Summary

This document describes an example procedure for testing the RS-CAN FD module using the RH850 series. For the setting of each register, refer to the notes described in the latest user’s manual hardware edition.

Operation Confirmed Devices

This document applies to the RH850 series.
Please refer to Table 1-1 for the variables described in the text.

<table>
<thead>
<tr>
<th>Variable</th>
<th>RS-CAN FD channel number</th>
<th>Receive rule table registration register number</th>
<th>RAM test register number for CAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Device</td>
<td>RH850/E2x</td>
<td>RH850/E1M-S2</td>
<td>RH850/P1M-E</td>
</tr>
<tr>
<td>m</td>
<td>0~4</td>
<td>0~3</td>
<td>0~2</td>
</tr>
<tr>
<td>j</td>
<td>0~15</td>
<td>0~15</td>
<td>0~15</td>
</tr>
<tr>
<td>r</td>
<td>0~63</td>
<td>0~63</td>
<td>0~63</td>
</tr>
</tbody>
</table>

The functions marked with ★ in the text are applicable when 2 channels or more are installed. CFD is omitted from the register names in the text.
Contents

1. Test Function ... 3
2. Communication Test Function ... 4
3. RAM Test Function .. 16
4. Precautions for Processing Flow ... 19
1. Test Function

The RH850 series has the following test functions. By using these functions, it is possible to perform the self-diagnosis test for CAN communication using a CAN transceiver or MCU, and the self-diagnosis test for RAM. For details of each process, refer to the following chapters.

- Communication Test Function
 - Standard test mode
 - Listen-only mode
 - Self-test mode 0 (external loopback mode)
 - Self-test mode 1 (internal loopback mode)
 - Restricted operation mode (Only in CAN FD mode)

- Global Test
 - RAM test (read/write test)
 - Inter-channel communication test [CRC error test enabled]
2. Communication Test Function

2.1 Standard Test Mode (CRC Test)

When the communication test mode is enabled (the CTME bit of the CmCTR register is "1"), the CRC value calculated based on the transmitted or received message can be read from the register where the CRC calculation data is stored. If the communication test mode is disabled (the CTME bit of the CmCTR register is "0"), the CRC calculation data can always be read as "0".

The registers that read the CRC operation data are as follows.

- Classical CAN frame: CRCREG [14: 0] bit of the CmERFL register
- CAN FD frame: CRCREG [20: 0] bit of the FDCRC register

By using the inter-channel communication test, communication between channels is possible inside the MCU, so by comparing the CRC calculation data of the transmitted channel with the CRC calculation data of the received channel, the CRC calculation circuit test of the MCU alone can be performed. For the inter-channel communication test, refer to "2.3.3 Inter-channel communication test".

Figure 2-1 shows an image of the CRC test.
2.1.1 Standard Test Mode Setting Procedure

Figure 2-2 to Figure 2-4 show the procedure for setting the standard test mode.

【Note】
1. If you change the global mode (the GSLPR bit of the GCTR register, GMDC [1: 0] bit), check that the mode is switched in the GSTS register. Do not change the mode selection bit until the mode is switched.
2. Rewrite the CmICBCE bit and ICBTCME bit in the global test mode.
3. If you change the channel mode (the CSLPR bit of the CmCTR register, CHMDC [1: 0] bit), check that the mode is switched in the CmSTS register. Do not change the mode selection bit until the mode is switched.
4. Rewrite the CTMS [1: 0] bit and CTME bit of the CmCTR register in channel halt mode.
【Note】 1. If you change the global mode (the GSLPR bit of the GCTR register, GMDC [1: 0] bit), check that the mode is switched in the GSTS register. Do not change the mode selection bit until the mode is switched.
2. If you change the channel mode (the CSLPR bit of the CmCTR register, CHMDC [1: 0] bit), check that the mode is switched in the CmSTS register. Do not change the mode selection bit until the mode is switched.
3. Set the transmit/receive settings for the channel to be tested.
4. When the communication test mode is enabled (CmCTR.CTME = 1), the CRC calculation data can be checked with the CRCREG[14:0] bit of the CmERFL register for a classical CAN frame, or with the CRCREG[20:0] bit of the FDCRC register for a CAN FD frame. When the communication test mode is disabled (CmCTR.CTME = 0), the CRCREG [14: 0] bit of the CmERFL register and the CRCREG [20: 0] bit of the FDCRC register are always "0".

Figure 2-3 Standard Test Mode Setting Procedure 2
【Note】 1. Rewrite the CTME bit in the CmCTR register in channel halt mode.
 2. If you change the global mode (GSLPR bit of GCTR register, GMDC [1: 0] bit), check that the mode is switched in the GSTS register. Do not change the mode selection bit until the mode is switched.
 3. Rewrite the CmICBCE bit and ICBCTME bit in global test mode.

Figure 2-4 Standard Test Mode Setting Procedure 3
2.2 Listen-only Mode

In listen-only mode, only the receptive bit is transmitted on the CAN bus, not the ACK bit, the overload flag, or the active error flag. Both data frames and remote frames can be received. Therefore, listen-only mode can be used for bus monitoring and communication speed detection.

Do not transmit in listen-only mode (do not request transmission to the transmit/receive FIFO buffer, the transmit buffer, or the transmit queue).

Figure 2-5 shows the connection when listen-only mode is selected.

![Connection Diagram](image-url)
2.2.1 Listening-only Mode Setting Procedure

Figure 2-6 shows the procedure for setting the listen-only mode.

![Diagram](attachment:image.png)

START

1. Transition to channel halt mode

2. Transitioned to channel halt mode?

3. Select listen-only mode
 \[\text{CmCTR.} \text{CTMS}[1:0] = 01B\]

4. Enable communication test mode
 \[\text{CmCTR.} \text{CTME} = 1\]

5. Transition to channel communication mode

6. Transitioned to channel communication mode?

7. **END**

Note
1. If you change the channel mode (the CSLPR bit in the CmCTR register, CHMDC [1: 0] bit), check that the mode is switched in the CmSTS register. Do not change the mode selection bit until the mode is switched.

2. Rewrite the CTMS [1: 0] bit and CTME bit of the CmCTR register in channel halt mode.

3. If necessary, set the reception settings for the channel used in listen-only mode.
2.3 Self-test Mode (Loopback Mode)

In self-test mode, the message sent by the own node is compared with the receive rule, and the filtered message is stored in the buffer. Messages sent by other CAN nodes will be compared only with the receive rule set to receive messages sent by other CAN nodes (GAFLIDj.GAFLLB = 0). When the mirror function and self-test mode are enabled at the same time, the self-test mode setting takes priority.

<table>
<thead>
<tr>
<th>Receive rule target message</th>
<th>Message transmit node</th>
<th>Comparison with receive rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAFLIDj.GAFLLB = 0</td>
<td>Other node</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Own node</td>
<td>Yes</td>
</tr>
<tr>
<td>GAFLIDj.GAFLLB = 1</td>
<td>Other node</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Own node</td>
<td>Yes</td>
</tr>
</tbody>
</table>

2.3.1 Self-test Mode 0 (External Loopback Mode)

Self-test mode 0 performs a loopback test of the channel, including the CAN transceiver.

In self-test mode 0, the message sent by the local node is received via the CAN transceiver. Received messages are stored in the buffer according to the receive rule. It also generates the ACK bit to receive the message sent by own node.

Figure 2-7 shows the connection when self-test mode 0 is selected.

![Figure 2-7](image-url)
2.3.2 Self-test Mode 1 (Internal Loopback Mode)

Self-test mode 1 performs a loopback test of the channel inside the MCU.

In self-test mode 1, the message sent by the own node is received via the internal pin of the MCU. Received messages are stored in the buffer according to the receive rules. It also generates the ACK bit to receive the message sent by own node.

In this test, only the internal feedback from TXm to RXm inside the channel is performed. The external CTXm pin and external CRXm pin are disconnected from the internal pins, and the external CTXm pin outputs the recessive bit. (The CAN transceiver is not used.)

Figure 2-8 shows the connection when self-test mode 1 is selected.

![Connection Diagram](image_url)
2.3.3 Self-test Mode Setting Procedure

Figure 2-9 shows the procedure for setting the self-test mode.

START

Transition to channel halt mode*1

Transioned to channel halt mode?*1

Yes

Select self-test mode*2
(CmCTR. CTMS[1:0]= 01B,10B)

Enable communication test mode*2
(CmCTR. CTME = 1)

Transition to channel communication mode*1

Transioned to channel communication mode?*1

Yes

User's self-test process*3

Transition to channel halt mode’1

Transioned to channel halt mode?*1

No

Yes

Prohibit Communication test mode*2
(CmCTR. CTME = 0)

Select standard test mode*2
(CmCTR. CTMS[1:0]= 00B)

END

【Note】 1. If you change the channel mode (the CSLPR bit in the CmCTR register, CHMDC [1:0] bit), check that the mode is switched in the CmSTS register. Do not change the mode selection bit until the mode is switched.
2. Rewrite the CTMS [1:0] bit and CTME bit of the CmCTR register in channel halt mode.
3. Set the transmit/receive settings for the channel to be tested.
2.4 Restricted Operation Mode (Only in CAN FD Mode)

In restricted operation mode, it generates an ACK bit when it receives valid data frames and remote frames, but it does not send these frames when it detects an error frame or overload frame transmit condition. When a condition is detected, it waits for the bus idle state to resynchronize to CAN communication. The receive error counter (REC) and transmit error counter (TEC) do not change when an error occurs.

Use the restricted operation mode only in the standard test mode (the CTMS [1: 0] bit of the CmCTR register is "00B").

Any transmission request is possible, and there are no restrictions.
2.4.1 Restricted Operation Mode Setting Procedure

Figure 2-10 shows the procedure for setting the restricted operation mode.

![Flowchart](chart.png)

[Note]
1. If you change the global mode (the GSLPR bit of the GCTR register, GMDC [1:0] bit), check that the mode is switched in the GSTS register. Do not change the mode selection bit until the mode is switched.
2. Rewrite the CmICBCE bit and ICBCTME bit in global test mode.
3. If you change the channel mode (the CSLPR bit of the CmCTR register, CHMDC [1:0] bit), check that the mode is switched in the CmSTS register. Do not change the mode selection bit until the mode is switched.
4. Rewrite the CTMS [1:0] bit and CTME bit of the CmCTR register in channel halt mode.

Figure 2-10 Restricted Operation Mode Setting Procedure
2.5 Inter-channel Communication Test

The inter-channel communication test function allows CAN channels to be internally connected for the communication test.

In this test, only the internal feedback from the CTXm pin inside the channel to the CRXm pin is performed.

The external CRXm pin and external CTXm pin are disconnected from the internal pins, and the external CTXm pin outputs the recessive bit. (The CAN transceiver is not used.)

After setting transmission/reception for each channel, transmit/receive in channel communication mode. For the setting procedure, refer to "2.1.1 Standard Test Mode Setting Procedure".

By using the inter-channel communication function and the standard test mode, it is possible to test the CRC calculation circuit. For details on the CRC test, refer to "2.1 Standard Test Mode (CRC Test) Function".

Figure 2-11 shows the inter-channel communication test connection diagram.

![Inter-channel Communication Test Connection Diagram](image-url)
3. RAM Test Function

3.1 RAM Read/write Test

When RAM test is enabled (GTSTCTR.RTME = 1), RAM read/write test can be performed for the entire RAM for CAN.

When the RAM test function is used, the RAM is divided into pages of 256 bytes each, and the page selection is set by the RTMPS [6:0] bit of the GTSTCFG register. The RAM in a page can be read or written by the RPGACC register.

You can check that the RAM is normal by comparing the written value and the read value for the entire CAN RAM. After performing the RAM read / write test, write "H'00" to the CAN RAM to finish.
3.2 RAM Test Setting Procedure

Figure 3-1 shows the procedure for setting the RAM test (RAM read/write test).

START

Transition to global test mode*1

Transitional to global test mode?*1

Yes

Write protect release data 1 for RAM test*2,3 (GLOCKK.LOCK[15:0] = H’7575)

Write protect release data 2 for RAM test*2,3 (GLOCKK.LOCK[15:0] = H’8A8A)

Enable RAM test*2,3 (GTSTCTR.RTME = 1)

RAM test enable setting? (GTSTCTR.RTME = 1)

No

Yes

Select the RAM page to perform the test*3 (GTSTCFG.RTMP[6:0] = Page selection)

Write RAM arbitrary data*4 (CRAMTRr[31:0] = Arbitrary data)

The written value matches the read value?

No

Yes

Processing when a read/write error occurs

Write H’00 to all pages of RAM*4 (CRAMTRr[31:0] = H’00)

Prohibit RAM test*3 (GTSTCTR.RTME = 0)

END
【Note】
1. If you change the global mode (the GSLPR bit of the GCTR register, GMDC [1: 0] bit), check that the mode is switched in the GSTS register. Do not change the mode selection bit until the mode is switched.
2. Be sure to execute the three instructions of writing the unprotect data 1 and 2 for the test function to the GLOCKK.LOCK [15: 0] bit and permitting the RAM test consecutively.
3. Rewrite the LOCK [15: 0] bit of the GLOCKK register, the RTME bit of the GTSTCTR register, and the RTMPS bit of the GTSTCFG register in global test mode.
4. Rewrite the CRAMTRr register in the global test mode with RAM test enabled.

Figure 3-1 RAM Test Setting Procedure
4. Precautions for Processing Flow

4.1 About Functions

In this application note, there is a part that is functionalized even in the processing of single line, but this is only described as a function to clarify the processing for each function. When you actually create a program, you don’t necessarily have to make it functional.

4.2 Settings for Each Channel, FIFO, and Buffer

In this application note, even if processing is required for each channel, FIFO, or buffer, only one processing is described. When actually creating a program, perform multiple processes as necessary.

4.3 Infinite Loop

To simplify the notation, there are some infinite loops in the processing flow. When actually creating a program, give each loop a time limit so that it can be exited during overtime. Figure 4-1 shows an example of processing when the loop time limit is set. Table 4-1 shows the transition time in global mode, and Table 4-2 shows the maximum transition time in channel mode.

![Diagram](image-url)
Table 4-1 Transition Time in Global Mode

<table>
<thead>
<tr>
<th>Mode before transition</th>
<th>Mode after transition</th>
<th>Maximum transition time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global stop</td>
<td>Global reset</td>
<td>3 clocks of pclk</td>
</tr>
<tr>
<td>Global reset</td>
<td>Global stop</td>
<td>3 clocks of pclk</td>
</tr>
<tr>
<td>Global reset</td>
<td>Global test</td>
<td>10 clocks of pclk</td>
</tr>
<tr>
<td>Global reset</td>
<td>Global operation</td>
<td>10 clocks of pclk</td>
</tr>
<tr>
<td>Global test</td>
<td>Global reset</td>
<td>2 CAN bit time*1, *2</td>
</tr>
<tr>
<td>Global test</td>
<td>Global operation</td>
<td>3 clocks of pclk</td>
</tr>
<tr>
<td>Global operation</td>
<td>Global reset</td>
<td>2 CAN bit time*1, *2</td>
</tr>
<tr>
<td>Global operation</td>
<td>Global test</td>
<td>2 CAN frames*1</td>
</tr>
</tbody>
</table>

*1. It is the CAN bit time and CAN frame time of the slowest communication speed among the channels used.
*2. In CAN FD mode, the normal bit rate is CAN bit time.

Table 4-2 Transition Time in Channel Mode

<table>
<thead>
<tr>
<th>Mode before transition</th>
<th>Mode after transition</th>
<th>Maximum transition time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel stop</td>
<td>Channel reset</td>
<td>3 clocks of pclk</td>
</tr>
<tr>
<td>Channel reset</td>
<td>Channel stop</td>
<td>3 clocks of pclk</td>
</tr>
<tr>
<td>Channel reset</td>
<td>Channel halt</td>
<td>3CANm bit time*1</td>
</tr>
<tr>
<td>Channel reset</td>
<td>Channel communication</td>
<td>4CANm bit time*1</td>
</tr>
<tr>
<td>Channel halt</td>
<td>Channel reset</td>
<td>2CANm bit time*1</td>
</tr>
<tr>
<td>Channel halt</td>
<td>Channel communication</td>
<td>4CANm bit time*1</td>
</tr>
<tr>
<td>Channel communication</td>
<td>Channel reset</td>
<td>2CANm bit time*1</td>
</tr>
<tr>
<td>Channel communication</td>
<td>Channel halt</td>
<td>2 CANm frames</td>
</tr>
</tbody>
</table>

*1. In CAN FD mode, the normal bit rate is CANm bit time.
Our Company's Website and Inquiry

Website
http://japan.renesas.com/

Inquiry
http://japan.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.
<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2017.5.10</td>
<td>—</td>
<td>Initial edition</td>
</tr>
</tbody>
</table>
Precautions for use of the product

This section describes the "Precautions" that apply to all microcontroller products. Please refer to this document and the Technical Update for precautions on individual products.

1. Treatment of unused pins
 [Caution] Please dispose of unused pins according to "Handling of unused pins" in the text.
 The impedance of the input pins of CMOS products is generally high impedance. If the unused pins are operated in an open state, noise around the LSI may be applied due to the induction phenomenon, a through current may flow inside the LSI, or it may be recognized as an input signal and malfunction may occur. Dispose of unused pins according to the instructions given in "Disposal of unused pins" in the text.

2. Treatment at power-on
 [Caution] The state of the product is undefined when the power is turned on.
 When the power is turned on, the state of the internal circuits of the LSI is indeterminate and the state of register settings and pins is undefined.
 For products that are reset using the external reset pin, the pin state cannot be guaranteed from the time the power is supplied until the reset becomes valid.
 Similarly, in the case of products that are reset using the built-in power-on reset function, the pin states cannot be guaranteed from the time the power is turned on until the voltage reaches a certain level.

3. Prohibition of Access to Reserved Addresses
 [Caution] Access to reserved addresses is prohibited.
 The address area has a reserved address allocated for future function expansion. The operation when these addresses are accessed cannot be guaranteed, so do not access them.

4. About clock
 [Caution] When resetting, release the reset after the clock has stabilized.
 When switching the clock during program execution, switch the clock after the switching destination clock is stable.
 In a system that starts operating with a clock that uses an external oscillator (or external oscillator circuit) at reset, release the reset after the clock is sufficiently stable. Also, when switching to a clock that uses an external oscillator (or external oscillator circuit) in the middle of a program, make sure that the clock to be switched to is sufficiently stable before switching.

5. Differences between products
 [Caution] When changing to a product with a different model name, perform a system evaluation test for each product model name.
 Even if the MCUs in the same group have different model numbers, the characteristic values, operating margins, noise immunity, noise radiation, etc. may differ within the range of electrical characteristics due to differences in internal ROM and layout patterns. When changing to a product with a different model name, perform a system evaluation test for each individual product.