LENESAS Application Note

RISC-V MCU
Board Support Package Module Using Software Integration System

Summary

The Renesas board support package module (r_bsp) forms the foundation of any project that uses Software
Integration System. The r_bsp is easily configurable and provides all the code needed to get the MCU and
the board from reset to the main() function. This document describes r_bsp conventions and explains how to
use it, configure it, and create a BSP for your own board.

Device on Which Operation Confirmed
RISC-V MCU

Supported Compilers

e LLVM C/C++ Compiler for Renesas RISC-V
¢ |AR C/C++ Compiler for Renesas RISC-V
o SEGGER Compiler

For details of the confirmed operation of each compiler, refer to 7.1, Confirmed Operating Environment.

RO1AN7177EJ0123 Rev.1.23 Page 1 of 46
Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

Contents
LI O 1V =Y oSSR 5
L =T 111 o (o Lo PSSO PPPPPP PPN 5
(I 1 T=) U ox (1 = 6
N U1 o 1 o F= 1 11 8
2.1 MCU INfOrmMation........ccooi i 8
2.2 INIIALE SEHINGS ..ottt e e e e e et e e e e e e e e e e et e e e e e e e e e nnneees 9
2.3 Global INTEITUPLES .. .ottt e e e e e e s ae e arasaaarrraebarrraraaaae 11
P O (o o3 (o= 1115V [PP PERPP TP 11
R TS Y = o3 QY = PP PEERR P 11
A T | I o o = SRR 11
2.7 OptioN-SettiNg MEIMOIY ..ottt e e e e e e e e e e e e e e e e e e e reeeeas 11
2.8 CPU FUNCONAIIY ...ttt a e ae e eesaeesbrasraeraeeeaaees 12
2.9 DiSADIING STAMTUDeeeeeiiiiie ettt e e et e e e e e e e e e e e e e e e 12
2.9.1 Settings t0 DiSAbIE StArTUPciiii e rrraaaaas 12
3. CONfIQUIALION ... 13
3.1 ChooSIiNG @ PIatfOrmM ... e e e 13
3.2 Platform ConfiQUrationuuiiiiiiii et 13
3.2.1 MCU Product Part Number INfOrmMationoooiiiiiiiiiie et e e 13
3.2.2 Data Flash ACCESS RESIIICLONeeiiiiiiii ettt e et e e e e e e e e e e e e e e e e e nnnnneeeeaaeeeanns 13
3.2.3 Prefetch Buffer Enable ReGISTEr...... .o e 14
3.24 Machine Timer OPEratioNo e ittt e e e e e ettt e e e e e e e e eeeeeaeeeeaaannnseeeeaaeeeaaannnneeeeaaeeaanns 14
K S T O [Tor QR T=Y 1 1] o TR UOPPPRPRR 15
3.2.6 OPLiON-SENG MEMOTY......ooiiiiiiiiiiiee ettt et e e e e e e st eeeeae e e s e sabraaeeaaeesaaassnsaeeeaaeeeaansnssnneaaaeeeans 17
3.2.7 Security ID Codes for On-Chip DEbUGGINGceeiiuiiiiiiiiiie ettt e e e e e e e e snneeas 17
3.2.8 StArtUP API FUNCLONS.......ceiiiiii ettt e e e e e e e e e e et eeeeeeeseeaaabeeeeeaeeesansssbenreaaeeeanns 17
NS IS 14 F= 1y 0o 1T 18] =1 (o] PR 18
3.2.10 API FUNCioNs diSabIE USAQEueiiiiiiiiiiiiiie ettt e e e e e e e et e e e e e e e e nnneeeeaeaeeeanns 18
3.2.11 Parameter ChECK USAQEooe it e ettt ettt e e e e e e et e e e e e e e e et aeeeeeesaesanabaeeeaaeeeannsssnneeaaeeeanns 19
3.2.12 Callback FUNCion at Warm STartooooiiiiiiiie ettt e et e e et e e s e e e nneeas 19

RO1AN7177EJ0123 Rev.1.23 Page 2 of 46
Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

O N e I [(o T4 g F= L[] o PP PSP P PPPPPPPPPPPRN 20
I o F= T o 1V T2 T =T o [1Y g =T o 20
4.2 Hardware Resource ReQUINEMENTSuciiiiiiiiiiiiiiie e ee et e e et s e e e e e ee e e e e e e e eneaana s 20
4.3 Software ReQUIFEMENTSooiiiiiiiiiiiieiiiii ettt eee ettt aeaeeeeesaeessennnsnennnnnnnes 20
4.4 Supported TOOIChAINS...........ooiiiiiiiieeeeeeeeeeeeeee ettt ee e aeeaaeessesssasesesssesssessssssensernnes 20
4.5 INterrupt VECIOrs USEd.......oooiiiiiiiiiiiiiiiiiiee ettt ettt seessensssennnnnnnnes 20
4.6 HEAAET FIlES ...ttt e e e e e e e e e e e e e e e e n e e e e e e e e e 20
A 01 (=Y =T 1Y o= 20
T Y o I Y o= T L= PP PP OPPPPPPPPPPPN 21
R T I @4 o et Q2 (=101] (o= SRR 21
A O (o et QI 11V o [SRRSO 21
4.8.3 UNit Of SOfWEAIE DEIAY........eeiiiiiiiee ittt e et e e e ettt e e e e tte e e e e bt e e e e snteeeeesteeeeaneeeeennnes 21
4.8.4 Register Write ProteCtion UNit..... ... i e e e e e e e e e e e e e 22
4.9 REUIMN VAIUES ...t eaanes 23
e I B =ty (o] i O oo [PSRRI 23
410 COUE SHZE ...ttt et e e e 24
4.11 “for,” and “While,” STatEMENTSooiieiii e e e e 25
ST N o I U o (o] o PP PEPPP TR 26
ST O AT 1= PP UR T PPPRPR 26
I S = S S - T (04 [o o] TSRO 27
5.3 APLTOr Maching TIMEr ...ttt e e e e e e e st e e e e e e e e e ansaeeeeeeas 28
54 R BSP_StOPCIOCK() ceeieeei e 29
55 R_BSP_GEHCIKFIEAHZ(). . eeieeeeiiieeiiee ettt ettt e et e e e ene e e e snbee e enneeeanneeas 30
5.6 R _BSP_ChangelCLKCIOCKSEHING ()-.uuueeeeieaiiaeeiiieieee ettt 31
5.7 R _BSP_SoftwareDelay()ccooeeieeiiieiii e 33
5.8 R_BSP_DEIAYCYCIE () «oeeeiiiiiiitiiiieeee ettt e e e e e e e e 35
5.9 R_BSP_GEIVEISION () coeieiiiiiiiiieiiie ettt ettt e e e e e e e e e e 36
5.10 R_BSP_RegisterProteCtENADIE () ... 37
RO1AN7177EJ0123 Rev.1.23 Page 3 of 46

Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

5.11 R_BSP_RegisterProtectDiSable ().......ccccoeiieiiiiiiiieei e 38
G (o] 1= ==Y 0] o R 39
6.1 HOW t0 @dd the BSP ... 39
6.2 Adding the BSP to a Project in €2 SHUGIO v 40
6.2.1 Adding the BSP Using Smart Configurator in €2 SHUTIO oo 40
Y Y o) 011 L | 43
7.1 Confirmed Operating ENVIFONMENToiiiiiiiiii e 43
7.2 Note on the updated macro define name from Rev1.10t0 Rev1.20......ccccooiiiiiiiiiiiiiiieieieeeeeeeee, 44
7.3 Note on the protect for user bricks the device from Rev1.10to Rev1.20cccoooeiiiiiiiiiiinnnnennns 44
7.4 Note on the Prefetch buffer enable register (PFBER) from Rev1.10to Rev1.20.......................... 44
RNV ET Lo T 153 o] Y 45
RO1AN7177EJ0123 Rev.1.23 Page 4 of 46

Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

1. Overview

Before running a user application there are a series of operations that must be performed to get the MCU
set up properly. These operations, and their number, will vary depending on the MCU being used. Common
examples include: setting up stack(s), initializing memory, configuring the CPU and peripheral hardware
clock, and setting up port pins. The steps described in this document must be followed to configure the
above items. The r_bsp is provided to make configuration easier.

The r_bsp provides all the elements needed to get the MCU from reset to the start of the user application’s
main() function. The r_bsp also provides common functionality that is needed by many applications.
Examples of this include functions to start and stop the clocks and to get the frequency of the CPU
and peripheral hardware clock.

The necessary steps after a reset are the same for every application, but this does not mean that the
settings will be the same. For example, stack sizes and the clocks used will vary depending on the
application. The r_bsp configuration options are contained in the config header file for easy access.

1.1 __Terminology

Term Description
Platform The user’s development board. Used interchangeably with “board.”
BSP Abbreviation of “board support package.”
RO1AN7177EJ0123 Rev.1.23 Page 5 of 46

Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

1.2 File Structure

The r_bsp file structure is shown below in Figure 1.1. The r_bsp folder contains three folders and two files.

The doc folder contains r_bsp documentation.
The board folder contains the generic folders.
There is a generic folder for each supported MCU.
Figure 1.2 shows the contents of the genericfolder.

The mcu folder contains one folder for each supported MCU. The mcu folder also contains the all folder,
which contains source code common to all MCUs supported by the r_bsp.

The platform.h file allows you to choose your current development platform. It is used to select all the
header files from the board and mcu folders required for your project. This is discussed in more detail in later
sections.

r_bsp

¥ OF v l l
doc board mcu
platform.h readme.txt

Ler\:j L generic_r9a02g021 r9a02g021

>

all

The readme.txt file provides a summary of information about the r_bsp.
Figure 1.1 r_bsp File Structure

RO1AN7177EJ0123 Rev.1.23 Page 6 of 46
Dec.12.25 RENESAS

RISC-V MCU

Board Support Package Module Using Software Integration System

board

L generic_r3a02g021

[hawinit.c

[hawinit.h

H+{ r_bsph

—-I 1_bsp_config reference h

| _bsp_init.c

—-| r_bsp_interrupt_config_reference.h

—-| exit.s

—-| exit_iar.s

-| r_bsp_common.c

-b| r_bsp_common.h

+| _bsp_common_iar.s

—-| r_bsp_common_llvm.5

->| _bsp_common_segger.s

mecu
¥
J ™ > N
all roa02g021
-’| cstartup.s -—| mcu_clocks.c

—-| mcu_clocks.h

—-| mcu_info.h

-u| mcu_mapped_interrupts.c

-b| mcu_mapped_interrupts.h

—-| mcu_mapped_interrupts_private h |

—-| mcu_aption_settings.c

o Y -,

—>| 1_bsp_common_compilerh

-.| startup.s

—5| start.s

—-| 1_bsp_machine_timer.c

—-| 1_bsp_machine_timer.h

—-| machine_timer_aux.s

—-| machine_timer_aux_iar.s

Figure 1.2 Structure of Generic Folder

—* | register_access

- ™
| iccriscy

iodefine.h

>

> livm

L{ iogefine.n

>

—* | segger

iodefine.h

ROAD2G021.svd

RO1AN7177EJ0123 Rev.1.23

Dec.12.25

RENESAS

Page 7 of 46

RISC-V MCU Board Support Package Module Using Software Integration System

2. Functionality
This section describes in detail the functionality provided by the r_bsp.

2.1 MCU Information

One of the main benefits of the r_bsp is that it lets you define the global system settings only once, in a
single place in the project, and those settings are then shared throughout. This information is defined in the
r_bsp and can then be used by the SIS modules and user code. SIS modules use this information to
automatically configure their code to match your system configuration. If the r_bsp did not provide this
information, you would have to specify system information to each SIS module separately.

Configuring the r_bsp is discussed in Section 3. The r_bsp uses this configuration information to set macro
definitions in mcu_info.h. An example of an MCU-specific macro in mcu_info.h is shown below.

Definition Description
BSP_MCU_FAMILY_RISCV_MCU Which MCU Family this MCU belongs to.
BSP_MCU_GROUP_G021 Which MCU group this MCU belongs to.
BSP_LOCO_HZ Each of these macros corresponds to one of the MCU’s clocks.
BSP_SOSC HZ Each macro defines the corresponding clock’s frequency in
BSP MOCO HZ hertz (Hz). For example, BSP_LOCO_HZ defines the LOCO

B B frequency in Hz, and BSP_SUB_CLOCK_HZ defines the

subsystem clock frequency in Hz.

RO1AN7177EJ0123 Rev.1.23 Page 8 of 46
Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

2.2 Initial Settings

The _PowerON_Reset function is set as the reset vector when using the LLVM compiler or SEGGER
compiler. The_iar_program_start function is set as the reset vector for the MCU when using the IAR compiler.
The _PowerON_Reset function (the startup function when using LLVM or SEGGER compiler), or function
iar_program_start function (the startup function) performs various types of initialization processing to get the
MCU ready to use the user application. The flowcharts below show startup function operations and CPU and
peripheral hardware clock settings.

(Startup function)

‘ Initialize global pointer ‘

— | . o Sets the clock division ratio and multiplicationfactor.
‘ Inifialize the stack and frame pointers ‘ e Stops clocks that are not used as the clocksource.

| o Transitions to the selected clock.
IMachine trap-handler settings
initialize_vect();

Make CPU and peripheral hardware clock settings
mcu_clock_setup()

Initialize the data segment

Register protection settings*1
bsp_register_protect_open()

Interrupt event setting
bsp_mapped_interrupt_open();

Initialize output pins
output_ports_configure();

Initialize interrupts
Interrupts_configure();

Initialize peripheral modules*!
peripheral_modules_enable();

‘ Make data flash control register settings™” ‘

‘ Jump to main function ‘

§

Note: 1. The operation differs according to the settings in r_bsp_config.h.

Figure 2.1 Flowchart of Startup Function

RO1AN7177EJ0123 Rev.1.23 Page 9 of 46
Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

(System clock settings*' >
mcu_clock_setup()
[
Release register write protection
I
Set operation mode to HIGH Speed mode
I
Select system clock source

I

Make clock activation settings (enable / disable)
I

Set operating mode according to user setting

[
Make System clock / Peripheral Module Clock B
clock division settings
[

Make CLKOUT setting
I
Make subsystem clock supply mode settings
I
Set register write protection
I

C Return)

Note: 1. The operation differs according to the settings in r_bsp_config.h.

Figure 2.2 Flowchart of CPU and Peripheral Hardware Clock Settings

RO1AN7177EJ0123 Rev.1.23
Dec.12.25 RENESAS

Page 10 of 46

RISC-V MCU Board Support Package Module Using Software Integration System

2.3 Global Interrupts

Interrupts are disabled after a reset. Enable interrupts as needed. Use the
BSP_CFG_INTERRUPT_SETTING_API_FUNCTIONS function to specifies the interrupt vector for each
interrupt event.

2.4 Clock Settings

CPU and peripheral hardware clock settings are made during r_bsp initialization. Clocks are configured
based upon the user’s settings in the r_bsp_config.h file (see 3.2.5). Clock settings are applied before the C
runtime environment is initialized. When a clock is selected, the code in the r_bsp implements the required
delays to allow the selected clock to stabilize.

2.5 Stack Area

The stacks are configured and initialized by the startup function after a reset.

2.6 ID Code

RISC-V MCUs have an ID code stored in ROM that protects the MCU’s memory from being read through a
debugger, or in serial boot mode, in an attempt to extract the firmware from the device. ID code resides in
the on-chip debug security ID setting memory. The value of the security ID is specified in r_bsp_config.h in
the LLVM environment. In the IAR and the SEGGER environment they are specified in
mcu_option_settings.c. For details of ID code options, refer to the Option-Setting Memory and chapters is
mentioned on-chip debug mode in your MCU’s hardware manual.

2.7 __Option-Setting Memory

The Option-Setting Memory are located in the flash memory of RISC-V MCUs. The Option-Setting Memory
are referenced automatically after power-on or a reset, and the specified function settings are applied.
Option-Setting Memory can be used to specify settings for the watchdog timer or voltage detection circuit, for
example. Option-Setting Memory setting values (macro) are specified in r_bsp_config.h, its value is
depended on setting of user in Smart Configurator. Option-Setting Memory is set in mcu_option_settings.c
using macros that is defined in r_bsp_config.h.

RO1AN7177EJ0123 Rev.1.23 Page 11 of 46
Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

2.8 CPU Functionality

API functions are provided for making settings related to CPU functionality such as enabling and disabling
interrupts. Refer to Section 5 for details.

2.9 Disabling Startup

To disable startup, manually delete the startup assembler code. The names of the files containing the
startup assembler code for each environment are as follows:

2.71 LLVM compiler: start.s
2.7.2 IAR compiler: cstartup.s
2.7.3 SEGGER compiler: startup.s

Additionally, you will need to add your own startup code.

2.9.1Settings to Disable Startup
Make settings as described below to disable BSP startup processing.

(1) Configuration File Settings

Specify your own startup processing in r_bsp_config.h. Some BSP API functions and peripheral SIS
modules reference the contents of r_bsp_config.h. Note that some SIS modules may not function correctly if
there are discrepancies between the details of the startup processing you created and the contents of
r_bsp_config.h.

The BSP information referenced by the peripheral SIS modules is generated based on r_bsp_config.h, so it
is necessary to ensure that the details of the startup processing you created and the contents of
r_bsp_config.h match.

Figure 2.3 illustrates configuration file settings.

User s startup processing BSP

r_bsp_config.h

Peripheral module
| \\ ~ Reference

Clock settings, etc.‘/ Make sure the settings MCIock settings, etc.
are the same.

mcu_info.h

Clock settings, etc. Peripheral module

Reference

Figure 2.3 Configuration File Settings

RO1AN7177EJ0123 Rev.1.23 Page 12 of 46
Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

3. Configuration

Two header files are used to configure the r_bsp. One is used to choose the platform, and the other to
configure the chosen platform.

3.1 Choosing a Platform

The r_bsp provides board support packages for a variety of MCUs. Choosing the platform to be used is
accomplished by modifying the platform.h file located in the r_bsp folder.

3.2 Platform Configuration

After selecting a platform, you must configure it. The file r_bsp_config.h contains the platform settings. Each
platform has a configuration file called r_bsp_config_reference.h, which is located in the platform’s board
folder.

The contents of each r_bsp_config.h file differs according to the MCU associated with it, but many of the
options are the same. The following sections provide details on these configuration options. Note that each
macro starts with the common prefix “BSP_CFG_,” which makes them easy to search for and identify.

When using Smart Configurator, the configuration options can be set on the software component
configuration screen. Setting values are automatically reflected in r_bsp_config.h when adding modules to a
user project.

3.2.1 MCU Product Part Number Information

The MCU'’s product part number information makes it possible to provide a variety of information about the
MCU along with the r_bsp. Information related to the MCU’s product part number is defined at the beginning
of the configuration file. All of these macros start with “BSP_CFG_MCU_PART.” Some MCUs have more
product part number-related information than others, but the standard definitions are listed below.

Table 3.1 Product Part Number Definitions

Definition Value Description

BSP_CFG_MCU_PART_ROM_TYPE | See comments above | Defines the device type.

BSP_CFG_MCU_PART_PACKAGE #define in Defines the package type.
r_bsp_config.h.

3.2.2 Data Flash Access Restriction

RISC-V MCUs are provided with functionality to enable or disable access to the data flash. After a reset the
r_bsp makes data flash access settings using the data flash access restriction functionality configuration
macros in r_bsp_config.h.

Table 3.2 Data Flash Access Restriction Definitions

Definition Value Description
BSP_CFG_DATA_FLASH_ACCESS_ENABLE | 0: Access to the data flash Data flash memory area
memory area is disabled. access control
1 : Access to the data flash Data flash control
memory area is enabled. register(DFLCTL)
DFLEN
RO1AN7177EJ0123 Rev.1.23 Page 13 of 46

Dec.12.25 RENESAS

RISC-V MCU

Board Support Package Module Using Software Integration System

3.2.3 Prefetch Buffer Enable Register

RISC-V MCUs are provided with functionality to enable or disable access to the prefetch buffer. Flash
memory provides an instruction prefetch function to accelerate code execution. The prefetch function can be

used by enabling the prefetch buffer.

Table 3.3 Prefetch buffer enable Definitions

Definition Value Description
BSP_CFG_PFB_ENABLE 0 : Prefetch buffer is Prefetch buffer
disabled. enable register
1 : Prefetch buffer is (PFBER)
enabled.

3.2.4 Machine Timer Operation

The machine timer includes 64-bit counter, comparator, and software interrupt registers. It generates
machine timer interrupts (MTIP) and machine software interrupts (MSIP) for the Core Local Interrupt
Controller (CLIC). When the counter matches the comparator, an MTIP is triggered.

Table 3.4 Machine Timer Definitions

1000000000 : ns

Definition Value Description
BSP_CFG_MTIME_CLOCK_SOURCE 0 : Machine timer clock. Clock source
1: CPU clock. select
BSP_CFG_MACHINE_TIMER 0 : Machine timer is Machine Timer
disable. enable register
1 : Machine timer is
enable.
BSP_CFG_MACHINE_TIMER_MODE 0 : One-shot. Machine timer
1 : Periodic. mode
BSP_CFG_MTIME_INTERVAL_VALUE This is the interval value of Specifies the
machine timer setting interval
timer.
BSP_CFG_MTIME_INTERVAL_UNIT 1 : count Interval value
1000 :ms unit
1000000 1us

BSP_CFG_MTIP_PRIORITY
BSP_CFG_MSIP_PRIORITY

OxFF: Level 0 (high)
OxEF: Level 1
OxDF: Level 2
OxCF: Level 3
OxBF: Level 4
OxAF: Level 5
Ox9F: Level 6
Ox8F: Level 7

Ox7F: Level 8

Ox6F: Level 9

Ox5F: Level 10
0x4F: Level 11
Ox3F: Level 12
Ox2F: Level 13
Ox1F: Level 14
O0xOF: Level 15 (low)

Machine timer
interrupt priority
(Level 0 to
Level15)

BSP_CFG_SOFTWARE_INTERRUPT 0 : Disable. Enable machine
1:Enable. software interrupt
RO1AN7177EJ0123 Rev.1.23 Page 14 of 46
Dec.12.25 RENESAS

RISC-V MCU

Board Support Package Module Using Software Integration System

3.2.5 Clock Settings

The available clocks vary among RISC-V MCUs, but the same basic concepts apply to all. After a reset the
r_bsp initializes the MCU clocks using the clock configuration macros in r_bsp_config.h.

Table 3.5 Clock Setting Definitions

Definition Value Description

BSP_CFG_ICLK DIV 0:x1M1 System Clock Division Control
1:x1/2 Register (SCKDIVCR)
2:x1/4 System Clock (ICLK) Select
3:x1/8 (ICK[2:0])
4:x1/16
5:x1/32
6:x1/64

BSP_CFG_PCLKB_DIV 0:x1/1 System Clock Division Control
1:x1/2 Register (SCKDIVCR)
2:x1/4 Peripheral Module Clock B (PCLKB)
3:x1/8 Select (PCKBJ[2:0])
4:x1/16
5:x1/32
6:x1/64

BSP_CFG_CLOCK_SOURCE_SEL 0 : HOCO System Clock Source Control
1:MOCO Register (SCKSCR)
2:L0OCO Clock Source Select (CKSEL[2:0])
3 : External clock input
(EXTAL)
4 : Sub-clockoscillator
(SOSC)

BSP_CFG_EXTCLK_OPERATION

: Stop
: Operate

External Clock Input Control Register
(MOSCCR)

BSP_CFG_SUBCLK_OPERATION

: Stop
: Operate

Sub-Clock Oscillator Control Register
(SOSCCR).

BSP_CFG_SUBCLK_MODE

: Normal Mode

: Low Power Mode 1
: Low Power Mode 2
: Low Power Mode 3

Sub-Clock Oscillator Mode Control
Register (SOMCR)

BSP_CFG_SUBCLK_MARGIN

: Normal Current
: Lower Margin check

Sub-Clock Oscillator Margin Check
Register (SOMRG)

BSP_CFG_LOCO_OPERATION

: Stop
: Operate

Low-Speed On-Chip Oscillator
Control Register (LOCOCR)

BSP_CFG_HOCO_OPERATION

: Stop
: Operate

High-Speed On-Chip Oscillator
Control Register (HOCOCR)

BSP_CFG_MOCO_OPERATION

: Stop
: Operate

Middle-Speed On-Chip Oscillator
Control Register (MOCOCR)

BSP_CFG_CLKOUT_SEL

:HOCO

:MOCO

:LOCO

: External clock input
(EXTAL)

4 : Sub-clockoscillator
(SOSC)

0
1
0
1
0
1
2
3
0
1
2 : Upper Margin check
0
1
0
1
0
1
0
1
2
3

Clock Out Control Register (CKOCR)
Clock Out Source Select
(CKOSEL[2:0])

RO1AN7177EJ0123 Rev.1.23
Dec.12.25

RENESAS

Page 15 of 46

RISC-V MCU

Board Support Package Module Using Software Integration System

oscillator clock (LOCO)

Definition Value Description
BSP_CFG_CLKOUT_DIV 0:x1/1 Clock Out Control Register (CKOCR)
1:x1/2 Clock Output Frequency Division
2:x1/4 Ratio (CKODIV[2:0])
3:x1/8
4:x1/16
5:x1/32
6:x1/64
7 :x1/128
BSP_CFG_CLKOUT_ENABLE 0 : Disable Clock Out Control Register (CKOCR)
1 :Enable Clock Out Enable (CKOEN)
BSP_CFG_SUBCLK_SEL 0 : Subsystem clock Subsystem Clock Supply Mode
(SOSC) Control Register (OSMCR)
1 : Low-speed on-chip Selection of the operating clock for

the realtime clock, 32-bit interval
timer,serial interfaces UARTAQ and
UARTAA1, remote control signal
receiver (WUTMMCKO)

BSP_CFG_EXTAL_HZ

Frequency (Hz)

Input clock frequency in Hz (EXTAL).

BSP_CFG_EXTCLK_INPUT JTAG_HZ

Frequency (Hz)

Input clock frequency in Hz (JTAG).

BSP_CFG_OPERATION_MODE

0: High-speed mode
1: Middle-speed mode
2: Subosc-speed mode
3: Low-speed mode

Operation Power Mode Select
(OPCCR register and SOPCCR
register).

RO1AN7177EJ0123 Rev.1.23
Dec.12.25

RENESAS

Page 16 of 46

RISC-V MCU

Board Support Package Module Using Software Integration System

3.2.6 Option-Setting Memory

You can select the behavior after a reset by setting Option-Setting Memory. For example, you can specify
settings for the watchdog timer and voltage detection circuit.

Option-Setting Memory setting values (macro) are specified in r_bsp_config.h, its value is depended on
setting of user in Smart Configurator. Option-Setting Memory is set in mcu_option_settings.c using macros

that is defined in r_bsp_config.h.

Table 3.6 Option-Setting Memory Definitions

Definition

Value

Description

BSP_CFG_OFS0_REG_VALUE
BSP_CFG_OFS1_REG_VALUE

Option-Setting Memory value

Specifies the setting value of the
corresponding Option-Setting
Memory.

3.2.7 Security ID Codes for On-Chip Debugging
You can protect against third parties reading the contents memory by setting Security ID Codes for On-Chip

Debugging.

The Security ID Codes for On-Chip Debugging setting values(macro) are defined r_bsp_config.h, its value
is depended on setting of user in Smart Configurator. The Security ID Codes for On-Chip Debugging is set in

mcu_option_settings.c using macros that is defined in r_bsp_config.h.

Table 3.7 Security ID Codes for On-Chip Debugging Definitions

BSP_CFG_OCD_SERIAL_ID_VALUE_2

BSP_CFG_OCD_SERIAL_ID_VALUE_3

programing value

Definition Value Description
BSP_CFG_OCD_SERIAL_ID_VALUE 0 ID Codes for On-Chip | Specifies the setting value of the
BSP_CFG_OCD_SERIAL_ID_VALUE_1 Debugging / Serial corresponding Security ID Codes for

On-Chip Debugging or serial
programming.

3.2.8 Startup API Functions

Table 3.8 Startup macro Definitions

startup program.(e.g.
Using user startup

Definition Value Description
BSP_CFG_STARTUP_FUNCTIONS | 0 : Enable BSP Start up select.
startup program.
1 : Disable BSP

program.)
RO1AN7177EJ0123 Rev.1.23 Page 17 of 46
Dec.12.25 RENESAS

RISC-V MCU

Board Support Package Module Using Software Integration System

3.2.9 Smart Configurator

Table 3.9 Smart Configurator Definitions

Definition

Value

Description

BSP_CFG_CONFIGURATOR_SE
LECT

0 = Smart Configurator not
used

1 = Smart Configurator used

Defines whether or not Smart
Configurator is used in the current
project. When
BSP_CFG_CONFIGURATOR_SELE
CT =1, the Smart Configurator
initialization function is called.

BSP_CFG_CONFIGURATOR_VE
RSION

See comments above
#define in r_bsp_config.h.

Defines the version of Smart
Configurator you are using.

3.2.10 API Functions disable Usage

Table 3.10 API Functions disable Usage Definitions

Definition

Value

Description

BSP_CFG_CLOCK_OPERATION
_API_FUNCTIONS

BSP_CFG_CHANGE_CLOCK_S
ETTING_API_FUNCTIONS

BSP_CFG_INTERRUPT_SETTIN
G_API_FUNCTIONS

0 = API Functions enable
1 = API Functions disable

Defines whether API
Functions(R_BSP_StartClock,
R_BSP_StopClock) is disabled.
When
BSP_CFG_CLOCK_OPERATION_A
PlI_FUNCTIONS =1,

cannot use API Functions, but can
reduce the memory size.

Defines whether API
Functions(R_BSP_ChangeClockSetti

ng) is disabled.

When
BSP_CFG_CHANGE_CLOCK_SETT
ING_API_FUNCTIONS =

1, cannot use API Functions, but can
reduce the memory size.

Defines whether API
Functions(bsp_mapped_interrupt_op

en) is disabled.

When
BSP_CFG_INTERRUPT_SETTING_
API_FUNCTIONS = 1, cannot use API
Functions, but can reduce the
memory size.

RO1AN7177EJ0123 Rev.1.23
Dec.12.25

RENESAS

Page 18 of 46

RISC-V MCU

Board Support Package Module Using Software Integration System

3.2.11 Parameter check Usage

Table 3.11 Parameter check Usage Definitions

Definition

Value

Description

BSP_CFG_PARAM_CHECKING_
ENABLE

0 = Parameter check is
invalid
1 = Parameter check is valid

Defines whether parameter check is
enabled.

Returns an error for incorrect setting
when switching System clock source.

3.2.12 Callback Function at Warm Start

Table 3.12 Warm Start Callback Function Definitions

Definition

Value

Description

BSP_CFG_USER_WARM_STAR
T_CALLBACK_PRE_INITC_ENA
BLED

0 = User function is notcalled
before C runtime
environment is initialized

1 = User function is called
before C runtime
environment is initialized

Defines whether or not a user
function is called before the Cruntime
environment is initialized.

BSP_CFG_USER_WARM_STAR
T_PRE_C_FUNCTION

Function called before C
runtime environment is
initialized

Defines the user function called
before the C runtime environment is
initialized.

BSP_CFG_USER_WARM_STAR
T_CALLBACK_POST_INITC_EN
ABLED

0 = User function is notcalled
after C runtime environment
is initialized

1 = User function is called
after C runtime environment
is initialized

Defines whether or not a user
function is called after the C runtime
environment is initialized.

BSP_CFG_USER_WARM_STAR
T_POST_C_FUNCTION

Function called after C
runtime environment is
initialized

Defines the user function called after
the C runtime environment is
initialized.

RO1AN7177EJ0123 Rev.1.23
Dec.12.25

RENESAS

Page 19 of 46

RISC-V MCU Board Support Package Module Using Software Integration System

4. API Information

The driver API conforms to Renesas APl naming conventions.

4.1 Hardware Requirements

Not applicable.

4.2 Hardware Resource Requirements

Not applicable.

4.3 Software Requirements

None

4.4 Supported Toolchains

The operation of this SIS module has been confirmed with the toolchains listed in 7.1, Confirmed Operating
Environment.

4.5 Interrupt Vectors Used

This SIS module does not use interrupt vectors.

4.6 Header Files

All API calls are included by incorporating the file platform.h, which is supplied with the driver’s project code.

4.7 _Integer Types

This project uses ANSI C99 “Exact width integer types” in order to make the code clearer and more
portable. These types are defined in stdint.h.

RO1AN7177EJ0123 Rev.1.23 Page 20 of 46
Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

4.8 API Typedef

4.8.1 Clock Resource

This typedef defines commands that can be used with the R_BSP_StartClock(), R_BSP_StopClock() and
R_BSP_ChangelCLKClockSetting() functions.

Available resources vary from device to device.
See the user’s manual or r_bsp_common.h.

/* clock mode */
typedef enum

{

HOCO, // High-speed on-chip oscillator
MOCO, // Middle-speed on-chip oscillator
LOCO, // Low-speed on-chip oscillator
EXTAL, // External clock

SOSC, // Subsystem clock

} e clock mode t;

4.8.2 Clock Divider
This typedef defines commands that can be used with the R_BSP_ChangelCLKClockSetting() functions.

Available setting of divider varies from device to device.

See the user’s manual or r_bsp_common.h.

typedef enum

{
DIV BY 1,
DIV BY 2,
DIV BY 4,
DIV BY 8,
DIV BY 16,
DIV BY 32,
DIV BY 64,
DIV BY 128,

} e clock div t;

4.8.3 Unit of Software Delay
This typedef defines units which can be used with the R_BSP_SortwareDelay function.
/* Available delay units. */

typedef enum
{

BSP_DELAY SECS = 1, /* Requested delay amount is in seconds. */
BSP _DELAY MILLISECS = 1000, /* Requested delay amount is in milliseconds. */
BSP_DELAY MICROSECS = 1000000 /* Requested delay amount is in microseconds. */

} e bsp delay units t;

RO1AN7177EJ0123 Rev.1.23 Page 21 of 46

Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

4.8.4 Register Write Protection Unit

This typedef defines the types of registers that can be used by the R_BSP_RegisterProtectEnable() and
R_BSP_RegisterProtectDisable() functions.typedef enum.

typedef enum
{
/* PRCO
Enables writing to the registers related to the clock generation circuit:
SCKDIVCR, SCKSCR, HOCOCR, MOCOCR, CKOCR, HOCOUTCR, LOCOCR, LPOPT, OSMCR, MOSCCR,
SOSCCR, SOMCR, SOMRG, MEMWAIT, LOCOUTCR, MOCOUTCR */
BSP_REG_PROTECT CGC = 0,

/* PRC1
Enables writing to the registers related to low power mode: SBYCR, OPCCR,
SYOCDCR, PSMCR, SNZCR, SNZEDCRO, SNZEDCR1l, SNZREQCR0O, SOPCCR, SYOCDCR, PSMCR */
BSP_REG_PROTECT LPM,

/* PRC3
Enables writing to the registers related to the LVD: LVDICR1l, LVD1SR, LVD2CR1,
LVD2SR, LVCMPCR, LVDLVLR, LVDICRO, LVD2CRO */
BSP_REG PROTECT LVD,

/* SRAM.SRAMPRCR
Enables writing to the PARIOAD register. =)
BSP_REG_PROTECT SRAM,

/* SRAM.ECCPRCR
Enables writing to the ECCMODE, ECC1lSTSEN, andECCOAD registers. w5
BSP_REG_PROTECT ECC,

/* SRAM.ECCPRCR2
Enables writing to the ECCETST register. w5
BSP_REG_PROTECT ECC2,

/* PWPR
Enable write to the PmnPFS register */
BSP_REG PROTECT PMNPFS,

/* This entry is used for getting the number of enum items. This must be the last
entry. DO NOT REMOVE THIS ENTRY!*/

BSP_REG_PROTECT TOTAL ITEMS
} e bsp reg protect t;

RO1AN7177EJ0123 Rev.1.23 Page 22 of 46
Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

4.9 Return Values

4.9.1 Error Codes

This typedef defines the error codes that can be returned by the R_BSP_StartClock(), R_BSP_StopClock(),
R_BSP_ChangelCLKClockSetting() and R_BSP_SoftwareDelay() functions.

typedef enum

{
BSP_OK,

BSP_ARG_ERROR,
BSP ERRORI,
BSP ERROR2,
BSP_ERROR3

} e bsp err t;

Member Description

BSP_OK Success.

BSP_ARG_ERROR An invalid argument was input.

BSP_ERROR1 The specified clock is not oscillating or stopping.
The error occurrence conditions differ depending on the function.

BSP_ERROR2 When switching between clock resources, a clock resource that is not
oscillating may have been switched to.

BSP_ERROR3 An unsupported state transition was specified. Refer to the user's manual.

RO1AN7177EJ0123 Rev.1.23 Page 23 of 46

Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

4.9.2 Code Size

The sizes od ROM, RAM and maximum stack usage associated with this module are listed below.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in Section 3, Configuration.

The values in the table below are confirmed under the following conditions:

Module revision: r_bspv1.10

Compiler version: LLVM C/C++ Compiler for RISC-V (17.0.0.202310)
IAR C/C++ Compiler for RISC-V (V3.30.1)
SEGGER Compiler (V8.10)

Configuration options: Default settings

ROM, RAM, and Stack Code Sizes (R9A02G021)

API Clock

Compiler function *1 setting *2
. Default 2450 0 208
LLVM compiler | D'saP'e All enable 2646 0 208
*3 Enable Default 4924 0 208
All enable 5140 0 208
Disable Default 1604 16 112
AR compiler All enable 1752 16 112
Enable Default 3146 16 112
All enable 3294 16 112
. Default 1706 14 160
SEGGER Disable All enable 1782 14 160
compiler Default 2436 14 160
Enable All enable 2498 14 160

Note 1:

Use macro definition BSP_CFG_XXXX_API_FUNCTIONS in r_bsp_config.h to enable /
disable.The above measurement results are the values when all macro definitions are enabled or
disabled.

Note 2:
The default is the initial value of Smart Configurator.
Only valid for high-speed on-chip oscillator clock.
Note 3:

If measure the stack size using the LLVM compiler, add “-fstack-size-section” to the Compiler options.

RO1AN7177EJ0123 Rev.1.23 Page 24 of 46
Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

4.9.3 “for,” and “while,” Statements

This module uses “for” statements (loop processing) for wait processing to allow register values to take
effect, for example. These instances of loop processing are indicated by the comment keyword
“WAIT_LOOP.” Therefore, if you wish to incorporate fail-safe processing into the instances of loop
processing, you can locate them in the source code by searching for the keyword “WAIT_LOOP.”

A code sample is shown below:

for statement:
/* WAIT LOOP */
for (w_count = 0U; w _count < 2U; w_count++)
{
R_BSP NOP () ;
}

RO1AN7177EJ0123 Rev.1.23 Page 25 of 46
Dec.12.25 RENESAS

RISC-V MCU

Board Support Package Module Using Software Integration System

5. API Functions

5.1 Overview

The module uses the following functions:

Function

Description

R_BSP_StartClock

Starts oscillation of the specified clock.

R_BSP_StopClock

Stops oscillation of the specified clock.

R_BSP_GetIClkFreqHz

Returns the system clock frequency.

R_BSP_SoftwareDelay

Delays the specified duration.

R_BSP_ChangelCLKClockSetting

Switch CPU/peripheral hardware clock (ICLK) clock source.

R_BSP_GetVersion

Get the current version of the r_bsp.

R_BSP_RegisterProtectEnable

Enables write protection for selected registers.

R_BSP_RegisterProtectDisable

Disables write protection for selected registers.

R_BSP_DelayCycle

Delay the specified duration in CPU cycle.

machine_timer_start

Enable machine timer interrupt.

machine_timer_stop

Disable machine timer interrupt.

trigger_software_interrupt

Trigger software interrupt.

clear_software_interrupt

Clear software interrupt

RO1AN7177EJ0123 Rev.1.23
Dec.12.25

Page 26 of 46

RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

5.2 R BSP StartClock()

This function starts oscillation of the specified clock.

Format
e bsp err t R BSP StartClock (e clock mode t mode) ;

Parameters
mode

Specifies the clock on which oscillation will start (see 4.9.1).

Return Values
BSP_OK [* The specified clock is started. */

BSP_ARG_ERROR /* The specified clock is incorrect. */

Properties
Prototyped in r_bsp_common.h.

Description
This function starts oscillation of the specified clock.

To use the oscillated clock as the system clock, the CSKSCR register must be changed by separately
calling "5.5 R_BSP_ChangelCLKClockSetting".

Example
e bsp err t err;

/* Disable register protection */
R BSP RegisterProtectDisable (BSP_REG PROTECT CGC);

/* Start High-speed on-chip oscillator */
err = R BSP StartClock (HOCO) ;

if (err != BSP OK)
{
/* NG processing */

}

/* Enable register protection */
R BSP RegisterProtectEnable (BSP REG PROTECT CGC);

Special Notes:
This function is only available if the macro definition
(BSP_CFG_CLOCK_OPERATION_API_FUNCTIONS) is set to 0.

RO1AN7177EJ0123 Rev.1.23 Page 27 of 46
Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

5.3 API for Machine Timer

This function describe how to use machine timer. The functions user can use:

machine_timer_start(); machine_timer_stop(); trigger_software_interrupt(); clear_software_interrupt();

Format

void machine timer start (void);

void machine timer stop (void):;

void trigger software interrupt (void);
void clear software interrupt (void):;

GUI
Need to enable machine timer

Property Value
v & Configurations
~ @ Machine timer setting
Machine timer 7| Enable
Clock source select Machine timer clock
Timer mode One-shot
Interval value 100
Interval value unit count
mtip priority Level 15 (low)
Machine software interrupt (msip) 7| Enable
msip priority Level 15 (low)
Description

The functions trigger_software_interrupt() and machine_timer_start() like enable interrupt, while
machine_timer_stop() and clear_software_interrupt() disable them.

To trigger the 2nd software interrupt, just call trigger_software_interrupt() again.
Example

<main.c>:

#include "r_smc_entry.h"

volatile int mtip flag = 0;

volatile int msip flag = 0;

void main (void)

{
trigger software interrupt();
machine timer start();
while (1) ;

}

When use machine interrupt

<r cg inthandler.c>
#include "r smc_entry.h"
extern volatile int msip flag;

void INT ACLINT MSIP(void)
{
/* Start user code for INT ACLINT MSIP. Do not edit comment generated here */
msip flag ++;
/* End user code. Do not edit comment generated here */

}
When use software interrupt

<r_cg inthandler.c>

#include

"r smc_entry.h"

/* Start user code */

extern volatile int msip flag;
/* End user code */ B

void INT ACLINT MSIP (void)
{
/* Start user code for INT ACLINT MSIP. Do not edit comment generated here
*/ msip flag ++;
/* End user code. Do not edit comment generated here */

RO1AN7177EJ0123 Rev.1.23 Page 28 of 45
Dec.12.25

RISC-V MCU Board Support Package Module Using Software Integration System

5.4 R BSP StopClock()

This function stops oscillation of the specified clock. However, operation cannot be guaranteed if oscillation
of a clock used as the CPU and peripheral hardware clock is stopped.

Format
e bsp err t R BSP StopClock(e clock mode t mode) ;

Parameters
mode

Specifies the clock on which oscillation will stop (see 4.9.1).

Return Values
BSP_OK /* The specified clock is stopped. */

BSP_ERROR2 /* The specified clock can not be stopped because it is ICLK clock's source. */
BSP_ARG_ERROR /* The specified clock is incorrect. */

Properties
Prototyped in r_bsp_common.h.

Description
This function stops oscillation of the specified clock.

Example
e bsp err t err;

/* Disable register protection */
R BSP RegisterProtectDisable (BSP_REG PROTECT CGC);

/* Stop High-speed on-chip oscillator */
err = R BSP StopClock (HOCO) ;

if (err != BSP OK)
{
/* NG processing */

}

/* Enable register protection */
R BSP RegisterProtectEnable (BSP REG PROTECT CGC);

Special Notes:
This function is only available if the macro definition
(BSP_CFG_CLOCK_OPERATION_API_FUNCTIONS) is set to 0.

RO1AN7177EJ0123 Rev.1.23 Page 29 of 46
Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

5.5 R BSP GetIClkFreqHz()

This function returns the system clock frequency.

Format
uint32 t R BSP GetIClkFregHz (void) ;

Parameters
None

Return Values
System clock frequency specified by the r_bsp

Properties
Prototyped in r_bsp_common.h.

Description

This function returns the system clock frequency. For example, when the system clock is set to 120 MHz in
r_bsp_config_h and the r_bsp has completed to specify the clock setting, then even if the user changed the
system clock frequency to 60 MHz, the return value is '60000000'.

Example
uint32 t fclk freqg;

fclk freq = R BSP GetFclkFregHz () ;

RO1AN7177EJ0123 Rev.1.23 Page 30 of 46
Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

5.6 R_BSP_ChangelCLKClockSetting ()

This function changes the ICLK clock value by changing its clock source and division. This function is also
used to change PCLKB clock value.

Format
e bsp err t R BSP ChangeICLKClockSetting(e clock mode t mode, e clock div t
iclkdiv, e clock div t pclkdiv);

Parameters
mode

Specifies clock resources supplied to the system clock (see 4.9.1)
iclkdiv, pclkdiv

The division ratio for the clock source is specified by the following constants defined in the
e _clock div_t structure.

e DIV.BY 1:1/1.

e DIV.BY 2:1/2

e DIV.BY 4:1/4

e DIV_BY 8:1/8

« DIV_BY_16:1/16
e DIV_BY 32:1/32
o DIV _BY 64 :1/64
e DIV_BY_128:1/128

Return Values

BSP_OK when changing setting is done.
BSP_ERROR1 The specified clock is not oscillating.
BSP_ERROR3 An unsupported state transition was specified. Refer to the user's manual.

BSP_ARG_ERROR An invalid argument was input.

Properties
Prototyped in r_bsp_common.h.

Description
This function changes the clock source of the system clock to the specified clock and division value.

RO1AN7177EJ0123 Rev.1.23 Page 31 of 46
Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

Example
e bsp err t err;

/* Disable register protection */
R BSP RegisterProtectDisable (BSP_REG PROTECT CGC);

/* Start clock operation (HOCO) with division */
err = R BSP ChangeICLKClockSetting (HOCO, DIV _BY 2, DIV _BY 8);

if (err != BSP OK)
{
/* NG processing */

}

/* Enable register protection */
R BSP RegisterProtectEnable (BSP REG PROTECT CGC) ;

Special Note:
This function is available only when the macro definition
(BSP_CFG_CHANGE_CLOCK_SETTING_API_FUNCTIONS) is set to 0.

RO1AN7177EJ0123 Rev.1.23 Page 32 of 46
Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

5.7 R BSP SoftwareDelay()

Delay the specified duration in units andreturn.

Format
e bsp err t R BSP SoftwareDelay(uint32 t delay, e bsp delay units t units);

Parameters
delay

The number of ‘units’ to delay.
units

The ‘base’ for the units specified. See Section4.8.3.

Return Values

BSP_OK /* BSP_OK if delay executed. */
BSP_ERROR1 /* BSP_ERRORH1 if delay/units combination resulted in overflow/underflow. */
Properties

Prototyped in r_bsp_common.h.

Description
This is function that may be called for all MCU targets to implement a specific wait time.

The actual delay time will take overhead into account. The overhead changes under the influence of the
compiler, operating frequency and ROM cache. When the operating frequency is low, or the specified
duration in units of microsecond level, please note that the error becomes large.

RO1AN7177EJ0123 Rev.1.23 Page 33 of 46
Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

TExampIe

e bsp err t ret;

/* Delay 5 seconds before returning */
ret = R BSP SoftwareDelay (5, BSP DELAY SECS);

if (BSP_OK != ret)
{

/* NG processing */
}

/* Delay 5 milliseconds before returning */
ret = R BSP SoftwareDelay (5, BSP DELAY MILLISECS) ;

if (BSP_OK != ret)
{
/* NG processing */

}

/* Delay 50 microseconds before returning */
ret = R BSP SoftwareDelay (50, BSP DELAY MICROSECS) ;

if (BSP OK != ret)
{

/* NG processing */

RO1AN7177EJ0123 Rev.1.23 Page 34 of 46
Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

5.8 R BSP DelayCycle ()

This function is an assembly language wait loop.

Format
void R BSP DelayCycle (uint32 t wait cycle);

Parameters
wait_cycle

The number of CPU cycle to delay.

Return Values
None

Properties
Prototype declared in r_bsp_common.h.

Description
This is function that may be called for all MCU targets to implement a specific wait time.

Example
R BSP DelayCycle (100) ;

RO1AN7177EJ0123 Rev.1.23 Page 35 of 46
Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System
5.9 R BSP GetVersion ()

This function gets the version of the BSP.

Format
uint32 t R BSP GetVersion (void):;

Parameters
None

Return Values
32-bit integer representing the BSP version

((uint32_t)R_BSP_VERSION_MAJOR) << 16) | ((uint32_t)R_BSP_VERSION_MINOR)

Properties
Prototype declared in r_bsp_common.h.

Description
This function can get the compiler's current BSP version information as an integer value.

Example
uint32 t ver num;
ver num = R BSP GetVersion () ;

RO1AN7177EJ0123 Rev.1.23

Page 36 of 46
Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

5.10 R BSP RegisterProtectEnable ()

This function sets write protection to the specifiedregister.

Format
void R BSP RegisterProtectEnable (bsp reg protect t regs to protect);

Parameters
regs_to_protect

Register type to set write protection (see 4.8.4)

Return Values
None

Properties
Prototype declared in r_bsp_common.h.

Description
This function allows the user to set write protection for a specific register. It is limited to specific registers
that can be specified. (See 4.8.4)

Example
bsp reg protect t regs to protect = BSP REG PROTECT ECC;

/* set BSP_REG PROTECT ECC registers (ECCMODE, ECCI1STSEN, and ECCOAD) to disable
writing */
R BSP RegisterProtectEnable (regs to protect);

RO1AN7177EJ0123 Rev.1.23 Page 37 of 46
Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

5.11 R BSP RegisterProtectDisable ()

This function disables write protection for selected registers.

Format
void R BSP RegisterProtectEnable (bsp reg protect t regs to protect);

Parameters
regs_to_unprotect

Register type to release write protection.

Return Values
None

Properties
Prototype declared in r_bsp_common.h.

Description
This function can remove write protection to a specific register. Only certain registers can be specified.

Please check bsp_reg_protect_t (enum structure) in r_bsp_common.h to see which registers can be
specified.

Example
bsp reg protect t regs to unprotect = BSP _REG PROTECT ECC;

/* set BSP REG PROTECT ECC registers (ECCMODE, ECCI1STSEN, and ECCOAD) to disable
writing */
R BSP RegisterProtectDisable (regs to unprotect);

RO1AN7177EJ0123 Rev.1.23 Page 38 of 46
Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

6. Project setup

This section explains how to add r_bsp to a project.

6.1 How to add the BSP

This module must be added for each project in which it is used. Renesas recommends using the Smart
Configurator.

(1) Adding the BSP using the Smart Configurator on e? studio
Use the Smart Configurator on e2 studio to automatically add BSP to user projects. For details, refer to
the RISC-V Smart Configurator User Guide: e? studio (R20AN0730) for details.

(2) Adding the BSP using Smart Configurator in IAREW
You can add the BSP to your project automatically by using the standalone version of Smart
Configurator. Refer to the application note RISC-V Smart Configurator User’s Guide: IAREW, SEGGER
Embedded Studio (R20AN0731) for details.

(3) Adding the BSP using Smart Configurator in SEGGER
You can add the BSP to your project automatically by using the standalone version of Smart
Configurator. Refer to the application note RISC-V Smart Configurator User’s Guide: IAREW, SEGGER
Embedded Studio (R20AN0731) for details.

RO1AN7177EJ0123 Rev.1.23 Page 39 of 46
Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

6.2 Adding the BSP to a Project in e? studio

How to add the BSP to a project in e? studio is described below.
6.2.1 Adding the BSP Using Smart Configurator in e?studio
This explanation uses e? studio (2024-01).

1. Create a new project in e2 studio.

When creating your project, check the box next to “Use Smart Configurator” to launch Smart
Configurator.

LLVM for Renesas RISC-V —

Select Smart Configurator settings

Use Smart Configurator

The e2 studio peripheral smart configurator automatically generates programs (device drivers) for MCU
Eperipheral functions (clocks, timers, serial interfaces, A/D converters, DMA controllers, etc)) based on
isettings entered via a graphical user interface (GUI). Functions are provided as application programming
interfaces (APls) and are not limited to initialization of peripheral functions.

w
3
Software Components 3 C{‘\B
e T |,m. i ‘
: 1 Drivers g
. -
e =~
| = | B
\ -+
o
MCU Hardware
?) | g
C/' = Back E Mext > i Einish Cancel

2. Follow the procedure described in 6.1, How to add the BSP, to add the BSP to your project
in 2 studio.

3. Right-click the project and click “Properties.”

4. On the Tool Settings tab, select Compiler — Includes.

RO1AN7177EJ0123 Rev.1.23 Page 40 of 46
Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

5. BSP include paths generated by Smart Configurator have been specified.

< Properties for r01an7049_bsp

|type filter text | Settings =Y v d
Resource
Builders
v C/C++ Build Configuration: |HardwareDebug [Active] ~ | Manage Configurations...
Build Variables
Environment
Logging ¥ Tool settings | B Toolchain| B Device‘ # Build Steps Build Artifact‘ Binary Parsers | @ Error Parsers
Settings -
g & cru Include file directories {-1) #8858
Tool Chain Editor = .
(2 Optimization

C/C++ General
Project Natures
Project References
Refactoring History
Renesas QE
Run/Debug Settings
Task Tags
Validation

£ Debug
(& Warnings
~ B Library Generator
2 settings
v B Compiler
= Source
= Includes

"${workspace_loc:/${ProjName},

"Siworkspace
"S{workspace_loc:/${ProjNamel}/src/smc_gen/r_config)"

nc_gen/general}”

"${workspace_loc;/${ProjName}/src/smc_gen/r_pincfg}”
"${workspace_loc/${ProjName}/src/smec_gen/r_bsp}”

loc:/${ProjNamel/src/smc_gen)”

v 83 Assembler
source
2 Includes
~ 33 Linker
source
& Archives
Miscellaneous
Other
%5 Objcopy
& General
&3 Print Size
= General

Macro Defines (-D)

8a 3§ &

<

<

Restore Defaults Apply

® Apply and Close Cancel

8. Right-click the project and click “Build Project.”

9. Right-click the project and click “Debug” — “Configure Debugger.”

10. Click “Renesas GDB Hardware Debugging” — “Project Name Hardware Debug.”
11. On the Debugger tab, set “Debug hardware:” to “E2 Lite (RISC-V).”

RO1AN7177EJ0123 Rev.1.23
Dec.12.25

e Page 41 of 46
LENESAS

RISC-V MCU

Board Support Package Module Using Software Integration System

13. On the Connection Settings tab, set “Power Target From The Emulator (MAX 200mA)” to “Yes.”

«' Debug Configurations

Create, manage, and run configurations

CEHEeEXIBY-

|type filter text

CfC++ Application
C/C++ Remote Application
= EASE Script
GDB Hardware Debugging
[£] GDB Simulator Debugging (RHE50]
g Launch Group
v [£ Renesas GDB Hardware Debuggin
r01an7049_bsp HardwareDebug
[£] Renesas Simulator Debugging (RX,

Name: |r01an?049_bsp HardwareDebug

Main %5 Debugger]| ¥ Startup| &~ source| &I common

Debug hardware: |E2 Lite (RISCV) | Target Device: RIA02G021

GDB Settings Connection Settings Debug Tool Settings

~ Clock
Main Clock Source Internal
External Clock Input Frequency (MHz)
Permit Clock Source change on writing on-chip Flash Memory Yes

~ Connection with Target Board

Emulator (Auto)
Type JTAG
Speed (kHz) Auto
~ Power
Power Target From The Emulator (MAX 200ma) Yes
Power Target via User Interface
Supply Voltage (v) 33
~ Connection
ID Code (Bytes) FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Low Power Handling Yes

£ >
Revert Appl
Filter matched 9 of 11 items pply
@ Close

RO1AN7177EJ0123 Rev.1.23

Dec.12.25

RENESAS

Page 42 of 46

RISC-V MCU

Board Support Package Module Using Software Integration System

7. Appendix

7.1 Confirmed Operating Environment

The environment in which the operation of the module has been confirmed is shown below.

Table 7.1 Confirmed Operating Environment (Rev.1.00)

Item

Description

Integrated development
environment

Renesas Electronics e? studio (2024-01)
IAR Systems IAR Embedded Workbench for Renesas (V3.30.1)

C compiler LLVM for RISC-V 17.0.0.202310
Module revision Rev.1.00
Board used FPB-R9A02G021 WS

(Product type: RTKOFPG021S000WO0BJ)

Table 7.2 Confirmed Operating Environment (Rev.1.10)

Item

Description

Integrated development
environment

Renesas Electronics e? studio (2024-04)
IAR Systems IAR Embedded Workbench for Renesas (V3.30.1)
SEGGER Embedded Studio 8.10

C compiler LLVM for RISC-V 17.0.2.202401
Module revision Rev.1.10
Board used FPB-R9A02G021

(Product type: RTKOFPG021S00001BJ)

Table 7.3 Confirmed Operating Environment (Rev.1.20)

Item

Description

Integrated development
environment

Renesas Electronics e? studio (2024-07)
IAR Systems IAR Embedded Workbench for Renesas (V3.30.1)
SEGGER Embedded Studio 8.10b

C compiler LLVM for RISC-V 17.0.2.202403
Module revision Rev.1.20
Board used FPB-R9A02G021

(Product type: RTKOFPG021S00001BJ)

Table 7.4 Confirmed Operating Environment (Rev.1.21)

Item

Description

Integrated development
environment

Renesas Electronics e? studio (2024-07)
IAR Systems IAR Embedded Workbench for Renesas (V3.30.1)
SEGGER Embedded Studio 8.10b

C compiler LLVM for RISC-V 17.0.2.202403
Module revision Rev.1.21
Board used FPB-R9A02G021

(Product type: RTKOFPG021S00001BJ)

RO1AN7177EJ0123 Rev.1.23

Dec.12.25

e Page 43 of 46
LENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

Table 7.5 Confirmed Operating Environment (Rev.1.22)

Item Description

Integrated development Renesas Electronics e? studio (2024-10)

environment IAR Systems IAR Embedded Workbench for Renesas (V3.30.1)
SEGGER Embedded Studio 8.12a

C compiler LLVM for RISC-V 17.0.2.202407

Module revision Rev.1.22

Board used FPB-R9A02G021
(Product type: RTKOFPG021S00001BJ)

RO1AN7177EJ0123 Rev.1.23 Page 44 of 46
Dec.12.25 RENESAS

RISC-V MCU Board Support Package Module Using Software Integration System

7.2 Note on the updated macro define name from Rev1.10 to Rev1.20

The Macro definition name change from BSP_MCU_SERIES_ASSPEASY to BSP_MCU_SERIES_GPMCU.
in mcu_info.h.

The Macro definition name change from BSP_CFG_RTC_ALM_VECT to
BSP_CFG_RTC_ALM_OR_PRD_VECT in mcu_mapped_interrupts.c.

The Macro definition name change from ICU_EVENT_RTC_ALMto ICU_EVENT_RTC_ALM_OR_PRD in
mcu_mapped_interrupts.h.

7.3 Note on the protect for user bricks the device from Rev1.10 to Rev1.20

In v1.20 and later versions, the [startup select] setting doesn’t affect option settings (mcu_option_settings.c file).
Add the lock for OCD/Serial Programmer ID Setting, Access Window Block Address Setting and User ID Setting.

7.4 _Note on the Prefetch buffer enable register (PFBER) from Rev1.10 to Rev1.20

In v1.20 and later versions, add prefetch buffer function and the BSP_CFG_PFB_ENABLE default value is
1(Enable).

RO1AN7177EJ0123 Rev.1.23 Page 45 of 46
Dec.12.25 RENESAS

RISC-V MCU

Board Support Package Module Using Software Integration System

Revision History

Description
Rev. Date Page Summary
1.00 Nov.27.23 — Initial release
1.10 Mar.29.24 1,8,10,11, | Added support for SEGGER and IAR compiler.
22,36,40
1.20 June.28.24 6,7,10,13,1| Support machine timer and machine software interrupt
5
,16,22,25,2
6
,29
_ - Add Enable OCD/Serial Programmer ID Setting toallow
GUI setting of OCD/Serial Programmer ID Setting
Register value.
- Add Enable Access Window Block Address Setting to
GUI setting of Access Window Star/End Block Address.
- Add Enable User ID setting to allow GUI setting of User
ID Setting Register n value.
- - In start.s initialize_vect called before bsp_init_systems
6 Update structure of generate folder:
- Remove file generate vecttbl.h.
- Change the name vecttbl.c to mcu_option_settings.c.
- Add new file r_bsp_machine_timer.c,
r_bsp_machine_timer.h support machinetimer.
17 Change all API endwith DISABLE to FUNTIONS:
- BSP_CFG_FLRPROTAC_REG_DISABLE
- BSP_CFG_STARTUP_DISABLE
- BSP_CFG_CLOCK_OPERATION_API_FUNCTIONS_DI
SABLE
- BSP_CFG_CHANGE_CLOCK_SETTING_API_FUNCTI
ONS_DISABLE
- BSP_CFG_INTERRUPT_SETTING_DISABLE
1.21 July.26.24 7 Update structure of folder add machine_timer_aux.s file
14 Update table 3.4 Machine Timer Definitions
28 Modify setting GUI for machine timer
1.22 Sep.30.24 7 Update structure of folder to add machine_timer_aux_iar.s
file
44 Add Confirmed Operating Environment information for
Rev.1.22
1.23 Dec.12.25 Change the disclaimer
RO1AN7177EJ0123 Rev.1.23 Page 46 of 46
Dec.12.25 RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1.

Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LS| are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external
reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states
of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power

reaches the level at which resetting is specified.
Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or 1/0
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal
elements. Follow the guideline for input signal during power-off state as described in your product documentation.

Handling of unused pins
Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity
of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vi (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the
input level is fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Vix (Min.).

Prohibition of access to reserved addresses
Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in
terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a
system-evaluation test for the given product.

Notice

1.

10.

11.

12.

13.
14.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, ifrequired.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’'s manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties ortransactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of RenesasElectronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Corporate Headquarters

(Rev.5.0-1 October 2020)

Contact information

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
WWW.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Terminology
	1.2 File Structure

	2. Functionality
	2.1 MCU Information
	2.2 Initial Settings
	2.3 Global Interrupts
	2.4 Clock Settings
	2.5 Stack Area
	2.6 ID Code
	2.7 Option-Setting Memory
	2.8 CPU Functionality
	2.9 Disabling Startup

	3. Configuration
	3.1 Choosing a Platform
	3.2 Platform Configuration

	4. API Information
	4.1 Hardware Requirements
	4.2 Hardware Resource Requirements
	4.3 Software Requirements
	4.4 Supported Toolchains
	4.5 Interrupt Vectors Used
	4.6 Header Files
	4.7 Integer Types
	4.8 API Typedef
	4.9 Return Values

	5. API Functions
	5.1 Overview
	5.2 R_BSP_StartClock()
	5.3 API for Machine Timer
	5.4 R_BSP_StopClock()
	5.5 R_BSP_GetIClkFreqHz()
	5.6 R_BSP_ChangeICLKClockSetting ()
	5.7 R_BSP_SoftwareDelay()
	5.8 R_BSP_DelayCycle ()
	5.9 R_BSP_GetVersion ()
	5.10 R_BSP_RegisterProtectEnable ()
	5.11 R_BSP_RegisterProtectDisable ()

	6. Project setup
	6.1 How to add the BSP
	6.2 Adding the BSP to a Project in e2 studio

	7. Appendix
	7.1 Confirmed Operating Environment
	7.2 Note on the updated macro define name from Rev1.10 to Rev1.20
	7.3 Note on the protect for user bricks the device from Rev1.10 to Rev1.20
	7.4 Note on the Prefetch buffer enable register (PFBER) from Rev1.10 to Rev1.20

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

