bits ISP1 and ISP0 in PSW

3.2 INT Interrupts

3.2.1 M16C/62P

In the M16C/62P Group, there is no setting to enable or disable \overline{INT} interrupts. However, $\overline{INT4}$ sets the IFSR6 bit in the IFSR register to select SI/03 or the interrupt factor. Similarly, $\overline{INT5}$ sets the IFSR7 bit to specify SI/04 or the interrupt factor. Table 3.10 lists the functions of interrupt request factor select bit.

Input polarity can be specified by using the IFSRi bit in the IFSR register and the POL bit in the INTiIC register (i = 0 to 5). Table 3.11 lists the functions of $\overline{\text{INTi}}$ interrupt polarity switch bit. Table 3.12 shows the polarity switch bit functions.

Table 3.10 Interrupt Request Factor Select Bit Functions

IFSRk	Interrupt request factor select
0	SI / Ox
1	ĪNTx

k = 6 to 7

Table 3.11 INTi Interrupt Polarity Switch Bit Functions

IFSRi (Note 1)	INTi interrupt polarity switch
0	One edge
1	Both edges

i = 0 to 5

Note

1. When setting this bit to "1" (= both edges), make sure the POL bit in the corresponding INTilC register is set to "0" (= falling edge).

Table 3.12 Polarity Switch Bit Functions

POL (Note 1)	Valid edge select		
0	Falling edge selected		
1	Rising edge selected (Note 2)		

Note

- 1. When changing the POL bit, the IR bit may become "1" (= interrupt requested).
- 2. When setting the IFSRi bit to "1" (= both edges), make sure the POL bit in the INTiIC register is set to "0" (= falling edge). (i = 0 to 5)

R01AN1998EJ0100 Rev.1.00 Mar.3,2014

3.2.2 RL78/G14

In RL78/G14, valid edges of pins INTP0 to INTP11 are specified by setting registers EGPm and EGNm (m = 0 and 1).

Table 3.13 lists the functions of the INTPn pin valid edge select bit, and Table 3.14 lists the ports corresponding to bits EGPn and EGNn (n = 0 to 11).

The input pins of INTP interrupt can be assigned via setting in the PIOR0 register. Table 3.15 to Table 3.18 show the allocation of INTP interrupt input pins

Table 3.13 INTPn Pin Valid Edge Select Bits Functions

EGPn	EGNn	INTPn pin valid edge select
0	0	Edge detection disabled
0	1	Falling edge
1	0	Rising edge
1	1	Both rising and falling edges

n = 0 to 11

Table 3.14 Ports Corresponding to Bits EGPn and EGNn (n = 0 to 11)

Detection	enable bit	Corresponding port
EGP0	EGN0	INTP0
EGP1	EGN1	INTP1
EGP2	EGN2	INTP2
EGP3	EGN3	INTP3
EGP4	EGN4	INTP4
EGP5	EGN5	INTP5
EGP6	EGN6	INTP6
EGP7	EGN7	INTP7
EGP8	EGN8	INTP8
EGP9	EGN9	INTP9
EGP10	EGN10	INTP10
EGP11	EGN11	INTP11

Table 3.15 INTP Interrupt Input Pin Select Bit Functions (1)

Р	IOR05	DR05 Pin select									
		30-pin	32-pin	36-pin	40-pin	44-pin	48-pin	52-pin	64-pin	80-pin	100-pin
	INTP1										P46
	INTP3										P30
	INTP4										P31
0	INTP6				Set to 0	0 (default	value).				P140
	INTP7										P141
	INTP8										
	INTP9										P75
	INTP1										P56
	INTP3										P57
	INTP4									P146	
1	INTP6				[Do not se	t.				P84
	INTP7										P85
	INTP8		F								P86
	INTP9										P87

Table 3.16 INTP Interrupt Input Pin Select Bit Functions (2)

PIOR04 Pin select											
		30-pin	32-pin	36-pin	40-pin	44-pin	48-pin	52-pin	64-pin	80-pin	100-pin
0	INTDE			Set to 0) (default			P16			
1	INTP5		Do not set.							P12	

Table 3.17 INTP Interrupt Input Pin Select Bit Functions (3)

Р	PIOR01	Pin select									
	30-pin 32-pin 36-pin 40-pin 44-pin 48-pin 52-pin					52-pin	64-pin	80-pin	100-pin		
0	INTP10		– P76								
	INTP11		_						P05	P.	100
1	INTP10	_						P77			
	INTP11		•		_			•	P06	P110	

Table 3.18 INTP Interrupt Input Pin Select Bit Functions (4)

Р	PIOR00	Pin select										
		30-pin	32-pin	36-pin	40-pin	44-pin	48-pin	52-pin	64-pin	80-pin	100-pin	
0	INTP1								P	50		
	INTP2								P	51	0.44.0	
	INTP3			Sat to C	\	voluo)			P:	30	Set to 0 (default	
	INTP4		Set to 0 (default value).							P31		
	INTP8									P74		
	INTP9									P75		
1	INTP1								P	52		
	INTP2								P	53		
	INTP3		Do not set. P54 P55 P42							54	Do not	
	INTP4									55	set.	
	INTP8									42		
	INTP9								P	43		

3.3 Key Input Interrupts

3.3.1 M16C/62P Group

In the M16C/62P Group, the PD10_k bit in the PD10 register is used for controlling key input and port input/output. Table 3.19 lists the functions of bits to enable or disable key input. Table 3.20 lists the ports corresponding to PD10_k.

Table 3.19 Key Input Control Bit Functions

PD10_k	Key input enable/disable (port I/O select)
0	Enabled (input mode)
1	Disabled (output mode)

k = 4 to 7

Table 3.20 Key Input (Ports) Corresponding to PD10_k Bit

Direction bit	Corresponding key input (port)
PD10_4	KI0 (P10_4)
PD10_5	KI1 (P10_5)
PD10_6	KI2 (P10_6)
PD10_7	KI3 (P10_7)

k = 4 to 7

3.3.2 RL78/G14

In RL78/G14, set the KRMn bit in the KRM register to enable or disable the key interrupt. Table 3.21 lists the functions of key interrupt mode control bit.

Also, in RL78/G14, set the PM7 register to select input or output mode of the pin (I/O port). Table 3.22 lists the functions of port I/O mode select bit. To enable key input, set the pin (I/O port) to input mode.

Table 3.21 Key Interrupt Mode Control Bit Functions

KRMn	Key interrupt mode control
0	Does not detect key interrupt signal
1	Detects key interrupt signal

n = 0 to 7

Table 3.22 Port I/O Mode Select Bit Functions

PM7n	P7n pin I/O mode select
0	Output mode (functions as output port (output buffer on))
1	Input mode (functions as input port (output buffer off))

n = 0 to 7

3.4 Interrupt Priority Level

3.4.1 M16C/62P Group

In the M16C/62P Group, if two or more interrupt requests are sampled at the same sampling points (a timing to detect whether an interrupt request is generated or not), the interrupt with the highest priority is acknowledged.

For maskable interrupts (peripheral functions interrupt), any desired priority level can be selected using the ILVL2 to ILVL0 bits. However, if two or more maskable interrupts have the same priority level, the request with the highest priority set in hardware is accepted.

The watchdog timer and other special interrupts have their priority levels set in hardware.

Software interrupts are not affected by the interrupt priority.

3.4.2 RL78/G14

In RL78/G14, when two or more maskable interrupt requests are generated simultaneously, the request with a higher priority level specified in the priority specification flag is acknowledged first. If two or more interrupt requests have the same priority level, the request with the highest default priority is acknowledged first

3.5 Register Saving

3.5.1 M16C/62P Group

In the M16C/62P Group, the FLG register and the PC (program counter) are saved in the stack. To be more specific, the 4 high-order bits in the PC, and the 4 high-order bits (IPL) and 8 low-order bits in the FLG register (16 bits in total) are saved in the stack first, and then the 16 low-order bits in the PC are saved.

3.5.2 RL78/G14

In RL78/G14, when a maskable interrupt request is acknowledged, the PC is saved in the stack after the program status word (PSW) is saved.

3.6 NMI Interrupts

3.6.1 M16C/62P Group

An $\overline{\text{NMI}}$ interrupt is generated when input on the NMI pin changes state from high to low. The NMI interrupt is a non-maskable interrupt.

3.6.2 RL78/G14

In RL78/G14, there is no non-maskable interrupts generated in accordance with pin input status.

In RL78/G14, INTPn interrupt is used to execute $\overline{\text{NMI}}$ interrupt operation in the M16C/62P Group. Specifically, the falling edge is selected as the valid edge, INTPn interrupt is enabled, the interrupt priority level is set to 0 (high priority), and then multiple interrupts are enabled in handling interrupts other than INTPn (n = 0 to 11. Specify a smaller number. If possible, select 0.) In normal processing (other than interrupt handling) parts, interrupts must not be disabled. (Do not set the IE flag to 0.)

Figure 3.1 is a flowchart for setting INTP0 to use it as the alternative to NMI interrupts. Figure 3.2 shows a flow for handling interrupts other than INTP0. Figure 3.3 is a flowchart for main processing.

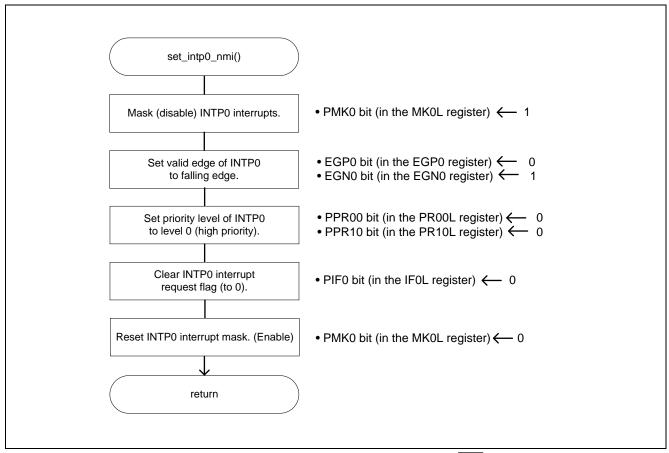


Figure 3.1 Setting to Use INTP0 as the Alternative to NMI Interrupts

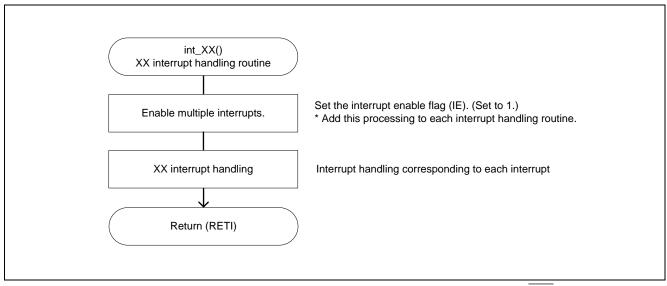


Figure 3.2 Handling Interrupts Other Than INTP0 Used as the Alternative to NMI Interrupts

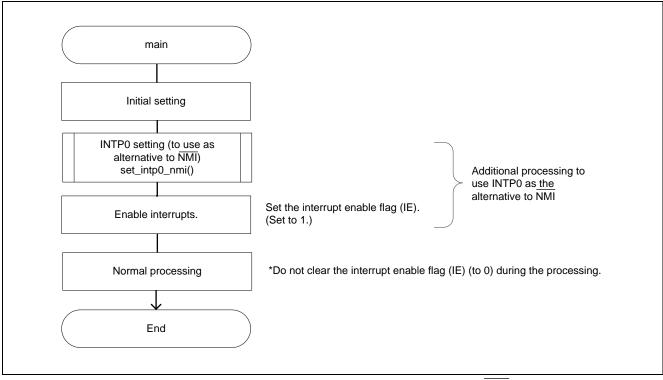


Figure 3.3 Main Processing to Use INTP0 as the Alternative to $\overline{\text{NMI}}$ Interrupts

4. Interrupt Vectors

The configuration of interrupt vectors varies between the M16C/62P Group and RL78/G14. The M16C/62P Group has fixed vector tables and relocatable vector tables, and RL78/G14 has address-fixed vector tables.

4.1 M16C/62P Group

4.1.1 Fixed Vector Tables

Fixed vector tables are allocated from addresses FFFDCh to FFFFFh. Table 4.1 shows the fixed vector tables.

Table 4.1 Fixed Vector Tables

Interrupt source	Vector address	Remarks
	Address (L) to	
	address (H)	
Undefined instruction	FFFDCh to FFFDFh	Interrupt with UND instruction
Overflow	FFFE0h to FFFE3h	Interrupt with INTO instruction
BRK instruction	FFFE4h to FFFE7h	If the value of address FFFE7h is FFH, program execution starts from the address shown by the vector in the relocatable vector table
Address match	FFFE8h to FFFEBh	
Single step (Note 1)	FFFECh to FFFEFh	
Watchdog timer,	FFFF0h to FFFF3h	
Oscillation stop,		
Re-oscillation detection,		
Low voltage detection		
DBC (Note 1)	FFFF4h to FFFF7h	
NMI	FFFF8h to FFFFBh	
Reset	FFFFCh to FFFFFh	

Note

1. Do not use these interrupts. They are provided exclusively for use by development tools.

4.1.2 Relocatable Vector Table

Relocatable vector tables occupy 256 bytes beginning from the start address set in the INTB register. Table 4.2 lists the relocatable vector tables. Setting an even address in the INTB register causes the interrupt sequence to be executed faster than in the case of odd addresses.

Table 4.2 Relocatable Vector Tables

Interrupt source	Vector address Address (L) to address (H)	Software interrupt	Interrupt control register
AL . N		number	
BRK instruction (Note 4)	+0 to +3 (0000h to 0003h)	0	
- (Reserved)		1 to 3	_
ĪNT3	+16 to +19 (0010h to 0013h)	4	INT3IC
Timer B5	+20 to +23 (0014h to 0017h)	5	TB5IC
Timer B4, UART1 bus collision detect (Notes 3, 5)	+24 to +27 (0018h to 001Bh)	6	TB4IC/U1BCNIC
Timer B3, UART0 bus collision detect (Notes 3, 5)	+28 to +31 (001Ch to 001Fh)	7	TB3IC/U0BCNIC
SI/O4, INT5 (Note 1)	+32 to +35 (0020h to 0023h)	8	S4IC/ S4IC
SI/O3, INT4 (Note 1)	+36 to +39 (0024h to 0027h)	9	S3IC/ INT4IC
UART2 bus collision detect (Note 5)	+40 to +43 (0028h to 002Bh)	10	BCNIC
DMA0	+44 to +47 (002Ch to 002Fh)	11	DM0IC
DMA1	+48 to +51 (0030h to 0033h)	12	DM1IC
Key input interrupt	+52 to +55 (0034h to 0037h)	13	KUPIC
A/D	+56 to +59 (0038h to 003Bh)	14	ADIC
UART2 transmit, NACK2 (Note 2)	+60 to +63 (003Ch to 003Fh)	15	S2TIC
UART2 receive, ACK2 (Note 2)	+64 to +67 (0040h to 0043h)	16	S2RIC
UART0 transmit, NACK0 (Note 2)	+68 to +71 (0044h to 0047h)	17	S0TIC
UART0 receive, ACK0 (Note 2)	+72 to +75 (0048h to 004Bh)	18	S0RIC
UART1 transmit, NACK1 (Note 2)	+76 to +79 (004Ch to 004Fh)	19	S1TIC
UART1 receive, ACK1 (Note 2)	+80 to +83 (0050h to 0053h)	20	S1RIC
Timer A0	+84 to +87 (0054h to 0057h)	21	TA0IC
Timer A1	+88 to +91 (0058h to 005Bh)	22	TA1IC
Timer A2	+92 to +95 (005Ch to 005Fh)	23	TA2IC
Timer A3	+96 to +99 (0060h to 0063h)	24	TA3IC
Timer A4	+100 to +103 (0064h to 0067h)	25	TA4IC
Timer B0	+104 to +107 (0068h to 006Bh)	26	TB0IC
Timer B1	+108 to +111 (006Ch to 006Fh)	27	TB1IC
Timer B2	+112 to +115 (0070h to 0073h)	28	TB2IC
ĪNT0	+116 to +119 (0074h to 0077h)	29	INT0IC
ĪNT1	+120 to +123 (0078h to 007Bh)	30	INT1IC
ĪNT2	+124 to +127 (007Ch to 007Fh)	31	INT2IC
INT instruction interrupt (Note 4)	+128 to +131 (0080h to 0083h) to	32 to 63	-
Notes	+252 to +255 (00FCh to 00FFh)		

Notes

- 1. Use the IFSR6 and IFSR7 bits in the IFSR register to select.
- 2. During I²C mode, NACK and ACK interrupts comprise the interrupt source.
- 3. Use the IFSR26 and IFSR27 bits in the IFSR2A register to select.
- 4. These interrupts cannot be disabled using the I flag.
- 5. Bus collision detection: During IE mode, this bus collision detection constitutes the factor of an interrupt.

 During I2C mode, however, a start condition or a stop condition detection constitutes the factor of an interrupt.

4.2 RL78/G14

Set the program start address where the CPU branches when interrupts or reset sources are generated in the RL78/G14 vector tables. Since there are 2 bytes in each vector code, the destination start address is a 64 KB address from 00000H to 0FFFFH. The highest default priority is 0 and the lowest is 44. When an interrupt request is acknowledged, the CPU branches to the address set in the corresponding interrupt vector. Vector tables are listed in Table 4.3 to Table 4.5.

Table 4.3 Vector Tables (1/3)

Default		Interrupt source	Internal/	Vector
priority	Name	Trigger	external	address
0	INTWDTI	Watchdog timer interval (75% of overflow time + 1/2 flL)	Internal	0004H
1	INTLVI	Voltage detected		0006H
2	INTP0		External	0008H
3	INTP1			000AH
4	INTP2	<u> </u>		000CH
5	INTP3	Pin input edge detected		000EH
6	INTP4			0010H
7	INTP5			0012H
8	INTST2/ INTCSI20/ INTIIC20	UART2 transmission transfer end or buffer empty interrupt/ CSI20 transfer end or buffer empty interrupt/ IIC20 transfer end	Internal	0014H
9	INTSR2/ INTCSI21/ INTIIC21	UART2 reception transfer end/ CSI21 transfer end or buffer empty interrupt/ IIC21 transfer end		0016H
10	INTSRE2	UART2 reception communication error occurred		004011
	INTTM11H	End of timer channel 11 count or capture (when the higher 8-bit timer is operating)		0018H
11	INTST0/ INTCSI00/ INTIIC00	UART0 transmission transfer end/ CSI00 transfer end or buffer empty interrupt/ IIC00 transfer end		001EH
12	INTSR0/ INTCSI01/ INTIIC01	UART0 reception transfer end/ CSI01 transfer end or buffer empty interrupt/ IIC01 transfer end		0020H
13	INTSRE0 INTTM01H	UARTO reception communication error occurred End of timer channel 01 count or capture (when the higher 8-bit timer is operating)		0022H
14	INTST1/ INTCSI10/ INTIIC10	UART1 transmission transfer end or buffer empty interrupt/CSI10 transfer end or buffer empty interrupt/IIC10 transfer end		0024H
15	INTSR1/ INTCSI11/ INTIIC11	UART1 reception transfer end/CSI11 transfer end or buffer empty interrupt/IIC11 transfer end		0026H
16	INTSRE1 INTTM03H	UART1 reception communication error occurred End of timer channel 03 count or capture (when the higher 8-bit timer is operating)		0028H

Table 4.4 Vector Tables (2/3)

Default		Internal/	Vector		
priority	Name	Trigger	external	address	
17	INTIICA0	End of IICA0 communication	Internal	002AH	
18	INTTM00	End of timer channel 00 count or capture		002CH	
19	INTTM01	End of timer channel 01 count or capture		002EH	
20	INTTM02	End of timer channel 02 count or capture		0030H	
21	INTTM03	End of timer channel 03 count or capture		0032H	
22	INTAD	End of A/D conversion		0034H	
23	INTRTC	Fixed-cycle signal of real-time clock/alarm match detected		0036H	
24	INTIT	Interval signal detected	0038H		
25	INTKR	Key return signal detected	External	003AH	
26	INTST3/ INTCSI30/ INTIIC30	UART3 transmission transfer end or buffer empty interrupt/CSI30 transfer end or buffer empty interrupt/IIC30 transfer end	Internal	003CH	
27	INTSR3/ INTCSI31/ INTIIC31	UART3 reception transfer end/ CSI31 transfer end or buffer empty interrupt/ IIC31 transfer end	003EH		
28	INTTRJ0	Timer RJ interrupt		0040H	
29	INTTM10	End of timer channel 10 count or capture		0042H	
30	INTTM11	End of timer channel 11 count or capture	·		
31	INTTM12	End of timer channel 12 count or capture	7	0046H	
32	INTTM13	End of timer channel 13 count or capture	7	0048H	
33	INTP6	External		004AH	
34	INTP7	Din input adds datasted	004CH		
35	INTP8	Pin input edge detected	004EH		
36	INTP9		0050H		
37	INTP10	Pin input edge detected	External	005211	
	INTCMP0	Comparator detection 0	Internal	0052H	
38	INTP11	Pin input edge detected External		0054H	
	INTCMP1	Comparator detection 1	Internal	nternal	
39	INTTRD0	Timer RD0 input capture, compare match, overflow, underflow interrupt		0056H	
40	INTTRD1		0058H		

Table 4.5 Vector Tables (3/3)

Default	Interrupt source			Vector	
priority	Name	Trigger	external	address	
41	INTTRG	Timer RG input capture, compare match, overflow, underflow interrupt	005AH		
42	INTSRE3	UART3 reception communication error occurred			
	INTTM13H	End of timer channel 13 count or capture (when the higher 8-bit timer is operating)		005CH	
43	INTIICA1	End of IICA1 communication 006			
44	INTFL	Reserved	0062H		
_	BRK	BRK instruction executed –		007EH	
	RESET	RESET pin input	1		
	POR	Power-on-reset			
	LVD	Voltage detected			
	WDT	Overflow of watchdog timer		0000H	
	TRAP	Illegal instruction executed			
	IAW	Illegal-memory access			
	RAMTOP	RAM parity error			

5. Reference Documents

RL78/G14 User's Manual: Hardware Rev. 2.00

M16C/62P Group (M16C/62P, M16C/62PT) Hardware Manual Rev.2.41

The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics Website http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

REVISION HISTORY

		Description		
Rev.	Date	Page	Summary	
1.00	Mar.3,2014		First edition issued	

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

— The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of an MPU or MCU in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.
 - Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.
- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to quard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-804

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germa Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 LanGao Rd., Putuo District, Shanghai, China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tei: +852-2886-9318, Fax: +852 2886-9018.

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141