Introduction

This application note explains how to read out part number by software. The data memory space has the part number that is written in ASCII code in the reserved area. It is possible to get the part number when read out the ASCII code in the reserved area by software.

Target Device

RL78/G11
RL78/G12
RL78/G13
RL78/G14

When applying the software covered in this application note to another microcomputer, modify the software according to the specifications for the target microcomputer and conduct an extensive evaluation of the modified program.

And this application note cannot be applied to the RL78-S1 Core that is such as the RL78/G10.
Contents

1. Software-based Part Number Reading out ... 3
2. Operation Check Conditions ... 4
3. Operation Result .. 5
4. Documents for Reference .. 6
1. Software-based Part Number Reading out

The RL78 microcontroller is classified into three types of cores according to the types of instructions, the number of clocks, and the performance: RL78-S1 core, RL78-S2 core, and RL78-S3 core. This application note is applied to RL78-S2 core and RL78-S3 core.

RL78-S2 core product: RL78/G12, RL78/G13, RL78/G1A, RL78/G1E, RL78/G1C, RL78/I1A, RL78/L12, RL78/L13 and so on.

RL78-S3 core product: RL78/G11, RL78/G14 and so on.

The reserved area address is 0xEFFD5 to 0xEFFDE for RL78-S2 core product and RL78-S3 core product.

For example, Table 1-1 shows the part number of RL78/G13 “R5F100LE”. The part number is written in ASCII code.

Table 1-1 The Part Number of RL78/G13 “R5F100LE”

<table>
<thead>
<tr>
<th>Address</th>
<th>Stored Information</th>
<th>Read out value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xEFFD5</td>
<td>Device name 1st character</td>
<td>0x52 “R”</td>
</tr>
<tr>
<td>0xEFFD6</td>
<td>Device name 2nd character</td>
<td>0x35 “5”</td>
</tr>
<tr>
<td>0xEFFD7</td>
<td>Device name 3rd character</td>
<td>0x46 “F”</td>
</tr>
<tr>
<td>0xEFFD8</td>
<td>Device name 4th character</td>
<td>0x31 “1”</td>
</tr>
<tr>
<td>0xEFFD9</td>
<td>Device name 5th character</td>
<td>0x30 “0”</td>
</tr>
<tr>
<td>0xEFFDA</td>
<td>Device name 6th character</td>
<td>0x30 “0”</td>
</tr>
<tr>
<td>0xEFFDB</td>
<td>Device name 7th character</td>
<td>0x4C “L”</td>
</tr>
<tr>
<td>0xEFFDC</td>
<td>Device name 8th character</td>
<td>0x45 “E”</td>
</tr>
<tr>
<td>0xEFFDD</td>
<td>Device name 9th character</td>
<td>0x20 “ ”</td>
</tr>
<tr>
<td>0xEFFDE</td>
<td>Device name 10th character</td>
<td>0x20 “ ”</td>
</tr>
</tbody>
</table>

Figure 1-1 shows an example of software for reading out the part number. When the part number reading out the code is executed, the part number written in ASCII code is read out. The read out part number is stored in internal RAM.

```c
unsigned char __far* ptr;
unsigned char sig[10];
unsigned char i;

ptr = (unsigned char __far*)0xEFFD5;

for (i = 0; i < 10; i++)
{
    sig[i] = *ptr;
    ptr++;
}
```

Figure 1-1 The part number reading out code
2. **Operation Check Conditions**

The part number reading out code described in this application note has been checked under the conditions listed in the table below.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcontroller used</td>
<td>RL78/G11: R5F1056A, R5F1058A
RL78/G12: R5F1026A
RL78/G13: R5F100LEA
RL78/G14: R5F104LEA</td>
</tr>
<tr>
<td>Operating frequency</td>
<td>RL78/G11: 24MHz
RL78/G12: 24MHz
RL78/G13: 32MHz
RL78/G14: 32MHz</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>3.3V</td>
</tr>
<tr>
<td>Integrated development environment(CS+)</td>
<td>CS+V5.00.00 from Renesas Electronics Corp.</td>
</tr>
<tr>
<td>C compiler(CS+)</td>
<td>CC-RL V1.04.00 from Renesas Electronics Corp.</td>
</tr>
<tr>
<td>Integrated development environment (e2studio)</td>
<td>e2studio V5.1.0.022 from Renesas Electronics Corp.</td>
</tr>
<tr>
<td>C compiler(e2studio)</td>
<td>e2studio V1.04.00 from Renesas Electronics Corp.</td>
</tr>
</tbody>
</table>
3. Operation Result

Figure 3-1 shows the operation result of RL78/G13.

Figure 3-1 operation result of RL78/G13
4. Documents for Reference

RL78/G11 User’s Manual: Hardware Rev.1.10(R01UH0637EJ0110)
RL78/G12 User’s Manual: Hardware Rev.2.10(R01UH0200EJ0210)
RL78/G13 User’s Manual: Hardware Rev.3.30(R01UH0146EJ0330)
RL78/G14 User’s Manual: Hardware Rev.3.30(R01UH0186EJ0330)

(The latest version can be downloaded from the Renesas Electronics website.)

Technical Updates/Technical News

(The latest information can be downloaded from the Renesas Electronics website.)
Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.
Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Page</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>May 26, 2017</td>
<td>--</td>
<td>First edition issued</td>
</tr>
</tbody>
</table>
General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Handling of Unused Pins</td>
<td>Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.
— The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.</td>
</tr>
<tr>
<td>2. Processing at Power-on</td>
<td>The state of the product is undefined at the moment when power is supplied.
— The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.</td>
</tr>
<tr>
<td>3. Prohibition of Access to Reserved Addresses</td>
<td>Access to reserved addresses is prohibited.
— The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.</td>
</tr>
<tr>
<td>4. Clock Signals</td>
<td>After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.
— When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.</td>
</tr>
<tr>
<td>5. Differences between Products</td>
<td>Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.
— The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 “Standard” : Computer, office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

 “High Quality” : Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication systems; safety control equipment; etc.

 Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implants etc.), or may cause serious property damage (space and underwater repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductors Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, heat radiation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or accident arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunction under certain conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including but without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all those applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stocking, etc., of weapons of mass destruction, such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security; and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

© 2017 Renesas Electronics Corporation. All rights reserved.