
 APPLICATION NOTE

R01AN0710EJ0215 Rev.2.15 Page 1 of 41

Mar 28, 2016

Renesas USB MCU

USB Peripheral Mass Storage Class Driver (PMSC) using Basic Mini Firmware

Introduction

This document is an application note for the USB Peripheral Mass Storage Class Driver (PMSC) built using the USB

Basic Mini Firmware.

Target Device

RL78/G1C, RL78/L1C, R8C/3MU, R8C/34U, R8C/3MK, R8C/34K

This program can be used with other microcontrollers that have the same USB module as the above target devices.

When using this code in an end product or other application, its operation must be tested and evaluated thoroughly.

This program has been evaluated using the corresponding MCU’s Renesas Starter Kit board.

Contents

1. Overview ... 2

2. Operating Confirmation Environment .. 4

3. Software Configuration .. 4

4. Peripheral MSC Sample Application (APL) ... 9

5. Peripheral Device Class Driver (PDCD).. 14

6. USB Peripheral Mass Storage Class Driver (PMSCD) ... 21

7. Peripheral Mass Storage Device Driver (PMSDD) ... 27

8. Media Driver Interface ... 31

9. The EEPROM Media Driver .. 33

10. Resource Registration in Scheduler .. 36

11. Limitations ... 37

12. Setup for the e2 studio project ... 38

13. Using the e2 studio project with CS+ ... 40

R01AN0710EJ0215

Rev.2.15

Mar 28, 2016

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 2 of 41

Mar 28, 2016

1. Overview

This document is a manual describing use of the USB Peripheral Mass Storage Class Driver (PMSC) for Renesas USB

MCU.

1.1 Functions and Features

The USB Peripheral Mass Storage class driver comprises a USB Mass Storage class bulk-only transport (BOT) protocol.

When combined with a USB peripheral control driver and storage device driver, it enables communication with a USB

host as a BOT-compatible storage device.

The PMSC software cannot itself read/write the storage media. See 11.

1.2 Related Documents

1. Universal Serial Bus Revision 2.0 specification

2. USB Mass Storage Class Specification Overview Revision 1.1

3. USB Mass Storage Class Bulk-Only Transport Revision 1.0, “BOT” protocol

 [http://www.usb.org/developers/docs/]

4. User’s Manual: Hardware

5. USB-BASIC-F/W Application Note

6. Block Access Media Driver API.

Available from Renesas Electronics Website

 Renesas Electronics Website

http:// www.renesas.com/

 USB Devices Page

http://www.renesas.com/prod/usb/

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 3 of 41

Mar 28, 2016

1.3 Terms and Abbreviations

API : Application Program Interface

APL : Application program

BOT : Universal Serial Bus Mass Storage Class Bulk-Only Transport (Available

at USB Implementers Forum)

cstd : Prefix of Function and File for Host & Peripheral USB-BASIC-FW

DDI : Device driver interface, or PMSDD API.

H/W : Renesas USB MCU

PCD : Peripheral control driver of USB-BASIC-FW

PDCD : Peripheral device class driver (device driver and USB class driver)

PCI : PCD interface

PMSCD : Peripheral mass storage USB class driver (PMSCF + PCI + DDI)

PMSCF : Peripheral mass storage class function

PMSDD : Peripheral mass storage device driver (sample ATAPI driver)

PP : Pre-processed definition

pstd : Prefix of Function and File for Peripheral USB-Basic-F/W

RSK : Renesas Starter Kits

Scheduler : Used to schedule functions, like a simplified OS.

Scheduler Macro : Used to call a scheduler function (non-OS)

SW1/SW2/SW3 : User switches on the RSK Board

Task : Processing unit

USB : Universal Serial Bus

USB-BASIC-FW : USB Basic Firmware mini for Renesas USB device (non-OS)

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 4 of 41

Mar 28, 2016

2. Operating Confirmation Environment

2.1 Compiler

The compilers which is used for the operating confirmation are follows.

a. CA78K0R Compiler V.1.71

b. CC-RL Compiler V.1.01

c. IAR C/C++ Compiler for RL78 version 2.10.4

d. KPIT GNURL78-ELF v15.02

e. C/C++ Compiler Package for M16C Series and R8C Family V.6.00 Release 00

2.2 Evaluation Board

The evaluation boards which is used for the operating confirmation are follows.

a. Renesas Starter Kit for RL78/G1C (Product No: R0K5010JGC001BR)

b. Renesas Starter Kit for RL78/L1C (Product No: R0K50110PC010BR)

c. R8C/34K Group USB Peripheral Evaluation Board (Product No: R0K5R8C34DK2PBR)

3. Software Configuration

3.1 Module Configuration

As shown in Figure 3-1, PDCD comprises two layers: The class driver PMSCD and the device driver PMSDD.

PMSCD comprises three layers: PCD API (PCI) closest to the USB HW layer, on top of that the PMSDD API (DDI),

with the BOT protocol control and data transmission/reception (PMSCF) layer in-between.

PMSCD uses the BOT protocol to communicate with the host via PCD.

PMSDD analyzes and executes storage commands received from PMSCD. PMSDD accesses media data via the media

driver.

Figure 3-1 shows a block diagram of the SW modules.

Mass Storage Device Driver (PMSDD)

Device Driver Interface (DDI)

Peripheral Mass Storage Class Function (PMSCF)

PCD Interface (PCI)

USB Peripheral Control Driver (PCD)(Media driver)

USB Peripheral HardwareMedia

Peripheral

Mass Storage

Class Driver

(PMSCD)

Peripheral

 Device Class

Driver

(PDCD)

Figure 3-1 Software Block Diagram

3.1.1 PDCD

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 5 of 41

Mar 28, 2016

As shown in Figure 3-1, PDCD incorporates PMSDD and PMSCD. It takes care of class requests from the USB host,

and responds to USB host storage commands.

Table 3-1 provides an overview of the parts of PDCD, as well as PCD and the media driver. The media driver is

implemented as an interchangeable block media type storage driver.

3.1.2 PMSCD

PMSCD itself in turn comprises three layers: PMSCF, which performs BOT protocol control and data

transmission/reception; DDI for interfacing with PMSDD; and a group of functions (PCI) for interfacing with PCD. The

main functions of these layers are as follows.

1. PMSCF:

USB mass storage class BOT protocol control

CBW analysis, data transmission/reception, and CSW creation in coordination with PMSDD/PCD

Responding to class requests (MassStorageReset, GetMaxLUN)

2. PCI :

Processing of tasks, message boxes, and memory pools during configuration and detach

Receiving class requests

Clearing STALL states and setting related callback functions

Setting structures and callback functions for PCD transmit/receive data

3. DDI:

Driver registration.

Data transfer information and execution results of PMSDD execution. PMSCD is notified via the ATAPI

command result callback function .

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 6 of 41

Mar 28, 2016

Table 3-1 Overview of Modules

Chapter

this doc

Module Description Reference folder/file Note

USB

Basic

FW

PCD USB peripheral hardware

control driver.

src/USBSTDFW See “Renesas USB

MCU USB Basic

Firmware mini

Application note

Ch. 6

PCI PMSCF-PCD interface

functions.

src/MSCFW/PMSC/r_usb_

pmsc_pci.c

PMSCF Core component of PMSCD.

Controls BOT protocol data

and responds to USB class

requests. Also transfers

storage commands and data to

and from storage (PMSDD).

src/MSCFW/PMSC/

r_usb_pmsc_request.c

r_usb_pmsc_driver.c

DDI PMSDD-PMSCF interface :

Driver registration and

ATAPI result callback.

src/MSCFW/PMSC/r_usb_

pmsc_ddi.c

Ch. 7 PMSDD Peripheral mass storage media

driver. It processes storage

commands from PMSCD and

accesses the media via the

block media driver below.

 (To be modified to match the

memory device.)

src/MSCFW/MEDIA/r_usb_

atapi_driver.c

Ch. 8 Block

Media

Driver

Block media storage driver. src/MSCFW/MEDIA/r_usb_

atapi_memory.c

See Block Media API

application note

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 7 of 41

Mar 28, 2016

3.2 File Structure

The following shows the folder structure for the files provided in this device class.

The source codes unique to each device and evaluation board are stored in the corresponding hardware resource folder

(HwResource)*.

workspace

 ＋ [RL78 / R8C]

 ＋[CCRL / CS+ / IAR / e2 studio / HEW]

 ＋[RL78G1C / RL78L1C / R8C3MK / R8C3MU / R8C34K / R8C34U]

 ＋ PERI Build result

 ＋ src

 ＋――― media_driver [Media driver for Mass Storage Class]

 ｜ ＋――― eeprom EEPROM driver

 ＋――― MSCFW [Mass Storage Class driver]

 ｜ ＋――― inc Common header file of MSC driver

 ｜ ＋――― MEDIA Media driver

 ｜ ＋――― PMSC MSC driver

 ＋―――SmplMain [Sample Application]

 ｜ ＋――― APL Sample application

 ＋―――USBSTDFW [Common USB code that is used by all USB firmware]

 ｜ ＋――― inc Common header file of USB driver

 ｜ ＋――― src USB driver

 ＋――― HwResource [Hardware access layer; to initialize the MCU]

 ＋――― inc Common header file of hardware resource

 ＋―――src Hardware resource

[Note]

a. The project for CA78K0R compiler is stored under the CS+ folder.

b. The project for KPIT GNU compiler is stored under the e2 studio folder.

c. Refer to 13 Using the e2 studio project with CS+ section when using CC-RL compiler on CS+.

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 8 of 41

Mar 28, 2016

Table 3-2 shows the file structure for PDCD.

Table 3-2 File Structure

File Name Description Note

include/r_usb_catapi_define.h Device driver header file

include/r_usb_cmsc_define.h PDCD(PMSCD+PMSDD) common header file

include/r_usb_pmsc_api.h PMSC API functions header file

include/r_usb_pmsc_define.h PMSCD header file

include/r_usb_pmsc_extern.h External reference header file

MEDIA/r_usb_atapi_driver_config.h Device driver configuration header file

MEDIA/r_usb_atapi_driver.c Device driver (PMSDD/media driver) Sample Code for

ATAPI

PMSC/r_usb_pmsc_ddi.c PMSDD interface functions (DDI)

Driver registration, storage command callback.

PMSC/r_usb_pmsc_driver.c USB class driver (PMSCF)

PMSC/r_usb_pmsc_pci.c PCD interface functions (PCI)

PMSC/r_usb_pmsc_request.c PCD interface functions (class requests)

APL/r_usb_pmsc_descriptor.c Mass storage class descriptor Need to change as

to user system

3.3 System Resources

There is a scheduler that invokes a “task” when it has message(s) pending in the task’s mailbox, and according to the

task’s priority. Table 3-3 lists the ID and priority used to register PMSC in the scheduler. These are defined in the

r_usb_ckernelid.h header file.

For details, refer to the Renesas USB MCU USB Basic Mini Firmware Application note.

Table 3-3 ‘Tasks’ (Mailboxes)

Object Task Name / ID / Mailbox Module

Task

USB_PCD_TSK

/ USB_TID_0

usb_pstd_pcd_task

(r_usb_pdriver.c)

Priority: USB_TID_0 (default=0)

USB_PMSC_TSK

/ USB_TID_2

PMSCD, or usb_pmsc_Task

(r_usb_pmsc_driver.c)

Priority: USB_TID_2 (default=2)

USB_PFLSH_TSK

/ USB_TID_1

PMSDD, or usb _pmsc_SmpAtapiTask

(r_usb_atapi_driver.c)

Priority: USB_TID_1 (default=1)

Mailbox ID USB_PMSC_MBX

/ USB_PMSC_TSK

PDCD => PMSCD / PMSDD => PMSCD

(r_usb_pmsc_pci.c,

r_usb_pmsc_driver.c,

r_usb_pmsc_ddi.c)

USB_PFLSH_MBX

/ USB_PFLSH_TSK

PMSCD => PMSDD mailbox ID

(r_usb_atapi_driver.c)

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 9 of 41

Mar 28, 2016

4. Peripheral MSC Sample Application (APL)

PMSC’s main function is to enable file read/write operations for the connected USB mass storage host. The USB

peripheral is to be recognized by the host (e.g. a PC) as a removable disk, so that it can perform operations such as read

and write files. The Mass Storage Class specification defines the transport protocol (BOT), however, various command

sets could be used to control a storage device. The following are examples of command sets which can be used over

USB:

SFF-8070i, (ATAPI) * – Command set used in this sample code.

SFF-8020i, MMC-2 (ATAPI)

QIC-157

UFI

SCSI transparent command set

This sample mass storage device driver supports the storage command set SFF-8070i (ATAPI)*.

* As listed in “Mass Storage Specification Overview v1.2”, command block specification SFF-8070i is used

(bInterfaceSubClass = 05h) together with protocol code “USB Mass Storage Class Bulk-Only” (BBB;

bInterfaceProtocol = 050h).

4.1 Operating Environment

The storage media driver uses a 512K EEPROM in the default RSK cnfiguration. This EEPROM is controlled by

SPI/CSI.

The EEPROM may not be mounted on your RSK board. In order to operate this PMSC sample firmware, prepare the

EEPROM and any connection needed.

[Note]

CSI(Communication Serial Interface) is the interface function that RL78 series supports.

Figure 4-2 illustrates the operating environment, application operation s example.

RSK Board

USB Host PC

OS : Windows XP, Windows 7, Windows8 etc

Peripheral Mass Storage Class

Driver (PMSC)

+
Renesas USB Device

USB Basic Mini Firmware

USB

PORT

USB

PORT

USB Communications

Enumeration

(PIPE0 Control transfer)

Bulk data communication

(PIPE4, 5 Bulk transfer)

USB cable

SPI/CSI

Communications

Storage Media

512K EEPROM

(64Kword * 8-bit)
R1EX25512ATA00A

Figure 4-1 Operating Environment Example

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 10 of 41

Mar 28, 2016

Figure 4-2 Application Operations Example. These are the properties shown for an RSK storage drive,

when PMSC is connected to a PC.

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 11 of 41

Mar 28, 2016

Table 4-1 shows EEPROM specifics per RSK type.

Table 4-1 EEPROM connection specification

RL78/G1C

Connection Signal CSI01 Signal

Name

RSK Port/Junction Pin EEPROM Pin/Number

Clock SCK01 P75/J1-6 C/6

Data Transfer(RL78/G1C->EEPROM) SI01 P74/J1-7 D/5

Data Transfer(RL78/G1C<-EEPROM) SO01 P73/J1-8 Q/2

Chip Select -- P30/J1-12 S/1

RL78/L1C

Connection Signal CSI20 Signal

Name

RSK Port/Junction Pin EEPROM Pin/Number

Clock SCK20 P10/J4-2 C/6

Data Transfer(RL78/L1C->EEPROM) SI20 P11/J4-1 D/5

Data Transfer(RL78/L1C<-EEPROM) SO20 P12/J3-25 Q/2

Chip Select -- P30/J2-12 S/1

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 12 of 41

Mar 28, 2016

4.1.1 Application Program Flow

In a sense, there is no “user application” The mass storage class driver and mass storage device driver solely executes

requests from the host.

Figure 4.1 shows the application processing flow overview.

Host PCD PMSCD PMSDD

CSW transfer stage

(execution result transfer)

Call-back

Create CSWCSW transfer
Transmit CSW

Analyze storage

command

Execute storage

command

Execute storage

command

Execute storage

command

(final data)

Data (IN) transfer stage

IN data

IN data

(transmit status)

Call-back

(transmit data information)

(transmit status)

Call-back

(transmit data information)

Call-back

(transmit data

information transfer)

Call-back

(transmit data

information transfer)

13-case identification

CBW transfer stage

Transmit CBW

Ex.) READ(10)

(CBW transfer)

Call-back
Verify CBW validity

Verify CBW meaning

usb_pmsc_

SmpAtapiAnalyzeCBWCB()

usb_pmsc_

SmpAtapiCommandExecute()

usb_pmsc_

SmpAtapiCommandExecute()

usb_pmsc_

SmpAtapiCommandExecute()

CBW receive request

Callback function registration

called when storage

command execution is

completed

Callback function registration

called when storage

command execution is

completed

(callback function registration

called when CBW is

received)

Data transfer

Data transfer

Figure 4.1 Application Processing Sequence

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 13 of 41

Mar 28, 2016

4.2 API tasks

Table 4-2 shows lists the APL tasks.

Table 4-2 Lists of APL tasks

Function name Description

usb_cstd_task_start Task(PCD, MSCD, APL) start setting

usb_pmsc_task_start Starts a variety of tasks for the peripheral USB

usb_papl_task_start Start Application task

usb_apl_task_switch Switches Task

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 14 of 41

Mar 28, 2016

5. Peripheral Device Class Driver (PDCD)

5.1 Basic Functions

The functions of PDCD are to:

1. Respond to mass storage class requests from USB host.

2 Respond to USB host storage commands which are encapsulated in the BOT protocol (Bulk Only Transport). See

below.

5.2 BOT Protocol Overview

BOT (USB MSC Bulk-Only Transport) is a transfer protocol that encapsulates command, data, and status (results of

commands) using only two endpoints, one bulk in and one bulk out.

The ATAPI storage commands are embedded in a “Command Block Wrapper” (CBW) and the response status in a

“Command Status Wrapper” (CSW).

Figure 5-1 shows an overview of how the BOT protocol progresses with command and status data flowing between

USB host and peripheral.

Ready

Command Block Wrapper
Command transfer
(Host → Device)

Command Status Wrapper
Status transfer

(Device → Host)

Data-Out
(Host → Device)

Data-In
(Device → Host)

CBW transfer stage
(Command packet)

Data transfer stage
(Data packet)

CSW transfer stage
(Status packet)

Figure 5-1 BOT protocol Overview.

Command and status flow between USB host and peripheral.

5.2.1 CBW processing

When PMSCD receives a command block wrapper (CBW) from the host, it first verifies the validity of the CBW. If the

CBW is valid, PMSCD notifies PMSDD of the storage command contained in the CBW and requests analysis of

PMSDD on the command. PMSCD finally performs processing based on this analysis (command validity, data transfer

direction and size) and the information contained in the wrapper (data communication direction and size).

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 15 of 41

Mar 28, 2016

5.2.2 Sequence for storage command with no data transmit/receive

Figure 5-2 shows the sequence of storage commands without data transfer.

(a). CBW transfer stage

PMSCD issues a CBW receive request to PCD and registers a callback function. When PCD receives the CBW, it

executes the callback which starts the CBW transfer stage. PMSCD verifies the validity of the CBW and transfers the

storage command (CBWCB) to PMSDD which executes the storage command. PMSDD returns the result to PMSCD.

(b). CSW transfer stage

Based on the execution result at the time of callback, PMSCD creates a command status wrapper (CSW) and transmits

it to the host via PCD.

For details on PCD operation refer to the USB Basic Mini Firmware Application note.

Host PCD PMSCD PMSDD

CBW transfer stage

CSW transfer stage

Transmit CBW

Ex.)TEST UNIT READY Call-back

(CBW transfer)

(CBW reception preparation)

Verify CBW validity

Verify CBW meaning

13-case identification

usb_pmsc_

SmpAtapiAnalyzeCBWCB()

usb_pmsc_

SmpAtapiCommandExecute()

(execution result transfer)

Call-back

Create CSWCSW transfer
Transmit CSW

Analyze storage

command

Execute storage

command
Callback function registration

called when storage

command execution is

completed

CBW receive request

(callback function registration

called when CBW is

received)

Figure 5-2 Sequence of Storage Command for No Transmit/Receive Data

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 16 of 41

Mar 28, 2016

5.2.3 Sequence with storage command for transmit (IN) data

Figure 5-3 shows the sequence of storage command when there is transmit (IN) data from the peripheral side.

(a). CBW transfer stage

PMSCD executes a CBW receive request to PCD, and sets up a callback. When PCD receives the CBW it executes the

callback. PMSCD verifies the validity of the CBW and transfers the storage command (CBWCB) to PMSDD which

analyzes the data transmit command and returns the result to PMSCD. PMSCD then reads the CBW and sends an

ATAPI storage command execution request to PMSDD together with a callback registration.

(b). Data IN transfer stage

Based on the execution result at the time of callback, PMSCD notifies PCD of the data storage area and data size, and

data communication with the USB host takes place. When the peripheral PCD issues a transmit end notification (status),

PMSCD once again sends a continuation request to PMSDD, and data transmission is repeated.

(c). CSW transfer stage

When PMSCD receives a command processing end result from PMSDD, PMSCD creates a command status wrapper

(CSW) and transmits it to the host via PCD.

For PCD operation details refer the USB Basic Mini Firmware Application note.

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 17 of 41

Mar 28, 2016

Host PCD PMSCD PMSDD

CSW transfer stage

(execution result transfer)

Call-back

Create CSWCSW transfer
Transmit CSW

Analyze storage

command

Execute storage

command

Execute storage

command

Execute storage

command

(final data)

Data (IN) transfer stage

IN data

IN data

(transmit status)

Call-back

(transmit data information)

(transmit status)

Call-back

(transmit data information)

Call-back

(transmit data

information transfer)

Call-back

(transmit data

information transfer)

13-case identification

CBW transfer stage

Transmit CBW

Ex.) READ(10)

(CBW transfer)

Call-back
Verify CBW validity

Verify CBW meaning

usb_pmsc_

SmpAtapiAnalyzeCBWCB()

usb_pmsc_

SmpAtapiCommandExecute()

usb_pmsc_

SmpAtapiCommandExecute()

usb_pmsc_

SmpAtapiCommandExecute()

CBW receive request

Callback function registration

called when storage

command execution is

completed

Callback function registration

called when storage

command execution is

completed

(callback function registration

called when CBW is

received)

Data transfer

Data transfer

Figure 5-3 Sequence of Storage Command for Transmit (IN) Data

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 18 of 41

Mar 28, 2016

5.2.4 Sequence for storage command with receive (OUT) data

Figure 5-4 shows the sequence of storage command when there is transmit (OUT) data from the peripheral.

(a). CBW transfer stage

In the CBW transfer stage, PMSCD issues a CBW receive request to PCD and sets up a callback.. When PCD receives

the CBW it executes the callback. PMSCD verifies the validity of the CBW and transfers the storage command

(CBWCB) to PMSDD. PMSDD analyzes the data transmit command, and returns the result to PMSCD. PMSCD then

compares the analysis result from PMSDD with the information contained in the CBW and sends an ATAPI storage

command execution request to PMSDD together with a callback registration.

(b). Data OUT transfer stage

Based on the callback execution result, PMSCD notifies PCD of the data storage area and data size, and data

communication with the host takes place. When it receives transmit end notification from PCD, PMSCD once again

sends a common continuation request to PMSDD, and data transmission is repeated.

(c). CSW transfer stage

When it receives a command processing end result from PMSDD, PMSCD creates a command status wrapper (CSW)

and transmits it to the host via PCD.

For PCD operation details refer to the USB Basic Mini Firmware Application note.

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 19 of 41

Mar 28, 2016

Host PCD PMSCD PMSDD

CSW transfer stage

(execution result transfer)

Call-back

Create CSWCSW transfer
Transmit CSW

Analyze storage

command

Execute storage

command

Execute storage

command

Execute storage

command

(final data)

Data (OUT) transfer stage

OUT data

OUT data

(receive status)

Call-back

(receive data information)

(receive status)

Call-back

(receive data information)

Call-back

(receive data information

transfer)

Call-back

(receive data information

transfer)

13-case identification

CBW transfer stage

Transmit CBW

Ex.) WRITE(10)

(CBW transfer)

Call-back
Verify CBW validity

Verify CBW meaning

usb_pmsc_

SmpAtapiAnalyzeCBWCB()

usb_pmsc_

SmpAtapiCommandExecute()

usb_pmsc_

SmpAtapiCommandExecute()

usb_pmsc_

SmpAtapiCommandExecute()

CBW receive request

Callback function registration

called when storage

command execution is

completed

Callback function registration

called when storage

command execution is

completed

(callback function registration

called when CBW is

received)

Data transfer

Data transfer

Figure 5-4 Sequence of Storage Command for Receive (OUT) Data

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 20 of 41

Mar 28, 2016

5.2.5 Access sequence for class request

Figure 5-5 shows the sequence when a mass storage class request is received.

(a). Setup Stage

When PCD receives a class request in the control transfer Setup Stage, it sends a request received notification to

PMSCD.

(b). Data Stage

PMSCD executes the control transfer Data Stage and notifies PCD of data stage end by means of a callback function.

(c). Status Stage

PCD executes the Status Stage and ends the control transfer.

Host PCD PMSCD PMSDD

Setup stage

Status

Ex.) GetMaxLUN

Call-back

Transmit MaxLUN

Data stage

Status stage

R_usb_pstd_ControlRead()

Create MaxLUN

Request notification

Figure 5-5 Sequence for Class Request

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 21 of 41

Mar 28, 2016

6. USB Peripheral Mass Storage Class Driver (PMSCD)

6.1 Basic Functions

The basic interface functions of PMSCD register, open, and close the Peripheral Mass Storage Class Driver.

The rest of the functionality inside PMSCD was described in the sequence charts in chapter 5 Peripheral Device Class

Driver (PDCD).

6.2 List of API Functions

Table 6-1 List of API Functions

Function Name Description

R_usb_pmsc_Registration Registers PMSC driver
R_usb_pmsc_Open Open PMSC driver
R_usb_pmsc_Close Close PMSC driver

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 22 of 41

Mar 28, 2016

R_usb_pmsc_Registration

Registers PMSC driver

Format

void R_usb_pmsc_Registration(void)

Arguments

－

Return Values

－

Description

Registers the USB Peripheral Mass Storage Class driver with PCD.

Make your changes to the registration function according to the application program.

Use the usb_pcdreg_t type structure when registering the class driver. The information registered is as follows. For

structure member details, refer to "USB Basic Mini Firmware mini Application note".

 pipetbl Pipe information table address

 devicetbl Device descriptor address

 configtbl Configuration descriptor address

 stringtbl String descriptor address table

 statediagram Callback function to start at change usb state

 ctrltrans Callback function to start at control transfer for the user

Notes

1. If a callback is not needed, register a dummy function.

2. For USB device state detail refer to "Universal Serial Bus Specification Revision 2.0 " Figure 9-1 Device State

Diagram.

3. The string descriptor address table must be filled out. An example is as follows

uint8_t *usb_gpmsc_StrPtr[USB_STRINGNUM] =

{

 usb_gpmsc_StringDescriptor0, /* Language ID String Descriptor Address */

 usb_gpmsc_StringDescriptor1, /* iManufacturer String Descriptor Address */

 usb_gpmsc_StringDescriptor2, /* iProduct String Descriptor Address */

 usb_gpmsc_StringDescriptor3, /* iInterface String Descriptor Address */

 usb_gpmsc_StringDescriptor4, /* iConfiguration String Descriptor Address */

 usb_gpmsc_StringDescriptor5, /* iConfiguration String Descriptor Address */

 usb_gpmsc_StringDescriptor6 /* iSerialNumber String Descriptor Address */

};

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 23 of 41

Mar 28, 2016

Example

void usb_pmsc_task_start(void)

{

R_usb_pmsc_Registration(); /* Peripheral Application Registration */

R_usb_pstd_PcdChangeDeviceState(USB_DO_SETHWFUNCTION); /* Initialize USB

HW */

 R_usb_pmsc_driver_start(); /* Peripheral Class Driver Task Start Setting */

 usb_pstd_usbdriver_start(); /* Peripheral USB Driver Start Setting */

 usb_papl_task_start(); /* Peripheral Application Task Start Setting */

}

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 24 of 41

Mar 28, 2016

R_usb_pmsc_Open

Open PMSC driver

Format

usb_er_t R_usb_pmsc_Open(uint16_t data1, uint16_t data2)

Argument

uint16_t data1 : Not used

uint16_t data2 : Not used

Return Value

uint16_t Processing result. 0 = USB_E_OK

Description

This function is to be called when the USB device has been connected, has enumerated and been configured by

the USB host .

The function sets the CBW reception setting.

Note

Call this function in the callback function which is registered in the structure(usb_pcdreg_t)

member (statediagram)

Example

void usb_pmsc_change_device_state(uint16_t data1, uint16_t device_state)

{

switch (device_state)

{

case USB_STS_CONFIGURED:

 R_usb_pmsc_Open(data1, device_state);

break;

}

}

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 25 of 41

Mar 28, 2016

R_usb_pmsc_Close

Close PMSC driver

Format

Usb_er_t R_usb_pmsc_Close(Usb_utr_t *ptr, uint16_t data1, uint16_t data2)

Argument

Usb_utr_t *ptr : Pointer to a USB Transfer Structure

uint16_t data1 : Not used

uint16_t data2 : Not used

Return Value

uint16_t － USB_E_OK

Description

This function is to be called when the USB device has been disconnected..

This function is called at transition to the detached state. There are no operations. Add if necessary.

Note

This function should be called when the callback function registered with API R_usb_pmsc_Registration() is triggered

for state change USB_STS_DETACH. See below.

Example

void usb_pmsc_change_device_state(uint16_t data1, uint16_t device_state)

{

switch (device_state)

{

case USB_STS_DETACH:

 R_usb_pmsc_Close(data1, device_state);

break;

}

}

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 26 of 41

Mar 28, 2016

6.3 Class Driver Registration

The device class driver PMSCD must be registered with PCD to function. Use the R_usb_pmsc_Registration() function

to register PMSCD, using the sample code as reference. See 8.1, For details, refer to the Renesas USB MCU USB Basic

Firmware mini Application note.

6.4 User Definition Tables

It is necessary to create a descriptor table and Pipe Information Table for use by PCD. Refer to the sample file

r_usb_pmsc_descriptor.c when creating these tables. For details on the Pipe Information Table refer to the Renesas

USB MCU USB Basic Firmware mini Application note.

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 27 of 41

Mar 28, 2016

7. Peripheral Mass Storage Device Driver (PMSDD)

The main function of PMSDD is to analyze and call for execution of storage commands received from the host via

PMSCD. Host enumeration is determined by the InterfaceSubClass as set in the descriptor source code and is set to

SFF-8070i (ATAPI). This command set is used by the host to control the storage media. These are the storage

commands:

READ10

INQUIRY

REQUEST_SENSE

MODE_SENSE6

MODE_SENSE10

READ_FORMAT_CAPACITY

READ_CAPACITY

WRITE10

WRITE_AND_VERIFY

MODE_SELECT6

MODE_SELECT10

FORMAT_UNIT

TEST_UNIT_READY

START_STOP_UNIT

SEEK

VERIFY10

PREVENT_ALLOW

PMSDD notifies PMSCD of communication data and execution results related to storage command execution.

PMSDD divides the data transfer intp0 pieces when the transfer data length exceeds the user-specified block count.

 A master boot record (FAT12) sample table is provided.

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 28 of 41

Mar 28, 2016

7.1 PMSDD Storage Command Structure

The “storage command structure” is USB_PMSC_CDB_t. The format of a storage command (SFF-8070i) differs

depending on the command category, so a union is used for the command. Four patterns encompass ten command

categories as shown in Table 7-1.

Table 7-1 USB_PMSC_CDB_t Structure

Union Member Type Structure Member Bit Count Command Category

s_usb_ptn0 uint8_t uc_OpCode Command determination (common)

uint8_t

s_LUN

b_LUN 3

b_reserved 5

uint8_t uc_data

s_usb_ptn12 uint8_t uc_OpCode INQUIRY /

REQUEST_SENSE uint8_t

s_LUN

b_LUN 3

b_reserved4 4

b_immed 1

uint8_t uc_rsv2[2]

uint8_t uc_Allocation

uint8_t uc_rsv1[1]

uint8_t uc_rsv6[6]

s_usb_ptn378 uint8_t uc_OpCode Not used (FORMAT UNIT)

uint8_t

s_LUN

b_LUN 3

b_FmtData 1

b_CmpList 1

b_Defect 3

uint8_t ul_LBA0

uint8_t ul_LBA1

uint8_t ul_LBA2

uint8_t ul_LBA3

uint8_t uc_rsv6[6]

s_usb_ptn4569 uint8_t uc_OpCode READ10 /

WRITE10 /

WRITE _AND_VERIFY /

MODE_SENSE /

FORMAT CAPACITY /

MODE SELECT

uint8_t

s_LUN

b_LUN 3

b_1 1

b_reserved2 2

b_ByteChk 1

b_SP 1

uint8_t ul_LogicalBlock0

uint8_t ul_LogicalBlock1

uint8_t ul_LogicalBlock2

uint8_t ul_LogicalBlock3

uint8_t uc_rsv1[1]

uint8_t us_Length_Hi

uint8_t us_Length_Lo

uint8_t uc_rsv3[3]

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 29 of 41

Mar 28, 2016

Table 7-2 shows storage commands analysis result.

Table 7-2 The USB_PMSC_CBM_t Structure

Contains “analysis” result of usb_pmsc_SmpAtapiAnalyzeCbwCb.

Type Member PMSDD storage command

analysis RESULT

Remarks

uint32_t ar_rst Data direction. Direction of data transported in last ATAPI

command.

uint32_t ul_size Data size Size of data in last ATAPI command.

7.2 List of PMSDD Functions

Table 7-3 lists the functions of PMSDD.

Table 7-3 List of PMSDD Functions

Function Name Description

usb_pmsc_SmpAtapiAnalyzeCbwCb Analyzes storage command.

usb_pmsc_SmpAtapiTask Main task of PMSDD

usb_pmsc_SmpAtapiInitMedia Initialization at PMSDD start

usb_pmsc_SmpAtapiCloseMedia Processing at PMSDD end

usb_pmsc_SmpAtapiCommandExecute Transmits message from PMSCD to PMSDD main task.

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 30 of 41

Mar 28, 2016

7.3 PMSDD Task Description

PMSDD receives storage commands from PMSCD and executes them. PMSDD also receives host data transfer results

from PMSCD. Table 7-4 lists PMSDD command processing. When the transfer data size exceeds

USB_ATAPI_BLOCK_UNIT, the data is divided into smaller units and transferred.

For commands that do not involve memory access, the transmitted data is created from the response data tables

g_pmsc_atapi_data_size[],

g_pmsc_atapi_rd_dat_idx[],

g_pmsc_atapi_req_idx[], and

g_pmsc_atapi_rd_dat_tbl[]. (*1)

(*1) These response data tables follow storage command set SFF-8070i. The index into the table is determined

by the command. Refer to uc_OpCode in Table 7-1 USB_PMSC_CDB_t Structure.

Table 7-4 Corresponding Function per Storage Command

Storage command Corresponding Function Description

READ10 pmsc_atapi_get_read_memory() Gets start address and size.

INQUIRY pmsc_atapi_get_read_data() Selects response data from array

g_pmsc_atapi_rd_dat_tbl.

REQUEST_SENSE pmsc_atapi_get_read_data () Selects response data from array

g_pmsc_atapi_rd_dat_tbl.

MODE_SENSE10 pmsc_atapi_get_read_data () Selects response data from array

g_pmsc_atapi_rd_dat_tbl.

READ_FORMAT_CAPACITY pmsc_atapi_get_read_data () Selects response data from array

g_pmsc_atapi_rd_dat_tbl.

READ_CAPACITY pmsc_atapi_get_read_data () Selects response data from array

g_pmsc_atapi_rd_dat_tbl.

WRITE10 pmsc_atapi_get_write_memory() Gets start address and size.

WRITE_AND_VERIFY pmsc_atapi_get_write_memory() Gets start address and size.

MODE_SELECT10 pmsc_atapi_get_write_memory() Gets start address and size.

FORMAT_UNIT pmsc_atapi_get_write_memory() Gets start address and size.

TEST_UNIT_READY usb_pmsc_SmpAtapiTask() Status =

USB_PMSC_CMD_COMPLETE

START_STOP_UNIT usb_pmsc_SmpAtapiTask() Status =

USB_PMSC_CMD_COMPLETE

SEEK usb_pmsc_SmpAtapiTask() Status =

USB_PMSC_CMD_COMPLETE

VERIFY10 usb_pmsc_SmpAtapiTask() Status =

USB_PMSC_CMD_COMPLETE

PREVENT_ALLOW usb_pmsc_SmpAtapiTask() Status =

USB_PMSC_CMD_FAILED

others usb_pmsc_SmpAtapiTask() Status =

USB_PMSC_CMD_ERROR

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 31 of 41

Mar 28, 2016

8. Media Driver Interface

This chapter is an introduction to the block USB Peripheral Mass Storage Class Driver (PMSC), and how it is used for

PMSC. For complete details on this API and how to create new media drivers that interface through it, see application

note no. r01an1443eu_rx.

PMSC is able to operate with a variety of devices as data storage media. It uses a block storage type driver API

described in the application note (Document No. r01an1443eu_rx). The storage media interface is an abstract set of

functions (R_MEDIA_Read, R_MEDIA_Write, etc) which are the same regardless of the underlying driver that will be

called behind the interface. PMSC can interface any media driver that supports this API.

8.1 Overview of Media Driver API Functions

The Block Access Media Driver API serves to interface the PMSC application to a specific media device driver. The

selection of media is made through configuration files that the user must customize. There is one configuration file for

the Block Access Media Driver API, r_media_driver_api_config.h, which has a list of media devices, and another

configuration file for PMSC, r_usb_atapi_driver_config.h, which assigns the selected media driver to be used for

PMSC.

The transport layer subtype in this application is SFF-8070i (ATAPI). This layer processes the storage commands that

are contained in the Command Blocks that are tunneled through the BOT transport layer. Most of the work done to

process the command set is accomplished by routines in the file r_usb_atapi_driver.c. This is where the ATAPI data

storage commands that write or read the storage media, that is, the block API calls, originate. Storage commands pass

through the Block Access Media Driver API layer where they are directed to drivers for the assigned storage device.

Table 8-1 The Block Access Media Driver API functions

Function Name Description

R_MEDIA_Initialize Registers the media driver

R_MEDIA_Open Open media driver

R_MEDIA_Close Close media driver

R_MEDIA_Read Read from a media device

R_MEDIA_Write Write to a media device

R_MEDIA_Ioctl Perform control and query operations on a media device

8.2 Selecting Media Driver

A media driver has a structure that contains the pointers to its implementation of the API’s abstract functions shown in

Table 8-1. The name of this driver implementation structure must be assigned to a macro used by the ATAPI task:

ATAPI_MEDIA_DEVICE_DRIVER in r_media_driver_api_config.h.

The section, or block, size must match both what the host can handle (e.g. Windows FAT and what the bottom layer

driver can handle, e.g. 512 or 4096 bytes.

8.2.1 Initializing the Media Driver Function Set

Once the block media driver functions listed in the g_MediaDriverList actually exist, all that is needed is to call the

abstract function

R_MEDIA_Initialize(&ATAPI_MEDIA_DEVICE_DRIVER);

which will write the actual driver member functions to g_MediaDriverList at runtime. Once the member functions have

popluated g_MediaDriverList, calls to the other abstract block media functions; R_MEDIA_Open, R_MEDIA_Read,

R_MEDIA_Write,… will redirect to call the user’s particular driver functions. In other words, it all happens behind the

scene without the user having to replace the abstract call with the actual driver calls.

This initialization call is already done in PMSC in file r_media_driver_api.c.

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 32 of 41

Mar 28, 2016

This runtime registration of the drivers can be omitted, and the member functions be called directly, but the member

functions must then not be declared (and defined) as static in the driver source code, as in the RAM and API sample

drivers.

8.3 Changing (adding) Storage Media

Suppose you would like to change what media the data is stored on. Default is EEPROM. To use a different storage

media, the read, write, etc functions must first be made to conform to the block media driver API described above.

8.3.1 Steps to conform a driver to the block media API

1. Add the media driver interface function source code using return types and arguments as specified in

r_media_driver_api.h. Then add a media_driver_s structure containing pointers to these members at the top of

this file.

2. In r_usb_atapi_driver_config.h, add the definitions as described in 8.2. and call the abstract initialize function in

8.2.1, before any calls to the block driver API functions are made.

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 33 of 41

Mar 28, 2016

9. The EEPROM Media Driver

The EEPROM media driver that is supplied preconfigured to use EEPROM as a storage media device. While this is

provided primarily as a simplified example of a media driver to demonstrate the functionality of USB-PMSC, it can still

be useful as a means to transfer data to or from the MCU to the USB host.

(1). Operates as the attached media device

The sample code operates as media with 64KByte EEPROM (Renesas: R1EX25512ATA00A).

(2). Media is preformatted to appear as removable FAT file storage device.

(3). Media driver supports connection to Windows OS (XP, 7, etc) host.

(4). Default format may be overwritten by format command from the host.

(5). Host can read files from EEPROM or write files to it, and can update the FAT format information as needed.

9.1 EEPROM Media Driver Default FAT Format

The EEPROM media device is preformatted to appear as removable FAT file storage device.

The file r_eeprom_disk_format_data.c contains the section declarations and the pre-initialized data that will get stored

to EEPROM at system startup.

The beginning of the EEPROM area (lowest memory address) is considered to be the boot sector (sector 0), as block

zero is the default boot sector area in a FAT formatted storage device. Therefore, all storage blocks are addressed

relative to this location. When a host device accesses the media device it will always communicate in terms of starting

logical block number “LBN”, and “block count”, the number of blocks to transfer (512 for WindowsXP and 4096 for

Windows7). The host knows how to navigate a FAT formatted storage device, and will read the first sector to gain

information about the specific format on the EEPROM, and then discover where to look for additional file information.

From that the host will know which block numbers to access for EEPROM data storage.

Alternatively, the host can re-format the EEPROM, replacing the default boot sector, FAT tables, etc, with its own

format. In this case the host still knows where in the EEPROM a specific block of data resides.

Note: It is not strictly necessary for a USB-PMSC device to have a FAT file system format, however most host systems

will expect to use the PMSC device for file storage with FAT as the file system type.

The USB device cannot access the FAT storage on its own. See chapter 11.

9.2 EEPROM Global Area Variables

The entire EEPROM RAM section is of global scope with a number of named variables. Table 9-1 lists the global area

variables of the media driver.

Table 9-1 Media Driver Global Areas

Type Variable Name Description

uint8_t eeprom_boot_sector Primary Boot Record area (sector 0)

uint8_t usb_gpmsc_Table1 Dummy area (sector 1)

uint8_t usb_gpmsc_TableFat FAT table (sector 2 and 3)

uint8_t usb_gpmsc_RootDir Directory entry area (sector 4)

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 34 of 41

Mar 28, 2016

9.3 Constant Definitions

Table 9-2 shows the constant definitions used for the EEPROM media driver.

Table 9-2 PMSDD Constant Definitions

Description Definition name Value Remark

Media type EEPROM_MEDIATYPE 0xF8u Modifiable

Signature EEPROM_SIGNATURE 0xAA55u Not

modifiable

Sector size EEPROM_SECTSIZE 512ul Modifiable

Cluster size EEPROM_CLSTSIZE 0x01u Modifiable

FAT number EEPROM_FATNUM 0x02u Modifiable

Media size *1 EEPROM_MEDIASIZE 64*1024（=64Kbyte） Modifiable

Total number of

sectors*2

EEPROM_TOTALSECT EEPROM_MEDIA_SIZE / EEPROM_SECTSIZE Not

modifiable

FAT Table Length*2 EEPROM_FATLENGTH 341ul（FAT12) Not

modifiable

FAT table length*2 EEPROM_FATSIZE (((EEPROM_TOTALSECT-8) /

EEPROM_FATLENGTH)+1)

Not

modifiable

Root directory EEPROM_ROOTTOP (((EEPROM_FATSIZE *

EEPROM_FATNUM+1)/8+1)*8)

Not

modifiable

(Not used)

FAT start EEPROM_FATTOP (EEPROM_ROOTTOP - (EEPROM_FATSIZE *

EEPROM_FATNUM))

Not

modifiable

(Not used)

Root Directory size EEPROM_ROOTSIZE 1ul Not

modifiable

(Not used)

*1 A minimum 20K byte capacity is required when connecting the device to a PC running WindowsXP.

FAT12 is selected when the media size is set to under 2M bytes.

FAT16 is selected when the media size is set to under 32M bytes.

*2 Total number of sectors, FAT data length, and FAT table length are automatically calculated based on the media size.

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 35 of 41

Mar 28, 2016

9.4 Operation Overview

Table 9-3 lists the EEPROM media variables and Figure 9.1 shows the EEPROM media block diagram.

Table 9-3 Media Variables

Category Sector No. Physical Address Accesible Size

PBR Sector 0 0x0000 512Byte

Dummy area Sector 1 0x0200 512Byte

FAT1 Sector 2 0x0400 512Byte EEPROM_FATSIZE

FAT2 Sector 3 0x0600 512Byte EEPROM_FATSIZE

ROOT DIR Sector 4 0x0800 512Byte16

PBR
Sector 0

Dummy area

Sector 1

FAT1
Sector 2

FAT2
Sector 3

Data (ROOT DIR)

Sector 4

EEPROM__SECTSIZE

EEPROM_FATSIZE

EEPROM_TOTALSECT

EEPROM_ROOTTOP

Data

EEPROM_FATSIZE

Figure 9.1 Media Block

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 36 of 41

Mar 28, 2016

10. Resource Registration in Scheduler

When using the scheduler, it is necessary to register resources such as task IDs, and mailbox IDs in the

file"r_usb_ckernelid.h".

In the sample file, the registrations are as follows.

 /* Peripheral MSC Sample Task */

 #define USB_PFLSH_TSK USB_TID_1 /* Task ID */

 #define USB_PFLSH_MBX USB_PFLSH_TSK /* Mailbox ID */

 /* Peripheral MSC Driver Task */

 #define USB_PMSC_TSK USB_TID_2 /* Task ID */

 #define USB_PMSC_MBX USB_PMSC_TSK /* Mailbox ID */

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 37 of 41

Mar 28, 2016

11. Limitations

The PMSC firmware does not include a FAT library, so it cannot access the storage via file system calls on its own.

Adding local media access is possible, but a FAT driver must be added to the firmware.

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 38 of 41

Mar 28, 2016

12. Setup for the e2 studio project

(1). Start up e2 studio.

* If starting up e2 studio for the first time, the Workspace Launcher dialog box will appear first. Specify the folder

which will store the project.

(2). Select [File]  [Import]; the import dialog box will appear.

(3). In the Import dialog box, select [Existing Projects into Workspace].

Figure 12-1 Select Import Source

(4). Press [Browse] for [Select root directory]. Select the folder in which [.cproject] (project file) is stored.

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 39 of 41

Mar 28, 2016

Figure 12-2 Project Import Dialog Box

(5). Click [Finish].

This completes the step for importing a project to the project workspace.

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 40 of 41

Mar 28, 2016

13. Using the e2 studio project with CS+

This package contains a project only for e2 studio. When you use this project with CS+, import the project to CS+ by

following procedures.

[Note]

The rcpc file is stored in "workspace\RL78\CCRL\devicename" folder.

Figure 13-1 Using the e2 studio project with CS+

Launch CS+ and click “Start”.

Select [Open Exsisting e2studio/CubeSuite/High-performance Embedded

Workshop/PM+ project] in Start menu.

Select [project file for
e2studio] Select the file with the extension

[.rcpc] and click Open button.

Select the device used in
the project.

Select Project type, and specify the
project name and its location.
Click OK button if they are OK.

Select the used project

e.g. Sample

The project name depends on the AN.

Renesas USB MCU USB Peripheral Mass Storage Class Driver (PMSC)

R01AN0710EJ0215 Rev.2.15 Page 41 of 41

Mar 28, 2016

Website and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/
http://www.renesas.com/contact/

A-1

Revision Record

Rev.

Date

Description

Page Summary

1.00 Dec.10.2010 — First edition issued

2.00 Mar.29.2013 — Revision of the document by firmware upgrade.

Complete rewrite of Media Driver chapter.

2.10 Aug.01.2013 — RL78/L1C, RX111 is supported. Error is fixed.

2.11 Oct. 31. 2013 — 2.2.1 Folder Structure was corrected.

2.12 Mar.31.2014 — R8C is supported. Error is fixed.

2.13 Mar.16.2015 — RX111 is deleted from Target Device

2.14 Jan.18.2016 — Supported Technical Update (Document No. TN-RL*-A055A/E and

TN-RL*-A033B/E)

2.15 Mar. 28. 2016 — CC-RL compiler is supported.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the

products covered by this document, refer to the relevant sections of the document as well as any technical updates that

have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an

associated shoot-through current flows internally, and malfunctions occur due to the false

recognition of the pin state as an input signal become possible. Unused pins should be handled as

described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins

are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function

are not guaranteed from the moment when power is supplied until the power reaches the level at

which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.

Moreover, when switching to a clock signal produced with an external resonator (or by an external

oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

 The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect

the ranges of electrical characteristics, such as characteristic values, operating margins, immunity

to noise, and amount of radiated noise. When changing to a product with a different part number,

implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2016 Renesas Electronics Corporation. All rights reserved.

Colophon 5.0

	1. Overview
	1.1 Functions and Features
	1.2 Related Documents
	1.3 Terms and Abbreviations

	2. Operating Confirmation Environment
	2.1 Compiler
	2.2 Evaluation Board

	3. Software Configuration
	3.1 Module Configuration
	3.1.1 PDCD
	3.1.2 PMSCD

	3.2 File Structure
	3.3 System Resources

	4. Peripheral MSC Sample Application (APL)
	4.1 Operating Environment
	4.1.1 Application Program Flow

	4.2 API tasks

	5. Peripheral Device Class Driver (PDCD)
	5.1 Basic Functions
	5.2 BOT Protocol Overview
	5.2.1 CBW processing
	5.2.2 Sequence for storage command with no data transmit/receive
	5.2.3 Sequence with storage command for transmit (IN) data
	5.2.4 Sequence for storage command with receive (OUT) data
	5.2.5 Access sequence for class request

	6. USB Peripheral Mass Storage Class Driver (PMSCD)
	6.1 Basic Functions
	6.2 List of API Functions
	6.3 Class Driver Registration
	6.4 User Definition Tables

	7. Peripheral Mass Storage Device Driver (PMSDD)
	7.1 PMSDD Storage Command Structure
	7.2 List of PMSDD Functions
	7.3 PMSDD Task Description

	8. Media Driver Interface
	8.1 Overview of Media Driver API Functions
	8.2 Selecting Media Driver
	8.2.1 Initializing the Media Driver Function Set

	8.3 Changing (adding) Storage Media
	8.3.1 Steps to conform a driver to the block media API

	9. The EEPROM Media Driver
	9.1 EEPROM Media Driver Default FAT Format
	9.2 EEPROM Global Area Variables
	9.3 Constant Definitions
	9.4 Operation Overview

	10. Resource Registration in Scheduler
	11. Limitations
	12. Setup for the e2 studio project
	13. Using the e2 studio project with CS+

