RL78/G10

Timer Array Unit (Pulse Interval Measurement) CC-RL

Introduction
This application note describes how the timer array unit (TAU) measures time intervals between pulses. This unit measures the time elapsed between pulses which arrive at the timer input pin (TI00). Then, it stores the measured value in the on-chip RAM.

Target Device
RL78/G10

When applying the sample program covered in this application note to another microcomputer, modify the program according to the specifications for the target microcomputer and conduct an extensive evaluation of the modified program.
Contents

1. Specifications .. 3
 1.1 Maximum Frequency of Measurable Input Pulses .. 3
 1.2 Minimum Frequency of Measurable Input Pulses .. 4
 1.3 Measurement Results ... 4

2. Operation Check Conditions ... 5

3. Related Application Note ... 5

4. Description of the Hardware .. 6
 4.1 Hardware Configuration Example .. 6
 4.2 List of Pins to be Used ... 6

5. Description of the Software .. 7
 5.1 Operation Outline ... 7
 5.2 List of Option Byte Settings .. 8
 5.3 List of Constants .. 8
 5.4 List of Variables .. 8
 5.5 List of Functions (Subroutines) .. 9
 5.6 Function Specifications .. 9
 5.7 Flowcharts .. 10
 5.7.1 CPU Initialization Function ... 11
 5.7.2 I/O Port Setup ... 12
 5.7.3 Clock Generation Circuit Setup ... 13
 5.7.4 Timer Array Unit Setup ... 14
 5.7.5 Main Processing .. 20
 5.7.6 Timer Array Unit Startup ... 21
 5.7.7 INTTM00 Interrupt Processing .. 23

6. Sample Code .. 24

7. Documents for Reference ... 24
1. Specifications

This application note provides an example of measuring intervals between input pulses on channel 0 of the timer array unit (TAU). Each time a valid edge is detected on the timer input pin (TI00), the count value of the timer is captured to measure the pulse interval. The measurement result is stored in the on-chip RAM.

Table 1.1 lists the peripheral functions to be used and their uses. Figure 1.1 presents the outline of the pulse interval measurement.

<table>
<thead>
<tr>
<th>Peripheral function</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer array unit channel 0</td>
<td>Measurement of the time interval between input pulses on the timer input pin (TI00)</td>
</tr>
<tr>
<td>TI00</td>
<td>Input pin for pulse signals</td>
</tr>
</tbody>
</table>

Figure 1.1 Outline of Pulse Interval Measurement

1.1 Maximum Frequency of Measurable Input Pulses

In this sample code, the maximum frequency of measurable input pulses is determined by the processing time of an INTTM00 interrupt. It takes 15 clocks for this sample code to complete interrupt processing after starting it. With the worst value of the interrupt response time (16 clocks) added to this, it takes 31 clocks, equal to a frequency of 770 kHz.

In this case, the interval between each input pulse is measured. If occasional measurement is allowed, the maximum frequency is the same as that of the timer input signal.

In order to measure a frequency of 770 kHz or higher, it is possible to perform DMA transfer. If the timer count clock is 6 MHz, the interval between pulses that can be input can be estimated to be approximately 2 count clocks or more. This is almost the same as the maximum frequency of timer input signals (should be assumed to be 2 MHz for safety).
1.2 Minimum Frequency of Measurable Input Pulses

The minimum frequency of measurable input pulses is determined by the overflow time of a 16-bit timer. In this application note, since a 6-MHz count clock is used for operation, counting with 16 bits allows measurement for up to approximately 92 Hz (If, in this case, the occurrence of overflow is allowed only once, this is equivalent to measuring time with 17 bits, allowing measurement for up to 46 Hz).

This sample code performs operation with up to 16 bits by default. To carry out measurement with 17 bits, change “$SET(SMALL)” to “$RESET(SMALL)” in the beginning of r_main.asm and perform a build. This reduces the minimum frequency in half, but doubles the memory necessary to store measurement data.

To measure the interval between pulses with a frequency less than this, change the setting of the TPS0 register to lower the frequency of the count clock (fMCK). The measurement accuracy is reduced but measurable frequencies can be lowered.

1.3 Measurement Results

The measurement results stored in the on-chip RAM vary depending on whether “$SET(SMALL)” or “$RESET(SMALL)” is used.

(1) If “$SET(SMALL)” is used

The correct measurement results are within the range of 0006H to 0FFFFH. If an overflow occurs, the measurement result is 0000.

Measurement results are stored from the end of the storage area (results are little-endian).

<table>
<thead>
<tr>
<th>Eighth value</th>
<th>Seventh value</th>
<th>Sixth value</th>
<th>Third value</th>
<th>Second value</th>
<th>First value</th>
</tr>
</thead>
</table>

(2) If “$RESET(SMALL)” is used

Measurement results are represented in 17 bits, and reliable data are in the range from 0006H to 0FFFFH. Data within the range of 10000H to 1FFFFH are correct only if pulses with a frequency of more than approximately 46 Hz are input. The measurement results are stored as 4-byte data in the storage area.

<table>
<thead>
<tr>
<th>Eighth value</th>
<th>Seventh value</th>
<th></th>
<th>Second value</th>
<th>First value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value of TDR00</td>
<td>Value of TSR00</td>
<td>Value of TDR00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value of TSR00</td>
<td>Value of TDR00</td>
<td>Value of TSR00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. **Operation Check Conditions**

The sample code contained in this application note has been checked under the conditions listed in the table below.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcontroller used</td>
<td>RL78/G10 (R5F10Y16ASP)</td>
</tr>
<tr>
<td>Operating frequency</td>
<td>• High-speed on-chip oscillator (HOCO) clock: 20 MHz
• CPU/peripheral hardware clock: 20 MHz</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>5.0 V (Operation is possible over a voltage range of 2.9 to 5.5 V.)
SPOR operation: falling down 2.84V, falling up 2.90V
(Reset occurrence: VDD<2.82V, Reset release: VDD>=2.88V)</td>
</tr>
<tr>
<td>Integrated development environment(CS+)</td>
<td>CS+ for CC V3.01.00
from Renesas Electronics Corp.</td>
</tr>
<tr>
<td>Assembler(CS+)</td>
<td>CC-RL V1.01.00 from Renesas Electronics Corp.</td>
</tr>
<tr>
<td>Integrated development environment(e² studio)</td>
<td>e² studio V4.1.0.018
from Renesas Electronics Corp.</td>
</tr>
<tr>
<td>Assembler(e² studio)</td>
<td>CC-RL V1.01.00 from Renesas Electronics Corp.</td>
</tr>
<tr>
<td>Integrated development environment(IAR)</td>
<td>IAR Embedded Workbench for Renesas RL78 V4.21.3
from IAR Systems.</td>
</tr>
<tr>
<td>Assembler(IAR)</td>
<td>IAR Assembler for Renesas RL78 V4.21.2.2420 from IAR Systems.</td>
</tr>
<tr>
<td>Board to be used</td>
<td>RL78/G10 target board (QB-R5F10Y16-TB).</td>
</tr>
</tbody>
</table>

3. **Related Application Note**

The application note that is related to this application note is listed below for reference.

RL78/G10 Initialization CC-RL (R01AN2668E) Application Note
4. Description of the Hardware

4.1 Hardware Configuration Example

Figure 4.1 shows an example of hardware configuration that is used for this application note.

![Hardware Configuration Diagram]

Cautions:
1. The purpose of this circuit is only to provide the connection outline and the circuit is simplified accordingly. When designing and implementing an actual circuit, provide proper pin treatment and make sure that the hardware’s electrical specifications are met (connect the input-only ports separately to VDD or VSS via a resistor).
2. VDD must be held at not lower than the reset release voltage (VSPOR) that is specified as SPOR.

4.2 List of Pins to be Used

Table 4.1 lists the pins to be used and their functions.

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P13/TI00</td>
<td>Input</td>
<td>Inputs pulse signals to the 16-bit timer 00.</td>
</tr>
</tbody>
</table>
5. Description of the Software

5.1 Operation Outline

Each time a rising edge (valid edge) is detected on the timer input pin (TI00), the sample code described in this application note captures the count value of the timer and measures the time interval between pulses which arrive at the timer input pin (TI00). When a timer interrupt (INTTM00) occurs upon completion of the capture, the sample code calculates the pulse interval and stores the calculation result in the on-chip RAM.

(1) Initialize the TAU.
 <Conditions for setting>
 • Use the P13/TI00 pin (for 20/24-pin products. P00/TI00 for 30-pin products) to input pulses.
 • Set the operation clock of TAU channel 0 to fCLK/4.
 • Set TAU channel 0 to the capture mode.
 • Selects “rising edge detection” as the input edge on the TI00 pin.
 • Selects the TI00 pin input valid edge to trigger the capture.

(2) Set the TS00 bit of the timer channel start register 0 (TS0) to 1 to enable count operation. This clears the timer count register (TCR00) to 0000H and starts counting.

(3) When a valid edge is detected, the value of the timer count register (TCR00) is captured and put into the timer data register (TDR00). A timer interrupt (INTTM00) occurs upon completion of the capture. The timer count register (TCR00) is cleared to 0000H and the TAU waits for the next valid edge input. An invalid value is captured when a timer interrupt (INTTM00) occurs upon completion of the first capture. This data is not used.

(4) In the processing of a timer interrupt (INTTM00) which occurs upon completion of the second capture, the timer data register (TDR00)’s value (pulse width) is stored in the on-chip RAM.

(5) The operation described in (4) is repeated eight times. Then, the TAU transitions to the HALT state.
5.2 List of Option Byte Settings
Table 5.1 summarizes the settings of the option bytes.

<table>
<thead>
<tr>
<th>Address</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>000C0H</td>
<td>01101110B</td>
<td>Enables the watchdog timer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Stops counting after the release from the reset state.)</td>
</tr>
<tr>
<td>000C1H</td>
<td>01111111B</td>
<td>LVD reset mode 2.81 V (2.76 to 2.87 V)</td>
</tr>
<tr>
<td>000C2H</td>
<td>11100000B</td>
<td>HS mode HOC0: 24 MHz</td>
</tr>
<tr>
<td>000C3H</td>
<td>1000101B</td>
<td>Enables the on-chip debugger.</td>
</tr>
</tbody>
</table>

5.3 List of Constants
Table 5.2 lists the constant that is used in this sample program.

<table>
<thead>
<tr>
<th>Constant</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPTIMES</td>
<td>8</td>
<td>Indicates the number of times measurement is performed.</td>
</tr>
</tbody>
</table>

5.4 List of Variables
Table 5.3 lists the global variables.

<table>
<thead>
<tr>
<th>Type</th>
<th>Variable Name</th>
<th>Contents</th>
<th>Function Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 bits</td>
<td>RPWCNT</td>
<td>The number of remaining attempts to measure pulse intervals</td>
<td>main()</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IINTTM00</td>
</tr>
<tr>
<td>16-bit array</td>
<td>RPWLENG</td>
<td>Pulse interval measurement values</td>
<td>main()</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IINTTM00</td>
</tr>
</tbody>
</table>

Note 1: 17-bit length. 32-bit length for measurement.
5.5 List of Functions (Subroutines)
Table 5.4 lists the functions (subroutines) that are used by this sample program.

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSTARTPW</td>
<td>TAU0 channel 0 start processing</td>
</tr>
<tr>
<td>IINNTTM00</td>
<td>INTTM00 interrupt processing</td>
</tr>
</tbody>
</table>

5.6 Function Specifications
This section describes the specifications for the functions that are used in this sample program.

[Function Name] SSTARTPW
Synopsis: TAU0 channel 0 start processing
Explanation: This function unmasks TAU0 channel 0 interrupts and starts count operation.
Arguments: None
Return value: None
Remarks: None

[Function Name] IINNTTM00
Synopsis: INTTM00 interrupt processing
Explanation: This function stores the measured value of the pulse time interval into RPWLENG.
Arguments: None
Return value: None
Remarks: None
5.7 Flowcharts

Figure 5.1 shows the overall flow of the sample program described in this application note.

![Flowchart]

- The option bytes are referenced before the CPU initialization function is called.

Figure 5.1 Overall Flow
5.7.1 CPU Initialization Function

Figure 5.2 shows the flowchart for the CPU initialization function.

![Flowchart for CPU Initialization Function]

- **RESET_START**
- Set up stack pointer
- Set up redirection
 - PIOR register ← 00H
- Set up I/O ports SINIPORT
- Set up clock generation circuit SINICLK
- Set up TAU SINITAU
- Call main routine main
- **HALT**

Set all ports available for output as output ports.

* The P137/TI00/INTP0 pin is a dedicated input pin. Do not set it.

Select HOCO (24 MHz) as an operation clock.

Set channel 0 to capture mode.
5.7.2 I/O Port Setup
Figure 5.3 shows the flowchart for setting up the I/O ports.

![Flowchart for I/O Port Setup](image)

Note: Refer to the section entitled "Flowcharts" in RL78/G10 Initialization Application Note (R01AN1454E) for the configuration of the unused ports.

Caution: Provide proper treatment for unused pins so that their electrical specifications are met. Connect each of any unused input-only ports to VDD or VSS via a separate resistor.
5.7.3 Clock Generation Circuit Setup

Figure 5.4 shows the flowchart for clock generation circuit setup.

Caution: For details on the procedure for setting up the clock generation circuit (SINICLK), refer to the section entitled "Flowcharts" in RL78/G10 Initialization Application Note (R01AN1454E).
5.7.4 Timer Array Unit Setup

Figure 5.5 shows the flowchart for setting up the timer array unit.

Figure 5.5 Timer Array Unit Setup

- **SINITAU**
 - Supply clock signals to timer array unit
 - Stop timer
 - Set up TAU0 operation
 - TAU0 operation clock settings (high-speed on-chip oscillator clock: 24 MHz)
 - Operation clock 0 (CK00): 6 MHz
 - Operation clock 1 (CK01): 24 MHz
 - Initialize TAU channel 0
 - Operation clock: CK00
 - Operation mode: Capture mode
 - Valid edge: Rising edge
 - Functional feature: Independent channel operation function
 - Trigger: Valid edge
 - Set TI00 pin as input
 - Disable TAU interrupts
 - Clear TAU interrupt request flag
 - return

- **TAU0EN bit ← 1**
- **TT00 bit ← 1**
- **TPS0 register ← 0002H**
- **TMR00H register ← 01H**
- **TMR00L register ← 44H**
- **TMMK00 bit ← 1**
- **TMIF00 bit ← 0**
(1) Starting clock signal supply to the timer array unit

- Peripheral enable register 0 (PER0)
 Start supplying clock to the timer array unit 0.

Symbol: PER0

<table>
<thead>
<tr>
<th>TMKAEN</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>x</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Bit 0

<table>
<thead>
<tr>
<th>TAU0EN</th>
<th>Control of timer array unit 0 input clock supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Stops supply of input clock.</td>
</tr>
<tr>
<td>1</td>
<td>Supplies input clock.</td>
</tr>
</tbody>
</table>

Note: 16-pin products only
(2) Configuring the clock frequency

- Timer clock select register 0 (TPS0)
 Select an operation clock for CK00

Symbol: TPS0

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PRS</td>
<td>PRS</td>
<td>PRS</td>
<td>PRS</td>
<td>PRS</td>
<td>PRS</td>
<td>PRS</td>
<td>PRS</td>
</tr>
<tr>
<td>003</td>
<td>002</td>
<td>001</td>
<td>000</td>
<td>003</td>
<td>002</td>
<td>001</td>
<td>000</td>
</tr>
<tr>
<td>0 0 0 0</td>
<td>0 0 0 1</td>
<td>0 0 1 0</td>
</tr>
</tbody>
</table>

Bits 3 to 0

<table>
<thead>
<tr>
<th>PRS</th>
<th>PRS</th>
<th>PRS</th>
<th>PRS</th>
<th>Selection of operation clock (CK00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>003</td>
<td>002</td>
<td>001</td>
<td>000</td>
<td>(f_{\text{CLK}})</td>
</tr>
<tr>
<td>0 0 0 0</td>
<td>0 0 0 1</td>
<td>0 0 1 0</td>
<td>0 0 1 0</td>
<td>(f_{\text{CLK}} = 1.25\text{MHz})</td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>0 0 0 1</td>
<td>0 0 1 0</td>
<td>0 0 1 0</td>
<td>(f_{\text{CLK}} = 2.5\text{MHz})</td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>0 0 0 1</td>
<td>0 0 1 0</td>
<td>0 0 1 0</td>
<td>(f_{\text{CLK}} = 5\text{MHz})</td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>0 0 0 1</td>
<td>0 0 1 0</td>
<td>0 0 1 0</td>
<td>(f_{\text{CLK}} = 10\text{MHz})</td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>0 0 0 1</td>
<td>0 0 1 0</td>
<td>0 0 1 0</td>
<td>(f_{\text{CLK}} = 20\text{MHz})</td>
</tr>
</tbody>
</table>

(3) Controlling the channel trigger operation

- Timer channel stop register 0 (TT0)
 Select the TAU0 stop trigger.

Symbol: TT0

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>TT</td>
<td>TT</td>
<td>TT</td>
<td>TT</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Bit 0

<table>
<thead>
<tr>
<th>TT00</th>
<th>Operation stop trigger of channel 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No trigger operation</td>
</tr>
<tr>
<td>1</td>
<td>Operation is stopped (stop trigger is generated).</td>
</tr>
</tbody>
</table>

Note: 16-pin products only

(4) Setting up the operation mode of channel 0

Timer mode register 00 (TMR00H, TMR00L)
- Select an operation clock (fMCK).
- Select a count clock.
- Set up the start trigger and capture trigger
 - Select the valid edge of TI00 pin.
- Set up the operation mode.

Symbol: TMR00H

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>CKS001</th>
<th>0</th>
<th>0</th>
<th>CCS00</th>
<th>0</th>
<th>STS002</th>
<th>STS001</th>
<th>STS000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Bit 7

<table>
<thead>
<tr>
<th>CKS001</th>
<th>Selection of operation clock (fMCK) of channel 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Operation clock CK0 set by timer clock select register 0 (TPS0)</td>
</tr>
<tr>
<td>0</td>
<td>Operation clock CK0 set by timer clock select register 0 (TPS0)</td>
</tr>
</tbody>
</table>

Bit 4

<table>
<thead>
<tr>
<th>CCS00</th>
<th>Selection of count clock (fTCLK) of channel 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Operation clock (fMCK) specified by the CKS000 and CKS001 bits</td>
</tr>
<tr>
<td>1</td>
<td>Valid edge of the input signal from the TI00 pin</td>
</tr>
</tbody>
</table>

Bits 2-0

<table>
<thead>
<tr>
<th>STS002</th>
<th>STS001</th>
<th>STS000</th>
<th>Setting of start trigger or capture trigger of channel 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Only software trigger start is valid (other trigger sources are unselected).</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Valid edge of the TI00 pin input is used as both the start trigger and capture trigger.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Both the edges of the TI00 pin input are used as a start trigger and capture trigger.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Interrupt signal of the master channel is used (when the channel is used as a slave channel with the simultaneous channel operation function).</td>
</tr>
</tbody>
</table>

Symbol: TMR00L

<table>
<thead>
<tr>
<th>Bits 7-6</th>
<th>Selection of T100 pin input valid edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS01</td>
<td>CIS000</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bits 3-0</th>
<th>Operation mode of channel 0</th>
<th>Corresponding function</th>
<th>Counting operation of TCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD003</td>
<td>MD002</td>
<td>MD001</td>
<td>MD000</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other than above</td>
<td>Setting prohibited</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The operation of the MD000 bit operation varies depending on each operation mode (see the table below).

<table>
<thead>
<tr>
<th>Operation mode (Value set by the MD003 to MD001 bits) (See the above table)</th>
<th>MD000</th>
<th>Setting of starting counting and interrupt</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Interval timer mode (0, 0, 0)</td>
<td>0</td>
<td>Timer interrupt is not generated when counting is started (timer output does not change, either).</td>
</tr>
<tr>
<td>• Capture mode (0, 1, 0)</td>
<td>1</td>
<td>Timer interrupt is generated when counting is started (timer output also changes).</td>
</tr>
<tr>
<td>• Event counter mode (0, 1, 1)</td>
<td>0</td>
<td>Timer interrupt is not generated when counting is started (timer output does not change, either).</td>
</tr>
<tr>
<td>• One-count mode (1, 0, 0)</td>
<td>0</td>
<td>Start trigger is invalid during counting operation. At that time, interrupt is not generated, either.</td>
</tr>
<tr>
<td>• Capture/one-count mode (1, 1, 0)</td>
<td>1</td>
<td>Start trigger is valid during counting operation. At that time, interrupt is also generated.</td>
</tr>
<tr>
<td>Other than above</td>
<td>Setting prohibited</td>
<td></td>
</tr>
</tbody>
</table>

5.7.5 Main Processing

Figure 5.6 shows the flowchart for main processing.

```
main

Disable interrupts

IE ← 0

Set loop counter

Clear buffer area

Set the number of times a valid edge is measured (eight times).

RPWCNT ← CAPTIMES

Start operating timer array unit

SSTARTPW

Make transition to HALT mode

Detect first rising edge

Clears TM00 interrupt request flag.

TMIF00 bit ← 0: Clears INTTM00 interrupt request flag.

Enable interrupts

IE ← 1

Make transition to HALT mode

Detect second and subsequent rising edges

Has measurement count reached 8?

No

Yes

Make transition to HALT mode
```

Figure 5.6 Main Processing
5.7.6 Timer Array Unit Startup

Figure 5.7 shows the flowchart for starting the operation of the timer array unit.

![Figure 5.7 Timer Array Unit Startup](image)

Start operation of TAU channel 0

SSTARTPW

TS0L register ← 01H (TS00 bit ← 1)
TMIF00 bit ← 0: Clears interrupt request flag.
TMMK00 bit ← 0: Enables TAU interrupt processing.

(1) Configuring the interrupt request flag

- Clear the timer interrupt request flag.

Symbol: IF0L

<table>
<thead>
<tr>
<th>Bit 6</th>
<th>TMIF00</th>
<th>TMIF01H</th>
<th>SREIF0</th>
<th>SRIF0</th>
<th>STIF0</th>
<th>CSIIF0</th>
<th>IICIF0</th>
<th>PIF1</th>
<th>PIF0</th>
<th>WDTIIF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Bit 6

<table>
<thead>
<tr>
<th>TMIF00</th>
<th>Interrupt request flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No interrupt request signal is generated</td>
</tr>
<tr>
<td>1</td>
<td>Interrupt request is generated, interrupt request status</td>
</tr>
</tbody>
</table>

(2) Configuring the interrupt mask

- Unmask timer interrupts.

Symbol: MK0L

```
Symbol: MK0L

<table>
<thead>
<tr>
<th>Bit 6</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMMK00</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
```


(3) Configuring the timer channel startup

- Enable timer count operation.

Symbol: TS0

```
Symbol: TS0

<table>
<thead>
<tr>
<th>Bit 0</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS00</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: 16-pin products only

5.7.7 INTTM00 Interrupt Processing

Figure 5.8 shows the flowchart for INTTM00 interrupt processing.

![Flowchart for INTTM00 Interrupt Processing](image-url)

- **IINTTM00**
- Save AX&BX register on the stack
- PUSH AX
  PUSH BX
- Loop count - 1
- RPWCNT ← RPWCNT-1
- Loop count = 0? → No
- Disable interrupt
  TMMK00 bit ← 1: Disable interrupt
- Read overflow flag
  A register ← TSR00L
  CY bit ← A.0 bit (OVF bit)
- Overflow occurred → No
- AX register ← 00
  AX register ← TDR00
- Store in RAM
- Restore AX&BC register from the stack
  POP AX
  POP BC
- RETI
6. Sample Code
The sample code is available on the Renesas Electronics Website.

7. Documents for Reference
RL78/G10 User's Manual: Hardware Rev.3.00 (R01UH0384E)
RL78 Family User's Manual: Software Rev.2.20 (R01US0015E)
(The latest versions of the documents are available on the Renesas Electronics Website.)

Technical Updates/Technical Brochures
(The latest versions of the documents are available on the Renesas Electronics Website.)

All trademarks and registered trademarks are the property of their respective owners.
## Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Jan. 28, 2016</td>
<td>—</td>
<td>First edition issued</td>
</tr>
<tr>
<td>1.10</td>
<td>June 24, 2022</td>
<td>5</td>
<td>Operation check condition is updated.</td>
</tr>
</tbody>
</table>
General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)
   • A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
   Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on
   • The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state
   • Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins
   • Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals
   • After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin
   • Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses
   • Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products
   • Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.
**Notice**

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
   - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
   - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

7. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

8. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS PRODUCTS ARE NOT WARRANTED OR GUARANTEED AGAINST VIRUSES, SPYWARE, COMPUTER VIRUS, OR OTHER HARMFUL COMPONENTS OR CODE.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, exposes, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

---

**Corporate Headquarters**

TOYOSU FORESIA, 3-2-2 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

**Contact information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

---

**Trademarks**

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2022 Renesas Electronics Corporation. All rights reserved.