Introduction

This application note explains how to use the dual input one-shot pulse output function to control the switched-mode power supply (SMPS or flyback converter).

Target Device

RL78/G10 16-pin (Part name: R5F10Y47, R5F10Y46, R5F10Y44)
Contents

1. Basic Functions .. 3
 1.1 Peak Current Detection ... 4
 1.2 ZCD Signal Detection ... 5
2. Pin Assignment Example ... 6
3. Operation Check Conditions .. 7
4. Peripheral Function Settings .. 7
5. Flowcharts ... 8
 5.1 Main and Peripheral Function Initialization 8
 5.2 Clock Generation Circuit Initialization 9
 5.3 TAU Initialization .. 10
 5.4 12-bit Interval Timer Initialization 12
6. Switching Waveform ... 13
7. Sample Code .. 14
8. Documents for Reference ... 14
1. Basic Functions

The dual input one-shot pulse output function in the timer array can output a variation of one-shot pulses by changing the pin polarity of the timer output, triggering a valid edge of the timer input pin.

The following is an example of a current-controlled flyback converter using this function.

![Figure 1-1 Circuit Example](image)

GD: PWM signal
Ids: Drain source current
ZCD: Zero Current Detection signal
Peak: Peak current detection signal
Rs: Shunt resistor
Is: Secondary-side current

The MCU detects the peak signal of the current (Ids) during the ON state of switching device Q1 when the ZCD (Zero Current Detection) signal indicates the current (Is) flowing through the transformer coil is zero. Using these two edge signals for the timer module, the MCU then controls the Ids by outputting the one-shot pulse to Q1.
1.1 Peak Current Detection

Transistor Q2 is used to detect the peak current of Ids. Transistor Q2’s base and emitter pins are connected to both sides of shunt resistor Rs, which is connected to the Q1 source pin. The Q2 collector pin is connected to timer input pin TI03. As Ids increases, the Rs end-to-end voltage reaches the Vbe voltage of Q2 (∼0.6V). This turns Q2 ON and switches the input signal of TI03 to Low. This edge becomes the trigger to switch timer output pin TO03 to Low.

The timing of peak current detection shown in Figures 1-3.

![Peak Current Output Detection Using External Circuit](image1)

Figure 1-2 Peak Current Output Detection Using External Circuit

![Timing Chart (peak current detection)](image2)

Figure 1-3 Timing Chart (peak current detection)
1.2 ZCD Signal Detection

This application detects the zero timing of secondary-side current I_s using the winding voltage of the transformer, as shown in Figure 1-4. The method used to detect this zero current I_s is called Zero Current Detection (ZCD). When Q1 turns OFF, the energy accumulated in the transformer is transferred to the secondary side (winding). Because I_s flows in the same direction as the diode on the secondary side, power is supplied to the output capacitor and the load. When all of the accumulated energy is transferred from the transformer, the ZCD signal goes to Low. This edge is input to timer input pin T10x and the PWM signal switches to High.

The timing of ZCD signal detection as shown in Figures 1-5.
2. Pin Assignment Example

Table 2-1 shows RL78/G10 pin assignments for the circuit example described above.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Port</th>
<th>A/D</th>
<th>Comparator</th>
<th>SIF</th>
<th>Timer</th>
<th>External</th>
<th>Other</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P41</td>
<td></td>
<td></td>
<td></td>
<td>TI03</td>
<td>INTP2</td>
<td></td>
<td>Peak current detection</td>
</tr>
<tr>
<td>2</td>
<td>P40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>KR0</td>
<td>TO01/</td>
<td>TOOL0/ (PCLBUZ0)</td>
</tr>
<tr>
<td>3</td>
<td>P125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>KR1</td>
<td></td>
<td>RESET</td>
</tr>
<tr>
<td>4</td>
<td>P137</td>
<td></td>
<td></td>
<td></td>
<td>TI00</td>
<td>INTP0</td>
<td></td>
<td>ZCD signal detection</td>
</tr>
<tr>
<td>5</td>
<td>P122</td>
<td></td>
<td>(INTP2)</td>
<td></td>
<td></td>
<td>X2/</td>
<td></td>
<td>EXCLK</td>
</tr>
<tr>
<td>6</td>
<td>P121</td>
<td></td>
<td>(INTP3)</td>
<td></td>
<td></td>
<td>X1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Vss</td>
<td></td>
<td></td>
<td></td>
<td>GND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Vdd</td>
<td></td>
<td></td>
<td></td>
<td>5V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>P00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SO00/</td>
<td></td>
<td>INTP1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TXD0</td>
<td></td>
<td></td>
<td>SIO00/</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RXD0/ SDA00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>P01</td>
<td>ANI0</td>
<td></td>
<td></td>
<td></td>
<td>SIO00/</td>
<td></td>
<td>KR2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RXD0/ SDA00</td>
<td></td>
<td></td>
<td>SIO00/</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SIO00/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>P02</td>
<td>ANI1</td>
<td>VOUT0</td>
<td></td>
<td></td>
<td>SCK00/</td>
<td></td>
<td>KR3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SIO00/</td>
<td></td>
<td>PCLBUZ0</td>
</tr>
<tr>
<td>12</td>
<td>P03</td>
<td>ANI2</td>
<td>IVCMP0</td>
<td></td>
<td></td>
<td>TO00</td>
<td></td>
<td>KR4/ (INTP1)</td>
</tr>
<tr>
<td>13</td>
<td>P04</td>
<td>ANI3</td>
<td>IVREF0</td>
<td></td>
<td></td>
<td>TI01/</td>
<td></td>
<td>KR5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TO01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>P05</td>
<td>ANI4</td>
<td></td>
<td></td>
<td></td>
<td>SO01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TI02/</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TO02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>P06</td>
<td>ANI5</td>
<td>SCLA0/ SIO1</td>
<td></td>
<td></td>
<td>SCLA0/</td>
<td></td>
<td>INTP3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SIO1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>P07</td>
<td>ANI6</td>
<td>SDA0/ SCK01</td>
<td></td>
<td></td>
<td>SDA0/</td>
<td></td>
<td>TO03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SCK01</td>
<td></td>
<td>PWM signal</td>
</tr>
</tbody>
</table>
3. Operation Check Conditions

The sample code described in this application note has been checked under the conditions listed in the table below.

Table 3.1 Operation Check Conditions

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcontroller used</td>
<td>RL78/G10 (R5F10Y47, R5F10Y46, R5F10Y44)</td>
</tr>
<tr>
<td>Operating frequency</td>
<td>• High-speed on-chip oscillator (HOCO) clock: 20MHz</td>
</tr>
<tr>
<td></td>
<td>• CPU/peripheral hardware clock: 20MHz</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>5.0 V (can run on a voltage range of 2.9 V to 5.5 V.) SPOR detection voltage: Rising edge voltage: 2.90V</td>
</tr>
<tr>
<td></td>
<td>: Falling edge voltage: 2.84V</td>
</tr>
<tr>
<td>Integrated development environment</td>
<td>CS+ for CC V3.01.00 from Renesas Electronics Corp.</td>
</tr>
<tr>
<td>(CS+)</td>
<td>Assembler (CS+) CC-RL V1.01.00 from Renesas Electronics Corp.</td>
</tr>
<tr>
<td>Integrated development environment</td>
<td>e² studio V4.1.0.018 from Renesas Electronics Corp.</td>
</tr>
<tr>
<td>(e² studio)</td>
<td>Assembler (e² studio) CC-RL V1.01.00 from Renesas Electronics Corp.</td>
</tr>
</tbody>
</table>

4. Peripheral Function Settings

The following tables describe the peripheral function settings for RL78/G10.

Table 4-1 Peripheral Function Settings

<table>
<thead>
<tr>
<th>Function</th>
<th>Ch</th>
<th>Setting</th>
</tr>
</thead>
</table>
| TAU | Ch0,3| • For switching
| | | • Operating mode: dual input one-shot pulse output
| | | TI00: peak current detection
| | | TI03: ZCD signal detection
| | | TO03: PWM signal output
| 12-bit interval timer| - | • For main interval count (200us interval) |

Table 4-2 Option Byte Setting

<table>
<thead>
<tr>
<th>Address</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>000C0H</td>
<td>1110 1110B</td>
<td>• Watchdog timer not used</td>
</tr>
</tbody>
</table>
| 000C1H | 1111 0111B | • SPOR detection voltage:
| | | Falling edge: VDD < 2.84V
| | | Rising edge: VDD >= 2.90V |
| 000C2H | 1111 1001B | • High-speed on-chip oscillator (20MHz) |
| 000C3H | 1000 0101B | • Enables on-chip debug operation |
5. Flowcharts

5.1 Main and Peripheral Function Initialization

The following flowchart is an example of main processing and peripheral function initialization.

![Main Processing Flow Diagram](image-url)
5.2 Clock Generation Circuit Initialization

The following flowchart is an example of the clock generation circuit initialization.

Initialize clock

Set CMC register
- Input port mode
- $1\text{MHz} \leq f_x \leq 10\text{MHz}$

Set MSTOP bit
- Input port

Set MCM0 bit
- Select f_{MX} as f_{MAIN}

Set OSMC register
- Supply f_{IL}

Set HIOSTOP bit
- Start high-speed on-chip oscillator clock

end

Figure 5-2 Clock Generation Circuit Initialization Flowchart
5.3 TAU Initialization

The following flowchart shows the initialization of the timer array unit (TAU).

![TAU Initialization Flowchart (1)]
Set TMR03H register
 • Operating clock: CK00
 • Count clock: CK00
 • Channel operation: slave channel
 • Timer operation: operate as 16-bit timer
 • Start trigger: dual input one-shot pulse

Set TMR03L register
 • Valid edge: falling edge
 • Operating mode: capture mode
 • Start trigger disabled during count

Set TDR03 register
 • Initial value: 0

Set TOM0 register
 • Channel 3 slave channel output mode

Set TOL0 register
 • Channel 3 positive logic output

Set TO0 register
 • Channel 3 output: 0

Set TOE0 register
 • Channel 3 output enabled

Set PMC0 register
 • TO03 digital I/O

Set P0 register
 • TO03: 0 output

Set PM0 register
 • TO03: output mode

end

Figure 5-4 TAU Initialization Flowchart (2)
5.4 12-bit Interval Timer Initialization

The following flowchart shows the initialization of the 12-bit interval timer.

```
Initialize 12-bit interval timer

Set PER0 register
  • Supply bit interval timer input clock

Set ITMCH register
  • Stop counter

Set ITMK bit
  • Disable interrupt processing

Set ITIF bit
  • Clear interrupt request flag

Set ITPR1, 0 registers
  • Priority level: level 3

Set ITMCH, ITMCL registers
  • Compare value: 2

end
```

Figure 5-5 12-bit Interval Timer Initialization Flowchart
6. Switching Waveform

The following shows the switching waveform for this example.

![Switching Waveform Diagram]

CH1: Peak current detection signal (TI03)
CH2: ZCD signal (TI00)
CH3: PWM signal (TO03)

Figure 6-1 Switching Waveform
7. Sample Code
The sample code is available on the Renesas Electronics Website.

8. Documents for Reference
RL78/G10 User's Manual: Hardware (R01UH0384E)
RL78 Family User's Manual: Software (R01US0015E)
(The latest versions of the documents are available on the Renesas Electronics Website.)
Technical Updates/Technical Brochures
(The latest versions of the documents are available on the Renesas Electronics Website.)

Website and Support
Renesas Electronics Website
• http://www.renesas.com/index.jsp

Inquiries
• http://www.renesas.com/contact/
<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Feb. 03, 2016</td>
<td>First edition issued</td>
</tr>
</tbody>
</table>
General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1. Handling of Unused Pins | Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.
- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual. |
| 2. Processing at Power-on | The state of the product is undefined at the moment when power is supplied.
- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified. |
| 3. Prohibition of Access to Reserved Addresses | Access to reserved addresses is prohibited.
- The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed. |
| 4. Clock Signals | After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.
- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable. |
| 5. Differences between Products | Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.
- The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product. |
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy, or otherwise misappropriation of Renesas Electronics product.

4. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified range.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 - **“Standard”**: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
 - **“High Quality”**: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crim systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.) or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product, for which the product is not intended by Renesas Electronics.

6. You should contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

7. Renesas Electronics products and technology may not be used or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics product or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.

10. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

11. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.