

RH850/U2A

R01AN4593ED0140 Rev 1.40 Jun 13, 2022

Clock Supply

Introduction

This document describes the clock supply on the RH850/U2A microcontrollers.

It should be used in conjunction with the corresponding RH850/U2A series user's manual.

Target Device

This application note is intended to describe the clock supply on the RH850/U2A series.

In this document, the RH850/U2A-EVA device R7F702Z19AEDBG is employed to implement the example application. Still, the concept described in this document applies also to other members of the RH850/U2A series.

The RH850/U2A-EVA series has following variants:

RH850/U2A-EVA	FBGA-516	R7F702Z19AEDBG		
		R7F702Z19BFDBG		
RH850/U2A16	FBGA-516	R7F702300EBBG-C		
		R7F702300AEBBG-C		
	FBGA-373	R7F702300EBBB-C		
		R7F702300AEBBB-C		
	FBGA-292	R7F702300EABA-C		
		R7F702300AFABA-C		
RH850/U2A8	FBGA-373	R7F702301EBBA-C		
		R7F702301AEBBA-C		
	FBGA-292	R7F702301EABG-C		
		R7F702301 AFABG-C		
RH850/U2A6	FBGA-292	R7F702302FABB-C		
	HLQFP-176	R7F702302FAFK-C		
	FBGA-156	R7F702302FABD-C		
	HLQFP-144	R7F702302FAFM-C		

Disclaimer:

Renesas Electronics does not warrant the information included in this document. You are fully responsible for incorporation of these circuits, software, and information in the design of your equipment and system. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

Contents

Introduction1
Target Device1
Disclaimer:1
Contents2
Contents of Figures4
Contents of Tables5
1. Background
2. Reference Documents7
2.1 User's Manual7
3. General Features8
3.1 Clock Sources
3.2 Clocks and related Modules9
4. Detailed Description10
4.1 Clock Supply for CPU System11
4.2 Clocks for Peripherals11
4.3 Clocks for Clock Monitor14
4.4 Clocks for Interrupt Control and Handling15
4.5 Clock Output15
5. Configuration16
5.1 Configuration of Oscillators16
5.2 Configuration of CPU Clock17
5.3 Configuration of Peripheral Clocks18
5.3.1 Configuration of Dedicated Peripheral Clocks18
5.3.2 Configuration of the Clock Connection to Peripherals19
5.4 Configuration for Clock Output20
6. Clock Supply in Standby Mode22
6.1 Chip Standby Mode22
6.2 Module Standby Mode
6.3 Module Standby Mode in Chip Standby Mode23
7. Sample Software24
7.1 Clock Related Functions24
7.2 Setting Procedure of Clocks in Sample SW25
8. Summary27

Revision History	.1
General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit	
Products	.2

Contents of Figures

Figure 4-1 Block Diagram of Clock Controller	10
Figure 4-2 Clock Supply for Peripherals and Buses	13
Figure 4-3 Clock Supply of Clock Monitor (CLMA)	14
Figure 4-4 Clock Supply of Interrupt Controller	15
Figure 7-1 Setting Procedure of System Clock in Sample SW	25
Figure 7-2 Setting Procedure of Peripherals in Sample SW	26

Contents of Tables

Table 3-1 List of Clock Sources	8
Table 3-2 Clocks and related Modules	9
Table 5-1 Register Setting of Oscillators	16
Table 5-2 Selection of Main OSC frequency using Option Byte	16
Table 5-3 Clock Setting of CPU System	17
Table 5-4 Clock Setting of Dedicated Peripherals	18
Table 5-5 Clock Setting of Clock Output	20
Table 5-6 Pin Arrangement for Clock Output	20
Table 5-7 Configuration of Port Alternative Functions	20
Table 6-1 Clock Supply in Chip Standby Mode	22
Table 6-2 Module Standby Settings and Clock Supply of Peripherals in Chip Standby Mode	23
Table 7-1 Clock-Related Functions in Sample SW	24

1. Background

The clock control supervises the clock signals and ensures various start-ups and stabilization times.

The clock tree distributes the clock signals from generator to all the elements that need it, and provides a general overview of the clock generation and control system.

This document includes the related function blocks:

- Clock controller
- Stand-by controller
- Clock monitor
- Interrupt controller

2. Reference Documents

This chapter contains information about the device reference documentation.

2.1 User's Manual

The Hardware User's Manual provides information about the functional and electrical behavior of the device.

At the release time of this document the following manual version is available:

RH850/U2A User's Manual (Rev.1.10): R01UH0864EJ0110

3. General Features

The clock controller of RH850/U2A microcontrollers has the following features.

- 5 On-chip clock oscillators:
 - Main oscillator (Main OSC)
 - High speed internal oscillator (HS IntOSC)
 - Low speed internal oscillator (LS IntOSC)
 - Phase Locked Loop (PLL)
 - High voltage internal oscillator (HV IntOSC)
- Fine management of clock supply to peripheral modules
- On-chip clock monitor that detects clock anomalies when the Main oscillator, High speed internal oscillator, Low speed internal oscillator or PLL are in use
- Clock output (FOUT)

3.1 Clock Sources

The clocks generated from clock oscillators and output to CPU, Bus, and peripherals are clock sources. Table 3-1 shows the list of clock sources, and the typical working frequencies of them:

Clock Name	Symbol	Clock frequency (MHz)	Clock Source	
High voltage internal oscillator	CLK_HVIOSC	16		
Low speed internal oscillator	CLK_LSIOSC	0.24		
High speed internal oscillator	CLK_HSIOSC	200		
Main oscillator	CLK_MOSC	16, 20, 24, 40		
Internal OSC clock	CLK_IOSC	0.24	CLK_LSIOSC	
		200	CLK_HSIOSC	
PLL	CLK_PLL	800, 640, 480	CLK_MOSC	
	CLK_PLLO	800, 640, 480 or	CLK_PLL	
		400, 320, 240 ^{*2}		
System clock	CLK_SYS	0.24, 200	CLK_IOSC	
		800, 640, 480 or	CLK_PLLO	
		400, 320, 240		

Table 3-1 List of Clock Sources*1

Notes: 1. For detailed information please refer to Section 4.

 The output frequency of the PLL depends on the selection of clock divider. Please notice that within this output frequency, the maximal applicable CPU / system clock is 400, 320 or 240 MHz.

3.2 Clocks and related Modules

Table 3-2 shows the general information of clocks and related modules.

Table 3-2 Clocks and related Modules

Clock Symbol	ck Symbol Max. Frequency Operation / Communication / Count (MHz)				Register access / Bus
CLK_MOSC	40			DMON, RHSIF L1 (internal)	
CLK_HVIOSC	16			VMON	
CLK_CPU	400	320	240	INTC1, INTC2	
CLK_SBUS	200	160	80		System Bus
CLK_HBUS	100	80	80	INTIF, sDMAC, DTS, RHSIF L1, RHSIF L2	H-BUS, sDMAC, DTS, ENTB, RHSIF L1, RHSIF L2, FLXA, INTC2
CLK_UHSB	160	160	160	RSCFD RAM, PSI5S, GTM	
CLK_HSB	80	80	80	SFMA, MMCA, SCI3, FLXA, RSENT, PST5, PSI5S, CXPI, OSTM, TAUD, TAUJ0, TAUJ1, TSG3, TAPA, TPBA, ENCA, PIC, ECM, KCRC	SFMA, MMCA, MSPI, RLIN3, RSCFD, CXPI, OSTM, GTM, WDTB 0 to 3, SWDTA, KCRC, RSENT, PSI5, PSI5S
CLK_LSB	40	40	40	EINT, OTS, RHSIF L1 (internal), PWM-Diag	VMON, DMON, OTS, RTCA0, ADCJ1, WDTBA, RIIC, CLMA 0 to 9
CLK_LPS	10			LPS	
CLK_MSPI	80			MSPI	
CLK_RLIN3	80			RLIN3	
CLK_RCANOSC	40			RSCFD	
CLKA_WDT	0.24			WDTBA	
CLK_WDT	10			WDTB0 to 3, SWDTA	
CLKA_TAUJ	80			TAUJ2, TAUJ3	
CLKA_RTCA	2.5			RTCA	
CLKA_ADC	40			ADCJ2	ADCJ2
CLK_ADC	40			ADCJ0, ADCJ1	
CLK_ECMCNT	10			ECM (delay count)	

Note: The peripherals described in this table are related to different devices, please refer to HW User's Manual *R01UH0864EJxxxx Section 1.2 'Features'* for details.

4. Detailed Description

The clocks are generated from 5 oscillators, via a clock selector, the selected clocks are supplied to CPU system and peripherals.

The clock controller has 2 external quartz inputs for main oscillator. Meanwhile, selected clock sources can also be output via the 2 external outputs.

Figure 4-1 shows the block diagram of clock generation and general structure of the clock controller.

Notes: 1. Internal OSC clock (CLK_IOSC) is used as startup clock for System clock (CLK_SYS). The clock source of CLK_IOSC is normally CLK_HSIOSC. When the CLK_HSIOSC stops in chip standby mode, the clock source is switched to CLK_LSIOSC.

- 2. When the CLK_PLL is selected as CLK_SYS, the frequency can be configured by option byte and CLKD_PLLC register. For detailed information, please refer to *Section 4.1*.
- 3. For further information of oscillators, please refer to HW User's Manual *R01UH0864EJxxxx Section 13.4 'Clock Oscillators'.*

Figure 4-1 Block Diagram of Clock Controller

4.1 Clock Supply for CPU System

Referring to Table 3-2 and Figure 4-1, the system clock CLK_SYS is derived from PLL clock CLK_PLLO and CLK_IOSC.

The divided clock CLK_CPU provides the clock for CPU and RAM.

CLK_SBUS and CLK_HBUS provide the individual clock for system bus and AXI/AHB bus.

CLK_UHSB, CLK_HSB, CLK_LSB provide the clock for the peripherals without dedicated clock selectors.

The configuration of these clocks is described in Section 5.2 'Configuration of CPU Clock'.

4.2 Clocks for Peripherals

According to Figure 4-1, the clock sources or their divided clocks are connected to the clock selector control, in which the dedicated peripheral clocks are selected, divided and output as CLKA_<name> or CLK_<name> signals.

Meanwhile, other peripherals are supplied by CPU system clocks.

Figure 4-2 shows the clock supply of peripherals.

The clocks are supplied to peripherals as:

- Operation, communication or count clock;
- Register access or bus clock;
- Internal communication or delay clock.

Notes: 1. CLKA_LPS is identical to CLK_IOSC with the following exceptions. The LPS operation clock CLKA_LPS is supplied by CLK_HSIOSC/20, if HS IntOSC is stable.

- 2. This clock is used for ECM delay timer and clear mask timer logics.
- 3. For detailed information, please refer to HW User's Manual *R01UH0864EJxxxx Section* 29.5 *'Datalink Layer (L1)'*.
- 4. The peripherals described in this diagram depend on the device configuration, please refer to HW User's Manual *R01UH0864EJxxxx* for further information.

Figure 4-2 Clock Supply for Peripherals and Buses

4.3 Clocks for Clock Monitor

Clock monitor (CLMA) detects frequency abnormalities in the monitored clock, the clock supply to CLMA includes 3 types of clocks:

- Monitored clock CLMATMON
- Sampling clock CLMATSMP
- Register access clock PCLK

Figure 4-3 shows the mentioned clocks for CLMA.

CLMA9 monitors the CPU checker clock of PE3.

Figure 4-3 Clock Supply of Clock Monitor (CLMA)

4.4 Clocks for Interrupt Control and Handling

The RH850/U2A devices includes following interrupt units:

- INTC1, exclusive interrupt controller to each CPU
- INTC2, a common interrupt controller for all CPUs
- INTIF, peripheral interrupt / TPTM interrupt control function
- EINT, external interrupt / SW interrupt / NMI control function

The clock supply of the interrupt units is shown in Figure 4-4.

Details.

Figure 4-4 Clock Supply of Interrupt Controller

4.5 Clock Output

As is shown in Figure 4-1, the external outputs EXTCLK0O and EXTCLK1O are supplied to output selected clock sources as follows:

- CLK_MOSC
- CLK_HSB
- CLK_LSIOSC
- CLK_HSIOSC/20

A certain configuration of clock selector and Pin functions are required in this case, for detailed settings please refer to *Section 5.4 'Configuration for Clock Output'*.

5. Configuration

5.1 Configuration of Oscillators

Table 5-1 lists the registers which are used to configure the oscillators. Please notice that the clock registers are write protected, Register CLKKCPROT1 should be set before any other configuration.

Table 5-1	Register	Settina	of	Oscillators
		e eeg	•••	•••••

Register Name	Bit Name	Position	Description	Set Value
CLKKCPROT1	KCE	0	Enable key code of clock controller registers	1в
MOSCE	MOSCDISTRG	1	Disable Main OSC	1в
	MOSCENTRG	0	Enable Main OSC	1в
MOSCSTPM ^{*1}	MOSCSTPMSK	0	Mask the stop request of Main OSC in standby mode	1в
HSOSCSTPM ^{*1}	HSOSCSTPMSK	0	Mask the stop request of HS IntOSC in standby mode	1в
PLLE	PLLDISTRG	1	Disable PLL	1в
	PLLENTRG	0	Enable PLL	1в
PLLSTPM ^{*1}	PLLSTPMSK	0	Mask the stop request of PLL in standby mode	1в

Notes: 1. The stop mask registers determine the stop or continue operation of the oscillator in chip standby mode. This is described in *Section 6 Clock supply in Standby Mode*.

2. To configure these registers, the key code protection register CLKKCPROT1 must be set to A5A5A501_H.

To select the frequency of main oscillator, the option byte MOSC_FREQ[2:0] should be set:

Table 5-2 Selection	n of Main	OSC	frequency	using	Option	Byte
---------------------	-----------	-----	-----------	-------	--------	------

Option Byte	Bit Name	Position	Description	Set Value
OPBT10	MOSC_FREQ[2:0]	26 to 24	Select 16 MHz as Main OSC frequency	000в
			Select 20 MHz as Main OSC frequency	001в
			Select 24 MHz as Main OSC frequency	010в
			Select 40 MHz as Main OSC frequency	011в
			Setting prohibited	1хх в

5.2 Configuration of CPU Clock

Table 5-3 shows the configuration and related operation frequency of the clocks for CPU system.

Clock	CLK_I	OSC (M	(MHz)				CLK_PLLO (MHz)							
	CLK_I	SIOSC		CLK_	CLK_HSIOSC			—						
Settings	CKSC	_CPUC.	CPUCL	.KSCSI	D*2									
	1в						0в							
	Optior	n Byte C	KDIVM	D ^{*1}										
	11в	10в	0Хв	11в	10в	0Хв	11в		10в		0X _B			
							CLKD_PLLC.PLLCLKDCSID[2:0] ^{*2}							
							001 _B	010 _B	001 _в	010 _B	001 _в	010 _B		
CLK_CPU	0.12	0.12	0.12	100	100	100	400	200	320	160	240	120		
CLK_SBUS	0.06	0.06	0.04	50	50	33.3	200	100	160	80	80	40		
CLK_HBUS	0.03	0.03	0.04	25	25	33.3	100	50	80	40	80	40		
CLK_UHSB	0.048	0.06	0.08	40	50	66.7	160	80	160	80	160	80		
CLK_HSB	0.024	0.03	0.04	20	25	33.3	80	40	80	40	80	40		
CLK_LSB	0.012	0.015	0.02	10	12.5	16.7	40	20	40	20	40	20		

Table 5-3 Clock Setting of CPU System

Notes: 1. The CKDIVMD[1:0] bits are located in OPBT11, bit 31 to 30. For further information, please refer to HW User's Manual Section 51.12 'Configuration Setting Area (Option Bytes, Reset Vector)'.

2. To configure these register bits, the key code protection register CLKKCPROT1 must be set to A5A5A501_H.

5.3 Configuration of Peripheral Clocks

5.3.1 Configuration of Dedicated Peripheral Clocks

The clock for dedicated peripheral can be selected using clock selector control register CKSC_<name>C. The selected clocks are provided directly to the corresponding peripherals, or in some case via clock divider control CLKD_<name>C.

The actual clock setting can be read from status register CKSC_<name>S.

Table 5-4 lists the registers for the dedicated Peripherals.

Table 5-4 Clock Setting of	Dedicated Peripherals
----------------------------	-----------------------

Clock Name	Register Name	Bit Name	Selection	Set Value
CLKA_WDT	CKSC_AWDTC	AWDTSCSID	CLK_LSIOSC	0 _B
			CLK_LSIOSC/128*2	1 _B
CLKA_TAUJ	CKSC_ATAUJC	ATAUJSCSID[1:0]	CLK_LSIOSC	00 _B
			CLK_HSIOSC/20*2	01в
			CLK_MOSC	10 _B
			CLK_HSB	11в
CLKA_RTCA	CKSC_ARTCAC	ARTCASCSID	CLK_MOSC/16	0 _B
			CLK_LSIOSC*2	1в
CLKA_ADC	CKSC_AADCC	AADCSCSID[1:0]	CLK_MOSC*4	00 _B
			CLK_HSIOSC/20*2	01в
			CLK_LSB	10 _в
	CLKD_AADCC	AADCDCSID	Selection/1	1в
			Selection/2	0 _B
CLKA_LPS	-	-	CLK_LSIOSC or	-
			CLK_HSIOSC/20 ^{*1}	
CLK_WDT	CKSC_WDTC	WDTSCSID	CLK_HSIOSC/20	0 _B
			CLK_HSIOSC/640*2	1в
CLK_RLIN	CKSC_RLINC	RLINSCSID[1:0]	CLK_MOSC	00в
			CLK_HSB ^{*2}	01в
			CLK_MOSC/4	10в
			CLK_MOSC/8	11в
CLK_RCANOSC	CKSC_RCANC	RCANSCSID[1:0]	CLK_MOSC*2	01в
			CLK_MOSC/2	10в
			CLK_MOSC/4	11в
CLK_ADC	CKSC_ADCC	ADCSCSID	CLK_LSB	0в
			CLK_LSB/2*2	1в
CLK_MSPI	CKSC_MSPIC	MSPISCSID	CLK_MOSC	0в
			CLK_HSB ^{*2}	1в
CLK_ECMCNT	-	-	CLK_HSIOSC/20	-

Notes: 1. When CLK_HSIOSC stops in chip standby mode, CLKA_LPS is CLK_LSIOSC. In other cases, CLKA_LPS is CLK_HSIOSC/20.

2. This clock configuration is the initial setting of the related register.

3. To configure these registers, the key code protection register CLKKCPROT1 must be set to A5A5A501H.

4. The CLK_MOSC can be selected only when its frequency is 16MHz, 20MHz, or 24MHz. For details, please refer to the HW User's Manual *R01UH0864EJxxxx* and the related Technical Notification *TN-RH8-B0410A/E*.

5.3.2 Configuration of the Clock Connection to Peripherals

To enable the clock connections to the peripherals, the bits MSR_<name>.MS_<name>_n should be configured.

If the clock connection to a peripheral is disabled, the peripheral is set to module standby mode, in this case, register access is prohibited. Therefore, please always enable the clock connections before the peripheral configuration.

For detailed information, please refer to Section 6.2 'Module Standby Mode' in this document.

MSR registers do not cover the clock connection settings of LPS, PIC, ECM, DCRB and OTS.

5.4 Configuration for Clock Output

The 2 clock outputs are connected to the certain pins within alternative function. The clock signal which is expected to output, can be selected in clock selector register, then divided and output to the related pin.

Table 5-5 lists the configuration of clock selectors and dividers.

Table 5-6 shows the pin arrangement and the corresponding port alternative functions of clock output. The detailed information to configure the port alternative function is provided in Table 5-7.

Table 5-5 Clock Setting of Clock Output

Clock Name	Register Name	Bit Name	Selection	Set Value
EXTCLK00	CKSC_FOUT0C	FOUT0SCSID[2:0]	CLK_MOSC	000 _в , 110 _в , 111 _в
			CLK_HSB	001 _в
			CLK_LSIOSC	011в
			CLK_HSIOSC/20	100в
	CLKD_FOUT0C	FOUT0DIV[9:0] ^{*1}	1/1 to 1/1023	001н, 3FFн
EXTCLK10	CKSC_FOUT1C	FOUT1SCSID[2:0]	CLK_MOSC	000 _в , 110 _в , 111 _в
			CLK_HSB	001 _B
			CLK_LSIOSC	011в
			CLK_HSIOSC/20	100 _в
	CLKD_FOUR1C	FOUT1DIV[9:0] *1	1/1 to 1/1023	001н, 3FFн

Notes: 1. This register must not be written with a new value while the CLKD_FOUT0S.FOUT0SYNC is 0. 2. To configure these registers, the key code protection register CLKKCPROT1 must be set to A5A5A501_H.

Table 5-6 Pin Arrangement for Clock Output

Clock	Pin	Alternative	Pin Loc	ation				
Output	Name	function	144-Pin	156-Pin	176-Pin	292-Pin	373-Pin	512-Pin
EXTCLK0O	P2_8	Output Mode 3	-	-	149	B14	C15	G19
	P2_15	Output Mode 2	-	-	-	A11	A13	F16
	P4_10	Output Mode 2	64	P11	80	W15	AD16	AD20
	P4_12	Output Mode 2	-	N11	84	W16	AC16	AD21
	P10_7	Output Mode 3	10	F2	10	F2	M1	L7
EXTCLK10	P4_8	Output Mode 3	61	-	75	W14	AD15	AD19
	P6_9	Output Mode 2	80	L13	103	N20	U24	V25
	P6_14	Output Mode 2	89	J13	112	L19	R23	T24
	P10_9	Output Mode 2	13	-	14	G2	N1	M7
	P10_14	Output Mode 4	21	G3	22	K1	R2	R6

Table 5-7 Configuration of Port Alternative Functions

Alternative-	Register						
Function	PMC	PIPC	PM	PFCAE	PFCE	PFC	
Output Mode 1	1	0	0	0	0	0	
Input Mode 1	-		1				
Output Mode 2	-		0		0	1	
Input Mode 2	-		1				
Output Mode 3	-		0		1	0	
Input Mode 3	-		1				
Output Mode 4	-		0		1	1	
Input Mode 4	-		1				

RH850/U2A-EVA

Output Mode 5		0	1	0	0
Input Mode 5		1			
Output Mode 6	-	0		0	1
Input Mode 6	-	1			
Output Mode 7	-	0		1	0
Input Mode 7	-	1			
Output Mode 8	-	0		1	1
Input Mode 8	- -	1			

6. Clock Supply in Standby Mode

6.1 Chip Standby Mode

In chip standby mode (STOP mode, DeepSTOP mode, and Cyclic STOP mode), the LS IntOSC continues operation. The Main OSC, HS IntOSC and PLL can be set to stop or continue using the <name>STPM registers. For the detailed configuration of <name>STPM register please refer to Table 5-1.

CLK_CPU, CLK_SBUS and CLK_HBUS are stopped in chip standby mode (STOP mode, DeepSTOP mode, and Cyclic STOP mode).

The clock operation in different chip standby modes are described in table 6-1.

Clock	Power Domain	Chip Standb	y Modes		
		STOP	DeepSTOP	CyclicRUN	CyclicSTOP
CLK_LSIOSC	AWO	Operable	Operable	Operable	Operable
CLK_HSIOSC	_	Stopped /	Stopped /	Operable	Stopped /
CLK_MOSC	_	Operable ^{*1}	Operable ^{*1}		Operable ^{*1}
CLK_HVIOSC	_	Operable	Stopped *3	Operable	Operable
CLK_PLLO	ISO	Stopped /	Power off	Stopped	Stopped
	_	Operable*2			
CLK_CPU		Stopped		Operable	Stopped
CLK_SBUS					
CLK_HBUS	_				
CLK_UHSB	_	Operable			Operable
CLK_HSB	_				
CLK_LSB	_				

Table 6-1 Clock Supply in Chip Standby Mode

Notes: 1. The default value of <name>STPM.STPMSK bit is 0, the stop request of CLK_HSIOSC or CLK_MOSC is not masked in this case, the clocks stop operation in this chip standby mode. If <name>STPM.STPMSK bit is set to 1, the stop request is masked, the clocks continue operation in this chip standby mode.

- 2. By default, CLK_PLLO stops in STOP or Cyclic STOP modes. PLL continues operation if PLLSTPM.STPMSK bit is set to 1.
- 3. The operation of CLK_HVIOSC in DeepSTOP mode depends on VMON DeepSTOP control register VMONDSCR.

For peripherals, the clock stop mask bits MSR_<name>.STPMSK_<name> are used to determine the operation status of the clock in chip standby mode:

• If the stop mask bit is set to 0, the stop request is not masked, the related peripheral clock stops during chip standby mode.

If the clock is in operation before entering standby mode, the clock restarts automatically after wake up of chip standby mode.

• If the stop mask bit is set to 1, the stop request is masked, the corresponding peripheral clock continues operate during chip standby mode. The clock supply of ISO area is stopped in DeepSTOP mode.

6.2 Module Standby Mode

Module standby mode stops the clocks for peripheral macros to reduce the power consumption in accordance with register settings.

The module which is in the module standby mode is not reset by releasing chip standby mode and the register access is prohibited.

The bit MSR_<name>.MS_<name>_n is used to stop or start all target clock domains:

- The default value of this bit is 1, in this case, all clocks connected to the corresponding peripheral are stopped, any configuration to the peripheral registers is invalid.
- If this bit is set to 0, the corresponding peripheral operates, the peripheral registers can be configured.
- This bit returns to the default value by module reset, for detailed information please refer to HW User's Manual *R01UH0864EJxxxx Section 9 'Reset Controller'*.

6.3 Module Standby Mode in Chip Standby Mode

According to *Section 6.1* and *6.2*, depending on the state of module standby register MSR_<name>, the clock supply state in each operation mode and chip standby mode is shown in Table 6-2.

Table 6-2 Module Standby Settings and Clock Supply of Peripherals in Chip Standby Mode

Register MSR_ <name></name>		Operation Mode		Chip Standby Mode		
Bit MS_XXX	Bit STPMSK_XXX	RUN	CyclicRUN	STOP	DeepSTOP	CyclicSTOP
0	0	Operable	Operable	Stop	Stop	Stop
	1	Operable	Operable	Operable	Operable	Operable
1	0	Stop	Stop	Stop	Stop	Stop
	1	Stop	Stop	Stop	Stop	Stop

Note: To configure the MSR_<name> registers, the key code protection register MSRKCPROT must be set to A5A5A501_H.

For the operation propriety of each module clock, please refer to HW User's Manual *R01UH0864EJxxxx Section* 15.1.2.3 Table 15.10.

7. Sample Software

A sample SW is provided to show the basic clock configuration, clock output function and module standby settings.

The sample SW is based on RH850/U2A-EVA device R7F702Z19AEDBG, with PiggyBack board V1 RH850-U2A-516PIN-T1-V1.

The development tool of the SW package is GHS MULTI V800 version v7.1/2018.1.5 or later. For detailed information, please refer to Getting Started SW Package.

7.1 Clock Related Functions

The clock related functions in sample software are listed in Table 7.1.

Function Name	Location in SW Package	Description
CLKINIT	U2A_GHS_CLK_TIMER\device\device.h	Clock initialization.
		This function provides
		an example of basic
		clock settings of U2A-
		EVA device.
initTAUJ	U2A_GHS_CLK_TIMER\src_mca\TIMER.c	TAUJ configuration.
		This function includes
		the module clock
		setting with MS bit.
initTAUD	U2A_GHS_CLK_TIMER\src_mca\TIMER.c	TAUD configuration.
		This function includes
		the module clock
		setting with MS bit.
initFOUT	U2A_GHS_CLK_TIMER\src_mca\TIMER.c	Configuration of clock
		output.

Table 7-1 Clock-Related Functions in Sample SW

Please notice that part of the clock settings should be configured using option bytes, this part is not included in the sample SW. For Details please refer to HW User's Manual *R01UH0864EJxxxx Section 51.12.16 'OPBT10 — Option Byte 10'* and *Section 51.12.17 'OPBT11 — Option Byte 11'*.

For further information to program the option byte, please refer to Getting Started SW Package.

7.2 Setting Procedure of Clocks in Sample SW

This section provides the diagram of the clock setting procedures.

Figure 7-1 shows the system clock setting in sample software.

Figure 7-2 shows the general configuration of peripheral clock connection.

2. Wait 100 µs after verifying.

Figure 7-1 Setting Procedure of System Clock in Sample SW

Figure 7-2 Setting Procedure of Peripherals in Sample SW

8. Summary

According to the sections described above, this document provides an overview and detailed information of configuration to the clock supplies of RH850/U2A devices.

Certain clock supplies are stopped in chip standby mode, peripheral clocks can be defined inoperable in module standby mode to conserve power.

Website and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

Revision History

		Descriptio	n
Rev.	Date	Page	Summary
0.10	Jul 23, 2018		Internal release
1.00	Dec 15, 2018		release
1.10	Jan 25, 2019	23 to 25	Add sample SW to the document package and related descriptions (Section 7 Sample SW)
1.20	Nov 01, 2019	8	Update the Table 3-1, add table note
1.21	Dec 09,2019	1	Add the product information of RH850/U2A-EVA series
		1, 23	Update the device number regarding to HW UM
1.30	Nov 06, 2020	8	Update the description of general features regarding to HW UM.
		16	Replace all the information of MOSC_FREQ[1:0] to MOSC_FREQ[2:0]
		18	Add notes for Table 5-4
		20	Add notes for Table 5-5
1.40	Jun 13, 2022	1	Update the product line
		7	Update the reference document
		18	Add note 4 for Table 5-4
		20	Update the Table 5-6 Pin Arrangement for Clock Output
		24	Update the Table 7-1 Clock-Related Functions in Sample

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

— The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

The reserved addresses are provided for the possible future expansion of functions. Do not
access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

 The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information, 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application examples 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products. 5. Renesas Electronics products are classified according to the following two quality grades; "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics 6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified ranges 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you. 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU ROHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the countries asserting jurisdiction over the parties or transactions. 10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party. 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. (Rev.3.0-1 November 2016) RENESAS **Renesas Electronics Corporation** SALES OFFICES http://www.renesas.com Refer to "http://www.renesas.com/" for the latest and detailed information Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004

Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited and Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Unit 1601-1611, 16/F., Tower 2, Grand Cent Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141