
R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 1 of 46

RISC-V MCU
Board Support Package Module Using Software Integration System
Summary
The Renesas board support package module (r_bsp) forms the foundation of any project that uses Software

Integration System. The r_bsp is easily configurable and provides all the code needed to get the MCU and
the board from reset to the main() function. This document describes r_bsp conventions and explains how to
use it, configure it, and create a BSP for your own board.

Device on Which Operation Confirmed
RISC-V MCU

Supported Compilers
• LLVM C/C++ Compiler for Renesas RISC-V
• IAR C/C++ Compiler for Renesas RISC-V
• SEGGER Compiler

For details of the confirmed operation of each compiler, refer to 7.1, Confirmed Operating Environment.

Application Note

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 2 of 46

Contents

1. Overview ... 5

1.1 Terminology .. 5

1.2 File Structure .. 6

2. Functionality ... 8

2.1 MCU Information... 8

2.2 Initial Settings ... 9

2.3 Global Interrupts ... 11

2.4 Clock Settings ... 11

2.5 Stack Area .. 11

2.6 ID Code .. 11

2.7 Option-Setting Memory ... 11

2.8 CPU Functionality ... 12

2.9 Disabling Startup .. 12
2.9.1 Settings to Disable Startup .. 12

3. Configuration .. 13

3.1 Choosing a Platform ... 13

3.2 Platform Configuration .. 13
3.2.1 MCU Product Part Number Information .. 13

3.2.2 Data Flash Access Restriction .. 13
3.2.3 Prefetch Buffer Enable Register .. 14
3.2.4 Machine Timer Operation .. 14
3.2.5 Clock Settings .. 15
3.2.6 Option-Setting Memory .. 17

3.2.7 Security ID Codes for On-Chip Debugging ... 17

3.2.8 Startup API Functions .. 17
3.2.9 Smart Configurator .. 18
3.2.10 API Functions disable Usage .. 18
3.2.11 Parameter check Usage .. 19
3.2.12 Callback Function at Warm Start .. 19

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 3 of 46

4. API Information ... 20

4.1 Hardware Requirements ... 20

4.2 Hardware Resource Requirements .. 20

4.3 Software Requirements .. 20

4.4 Supported Toolchains ... 20

4.5 Interrupt Vectors Used .. 20

4.6 Header Files ... 20

4.7 Integer Types .. 20

4.8 API Typedef .. 21
4.8.1 Clock Resource ... 21

4.8.2 Clock Divider ... 21
4.8.3 Unit of Software Delay ... 21
4.8.4 Register Write Protection Unit ... 22

4.9 Return Values ... 23
4.9.1 Error Codes ... 23

4.10 Code Size ... 24

4.11 “for,” and “while,” Statements ... 25

5. API Functions ... 26

5.1 Overview ... 26

5.2 R_BSP_StartClock() ... 27

5.3 API for Machine Timer .. 28

5.4 R_BSP_StopClock() ... 29

5.5 R_BSP_GetIClkFreqHz() .. 30

5.6 R_BSP_ChangeICLKClockSetting () .. 31

5.7 R_BSP_SoftwareDelay() .. 33

5.8 R_BSP_DelayCycle () .. 35

5.9 R_BSP_GetVersion () .. 36

5.10 R_BSP_RegisterProtectEnable () .. 37

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 4 of 46

5.11 R_BSP_RegisterProtectDisable () .. 38

6. Project setup ... 39

6.1 How to add the BSP ... 39

6.2 Adding the BSP to a Project in e2 studio ... 40

6.2.1 Adding the BSP Using Smart Configurator in e2 studio .. 40

7. Appendix ... 43

7.1 Confirmed Operating Environment ... 43

7.2 Note on the updated macro define name from Rev1.10 to Rev1.20 ... 44

7.3 Note on the protect for user bricks the device from Rev1.10 to Rev1.20 44

7.4 Note on the Prefetch buffer enable register (PFBER) from Rev1.10 to Rev1.20 44

Revision History ... 45

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 5 of 46

1. Overview
Before running a user application there are a series of operations that must be performed to get the MCU

set up properly. These operations, and their number, will vary depending on the MCU being used. Common
examples include: setting up stack(s), initializing memory, configuring the CPU and peripheral hardware
clock, and setting up port pins. The steps described in this document must be followed to configure the
above items. The r_bsp is provided to make configuration easier.

The r_bsp provides all the elements needed to get the MCU from reset to the start of the user application’s
main() function. The r_bsp also provides common functionality that is needed by many applications.
Examples of this include functions to start and stop the clocks and to get the frequency of the CPU
and peripheral hardware clock.

The necessary steps after a reset are the same for every application, but this does not mean that the
settings will be the same. For example, stack sizes and the clocks used will vary depending on the
application. The r_bsp configuration options are contained in the config header file for easy access.

1.1 Terminology

Term Description
Platform The user’s development board. Used interchangeably with “board.”
BSP

Abbreviation of “board support package.”

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 6 of 46

1.2 File Structure

The r_bsp file structure is shown below in Figure 1.1. The r_bsp folder contains three folders and two files.

The doc folder contains r_bsp documentation.

The board folder contains the generic folders.

There is a generic folder for each supported MCU.

Figure 1.2 shows the contents of the generic folder.

The mcu folder contains one folder for each supported MCU. The mcu folder also contains the all folder,
which contains source code common to all MCUs supported by the r_bsp.

The platform.h file allows you to choose your current development platform. It is used to select all the
header files from the board and mcu folders required for your project. This is discussed in more detail in later
sections.

The readme.txt file provides a summary of information about the r_bsp.
Figure 1.1 r_bsp File Structure

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 7 of 46

Figure 1.2 Structure of Generic Folder

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 8 of 46

2. Functionality
This section describes in detail the functionality provided by the r_bsp.

2.1 MCU Information

One of the main benefits of the r_bsp is that it lets you define the global system settings only once, in a
single place in the project, and those settings are then shared throughout. This information is defined in the
r_bsp and can then be used by the SIS modules and user code. SIS modules use this information to
automatically configure their code to match your system configuration. If the r_bsp did not provide this
information, you would have to specify system information to each SIS module separately.

Configuring the r_bsp is discussed in Section 3. The r_bsp uses this configuration information to set macro
definitions in mcu_info.h. An example of an MCU-specific macro in mcu_info.h is shown below.

Definition Description
BSP_MCU_FAMILY_RISCV_MCU Which MCU Family this MCU belongs to.
BSP_MCU_GROUP_G021 Which MCU group this MCU belongs to.
BSP_LOCO_HZ
BSP_SOSC_HZ
BSP_MOCO_HZ

Each of these macros corresponds to one of the MCU’s clocks.
Each macro defines the corresponding clock’s frequency in
hertz (Hz). For example, BSP_LOCO_HZ defines the LOCO
frequency in Hz, and BSP_SUB_CLOCK_HZ defines the
subsystem clock frequency in Hz.

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 9 of 46

2.2 Initial Settings

The _PowerON_Reset function is set as the reset vector when using the LLVM compiler or SEGGER
compiler. The iar_program_start function is set as the reset vector for the MCU when using the IAR compiler.
The _PowerON_Reset function (the startup function when using LLVM or SEGGER compiler), or function
iar_program_start function (the startup function) performs various types of initialization processing to get the
MCU ready to use the user application. The flowcharts below show startup function operations and CPU and
peripheral hardware clock settings.

Figure 2.1 Flowchart of Startup Function

Sets the clock division ratio and multiplication factor.
Stops clocks that are not used as the clocksource.
Transitions to the selected clock.

Note: 1. The operation differs according to the settings in r_bsp_config.h.

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 10 of 46

Figure 2.2 Flowchart of CPU and Peripheral Hardware Clock Settings

System clock settings*1

mcu_clock_setup()

Release register write protection

Set operation mode to HIGH Speed mode

Select system clock source

Make clock activation settings (enable / disable)

Set operating mode according to user setting

Make System clock / Peripheral Module Clock B
clock division settings

Make CLKOUT setting

Make subsystem clock supply mode settings

Set register write protection

Return

Note: 1. The operation differs according to the settings in r_bsp_config.h.

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 11 of 46

2.3 Global Interrupts

Interrupts are disabled after a reset. Enable interrupts as needed. Use the
BSP_CFG_INTERRUPT_SETTING_API_FUNCTIONS function to specifies the interrupt vector for each
interrupt event.

2.4 Clock Settings

CPU and peripheral hardware clock settings are made during r_bsp initialization. Clocks are configured
based upon the user’s settings in the r_bsp_config.h file (see 3.2.5). Clock settings are applied before the C
runtime environment is initialized. When a clock is selected, the code in the r_bsp implements the required
delays to allow the selected clock to stabilize.

2.5 Stack Area

The stacks are configured and initialized by the startup function after a reset.

2.6 ID Code

RISC-V MCUs have an ID code stored in ROM that protects the MCU’s memory from being read through a
debugger, or in serial boot mode, in an attempt to extract the firmware from the device. ID code resides in
the on-chip debug security ID setting memory. The value of the security ID is specified in r_bsp_config.h in
the LLVM environment. In the IAR and the SEGGER environment they are specified in
mcu_option_settings.c. For details of ID code options, refer to the Option-Setting Memory and chapters is
mentioned on-chip debug mode in your MCU’s hardware manual.

2.7 Option-Setting Memory

The Option-Setting Memory are located in the flash memory of RISC-V MCUs. The Option-Setting Memory
are referenced automatically after power-on or a reset, and the specified function settings are applied.
Option-Setting Memory can be used to specify settings for the watchdog timer or voltage detection circuit, for
example. Option-Setting Memory setting values (macro) are specified in r_bsp_config.h, its value is
depended on setting of user in Smart Configurator. Option-Setting Memory is set in mcu_option_settings.c
using macros that is defined in r_bsp_config.h.

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 12 of 46

2.8 CPU Functionality

API functions are provided for making settings related to CPU functionality such as enabling and disabling
interrupts. Refer to Section 5 for details.

2.9 Disabling Startup

To disable startup, manually delete the startup assembler code. The names of the files containing the
startup assembler code for each environment are as follows:

2.7.1 LLVM compiler: start.s
2.7.2 IAR compiler: cstartup.s
2.7.3 SEGGER compiler: startup.s

Additionally, you will need to add your own startup code.

2.9.1Settings to Disable Startup
Make settings as described below to disable BSP startup processing.

(1) Configuration File Settings
Specify your own startup processing in r_bsp_config.h. Some BSP API functions and peripheral SIS

modules reference the contents of r_bsp_config.h. Note that some SIS modules may not function correctly if
there are discrepancies between the details of the startup processing you created and the contents of
r_bsp_config.h.

The BSP information referenced by the peripheral SIS modules is generated based on r_bsp_config.h, so it
is necessary to ensure that the details of the startup processing you created and the contents of
r_bsp_config.h match.

Figure 2.3 illustrates configuration file settings.

Figure 2.3 Configuration File Settings

Make sure the settings

Peripheral module

Clock settings, etc.

Clock settings, etc.

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 13 of 46

3. Configuration
Two header files are used to configure the r_bsp. One is used to choose the platform, and the other to
configure the chosen platform.

3.1 Choosing a Platform

The r_bsp provides board support packages for a variety of MCUs. Choosing the platform to be used is
accomplished by modifying the platform.h file located in the r_bsp folder.

3.2 Platform Configuration

After selecting a platform, you must configure it. The file r_bsp_config.h contains the platform settings. Each
platform has a configuration file called r_bsp_config_reference.h, which is located in the platform’s board
folder.

The contents of each r_bsp_config.h file differs according to the MCU associated with it, but many of the
options are the same. The following sections provide details on these configuration options. Note that each
macro starts with the common prefix “BSP_CFG_,” which makes them easy to search for and identify.

When using Smart Configurator, the configuration options can be set on the software component
configuration screen. Setting values are automatically reflected in r_bsp_config.h when adding modules to a
user project.

3.2.1 MCU Product Part Number Information
The MCU’s product part number information makes it possible to provide a variety of information about the
MCU along with the r_bsp. Information related to the MCU’s product part number is defined at the beginning
of the configuration file. All of these macros start with “BSP_CFG_MCU_PART.” Some MCUs have more
product part number–related information than others, but the standard definitions are listed below.

Table 3.1 Product Part Number Definitions

Definition Value Description
BSP_CFG_MCU_PART_ROM_TYPE See comments above

#define in
r_bsp_config.h.

Defines the device type.
BSP_CFG_MCU_PART_PACKAGE Defines the package type.

3.2.2 Data Flash Access Restriction
RISC-V MCUs are provided with functionality to enable or disable access to the data flash. After a reset the

r_bsp makes data flash access settings using the data flash access restriction functionality configuration
macros in r_bsp_config.h.

Table 3.2 Data Flash Access Restriction Definitions

Definition Value Description
BSP_CFG_DATA_FLASH_ACCESS_ENABLE 0 : Access to the data flash

memory area is disabled.
1 : Access to the data flash
memory area is enabled.

Data flash memory area
access control
Data flash control
register(DFLCTL)
DFLEN

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 14 of 46

3.2.3 Prefetch Buffer Enable Register
RISC-V MCUs are provided with functionality to enable or disable access to the prefetch buffer. Flash

memory provides an instruction prefetch function to accelerate code execution. The prefetch function can be
used by enabling the prefetch buffer.

Table 3.3 Prefetch buffer enable Definitions

Definition Value Description
BSP_CFG_PFB_ENABLE 0 : Prefetch buffer is

disabled.
1 : Prefetch buffer is

enabled.

Prefetch buffer
enable register
(PFBER)

3.2.4 Machine Timer Operation
The machine timer includes 64-bit counter, comparator, and software interrupt registers. It generates

machine timer interrupts (MTIP) and machine software interrupts (MSIP) for the Core Local Interrupt
Controller (CLIC). When the counter matches the comparator, an MTIP is triggered.

Table 3.4 Machine Timer Definitions

Definition Value Description
BSP_CFG_MTIME_CLOCK_SOURCE 0 : Machine timer clock.

1 : CPU clock.
Clock source
select

BSP_CFG_MACHINE_TIMER 0 : Machine timer is
disable.
1 : Machine timer is
enable.

Machine Timer
enable register

BSP_CFG_MACHINE_TIMER_MODE 0 : One-shot.
1 : Periodic.

Machine timer
mode

BSP_CFG_MTIME_INTERVAL_VALUE This is the interval value of
machine timer

Specifies the
setting interval
timer.

BSP_CFG_MTIME_INTERVAL_UNIT 1 : count
1000 : ms
1000000 : us
1000000000 : ns

Interval value
unit

BSP_CFG_MTIP_PRIORITY
BSP_CFG_MSIP_PRIORITY

0xFF: Level 0 (high)
0xEF: Level 1
0xDF: Level 2
0xCF: Level 3
0xBF: Level 4
0xAF: Level 5
0x9F: Level 6
0x8F: Level 7
0x7F: Level 8
0x6F: Level 9
0x5F: Level 10
0x4F: Level 11
0x3F: Level 12
0x2F: Level 13
0x1F: Level 14
0x0F: Level 15 (low)

Machine timer
interrupt priority
(Level 0 to
Level15)

BSP_CFG_SOFTWARE_INTERRUPT 0 : Disable.
1 : Enable.

Enable machine
software interrupt

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 15 of 46

3.2.5 Clock Settings
The available clocks vary among RISC-V MCUs, but the same basic concepts apply to all. After a reset the

r_bsp initializes the MCU clocks using the clock configuration macros in r_bsp_config.h.

Table 3.5 Clock Setting Definitions

Definition Value Description
BSP_CFG_ICLK_DIV 0 : x 1/1

1 : x 1/2
2 : x 1/4
3 : x 1/8
4 : x 1/16
5 : x 1/32
6 : x 1/64

System Clock Division Control
Register (SCKDIVCR)
System Clock (ICLK) Select
(ICK[2:0])

BSP_CFG_PCLKB_DIV 0 : x 1/1
1 : x 1/2
2 : x 1/4
3 : x 1/8
4 : x 1/16
5 : x 1/32
6 : x 1/64

System Clock Division Control
Register (SCKDIVCR)
Peripheral Module Clock B (PCLKB)
Select (PCKB[2:0])

BSP_CFG_CLOCK_SOURCE_SEL 0 : HOCO
1 : MOCO
2 : LOCO
3 : External clock input
(EXTAL)
4 : Sub-clock oscillator
(SOSC)

System Clock Source Control
Register (SCKSCR)
Clock Source Select (CKSEL[2:0])

BSP_CFG_EXTCLK_OPERATION 0 : Stop
1 : Operate

External Clock Input Control Register
(MOSCCR)

BSP_CFG_SUBCLK_OPERATION 0 : Stop
1 : Operate

Sub-Clock Oscillator Control Register
(SOSCCR).

BSP_CFG_SUBCLK_MODE 0 : Normal Mode
1 : Low Power Mode 1
2 : Low Power Mode 2
3 : Low Power Mode 3

Sub-Clock Oscillator Mode Control
Register (SOMCR)

BSP_CFG_SUBCLK_MARGIN 0 : Normal Current
1 : Lower Margin check
2 : Upper Margin check

Sub-Clock Oscillator Margin Check
Register (SOMRG)

BSP_CFG_LOCO_OPERATION 0 : Stop
1 : Operate

Low-Speed On-Chip Oscillator
Control Register (LOCOCR)

BSP_CFG_HOCO_OPERATION 0 : Stop
1 : Operate

High-Speed On-Chip Oscillator
Control Register (HOCOCR)

BSP_CFG_MOCO_OPERATION 0 : Stop
1 : Operate

Middle-Speed On-Chip Oscillator
Control Register (MOCOCR)

BSP_CFG_CLKOUT_SEL 0 : HOCO
1 : MOCO
2 : LOCO
3 : External clock input
(EXTAL)
4 : Sub-clock oscillator
(SOSC)

Clock Out Control Register (CKOCR)
Clock Out Source Select
(CKOSEL[2:0])

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 16 of 46

Definition Value Description
BSP_CFG_CLKOUT_DIV 0 : x 1/1

1 : x 1/2
2 : x 1/4
3 : x 1/8
4 : x 1/16
5 : x 1/32
6 : x 1/64
7 : x 1/128

Clock Out Control Register (CKOCR)
Clock Output Frequency Division
Ratio (CKODIV[2:0])

BSP_CFG_CLKOUT_ENABLE 0 : Disable
1 : Enable

Clock Out Control Register (CKOCR)
Clock Out Enable (CKOEN)

BSP_CFG_SUBCLK_SEL 0 : Subsystem clock
(SOSC)
1 : Low-speed on-chip
oscillator clock (LOCO)

Subsystem Clock Supply Mode
Control Register (OSMCR)
Selection of the operating clock for
the realtime clock, 32-bit interval
timer,serial interfaces UARTA0 and
UARTA1, remote control signal
receiver (WUTMMCK0)

BSP_CFG_EXTAL_HZ Frequency (Hz) Input clock frequency in Hz (EXTAL).
BSP_CFG_EXTCLK_INPUT_JTAG_HZ Frequency (Hz) Input clock frequency in Hz (JTAG).
BSP_CFG_OPERATION_MODE 0: High-speed mode

1: Middle-speed mode
2: Subosc-speed mode
3: Low-speed mode

Operation Power Mode Select
(OPCCR register and SOPCCR
register).

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 17 of 46

3.2.6 Option-Setting Memory
You can select the behavior after a reset by setting Option-Setting Memory. For example, you can specify

settings for the watchdog timer and voltage detection circuit.

Option-Setting Memory setting values (macro) are specified in r_bsp_config.h, its value is depended on
setting of user in Smart Configurator. Option-Setting Memory is set in mcu_option_settings.c using macros
that is defined in r_bsp_config.h.

Table 3.6 Option-Setting Memory Definitions

Definition Value Description
BSP_CFG_OFS0_REG_VALUE
BSP_CFG_OFS1_REG_VALUE

Option-Setting Memory value Specifies the setting value of the
corresponding Option-Setting
Memory.

3.2.7 Security ID Codes for On-Chip Debugging
You can protect against third parties reading the contents memory by setting Security ID Codes for On-Chip

Debugging.

The Security ID Codes for On-Chip Debugging setting values(macro) are defined r_bsp_config.h, its value
is depended on setting of user in Smart Configurator. The Security ID Codes for On-Chip Debugging is set in
mcu_option_settings.c using macros that is defined in r_bsp_config.h.

Table 3.7 Security ID Codes for On-Chip Debugging Definitions

Definition Value Description
BSP_CFG_OCD_SERIAL_ID_VALUE_0
BSP_CFG_OCD_SERIAL_ID_VALUE_1
BSP_CFG_OCD_SERIAL_ID_VALUE_2
BSP_CFG_OCD_SERIAL_ID_VALUE_3

ID Codes for On-Chip
Debugging / Serial
programing value

Specifies the setting value of the
corresponding Security ID Codes for
On-Chip Debugging or serial
programming.

3.2.8 Startup API Functions

Table 3.8 Startup macro Definitions

Definition Value Description
BSP_CFG_STARTUP_FUNCTIONS 0 : Enable BSP

startup program.
1 : Disable BSP
startup program.(e.g.
Using user startup
program.)

Start up select.

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 18 of 46

3.2.9 Smart Configurator

Table 3.9 Smart Configurator Definitions

Definition Value Description
BSP_CFG_CONFIGURATOR_SE
LECT

0 = Smart Configurator not
used
1 = Smart Configurator used

Defines whether or not Smart
Configurator is used in the current
project. When
BSP_CFG_CONFIGURATOR_SELE
CT = 1, the Smart Configurator
initialization function is called.

BSP_CFG_CONFIGURATOR_VE
RSION

See comments above
#define in r_bsp_config.h.

Defines the version of Smart
Configurator you are using.

3.2.10 API Functions disable Usage

Table 3.10 API Functions disable Usage Definitions

Definition Value Description
BSP_CFG_CLOCK_OPERATION
_API_FUNCTIONS

0 = API Functions enable
1 = API Functions disable

Defines whether API
Functions(R_BSP_StartClock,
R_BSP_StopClock) is disabled.
When
BSP_CFG_CLOCK_OPERATION_A
PI_FUNCTIONS = 1,
cannot use API Functions, but can
reduce the memory size.

BSP_CFG_CHANGE_CLOCK_S
ETTING_API_FUNCTIONS

Defines whether API
Functions(R_BSP_ChangeClockSetti
ng) is disabled.
When
BSP_CFG_CHANGE_CLOCK_SETT
ING_API_FUNCTIONS =
1, cannot use API Functions, but can
reduce the memory size.

BSP_CFG_INTERRUPT_SETTIN
G_API_FUNCTIONS

Defines whether API
Functions(bsp_mapped_interrupt_op
en) is disabled.
When
BSP_CFG_INTERRUPT_SETTING_
API_FUNCTIONS = 1, cannot use API
Functions, but can reduce the
memory size.

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 19 of 46

3.2.11 Parameter check Usage

Table 3.11 Parameter check Usage Definitions

Definition Value Description
BSP_CFG_PARAM_CHECKING_
ENABLE

0 = Parameter check is
invalid
1 = Parameter check is valid

Defines whether parameter check is
enabled.
Returns an error for incorrect setting
when switching System clock source.

3.2.12 Callback Function at Warm Start

Table 3.12 Warm Start Callback Function Definitions

Definition Value Description
BSP_CFG_USER_WARM_STAR
T_CALLBACK_PRE_INITC_ENA
BLED

0 = User function is not called
before C runtime
environment is initialized
1 = User function is called
before C runtime
environment is initialized

Defines whether or not a user
function is called before the C runtime
environment is initialized.

BSP_CFG_USER_WARM_STAR
T_PRE_C_FUNCTION

Function called before C
runtime environment is
initialized

Defines the user function called
before the C runtime environment is
initialized.

BSP_CFG_USER_WARM_STAR
T_CALLBACK_POST_INITC_EN
ABLED

0 = User function is not called
after C runtime environment
is initialized
1 = User function is called
after C runtime environment
is initialized

Defines whether or not a user
function is called after the C runtime
environment is initialized.

BSP_CFG_USER_WARM_STAR
T_POST_C_FUNCTION

Function called after C
runtime environment is
initialized

Defines the user function called after
the C runtime environment is
initialized.

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 20 of 46

4. API Information
The driver API conforms to Renesas API naming conventions.

4.1 Hardware Requirements

Not applicable.

4.2 Hardware Resource Requirements

Not applicable.

4.3 Software Requirements

None

4.4 Supported Toolchains

The operation of this SIS module has been confirmed with the toolchains listed in 7.1, Confirmed Operating
Environment.

4.5 Interrupt Vectors Used

This SIS module does not use interrupt vectors.

4.6 Header Files

All API calls are included by incorporating the file platform.h, which is supplied with the driver’s project code.

4.7 Integer Types

This project uses ANSI C99 “Exact width integer types” in order to make the code clearer and more
portable. These types are defined in stdint.h.

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 21 of 46

4.8 API Typedef

4.8.1 Clock Resource
This typedef defines commands that can be used with the R_BSP_StartClock(), R_BSP_StopClock() and
R_BSP_ChangeICLKClockSetting() functions.

Available resources vary from device to device.

See the user’s manual or r_bsp_common.h.

4.8.2 Clock Divider

This typedef defines commands that can be used with the R_BSP_ChangeICLKClockSetting() functions.

Available setting of divider varies from device to device.

See the user’s manual or r_bsp_common.h.

4.8.3 Unit of Software Delay
This typedef defines units which can be used with the R_BSP_SortwareDelay function.

/* Available delay units. */
typedef enum
{

BSP_DELAY_SECS = 1,
BSP_DELAY_MILLISECS = 1000,
BSP_DELAY_MICROSECS = 1000000

} e_bsp_delay_units_t;

/* Requested delay amount is in seconds. */
/* Requested delay amount is in milliseconds. */
/* Requested delay amount is in microseconds. */

} e_clock_mode_t;

// High-speed on-chip oscillator
// Middle-speed on-chip oscillator
// Low-speed on-chip oscillator
// External clock
// Subsystem clock

/* clock mode */
typedef enum

HOCO,
MOCO,
LOCO,
EXTAL,
SOSC,

typedef enum
{

DIV_BY_1,
DIV_BY_2,
DIV_BY_4,
DIV_BY_8,
DIV_BY_16,
DIV_BY_32,
DIV_BY_64,
DIV_BY_128,

} e clock div t;

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 22 of 46

4.8.4 Register Write Protection Unit
This typedef defines the types of registers that can be used by the R_BSP_RegisterProtectEnable() and

R_BSP_RegisterProtectDisable() functions.typedef enum.

typedef enum
{

/* PRC0
Enables writing to the registers related to the clock generation circuit:

SCKDIVCR, SCKSCR, HOCOCR, MOCOCR, CKOCR, HOCOUTCR, LOCOCR, LPOPT, OSMCR, MOSCCR,
SOSCCR, SOMCR, SOMRG, MEMWAIT, LOCOUTCR, MOCOUTCR */

BSP_REG_PROTECT_CGC = 0,

/* PRC1
Enables writing to the registers related to low power mode: SBYCR, OPCCR,

SYOCDCR, PSMCR, SNZCR, SNZEDCR0, SNZEDCR1, SNZREQCR0, SOPCCR, SYOCDCR, PSMCR */
BSP_REG_PROTECT_LPM,

/* PRC3

Enables writing to the registers related to the LVD: LVD1CR1, LVD1SR, LVD2CR1,
LVD2SR, LVCMPCR, LVDLVLR, LVD1CR0, LVD2CR0 */

BSP_REG_PROTECT_LVD,

/* SRAM.SRAMPRCR
Enables writing to the PARIOAD register. */

BSP_REG_PROTECT_SRAM,

/* SRAM.ECCPRCR

Enables writing to the ECCMODE, ECC1STSEN, and ECCOAD registers. */
BSP_REG_PROTECT_ECC,

/* SRAM.ECCPRCR2

Enables writing to the ECCETST register. */
BSP_REG_PROTECT_ECC2,

/* PWPR

Enable write to the PmnPFS register */
BSP_REG_PROTECT_PMNPFS,

/* This entry is used for getting the number of enum items. This must be the last

entry. DO NOT REMOVE THIS ENTRY!*/
BSP_REG_PROTECT_TOTAL_ITEMS

} e_bsp_reg_protect_t;

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 23 of 46

4.9 Return Values

4.9.1 Error Codes
This typedef defines the error codes that can be returned by the R_BSP_StartClock(), R_BSP_StopClock(),

R_BSP_ChangeICLKClockSetting() and R_BSP_SoftwareDelay() functions.

Member Description
BSP_OK Success.
BSP_ARG_ERROR An invalid argument was input.
BSP_ERROR1 The specified clock is not oscillating or stopping.

The error occurrence conditions differ depending on the function.
BSP_ERROR2 When switching between clock resources, a clock resource that is not

oscillating may have been switched to.
BSP_ERROR3 An unsupported state transition was specified. Refer to the user’s manual.

typedef enum
{

BSP_OK,
BSP_ARG_ERROR,
BSP_ERROR1,
BSP_ERROR2,
BSP_ERROR3

} e bsp err t;

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 24 of 46

4.9.2 Code Size

The sizes od ROM, RAM and maximum stack usage associated with this module are listed below.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in Section 3, Configuration.

The values in the table below are confirmed under the following conditions:

Module revision: r_bsp v1.10

Compiler version: LLVM C/C++ Compiler for RISC-V (17.0.0.202310)

IAR C/C++ Compiler for RISC-V (V3.30.1)

SEGGER Compiler (V8.10)

Configuration options: Default settings

ROM, RAM, and Stack Code Sizes (R9A02G021)

Compiler
API
function *1

Clock
setting *2

ROM

RAM

STACK

LLVM compiler
*3

Disable
Default 2450 0 208
All enable 2646 0 208

Enable
Default 4924 0 208
All enable 5140 0 208

IAR compiler
Disable

Default 1604 16 112
All enable 1752 16 112

Enable Default 3146 16 112
All enable 3294 16 112

SEGGER
compiler

Disable
Default 1706 14 160
All enable 1782 14 160

Enable
Default 2436 14 160
All enable 2498 14 160

Note 1:

Use macro definition BSP_CFG_XXXX_API_FUNCTIONS in r_bsp_config.h to enable /
disable.The above measurement results are the values when all macro definitions are enabled or
disabled.

Note 2:

The default is the initial value of Smart Configurator.

Only valid for high-speed on-chip oscillator clock.
Note 3:

If measure the stack size using the LLVM compiler, add “-fstack-size-section” to the Compiler options.

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 25 of 46

4.9.3 “for,” and “while,” Statements

This module uses “for” statements (loop processing) for wait processing to allow register values to take
effect, for example. These instances of loop processing are indicated by the comment keyword
“WAIT_LOOP.” Therefore, if you wish to incorporate fail-safe processing into the instances of loop
processing, you can locate them in the source code by searching for the keyword “WAIT_LOOP.”

A code sample is shown below:

for statement:
/* WAIT_LOOP */
for (w_count = 0U; w_count < 2U; w_count++)
{

R_BSP_NOP();
}

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 26 of 46

5. API Functions

5.1 Overview

The module uses the following functions:

Function Description
R_BSP_StartClock Starts oscillation of the specified clock.
R_BSP_StopClock Stops oscillation of the specified clock.
R_BSP_GetIClkFreqHz Returns the system clock frequency.
R_BSP_SoftwareDelay Delays the specified duration.
R_BSP_ChangeICLKClockSetting Switch CPU/peripheral hardware clock (ICLK) clock source.
R_BSP_GetVersion Get the current version of the r_bsp.
R_BSP_RegisterProtectEnable Enables write protection for selected registers.
R_BSP_RegisterProtectDisable Disables write protection for selected registers.
R_BSP_DelayCycle Delay the specified duration in CPU cycle.
machine_timer_start Enable machine timer interrupt.
machine_timer_stop Disable machine timer interrupt.
trigger_software_interrupt Trigger software interrupt.
clear_software_interrupt Clear software interrupt

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 27 of 46

5.2 R_BSP_StartClock()

This function starts oscillation of the specified clock.

Format

Parameters
mode

Specifies the clock on which oscillation will start (see 4.9.1).

Return Values
BSP_OK /* The specified clock is started. */

BSP_ARG_ERROR /* The specified clock is incorrect. */

Properties
Prototyped in r_bsp_common.h.

Description
This function starts oscillation of the specified clock.

To use the oscillated clock as the system clock, the CSKSCR register must be changed by separately
calling "5.5 R_BSP_ChangeICLKClockSetting".

Example

Special Notes:
This function is only available if the macro definition

(BSP_CFG_CLOCK_OPERATION_API_FUNCTIONS) is set to 0.

e bsp err t R BSP StartClock(e clock mode t mode);

e_bsp_err_t err;

/* Disable register protection */
R_BSP_RegisterProtectDisable(BSP_REG_PROTECT_CGC);

/* Start High-speed on-chip oscillator */
err = R_BSP_StartClock(HOCO);

if (err != BSP_OK)
{

/* NG processing */
}

/* Enable register protection */
R_BSP_RegisterProtectEnable(BSP_REG_PROTECT_CGC);

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 28 of 45

5.3 API for Machine Timer

This function describe how to use machine timer. The functions user can use:
machine_timer_start(); machine_timer_stop(); trigger_software_interrupt(); clear_software_interrupt();

Format

GUI
Need to enable machine timer

Description
The functions trigger_software_interrupt() and machine_timer_start() like enable interrupt, while
machine_timer_stop() and clear_software_interrupt() disable them.
To trigger the 2nd software interrupt, just call trigger_software_interrupt() again.

Example

When use machine interrupt

When use software interrupt

<r_cg_inthandler.c>
#include "r_smc_entry.h"
extern volatile int msip_flag;

void INT_ACLINT_MSIP(void)
{

/* Start user code for INT_ACLINT_MSIP. Do not edit comment generated here */
msip_flag ++;

/* End user code. Do not edit comment generated here */
}

void machine_timer_start (void);

void machine_timer_stop (void);

void trigger_software_interrupt (void);

void clear_software_interrupt (void);

<main.c>:
#include "r_smc_entry.h"
volatile int mtip_flag = 0;
volatile int msip_flag = 0;
void main(void)
{

trigger_software_interrupt();
machine_timer_start();
while(1);

}

<r_cg_inthandler.c>
#include
"r_smc_entry.h"
/* Start user code */
extern volatile int msip_flag;
/* End user code */

void INT_ACLINT_MSIP(void)
{

/* Start user code for INT_ACLINT_MSIP. Do not edit comment generated here
*/ msip_flag ++;

/* End user code. Do not edit comment generated here */
}

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 29 of 46

5.4 R_BSP_StopClock()

This function stops oscillation of the specified clock. However, operation cannot be guaranteed if oscillation
of a clock used as the CPU and peripheral hardware clock is stopped.

Format

Parameters
mode

Specifies the clock on which oscillation will stop (see 4.9.1).

Return Values
BSP_OK /* The specified clock is stopped. */

BSP_ERROR2 /* The specified clock can not be stopped because it is ICLK clock's source. */

BSP_ARG_ERROR /* The specified clock is incorrect. */

Properties
Prototyped in r_bsp_common.h.

Description
This function stops oscillation of the specified clock.

Example

Special Notes:
This function is only available if the macro definition

(BSP_CFG_CLOCK_OPERATION_API_FUNCTIONS) is set to 0.

e bsp err t R BSP StopClock(e clock mode t mode);

e_bsp_err_t err;

/* Disable register protection */
R_BSP_RegisterProtectDisable(BSP_REG_PROTECT_CGC);

/* Stop High-speed on-chip oscillator */
err = R_BSP_StopClock(HOCO);

if (err != BSP_OK)
{

/* NG processing */
}

/* Enable register protection */
R_BSP_RegisterProtectEnable(BSP_REG_PROTECT_CGC);

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 30 of 46

5.5 R_BSP_GetIClkFreqHz()

This function returns the system clock frequency.

Format
 uint32_t R_BSP_GetIClkFreqHz(void);

Parameters
None

Return Values
System clock frequency specified by the r_bsp

Properties
Prototyped in r_bsp_common.h.

Description
This function returns the system clock frequency. For example, when the system clock is set to 120 MHz in

r_bsp_config_h and the r_bsp has completed to specify the clock setting, then even if the user changed the
system clock frequency to 60 MHz, the return value is '60000000'.

Example
uint32_t fclk_freq;

fclk_freq = R_BSP_GetFclkFreqHz();

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 31 of 46

5.6 R_BSP_ChangeICLKClockSetting ()

This function changes the ICLK clock value by changing its clock source and division. This function is also
used to change PCLKB clock value.

Format

Parameters
mode

Specifies clock resources supplied to the system clock (see 4.9.1)

iclkdiv, pclkdiv

The division ratio for the clock source is specified by the following constants defined in the
e_clock_div_t structure.

• DIV_BY_1 : 1/1.
• DIV_BY_2 : 1/2
• DIV_BY_4 : 1/4
• DIV_BY_8 : 1/8
• DIV_BY_16 : 1/16
• DIV_BY_32 : 1/32
• DIV_BY_64 : 1/64
• DIV_BY_128 : 1/128

Return Values
BSP_OK when changing setting is done.

BSP_ERROR1 The specified clock is not oscillating.

BSP_ERROR3 An unsupported state transition was specified. Refer to the user's manual.

BSP_ARG_ERROR An invalid argument was input.

Properties
Prototyped in r_bsp_common.h.

Description
This function changes the clock source of the system clock to the specified clock and division value.

e_bsp_err_t R_BSP_ChangeICLKClockSetting(e_clock_mode_t mode, e_clock_div_t
iclkdiv, e_clock_div_t pclkdiv);

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 32 of 46

Example

Special Note:
This function is available only when the macro definition

(BSP_CFG_CHANGE_CLOCK_SETTING_API_FUNCTIONS) is set to 0.

e_bsp_err_t err;

/* Disable register protection */
R_BSP_RegisterProtectDisable(BSP_REG_PROTECT_CGC);

/* Start clock operation(HOCO) with division */

err = R_BSP_ChangeICLKClockSetting(HOCO, DIV_BY_2, DIV_BY_8);

if (err != BSP_OK)
{
/* NG processing */
}

/* Enable register protection */
R_BSP_RegisterProtectEnable(BSP_REG_PROTECT_CGC);

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 33 of 46

5.7 R_BSP_SoftwareDelay()

Delay the specified duration in units and return.

Format

Parameters
delay

units

The number of ‘units’ to delay.

The ‘base’ for the units specified. See Section4.8.3.

Return Values
BSP_OK /* BSP_OK if delay executed. */

BSP_ ERROR1 /* BSP_ERROR1 if delay/units combination resulted in overflow/underflow. */

Properties
Prototyped in r_bsp_common.h.

Description
This is function that may be called for all MCU targets to implement a specific wait time.

The actual delay time will take overhead into account. The overhead changes under the influence of the
compiler, operating frequency and ROM cache. When the operating frequency is low, or the specified
duration in units of microsecond level, please note that the error becomes large.

e_bsp_err_t R_BSP_SoftwareDelay(uint32_t delay, e_bsp_delay_units_t units);

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 34 of 46

Example

e_bsp_err_t ret;

/* Delay 5 seconds before returning */
ret = R_BSP_SoftwareDelay(5, BSP_DELAY_SECS);

if (BSP_OK != ret)
{

/* NG processing */
}

/* Delay 5 milliseconds before returning */
ret = R_BSP_SoftwareDelay(5, BSP_DELAY_MILLISECS);

if (BSP_OK != ret)
{

/* NG processing */
}

/* Delay 50 microseconds before returning */
ret = R_BSP_SoftwareDelay(50, BSP_DELAY_MICROSECS);

if (BSP_OK != ret)
{

/* NG processing */
}

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 35 of 46

5.8 R_BSP_DelayCycle ()

This function is an assembly language wait loop.

Format

Parameters
wait_cycle

The number of CPU cycle to delay.

Return Values
None

Properties
Prototype declared in r_bsp_common.h.

Description
This is function that may be called for all MCU targets to implement a specific wait time.

Example

void R BSP DelayCycle(uint32 t wait cycle);

R BSP DelayCycle(100);

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 36 of 46

5.9 R_BSP_GetVersion ()

This function gets the version of the BSP.

Format

Parameters
None

Return Values
32-bit integer representing the BSP version

(((uint32_t)R_BSP_VERSION_MAJOR) << 16) | ((uint32_t)R_BSP_VERSION_MINOR)

Properties
Prototype declared in r_bsp_common.h.

Description
This function can get the compiler's current BSP version information as an integer value.

Example

uint32 t R BSP GetVersion (void);

uint32_t ver_num;
ver num = R BSP GetVersion();

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 37 of 46

5.10 R_BSP_RegisterProtectEnable ()

This function sets write protection to the specified register.

Format

Parameters
regs_to_protect

Register type to set write protection (see 4.8.4)

Return Values
None

Properties
Prototype declared in r_bsp_common.h.

Description
This function allows the user to set write protection for a specific register. It is limited to specific registers

that can be specified. (See 4.8.4)

Example

void R_BSP_RegisterProtectEnable (bsp_reg_protect_t regs_to_protect);

bsp_reg_protect_t regs_to_protect = BSP_REG_PROTECT_ECC;

/* set BSP_REG_PROTECT_ECC registers (ECCMODE, ECC1STSEN, and ECCOAD) to disable
writing */
R BSP RegisterProtectEnable (regs to protect);

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 38 of 46

5.11 R_BSP_RegisterProtectDisable ()

This function disables write protection for selected registers.

Format

Parameters
regs_to_unprotect

Register type to release write protection.

Return Values
None

Properties
Prototype declared in r_bsp_common.h.

Description
This function can remove write protection to a specific register. Only certain registers can be specified.

Please check bsp_reg_protect_t (enum structure) in r_bsp_common.h to see which registers can be
specified.

Example

void R_BSP_RegisterProtectEnable (bsp_reg_protect_t regs_to_protect);

bsp_reg_protect_t regs_to_unprotect = BSP_REG_PROTECT_ECC;

/* set BSP_REG_PROTECT_ECC registers (ECCMODE, ECC1STSEN, and ECCOAD) to disable
writing */
R BSP RegisterProtectDisable (regs to unprotect);

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 39 of 46

6. Project setup
This section explains how to add r_bsp to a project.

6.1 How to add the BSP

This module must be added for each project in which it is used. Renesas recommends using the Smart
Configurator.

(1) Adding the BSP using the Smart Configurator on e2 studio
Use the Smart Configurator on e2 studio to automatically add BSP to user projects. For details, refer to
the RISC-V Smart Configurator User Guide: e2 studio (R20AN0730) for details.

(2) Adding the BSP using Smart Configurator in IAREW

You can add the BSP to your project automatically by using the standalone version of Smart
Configurator. Refer to the application note RISC-V Smart Configurator User’s Guide: IAREW, SEGGER
Embedded Studio (R20AN0731) for details.

(3) Adding the BSP using Smart Configurator in SEGGER

You can add the BSP to your project automatically by using the standalone version of Smart
Configurator. Refer to the application note RISC-V Smart Configurator User’s Guide: IAREW, SEGGER
Embedded Studio (R20AN0731) for details.

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 40 of 46

6.2 Adding the BSP to a Project in e2 studio

How to add the BSP to a project in e2 studio is described below.

6.2.1 Adding the BSP Using Smart Configurator in e2 studio
This explanation uses e2 studio (2024-01).

1. Create a new project in e2 studio.
When creating your project, check the box next to “Use Smart Configurator” to launch Smart
Configurator.

2. Follow the procedure described in 6.1, How to add the BSP, to add the BSP to your project
in e2 studio.

3. Right-click the project and click “Properties.”

4. On the Tool Settings tab, select Compiler → Includes.

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 41 of 46

5. BSP include paths generated by Smart Configurator have been specified.

8. Right-click the project and click “Build Project.”

9. Right-click the project and click “Debug” → “Configure Debugger.”

10. Click “Renesas GDB Hardware Debugging” → “Project Name Hardware Debug.”

11. On the Debugger tab, set “Debug hardware:” to “E2 Lite (RISC-V).”

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 42 of 46

13. On the Connection Settings tab, set “Power Target From The Emulator (MAX 200mA)” to “Yes.”

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 43 of 46

7. Appendix

7.1 Confirmed Operating Environment

The environment in which the operation of the module has been confirmed is shown below.

Table 7.1 Confirmed Operating Environment (Rev. 1.00)

Item Description
Integrated development
environment

Renesas Electronics e2 studio (2024-01)
IAR Systems IAR Embedded Workbench for Renesas (V3.30.1)

C compiler LLVM for RISC-V 17.0.0.202310
Module revision Rev.1.00
Board used FPB-R9A02G021 WS

(Product type: RTK9FPG021S000W0BJ)

Table 7.2 Confirmed Operating Environment (Rev. 1.10)

Item Description
Integrated development
environment

Renesas Electronics e2 studio (2024-04)
IAR Systems IAR Embedded Workbench for Renesas (V3.30.1)
SEGGER Embedded Studio 8.10

C compiler LLVM for RISC-V 17.0.2.202401
Module revision Rev.1.10
Board used FPB-R9A02G021

(Product type: RTK9FPG021S00001BJ)

Table 7.3 Confirmed Operating Environment (Rev. 1.20)

Item Description
Integrated development
environment

Renesas Electronics e2 studio (2024-07)
IAR Systems IAR Embedded Workbench for Renesas (V3.30.1)
SEGGER Embedded Studio 8.10b

C compiler LLVM for RISC-V 17.0.2.202403
Module revision Rev.1.20
Board used FPB-R9A02G021

(Product type: RTK9FPG021S00001BJ)

Table 7.4 Confirmed Operating Environment (Rev. 1.21)

Item Description
Integrated development
environment

Renesas Electronics e2 studio (2024-07)
IAR Systems IAR Embedded Workbench for Renesas (V3.30.1)
SEGGER Embedded Studio 8.10b

C compiler LLVM for RISC-V 17.0.2.202403
Module revision Rev.1.21
Board used FPB-R9A02G021

(Product type: RTK9FPG021S00001BJ)

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 44 of 46

Table 7.5 Confirmed Operating Environment (Rev. 1.22)

Item Description
Integrated development
environment

Renesas Electronics e2 studio (2024-10)
IAR Systems IAR Embedded Workbench for Renesas (V3.30.1)
SEGGER Embedded Studio 8.12a

C compiler LLVM for RISC-V 17.0.2.202407
Module revision Rev.1.22
Board used FPB-R9A02G021

(Product type: RTK9FPG021S00001BJ)

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 45 of 46

7.2 Note on the updated macro define name from Rev1.10 to Rev1.20

The Macro definition name change from BSP_MCU_SERIES_ASSPEASY to BSP_MCU_SERIES_GPMCU.
in mcu_info.h.
The Macro definition name change from BSP_CFG_RTC_ALM_VECT to
BSP_CFG_RTC_ALM_OR_PRD_VECT in mcu_mapped_interrupts.c.
The Macro definition name change from ICU_EVENT_RTC_ALM to ICU_EVENT_RTC_ALM_OR_PRD in
mcu_mapped_interrupts.h.

7.3 Note on the protect for user bricks the device from Rev1.10 to Rev1.20

In v1.20 and later versions, the [startup select] setting doesn’t affect option settings (mcu_option_settings.c file).
Add the lock for OCD/Serial Programmer ID Setting, Access Window Block Address Setting and User ID Setting.

7.4 Note on the Prefetch buffer enable register (PFBER) from Rev1.10 to Rev1.20

In v1.20 and later versions, add prefetch buffer function and the BSP_CFG_PFB_ENABLE default value is
1(Enable).

RISC-V MCU Board Support Package Module Using Software Integration System

R01AN7177EJ0123 Rev.1.23
Dec.12.25

Page 46 of 46

Revision History

Rev.

Date

Description
Page Summary

1.00 Nov.27.23 — Initial release
1.10 Mar.29.24 1,8,10,11,

22,36,40
Added support for SEGGER and IAR compiler.

1.20 June.28.24 6,7,10,13,1
5
,16,22,25,2
6
,29

Support machine timer and machine software interrupt

_ - Add Enable OCD/Serial Programmer ID Setting to allow
GUI setting of OCD/Serial Programmer ID Setting
Register value.

- Add Enable Access Window Block Address Setting to
GUI setting of Access Window Star/End Block Address.

- Add Enable User ID setting to allow GUI setting of User
ID Setting Register n value.

- - In start.s initialize_vect called before bsp_init_systems

6 Update structure of generate folder:
- Remove file generate vecttbl.h.
- Change the name vecttbl.c to mcu_option_settings.c.
- Add new file r_bsp_machine_timer.c,

r_bsp_machine_timer.h support machine timer.

17 Change all API endwith DISABLE to FUNTIONS:
- BSP_CFG_FLRPROTAC_REG_DISABLE
- BSP_CFG_STARTUP_DISABLE
- BSP_CFG_CLOCK_OPERATION_API_FUNCTIONS_DI

SABLE
- BSP_CFG_CHANGE_CLOCK_SETTING_API_FUNCTI

ONS_DISABLE
- BSP_CFG_INTERRUPT_SETTING_DISABLE

 1.21 July.26.24 7 Update structure of folder add machine_timer_aux.s file

14 Update table 3.4 Machine Timer Definitions

28 Modify setting GUI for machine timer

1.22 Sep.30.24 7 Update structure of folder to add machine_timer_aux_iar.s
file

44 Add Confirmed Operating Environment information for
Rev. 1.22

1.23 Dec.12.25 Change the disclaimer

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor
devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on
The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external
reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states
of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power
reaches the level at which resetting is specified.

3. Input of signal during power-off state
Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal
elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins
Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity

of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal
become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the
input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses
Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in
terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic

values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a
system-evaluation test for the given product.

© 2024 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, ifrequired.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home
electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.
(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.
(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Terminology
	1.2 File Structure

	2. Functionality
	2.1 MCU Information
	2.2 Initial Settings
	2.3 Global Interrupts
	2.4 Clock Settings
	2.5 Stack Area
	2.6 ID Code
	2.7 Option-Setting Memory
	2.8 CPU Functionality
	2.9 Disabling Startup

	3. Configuration
	3.1 Choosing a Platform
	3.2 Platform Configuration

	4. API Information
	4.1 Hardware Requirements
	4.2 Hardware Resource Requirements
	4.3 Software Requirements
	4.4 Supported Toolchains
	4.5 Interrupt Vectors Used
	4.6 Header Files
	4.7 Integer Types
	4.8 API Typedef
	4.9 Return Values

	5. API Functions
	5.1 Overview
	5.2 R_BSP_StartClock()
	5.3 API for Machine Timer
	5.4 R_BSP_StopClock()
	5.5 R_BSP_GetIClkFreqHz()
	5.6 R_BSP_ChangeICLKClockSetting ()
	5.7 R_BSP_SoftwareDelay()
	5.8 R_BSP_DelayCycle ()
	5.9 R_BSP_GetVersion ()
	5.10 R_BSP_RegisterProtectEnable ()
	5.11 R_BSP_RegisterProtectDisable ()

	6. Project setup
	6.1 How to add the BSP
	6.2 Adding the BSP to a Project in e2 studio

	7. Appendix
	7.1 Confirmed Operating Environment
	7.2 Note on the updated macro define name from Rev1.10 to Rev1.20
	7.3 Note on the protect for user bricks the device from Rev1.10 to Rev1.20
	7.4 Note on the Prefetch buffer enable register (PFBER) from Rev1.10 to Rev1.20

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

