
 Development Guide

R01AN5849EJ0105 Rev.1.05 Page 1 of 76
Dec. 27, 2022

RA4W1 Group
Bluetooth Mesh Development Guide
Introduction
Bluetooth Mesh Stack is the software library to build a mesh network that is compliant with Bluetooth Mesh
Networking Specification and to perform many-to-many wireless communication. This document describes
the overview of software architecture and its layers of the Bluetooth Mesh Stack and how to develop a Mesh
Application. For more information on how to get started with Bluetooth Mesh Stack, refer to "RA4W1 Group
Bluetooth Mesh Startup Guide" (R01AN5847).

Target Device
RA4W1 Group

Related Documents
The following documents are published on Renesas website.

Document Title Document No.
RA4W1 Group
User’s Manual: Hardware

R01UH0883

Renesas Flexible Software Package User’s Manual -
RA4W1 Group
Bluetooth Low Energy Application Developer's Guide

R01AN5653

RA4W1 Group
Bluetooth Mesh Startup Guide

R01AN5847

RA4W1 Group
Bluetooth Mesh sample application Application Note

R01AN5848

RA4W1 Group
Bluetooth Mesh Development Guide

R01AN5849
This document

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 2 of 76
Dec. 27, 2022

Contents

1. Bluetooth Mesh Overview .. 4
1.1 Node .. 4
1.2 Element ... 4
1.3 Address ... 5
1.4 State .. 5
1.5 Model ... 6
1.5.1 Client and server ... 6
1.5.2 Foundation models .. 6
1.5.3 Configuration model .. 7
1.5.4 Health model ... 7
1.5.5 Publication and subscription .. 7
1.6 Message .. 8
1.7 Mesh Bearer .. 9
1.8 Provisioning ... 10
1.9 Configuration ... 11
1.10 Optional Features .. 12
1.10.1 Relay ... 12
1.10.2 Proxy ... 13
1.10.3 Friendship .. 14

2. Mesh Application Overview .. 15
2.1 Software Structure ... 15
2.2 File Structure ... 17
2.3 Mesh Application ... 18
2.3.1 Mesh Core Module .. 19
2.3.2 Mesh Model Module .. 19
2.3.3 Mesh Model Composition .. 19
2.3.3.1 Configuration Model .. 21
2.3.3.2 Health Model ... 23
2.3.3.3 Generic OnOff Model .. 24
2.3.3.4 Vendor Model .. 24
2.4 Bluetooth Mesh Stack ... 25
2.5 Bluetooth Bearer .. 27
2.5.1 Bearer Functions for Message Transmission and Reception ... 27
2.5.2 Bearer Functions for Connection Control .. 28
2.5.3 Mesh GATT Services .. 29
2.5.4 ADV Bearer Operation .. 30
2.5.5 GATT Bearer Operation .. 31
2.6 MCU Peripheral Functions .. 32
2.7 Mesh Sample Program Configuration ... 35

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 3 of 76
Dec. 27, 2022

2.8 Bluetooth Bearer Configuration ... 37

3. Application Development ... 38
3.1 Main Routine ... 39
3.2 Node Configuration.. 42
3.3 Provisioning ... 43
3.3.1 Provisioning Server ... 43
3.3.2 Provisioning Sequence .. 46
3.4 Proxy ... 50
3.4.1 Proxy Server .. 50
3.4.2 Proxy Client ... 52
3.4.3 Proxy Sequence .. 54
3.5 Friendship .. 56
3.5.1 Friend Node ... 56
3.5.2 Low Power Node ... 57
3.5.3 Low Power Node Sequence .. 60
3.5.4 Friend Node Sequence ... 62
3.6 Configuration ... 64
3.6.1 Configuration Server ... 64
3.6.2 Configuration Server Sequence .. 65
3.7 Health Model ... 66
3.7.1 Health Server... 66
3.7.2 Health Server Sequence ... 69
3.8 Application Model .. 70
3.8.1 Server Model ... 70
3.8.2 Client Model ... 72
3.8.3 Generic OnOff Model Sequence ... 74
3.8.4 Vendor Model Sequence ... 74

4. Appendix ... 75
4.1 Command Line Interface Program .. 75
4.2 Program size ... 76

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 4 of 76
Dec. 27, 2022

1. Bluetooth Mesh Overview
This chapter describes basic concepts of Bluetooth mesh defined by Bluetooth Mesh Networking
Specifications. For more information, refer to Mesh Model and Mesh Profile specification on Specifications
List. Figure 1-1 shows the typical topology of Bluetooth mesh network.

Figure 1-1 Basic Composition of Bluetooth Mesh Network

1.1 Node
A device joining a network is referred to as a Node. Network is a group of nodes sharing common address
space and encryption keys. Communication among nodes is encrypted with Network Key. Each network is
identified by Network ID generated from the Network Key. By default, one Network referred to as primary
subnet is built. Multiple subnets can be also built to isolate communication scope.

1.2 Element
Element is a logical entity within a node. A node must have at least one element. And also the node can
have multiple elements. First element is referred to as primary element. Each element is identified uniquely
in a network by Unicast Address. The unicast address is assigned by provisioning.

Node

Element

Client Model

Node

Element

Server Model

State

Messages

Node Node

Node Node

Node
Node

https://www.bluetooth.com/specifications/specs/
https://www.bluetooth.com/specifications/specs/

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 5 of 76
Dec. 27, 2022

1.3 Address
Address used in a mesh network has 16-bit length. Unassigned address, Unicast Address, Virtual Address,
and Group address are defined as address types.

Table 1-1 Address Types
Address Type Value Value Range
Unassigned Address 0b0000000000000000 0x0000

Unicast Address 0b0xxxxxxxxxxxxxxx (excluding 0b0000000000000000) 0x0001 to 0x7FFF

Virtual Address 0b10xxxxxxxxxxxxxx 0x8000 to 0xBFFF

Group Address 0b11xxxxxxxxxxxxxx 0xC000 to 0xFFFF

• Unassigned address
Unassigned address is set to an element which has not been assigned unicast address yet. Unassigned
address cannot be used as source address or destination address in a message.

• Unicast address
Unicast address is an address to identify a single element. 32,767 of unicast address can be used in a
mesh network. Unicast address can be used for source address and destination address in a message.

• Virtual address
Virtual address is a multicast address generated by a Label UUID. Virtual address can be used for
destination address in a message. Label UUID is a 128-bit value to categorize elements. This value can
be generated randomly and shared by OOB (Out-Of-Band) among devices. Also, virtual address and
Label UUID need not to be managed centrally.

• Group address
Group address is a multicast address managed and assigned dynamically according to usage. Group
address can be used for destination address in a message. Also, as shown Table 1-2, Fixed Group
Addresses are defined for specific use case. (e.g. broadcasting to all-nodes.)

Table 1-2 Fixed Group Addresses

Fixed Group Address Value
all-proxies 0xFFFC
all-friends 0xFFFD
all-relays 0xFFFE
all-nodes 0xFFFF

1.4 State
State is a value representing a condition of an element. States that are composed of two or more values are
referred to as composite states. Moreover, State that change in conjunction with other states is referred to as
bound states. The State can change instantaneously or can have transition time. Time from initial state to
target state is referred to as transition time. Also, time from current state to target state is referred to as
remaining time.

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 6 of 76
Dec. 27, 2022

1.5 Model
Model is a standardized functionality so that nodes can perform typical operations in accordance with each
scenario. Model defines states, messages that act upon a state, and associated behaviors.

1.5.1 Client and server
Model has server - client architecture. Server model have at least on state, but client model does not have
state. Server model controls state of element by receiving messages the client model. Client model can get a
state of server model with GET message and set a new state to server model with SET message or SET
Unacknowledged message. Server model sends STATUS message as an acknowledge when state is
changed, or an GET or SET message is received. Server model does not send STATUS message when
SET Unacknowledged message is received.

Figure 1-2 shows node structure. A node can have multiple elements. An element can have multiple models,
but not the same model in the element.

Figure 1-2 Node Composition

1.5.2 Foundation models
Foundation Models are models for configuring and managing behavior of elements. Primary element of each
node must have configuration server model and health server model.

Table 1-3 Fixed Group Addresses

Model SIG Model ID
Configuration Server 0x0000

Configuration Client 0x0001

Health Server 0x0002

Health Client 0x0003

Node

Element Element

Server Model

State

Client Model Server Model

State

State

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 7 of 76
Dec. 27, 2022

1.5.3 Configuration model
Configuration model is a model for configuring behavior of node. Configuration values of a node and
elements are defined as configuration states. Configuration server model has a configuration states.
Configuration client model is a model for managing behavior of configuration server by configuration
messages. Each configuration message is encrypted with a device key. Device keys are different from each
node.

1.5.4 Health model
Health model is a model for monitoring physical condition of a node. Health server model is a model that has
fault state for representing physical fault information. Health client model is a model for monitoring fault state
of health server by health messages. Each health message is encrypted with an Application Key.

1.5.5 Publication and subscription
The model transmits messages is referred to as publication and receives messages is referred to as
subscription. Model can publish messages to multiple elements by assigning multicast address as a
destination address. The model can also selectively subscribe messages which have multicast address.
Figure 1-3 shows how the model publishes and subscribes to messages. Each model sends messages in
accordance with the publish address in model publication state. If the publish address is multicast address,
each message is subscribed by multiple models in accordance with subscription addresses in subscription
list state.

Figure 1-3 Message Publication and Subscription by models

Publish Address:
multicast address A

element

model

Publish Address:
multicast address B

element

model

element

model

Subscription Address:
multicast address A

element

model

Subscription Address:
multicast address A
multicast address B

element

model

Subscription Address:
multicast address B

messages for multicast address A messages for multicast address B

Publication Publication

Subscription Subscription Subscription

messages for multicast address A messages for multicast address B

Subscription

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 8 of 76
Dec. 27, 2022

1.6 Message
Data transmitted and received in a mesh network is referred to as message. Messages are categorized as
follows whether the messages are segmented into multiple part or not.

• Unsegmented Message

Unsegmented message is a message to transport unsegmented data. The message can transport
Access PDU up to 11 bytes.

• Segmented Message

Segmented Message is a message to transport each segmented data up to 32 segments. The message
can transport Access PDU up to 380 bytes. When receiving all Segmented Messages, destination node
reassembles data.

The access layer of Bluetooth mesh takes care of assemble and disassemble of access PDU. Figure 1-4
shows the assemble and disassemble of the PDU. Each node transmits and receives Network PDU as a
Mesh Message.

Figure 1-4 Segmentation and Reassembly of Access PDU

Header of network PDU includes fields such as source address (SRC), destination address (DST), and
sequence number (SEQ). Network PDUs are encrypted with a Network Key, so only devices joining same
mesh network can decrypt the PDUs. Also, SRC and DST of them are obfuscated, so other devices that
does not have Network Key cannot trace the PDUs.

Header of Lower transport PDU includes SEG field to indicate whether unsegmented or segmented. And the
lower transport PDU also includes SeqZero, SegO, and SegN field to use for reassemble segmented data.

Access PDU has two fields: application opcode and application parameters. The access PDU is encrypted
with application key or device key, so data can be share among only nodes that share the keys. Applications
keys are generated and are distributed by configuration client.

Access PDU Opcode Parameters

Upper Transport
Access PDU Encrypted Access Payload TransMIC

Lower Transport
Access PDU Segment 1Segment 0Header Header

Network PDU TransportPDU NetMIC TransportPDU NetMICHeaderHeader

Segment 2Header

TransportPDU NetMICHeader

Encrypting Decrypting

DecryptingEncrypting Decrypting Encrypting Encrypting Decrypting

ReassemblyReassembly ReassemblySegmentation Segmentation Segmentation

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 9 of 76
Dec. 27, 2022

1.7 Mesh Bearer
Mesh Bearer is a method to transport messages in a mesh network. Two types of bearers that use Bluetooth
Low Energy technology are defined as follows:

• ADV bearer
ADV bearer sends messages by the Non-Connectable and Non-Scannable Undirected Advertising.
Messages sent by ADV bearer can be received by many nodes simultaneously. Also, this bearer is
referred to as PB-ADV when transmitting Provisioning PDUs on advertising channel during provisioning.

• GATT bearer
GATT bearer sends messages over GATT service. A node of Client side sends messages by Write
Without Response and a node of server side sends messages by Notification. Before communicating
over the GATT service, establishing a connection is required. Messages sent by GATT bearer can be
received by a connected peer node only. Also, this bearer is referred to as PB-GATT when transmitting
Provisioning PDUs on data channel during provisioning.

Figure 1-5 ADV Bearer and GATT Bearer

GATT BearerADV Bearer

GATT Server (Peripheral role)

GATT Client (Central role)

Notification Write Without Response

non-connectable and non-scannable
undirected advertising
(ADV_NONCONN_IND)

Advertiser / Scanner

Advertiser / Scanner Advertiser / Scanner

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 10 of 76
Dec. 27, 2022

1.8 Provisioning
Provisioning is a process for joining a network. In provisioning, Provisioning Data that includes Network Key
and Unicast Addresses of each element is distributed. Provisioning Data contains the following information.

• Network Key and Network Key Index

• Flags: Key Refresh Flag and IV Update Flag

• Current IV Index

• Unicast Address of the primary element

A device that is not joined mesh network yet is referred to as Unprovisioned Device. Each Unprovisioned
Device is identified by 128-bit Device UUID.

A device that invites other devices to mesh network and distributes Provisioning Data is referred to as
Provisioning Client or Provisioner. Generally, Provisioning Client is a smart phone or other mobile computing
device.

A device that receives Provisioning Data and joins mesh network is referred to as Provisioning Server or
Provisionee. The device that has joined mesh network is referred to as a Node.

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 11 of 76
Dec. 27, 2022

1.9 Configuration
To communicate with other nodes by using Models, each node needs Configuration. By Configuration
process, information required for Model operation such as Application Keys, Publish Address, Subscription
Address is configured. Figure 1-6 shows a typical lifecycle of a node.

Newly introduced device is provisioned by Provisioner and joins mesh network. Furthermore, this device is
configured by Configuration Client and becomes to be able to communicate with other nodes with Mesh
Model. Generally, Configuration Client is a smart phone or other mobile computing device.

Configuration Client removes a node from a network by sending Config Node Reset message. Configuration
Client will update encryption keys used in the mesh network, and the removed node becomes unable to
communicate with other nodes.

Figure 1-6 Lifecycle of a node

Configuration Client

Unprovisioned
Device

Configured
Mesh Node

Provisioning Server
(Provisoinee)

Configuration

Provisioning Client
(Provisioner)

Provisioning

Configuration Server

Unconfigured
Node

reuse disposal

Configuration Server Configuration Client

Node Removal

introduction

Mesh Model communication with other nodes

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 12 of 76
Dec. 27, 2022

1.10 Optional Features
The following features are defined as optional features.

• Relay feature (refer to subsection 1.10.1)
• Proxy feature (refer to subsection1.10.2)
• Friend feature (refer to subsection 1.10.3)
• Low Power feature (refer to subsection 1.10.3)

It is possible to create various mesh network by enabling each optional features of nodes. Each optional
features are described in the next section.

Figure 1-7 Mesh Network

1.10.1 Relay
The Relay feature is a feature that a node supporting ADV bearer relays received messages. Even if
destination node is out direct radio range of a source node, messages are relayed by other nodes and
spreads throughout a network, then the messages can reach the destination node. A node that relays
message is referred to as a Relay node.

Figure 1-8 Relay

Relay

GATT bearer path
ADV bearer path

Proxy Client
node

Proxy node

Relay node

Friend node

Low Power
Low Power

Relay

Relay

Relay

Relay + Friend
Relay + Proxy Server

Low Power node

direct radio range

(destination node)(message originator)

ADV bearer path

Relay

Relay

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 13 of 76
Dec. 27, 2022

1.10.2 Proxy
Proxy feature is a feature that a node supporting both GATT bearer and ADV bearer forwards messages
between both bearers.

A node supporting only GATT bearer communicates with a connected peer node only. When such a node
sends and receives messages from / to mesh network, the node establishes a connection with a node that
supports Proxy feature. Messages sent by this node can be forwarded by the proxy node to the ADV bearer
and finally reach the destination node. And messages sent by other nodes are forwarded by GATT bearer of
the Proxy node, and the messages can reach this node. A node that transmits messages between both
GATT bearer and ADV bearer is referred to as a Proxy Server. A node that connects with Proxy Server and
transmits / receives messages over GATT bearer is referred to as a Proxy Client.

Proxy Server has a list to manage Subscription Addresses of Proxy Client, and it is referred to as a Proxy
Filter List. Either whitelist filter or blacklist filter can be set as a Proxy Filter Type. When Proxy Filter Type is
whitelist filter, Proxy Server forwards only messages addressed to the address registered in the list. When
Proxy Filter Type is blacklist filter, Proxy Server does not forward messages addressed to the address
registered in the list.

Figure 1-9 Proxy

GATT bearer path
ADV bearer path

Proxy Server

Proxy Client

Proxy Client

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 14 of 76
Dec. 27, 2022

1.10.3 Friendship
Friend feature is a feature that stores incoming messages needed by Low Power node and then forwards
them when Low Power node requests. In general, a node supporting ADV bearer always perform Scan to
receive Advertising packets including messages. Low Power feature is a feature to reduce Scan duty cycle.
A node supporting Low Power feature can reduce power consumption by suspending Scan.

To perform Low Power feature, the node must establish a Friendship with one node supporting Friend
feature. After establishing the friendship, Low Power node can suspend Scan, while Friend node must store
received messages addressed to Low Power node.

Friend node has a list to manage Subscription Addresses of Low Power node, and it is referred to as a
Friend Subscription List. After establishing a Friendship, Friend node stores messages addressed to
Subscription Addresses registered in the list.

Low Power node polls Friend node intermittently if any messages are stored and resumes Scan only within a
polling period. Friend node forwards the stored messages at this timing.

Figure 1-10 Friendship

Low Power node

(originator node)

ADV bearer path
Friend node

(destination node)

Friend Poll

stored messages

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 15 of 76
Dec. 27, 2022

2. Mesh Application Overview
This chapter describes the overview of Mesh Application.

2.1 Software Structure
Figure 2-1 shows the structure of software using Mesh Stack.

Figure 2-1 Software Architecture

The software using Mesh Stack is composed of the followings:

• Mesh Application
The Mesh Application is an application program that performs Bluetooth mesh communication features.
Users are required to understand specification of Mesh Stack API (RM_BLE_MESH_XXXX,
RM_MESH_XXXX) and Bluetooth Bearer API (RM_BLE_MESH_BEARER_XXXX) to develop their own
Mesh Applications. Also, sample program of Mesh Application is included in "RA4W1 Group Bluetooth
Mesh sample application" (R01AN5848).

• Bluetooth Mesh Stack
The Bluetooth Mesh Stack (hereinafter referred to as "Mesh Stack") is the software stack that provides
applications with many-to-many wireless communication features which is compliant with the Bluetooth
Mesh Networking specifications. This stack has Mesh Stack API to use mesh network communication
features. Also, Mesh Stack is included in Mesh Module provided as Renesas Flexible Software Package
(FSP).

• Bluetooth Bearer (Bearer Platform)

The Bluetooth Bearer is the abstraction layer that provides the Bluetooth Mesh Stack and application
with wrapper functions of Bluetooth Low Energy Protocol Stack. Also, Bluetooth Bearer is included in
Bearer Platform Module provided as Renesas Flexible Software Package (FSP).

Bluetooth Bearer (Bearer Platform)

MCU

Mesh Application

Mesh Stack API

Bluetooth Bearer API

Bluetooth Mesh Stack

R_BLE API

Bluetooth Low Energy Protocol Stack

Peripheral
Driver

Modules

Driver APIs

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 16 of 76
Dec. 27, 2022

• Bluetooth Low Energy Protocol Stack
The Bluetooth Low Energy Protocol Stack (hereinafter referred to as "Bluetooth LE Stack") is the
software that provides upper layers with wireless communication features which is compliant with the
Bluetooth Low Energy specifications. Bluetooth LE stack has R_BLE API to use Bluetooth Low Energy
communication features. Also, Bluetooth LE Stack is included in BLE Module provided as Renesas
Flexible Software Package (FSP).

• Peripheral Driver Modules

Application, Mesh Stack, Bluetooth LE Stack use peripheral functions of microcontroller. Peripheral
drivers that are provided as Renesas Flexible Software Package (FSP) can used for developing
software for RA microcontrollers.

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 17 of 76
Dec. 27, 2022

2.2 File Structure
"RA4W1 Group Bluetooth Mesh sample application" (R01AN5848) includes following sample programs of
Mesh application.

- ekra4w1_mesh_client_baremetal: Project for EK-RA4W1 - Client Models
- ekra4w1_mesh_server_baremetal: Project for EK-RA4W1 - Server Models
- ekra4w1_mesh_cli_client_baremetal: Project for EK-RA4W1 - Command Line Interface Client Models
- ekra4w1_mesh_cli_server_baremetal: Project for EK-RA4W1 - Command Line Interface Server Models
- ekra4w1_mesh_client_freertos: Project for EK-RA4W1 - Client Models using FreeRTOS
- ekra4w1_mesh_server_freertos: Project for EK-RA4W1 - Server Models using FreeRTOS

Above programs also includes Mesh Stack, Bluetooth Bearer, Bluetooth LE Stack, and other Modules that
are needed to build the sample program.

Structure of demo project is shown as below. This document describes software indicated in bold. For
details of other Modules, refer to “Renesas Flexible Software Package User’s Manual”.

{project}\

 +---ra\fsp\lib\

 |

 +---ra_cfg\

 |

 +---ra_gen\

 |

 +---src\

 | app_main.c

 | mesh_appl.h

 | mesh_core.c

 | mesh_model.c

 |

 +---app_lib\

 |

 +---vendor_model\

 | vendor_api.h

 | vendor_client.c

 | vendor_server.c

:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:

Mesh Stack Library
Bluetooth LE Stack Library
Module Configuration

MCU Pin Configuration, Vector Table

Mesh Sample Program
Mesh Sample Header
Mesh Core Module
Mesh Model Module

Application Library

Vendor Model Header
Vendor Client Module
Vendor Server Module

Regarding how to setup an environment for building sample program, refer to Chapter 2 in "RA4W1 Group
Bluetooth Mesh sample application" (R01AN5848)

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 18 of 76
Dec. 27, 2022

2.3 Mesh Application
Users is required to develop own Mesh Application for performing wireless communication capability with
Bluetooth Mesh. "RA4W1 Group Bluetooth Mesh sample application" (R01AN5848) includes source code of
sample program that can be used as a reference for developing Mesh Applications.

The sample program of Mesh Application (hereinafter referred to as "Mesh Sample Program”) uses the API
of Mesh Stack and performs Provisioning and basic operations as a mesh node. This section describes the
detail of Mesh Sample Program. Supported features of Mesh Sample Program are shown as below:

• Unprovisioned Device operation: supports both PB-ADV bearer and PB-GATT bearer.
• Configuration Server operation: stores Configuration information in Data Flash memory.
• Generic OnOff Client operation: sends Generic OnOff Set message when on-board switch is

pushed.
• Generic OnOff Server operation: controls on-board LED when Generic OnOff Set message is

received.
• Vendor Client operation: sends Vendor Set message with character string input over UART.
• Vendor Server operation: outputs character string included in Vendor Set message received.
• Low Power operation: establishes a Friendship to Friend node and registers Subscription

List with Friend Subscription List.
• Proxy Server operation: establish a connection to Proxy Client and forwards messages

over GATT bearer.
• IV Update Initiation functionality: monitors sequence number of messages and initiates IV update

procedure when the sequence number exceeds threshold value.

This sample program includes the following two modules. Those modules placed in ./src folder of Mesh
Sample Program.

• Mesh Core Module

This module performs Provisioning as a Provisioning Server and enables GATT bearer as a Proxy
Server after Provisioning. In addition, this module controls a Friendship as a Low Power Node. For more
details, refer to Subsection 2.3.1.

• Mesh Model Module
This module performs operations associated with Generic OnOff models and original Vendor models as
well as Configuration Server model and Health Server model. For more details, refer to Subsection 2.3.2.

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 19 of 76
Dec. 27, 2022

2.3.1 Mesh Core Module
Mesh Core Module included in Mesh Sample Program performs the following operations. This module is
implemented in "mesh_core.c".

• Provisioning process (refer to Section 3.3)

• Proxy feature (refer to Section 3.4)

• Low Power feature (refer to Section 3.5)

• IV Update process

2.3.2 Mesh Model Module
Mesh Model module included in Mesh Sample Program performs the following operations. This module is
implemented in "mesh_model.c".

• Mesh Model Composition (refer to Section 2.3.3)

• Configuration Model (refer to Section 2.3.3.1)

• Generic OnOff Model (refer to Section 2.3.3.3)

• Vendor Model (refer to Section 2.3.3.4)

2.3.3 Mesh Model Composition
This sample program uses the following model.

• Configuration Server model

• Health Server model

• Generic OnOff Server model (enabled when ONOFF_SERVER_MODEL* macro is defined)

• Generic OnOff Client model (enabled when ONOFF_CLIENT_MODEL* macro is defined)

• Vendor Server model (enabled when VENDOR_SERVER_MODEL* macro is defined)

• Vendor Client model (enabled when VENDOR_CLIENT_MODEL* macro is defined)

*These macros have defined as build option.

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 20 of 76
Dec. 27, 2022

Figure 2-2 show the model structure of Mesh Sample Program. Generic OnOff Client model, Generic OnOff
Server model, Vendor Client model, and Vendor Server model as well as Configuration Server model and
Health Server model are located on the Primary element. The explanation of each model is given in the
following sections.

Figure 2-2 Model Composition of Mesh Sample Program

node

element

Configuration Server model

Health Server model

Generic OnOff Server model

Vendor Server model

node

element

Configuration Server model

Health Server model

Generic OnOff Client model

Vendor Client model

Server models project Client models project

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 21 of 76
Dec. 27, 2022

2.3.3.1 Configuration Model
Configuration model is the model to configure a node behavior. Configuration Server has multiple
configuration states for storing configurations of node, element, and model behavior. These states are
configured by messages from configuration client.

Table 2-1 States of Configuration Model

Model Name SIG Model ID (16bits) State
Configuration Server 0x0000 Secure Network Beacon

Composition Data
Default TTL
GATT Proxy
Friend
Relay
Model Publication
Subscription List
NetKey List
AppKey List
Model to AppKey List
Node Identity
Key Refresh Phase
Heartbeat Publish
Heartbeat Subscription
Network Transmit
Relay Retransmit
PollTimeout List

Configuration Client 0x0001 -

Table 2-2 Configuration Messages

State Message Name Opcode Direction
Secure Network Beacon Config Beacon Get 0x8009 Client->Server

Config Beacon Set 0x800A Client->Server
Config Beacon Status 0x800B Server->Client

Composition Data Config Composition Data Get 0x8008 Client->Server
Config Composition Data Status 0x02 Server->Client

Default TTL Config Default TTL Get 0x800C Client->Server
Config Default TTL Set 0x800D Client->Server
Config Default TTL Status 0x800E Server->Client

GATT Proxy Config GATT Proxy Get 0x8012 Client->Server
Config GATT Proxy Set 0x8013 Client->Server
Config GATT Proxy Status 0x8014 Server->Client

Friend Config Friend Get 0x800F Client->Server
Config Friend Set 0x8010 Client->Server
Config Friend Status 0x8011 Server->Client

Relay
Relay Retransmit

Config Relay Get 0x8026 Client->Server
Config Relay Set 0x8027 Client->Server
Config Relay Status 0x8028 Server->Client

Model Publication Config Model Publication Get 0x8018 Client->Server
Config Model Publication Set 0x03 Client->Server
Config Model Publication Virtual Address Set 0x801A Client->Server
Config Model Publication Status 0x8019 Server->Client

Subscription List Config Model Subscription Add 0x801B Client->Server
Config Model Subscription Virtual Address Add 0x8020 Client->Server
Config Model Subscription Delete 0x801C Client->Server
Config Model Subscription Virtual Address Delete 0x8021 Client->Server
Config Model Subscription Virtual Address
Overwrite

0x8022 Client->Server

Config Model Subscription Overwrite 0x801E Client->Server
Config Model Subscription Delete All 0x801D Client->Server
Config Model Subscription Status 0x801F Server->Client
Config SIG Model Subscription Get 0x8029 Client->Server

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 22 of 76
Dec. 27, 2022

State Message Name Opcode Direction
Config SIG Model Subscription List 0x802A Server->Client
Config Vendor Model Subscription Get 0x802B Client->Server
Config Vendor Model Subscription List 0x802C Server->Client

NetKey List Config NetKey Add 0x8040 Client->Server
Config NetKey Update 0x8045 Client->Server
Config NetKey Delete 0x8041 Client->Server
Config NetKey Status 0x8044 Server->Client
Config NetKey Get 0x8042 Client->Server
Config NetKey List 0x8043 Server->Client

AppKey List Config AppKey Add 0x00 Client->Server
Config AppKey Update 0x01 Client->Server
Config AppKey Delete 0x8000 Client->Server
Config AppKey Status 0x8003 Server->Client
Config AppKey Get 0x8001 Client->Server
Config AppKey List 0x8002 Server->Client

Model to AppKey List Config Model App Bind 0x803D Client->Server
Config Model App Unbind 0x803F Client->Server
Config Model App Status 0x803E Server->Client
Config SIG Model App Get 0x804B Client->Server
Config SIG Model App List 0x804C Server->Client
Config Vendor Model App Get 0x804D Client->Server
Config Vendor Model App List 0x804E Server->Client

Node Identity Config Node Identity Get 0x8046 Client->Server
Config Node Identity Set 0x8047 Client->Server
Config Node Identity Status 0x8048 Server->Client

- Config Node Reset 0x8049 Client->Server
Config Node Reset Status 0x804A Server->Client

Key Refresh Phase Config Key Refresh Phase Get 0x8015 Client->Server
Config Key Refresh Phase Set 0x8016 Client->Server
Config Key Refresh Phase Status 0x8017 Server->Client

Heartbeat Publication Config Heartbeat Publication Get 0x8038 Client->Server
Config Heartbeat Publication Set 0x8039 Client->Server
Config Heartbeat Publication Status 0x06 Server->Client

Heartbeat Subscription Config Heartbeat Subscription Get 0x803A Client->Server
Config Heartbeat Subscription Set 0x803B Client->Server
Config Heartbeat Subscription Status 0x803C Server->Client

Network Transmit Config Network Transmit Get 0x8023 Client->Server
Config Network Transmit Set 0x8024 Client->Server
Config Network Transmit Status 0x8025 Server->Client

PollTimeout List Config Low Power Node PollTimeout Get 0x802D Client->Server
Config Low Power Node PollTimeout Status 0x802E Server->Client

Memory region for storing configuration states are allocated in Mesh Stack. When receiving configuration
message, Mesh Stack updates values of the configuration state automatically. Therefore, application does
not need to take care of the configuration states. Also, application can access values of the Configuration
states by using Mesh Stack API.

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 23 of 76
Dec. 27, 2022

2.3.3.2 Health Model
Health model is the model to monitor the physical condition of a node. Health Server has Fault states for
storing physical fault condition of node. These states are updated when fault occurs. In addition, self-testing
of a node can be performed by messages from Health Client. Also, Health Server has Attention Timer state
to activate a physical behavior (e.g., LED blinking, vibrating) for calling attention. This attention state may be
used to indicate which device is performing provisioning procedure, etc.

Table 2-3 States of Health Model

Model Name SIG Model ID (16bits) State
Health Server 0x0002 Current Fault

Registered Fault
Health Period
Attention Timer

Health Client 0x0003 -

Table 2-4 Health Messages

State Message Name Opcode Direction
Current Fault Health Current Status 0x04 Server->Client
Registered Fault Health Fault Get 0x8031 Client->Server

Health Fault Clear 0x802F Client->Server
Health Fault Clear Unacknowledged 0x8030 Client->Server
Health Fault Status 0x05 Server->Client
Health Fault Test 0x8032 Client->Server
Health Fault Test Unacknowledged 0x8033 Client->Server

Health Period Health Period Get 0x8034 Client->Server
Health Period Set 0x8035 Client->Server
Health Period Set Unacknowledged 0x8036 Client->Server
Health Period Status 0x8037 Server->Client

Attention Timer Health Attention Get 0x8004 Client->Server
Health Attention Set 0x8005 Client->Server
Health Attention Set Unacknowledged 0x8006 Client->Server
Health Attention Status 0x8007 Server->Client

Memory region for storing Health states is allocated in Mesh Stack.

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 24 of 76
Dec. 27, 2022

2.3.3.3 Generic OnOff Model
Generic OnOff Model is a model that is defined by Bluetooth SIG. Generic OnOff Server has a Generic
OnOff state that stores value of either On or Off. This state is configured by messages from Generic OnOff
Client.

Table 2-5 State of Generic OnOff Model

Model Name SIG Model ID (16bits) State
Generic OnOff Server 0x1000 Generic OnOff (0x00: Off, 0x01: On)
Generic OnOff Client 0x1001 -

Application must allocate memory for storing Generic OnOff state. Mesh Stack notifies received Generic
OnOff message by callback function. Application must handle Generic OnOff state in accordance with
Generic OnOff message notified by the callback function.

Table 2-6 Generic OnOff Messages

State Message Name Opcode Direction
Generic OnOff Generic OnOff Get 0x8201 Client->Server

Generic OnOff Set 0x8202 Client->Server
Generic OnOff Set Unacknowledged 0x8203 Client->Server
Generic OnOff Status 0x8204 Server->Client

2.3.3.4 Vendor Model
User can define their own model as Vendor Model. This section describes Vendor Model implemented in
Mesh Sample Program. Vendor Server implemented in Mesh sample program has a vendor state for storing
any variable-length data. This state is configured by vendor client.

Table 2-7 State of Vendor Model

Model Name Vendor Model ID (32bits) State
Vendor Server 0x00010036 (default value) Vendor state (any variable-length data)
Vendor Client 0x00020036 (default value) -

Table 2-8 Vendor Messages

State Message Name Opcode Direction
Vendor Vendor Get 0xC10036 (default value) Client->Server

Vendor Set 0xC20036 (default value) Client->Server
Vendor Set Unacknowledged 0xC30036 (default value) Client->Server
Vendor OnOff Status 0xC40036 (default value) Server->Client

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 25 of 76
Dec. 27, 2022

2.4 Bluetooth Mesh Stack
Bluetooth Mesh Stack provides applications with many-to-many wireless communication features which is
compliant with the Bluetooth Mesh Networking specifications. Flexible Software Package provides the Mesh
stack as static library. And you can use the Mesh features via Bluetooth Mesh Stack API. Figure 2-3 shows
the internal architecture of Bluetooth Mesh Stack.

Figure 2-3 Internal Architecture of Bluetooth Mesh Stack

The Bluetooth Mesh Stack is composed of the following two blocks:

• Mesh Core

Mesh Core block is composed of modules corresponding with each layer defined by Mesh Profile
Specification and provides application with the features to perform Provisioning process and mesh
networking operations. Regarding the Mesh Profile Specification, visit the Specifications List and refer to
Mesh Profile Specification document.

• Mesh Models

Mesh Models block is composed of modules corresponding with each model defined by Mesh Model
Specification and provides application with the features to support Mesh models that defines basic
operations on a mesh network. Regarding the Mesh Model Specification, visit the Specifications List and
refer to Mesh Model Specification document.

Mesh Models

Mesh Core

Provisioning
layer

Bearer layer

Access layer

Network layer

Lower Transport layer

Upper Transport layer

Generic models

Lighting models

Time and Scenes models

Sensors models

Mesh Stack API

Configuration models Health model

https://www.bluetooth.com/specifications/specs/
https://www.bluetooth.com/specifications/specs/

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 26 of 76
Dec. 27, 2022

Mesh Stack consists of modules to implement protocol defined by Bluetooth Mesh Networking
Specifications. Mesh Stack API has the following function prefixes corresponding to each module. To make
Mesh Application, it is necessary to use Mesh Stack APIs according to your use case. Regarding the
specification of Mesh Stack API, refer to “Renesas Flexible Software Package User’s Manual”.

Table 2-9 Mesh stack APIs

Module Function Prefix
Mesh Model
 Generic OnOff RM_MESH_GENERIC_ON_OFF_*()

Generic Level RM_MESH_GENERIC_LEVEL_*()
Generic Default Transition Time RM_MESH_GENERIC_DTT_*(),
Generic Power OnOff RM_MESH_GENERIC_POO_*()
Generic Power Level RM_MESH_GENERIC_PL_*()
Generic Battery RM_MESH_GENERIC_BATTERY_*()
Generic Location RM_MESH_GENERIC_LOC_*()
Generic Property RM_MESH_GENERIC_PROP_*()
Sensor RM_MESH_SENSOR_*()
Time RM_MESH_TIME_*()
Scene RM_MESH_SCENE_*()
Scheduler RM_MESH_SCHEDULER_*()
Light Lightness RM_MESH_LIGHT_LIGHTNESS_*()
Light CTL RM_MESH_LIGHT_CTL_*()
Light HSL RM_MESH_LIGHT_HSL_*()
Light xyL RM_MESH_LIGHT_XYL_*()
Light LC RM_MESH_LIGHT_LC_*()
Configuration RM_MESH_CONFIG_*()
Health RM_MESH_HEALTH_*()

Mesh Core
 Access Layer RM_BLE_MESH_ACCESS_*()

Transport Layer RM_BLE_MESH_UPPER_TRANS_*()
Lower Transport Layer RM_BLE_MESH_LOWER_TRANS_*()
Network Layer RM_BLE_MESH_NETWORK_*()
Bearer Layer RM_BLE_MESH_BEARER_*()
Provisioning Layer RM_BLE_MESH_PROVISION_*()

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 27 of 76
Dec. 27, 2022

2.5 Bluetooth Bearer
Bluetooth Bearer provides Mesh Stack and applications with wrapper functions of Bluetooth LE Stack.
Flexible Software Package provides Bluetooth bearer as static library. Bluetooth LE Stack provides upper
layers with wireless communication features which is compliant with the Bluetooth Low Energy
specifications. Flexible Software Package also provides Bluetooth LE stack as static library. Figure 2-4
shows the internal architecture of Bluetooth Bearer. Bearer functions for message transmission and
reception are used by Mesh Stack. Bearer functions for connection control must be used by Mesh
Application as necessary.

Figure 2-4 Bluetooth Bearer Operations

Regarding the specification of Bluetooth bearer API and R_BLE APIs, refer to “Renesas Flexible Software
Package User’s Manual”.

2.5.1 Bearer Functions for Message Transmission and Reception
The Mesh stack provides message sending and receiving functions for each model with the prefixes shown
in Table 2-9. You need to call RM_MESH_BEARER_PLATFORM_Setup () API before using the message
send / receive function. The Mesh stack uses these messages send and receive functions to send and
receive provisioning PDUs and Mesh messages. For details on the message sending / receiving function,
refer to the “Renesas Flexible Software Package User ’s Manual”.

Bluetooth Mesh Stack

Bluetooth Bearer API

Bluetooth Bearer

Bluetooth Low Energy Protocol Stack

Mesh Application

GATT Bearer Connection
Control functions

ADV bearer and GATT bearer
Transmission and Reception functions

R_BLE API

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 28 of 76
Dec. 27, 2022

2.5.2 Bearer Functions for Connection Control
Mesh Stack manages neither connection status nor GATT service. Therefore, to use GATT bearer, Mesh
Application must control a connection and GATT services by using the bearer functions for connection
control directly. Table 2-10 shows the bearer functions for connection control. Those functions provide the
functionalities for service discovery and notification permission as well as connection establishment and
disconnection.

Table 2-10 Bearer Functions for Connection Control
Function Routine GATT Server

(Peripheral)
GATT Client
(Central)

RM_MESH_BEARER_PLATFORM_CallbackSet() Register GATT
Interface Callback

used used

RM_MESH_BEARER_PLATFORM_SetGattMode() Set GATT Bearer
Mode NOTE1

used used

RM_MESH_BEARER_PLATFORM_GetGattMode() Get GATT Bearer
Mode NOTE1

used used

RM_MESH_BEARER_PLATFORM_Disconnect() Disconnect used used
RM_MESH_BEARER_PLATFORM_SetScanResponseData() Set Scan Response

Data
used not used

RM_MESH_BEARER_PLATFORM_ScanGattBearer() Scan Connectable
Device

not used used

RM_MESH_BEARER_PLATFORM_Connect() Create Connection not used used
RM_MESH_BEARER_PLATFORM_DiscoverService() Perform Service

Discovery
not used used

RM_MESH_BEARER_PLATFORM_ConfigureNotification() Configure Mesh
GATT Services
Notification
Permission NOTE2

not used used

NOTE1: GATT Bearer Mode is either Provisioning Mode or Proxy Mode.

NOTE2: GATT Server configures MTU size to Mesh Stack when Notification is enabled. When changing
MTU size, GATT Client has to perform MTU Exchange procedure before enabling Notification.
Regarding how to change MTU size, refer to Section 7.4 in "RA4W1 Group Bluetooth Low Energy
Application Developer's Guide"(R01AN5653).

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 29 of 76
Dec. 27, 2022

2.5.3 Mesh GATT Services
Mesh GATT Services are used for mesh message transmission and reception over GATT bearer.
Composition of the Mesh GATT Services are listed in Table 2-11. Mesh Provisioning Service is used for
Provisioning over PB-GATT bearer, and Mesh Proxy Service is used for Proxy connection after Provisioning.
Which one of Mesh GATT Services are exposed is switched by
RM_MESH_BEARER_PLATFORM_SetGattMode() API. GATT Database that defines Mesh GATT Service is
held in Bluetooth Bearer.

Table 2-11 Composition of the Mesh GATT Services

Service
(UUID)

Characteristic (UUID) Property Value

Mesh
Provisioning
Service
(0x1827)

Mesh Provisioning Data In
Characteristic (0x2ADB)

Write
Without
Response

Provisioning PDU from a Provisioning Client to a
Provisioning Server

Mesh Provisioning Data Out
Characteristic (0x2ADC)

Notify Provisioning PDU from a Provisioning Server to a
Provisioning Client.

Mesh Proxy
Service
(0x1828)

Mesh Proxy Data In
Characteristic (0x2ADD)

Write
Without
Response

Proxy PDU message containing Network PDU, mesh
beacons, or proxy configuration from a Proxy Client to
a Proxy Server

Mesh Proxy Data Out
Characteristic (0x2ADE)

Notify Proxy PDU message containing Network PDU, mesh
beacon, or proxy configuration from a Proxy Server to
a Proxy Client.

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 30 of 76
Dec. 27, 2022

2.5.4 ADV Bearer Operation
When Mesh Application calls RM_MESH_BEARER_PLATFORM_Setup(), Bluetooth Bearer registers
message transmission and reception functions for ADV Bearer with Mesh Stack and starts Scan operation.

Advertising packets received by Bluetooth LE Stack are notified to Mesh Stack. Also, Bluetooth LE Stack
transmits Advertising packets when Mesh Stack calls the message transmission function.

Figure 2-5 ADV Bearer Operation

ADV Bearer Registration

RM_MESH_BEARER_PLATFORM_Setup()

RM_BLE_MESH_BEARER_AddBearer()

R_BLE_GAP_StartScan()

ADV Bearer Reception
BLE_GAP_EVENT_ADV_REPT_IND

ADV Bearer Transmission

R_BLE_GAP_StartAdv()

BLE_GAP_EVENT_SCAN_ON

BLE_GAP_EVENT_ADV_ON

R_BLE_GAP_StopAdv()

BLE_GAP_EVENT_ADV_OFF

Mesh Application Mesh Stack Bluetooth Bearer Bluetooth LE Stack

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 31 of 76
Dec. 27, 2022

2.5.5 GATT Bearer Operation
When a connection is established and enabling Notification completes, Bluetooth Bearer registers message
transmission and reception functions for GATT Bearer with Mesh Stack.

In the case of node behaves as GATT Server, Bluetooth LE Stack transmits message by Notification when
Mesh Stack calls the message transmission function. Also, message transmitted by Write Without Response
is notified to Mesh Stack.

In the case of node behaves as GATT Client, Bluetooth LE Stack transmits message by Write Without
Response when Mesh Stack calls the message transmission function. Also, message transmitted by
Notification is notified to Mesh Stack.

Figure 2-6 GATT Bearer Operation

GATT Bearer Addition

RM_BLE_MESH_BEARER_AddBearer()

BLE_GAP_EVENT_CONN_IND
BLEBRR_GATT_IFACE_UP event

(enable Notification)

BLEBRR_GATT_IFACE_ENABLE event

GATT Bearer Removal

BLE_GAP_EVENT_DISCONN_IND

BLE_GATTS_EVENT_WRITE_RSP_COMP

RM_BLE_MESH_BEARER_RemoveBearer()

(disable Notification)
BLEBRR_GATT_IFACE_DISABLE event

BLEBRR_GATT_IFACE_DOWN event

[GATT Client] BLE GATTC EVENT CHAR WRITE RSP
[GATT Server] BLE_GATTS_EVENT_WRITE_RSP_COMP

BLE_GATTS_EVENT_WRITE_RSP_COMP
[GATT Client] BLE_GATTC_EVENT_CHAR_WRITE_RSP
[GATT Server] BLE_GATTS_EVENT_WRITE_RSP_COMP

GATT Bearer Communication (GATT Server GATT Client)

GATT Bearer Communication (GATT Client GATT Server)

[GATT Server]

BLE_GATTC_EVENT_HDL_VAL_NTF
[GATT Client]

R_BLE_GATTS_Notification()

[GATT Client]

R_BLE_GATTC_WriteCharWithoutRsp()

BLE_GATTS_EVENT_DB_ACCESS_IND
[GATT Server]

Mesh Application Mesh Stack Bluetooth Bearer Bluetooth LE Stack

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 32 of 76
Dec. 27, 2022

2.6 MCU Peripheral Functions
Mesh Sample Program uses some RA4W1 peripheral functions listed in Table 2-12.

Table 2-12 RA4W1 Peripheral Functions used

RA4W1 Peripherals FSP provided
Peripheral Driver

Software using Peripherals

I/O Ports
- P106, P402, and P404: when EK-RA4W1 is used
Interrupt Controller Unit (ICU)
- IRQ4

r_ioport Module
r_icu Module

Mesh Sample Program

Interrupt Controller Unit (ICU)
- BLEIRQ

r_icu Module Bluetooth LE Stack

Serial Communication Interface (SCI)
- SCI4

r_sci_uart Module Mesh Sample Program

General PWM Timer (GPT)
- GPT0: Bluetooth LE Stack use exclusively
- GPT1: Mesh Stack and Bluetooth Bearer share
- GPT2: Mesh Sample Program use

r_gpt Module Mesh Sample Program
Mesh Stack
Bluetooth Bearer
Bluetooth LE Stack

Low Power Modes (LPM) r_lpm Module Mesh Sample Program

Data Flash memory (FLASH)
- Block 0 to 5

r_flash_lp Module Mesh Stack

• I/O Ports and Interrupt Controller Unit (ICU)
Mesh Sample Program uses r_ioport Module and r_icu Module to use I/O Ports for the following
processing.

• LED Control on development board

• Switch Pushing Detection on development board

• Interrupt Controller Unit (ICU)
Bluetooth LE Stack uses r_icu Module to detect RF interruption.

• Serial Communication Interface (SCI)
Mesh Sample Program uses r_sci_uart Module to output and input console over UART.

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 33 of 76
Dec. 27, 2022

• General PWM Timer (GPT)

Bluetooth LE Stack of BLE Module uses GPT0 exclusively.

Mesh Stack monitors 96 hours that is minimum duration of IV Update Procedure by using GPT1.

Bluetooth Bearer uses GPT1 for the following processing.

 Advertising Transmission Control for ADV Bearer

Mesh Sample Program uses GPT2 for the following processing.

 LED Blinking on development board

 Avoiding Chattering of Switch on development board

 MCU Reset Delay after receiving Config Node Reset

 Completion of IV Update Procedure

• Low Power Modes (LPM)

Mesh Sample Program uses r_lpm Module to enable Low Power Consumption function of MCU.

• Data Flash memory (FLASH)

Data Flash driver to use Data Flash memory is registered by RM_BLE_MESH_Open() API to Mesh
Stack. This driver accesses Data Flash memory by using r_flash_lp Module. The Mesh stack uses Data
flash from Block 0 to Storage/Block number property which specified by rm_ble_mesh module
Storage/Block Number property. Therefore, rm_ble_mesh module Common/Data Flash Block for
Security Data property and Common/Device Specific Data Flash Block property should be configured
avoiding the region used by Storage/Block Number property.

Figure 2-7 Data Flash memory region used

4010 1FFFh Block7

Block4
Block5
Block6

Block2
Block3 Storage/Block Number Property

4010 0000h Block0
Block1

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 34 of 76
Dec. 27, 2022

Mesh Stack stores the following information to Data Flash memory.

• Information exchanged during Provisioning

mesh addresses

encryption keys

• Information exchanged during Configuration

model composition

model configuration

• IV index and associated state

• Sequence Number

These information will be changed very rarely except for Sequence Number. The sequence number is
incremented for each new network message transmission. If it is written for each increment, the flash
memory reaches the write cycle limit in a short span of time. Specify the interval for writing the sequence
number to the data flash by Network Sequence Number Block Size property of the rm_ble_mesh module to
reduce the frequency of writing data flash.

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 35 of 76
Dec. 27, 2022

2.7 Mesh Sample Program Configuration
Mesh Sample Program has multiple compilation switches to configure its operation. Compilation switches are
implemented in "mesh_appl.h".

#define IV_UPDATE_INITIATION_EN (1)
#define LOW_POWER_FEATURE_EN (0)
#define CONSOLE_OUT_EN (1)
#define ANSI_CSI_EN (1)
#define SCI_RCV_STRING_EN (1)
#define SCI_RCV_STRING_BUFFER_LEN (0x100)

• Enabling IV Update Initiation Processing
IV Update Initiation processing is enabled by setting the IV_UPDATE_INITIATION_EN macro to (1).
This processing monitors sequence number of incoming and outgoing message and initiates IV Update
procedure when the sequence number is greater than or equal to threshold. It prevents sequence
number of own node or other nodes from exhausting.

Configuration Macro Configuration Value Description

IV_UPDATE_INITIATION_EN 0 Disable IV Update Initiation processing
1 Enable IV Update Initiation processing

• Enabling Low Power Feature

Low Power feature is enabled by setting the LOW_POWER_FEATURE_EN macro to (1). After
Provisioning, Mesh Sample Program establishes a Friendship with Friend node and works as a Low
Power node.

Configuration Macro Configuration Value Description

LOW_POWER_FEATURE_EN 0 Disable Transition to Low Power Node
1 Enable Transition to Low Power Node

• Console Output Configuration

Console Output is enabled by setting the CONSOLE_OUT_EN macro to (1). It is possible to trace API
called by Mesh Sample Program and events returned by Mesh Stack on terminal emulator.

Configuration Macro Configuration Value Description

CONSOLE_OUT_EN 0 Disable Console Log Output
1 Enable Console Log Output

• ANSI CSI Console Output Configuration
Output ANSI CSI (Control Sequence Introducer) to console is enabled by setting the ANSI_CSI_EN
macro to (1). Mesh Sample Program colors some log. In the case that serial terminal emulator you use
does not support ANSI CSI, set the ANSI_CSI_EN macro to (0).

Configuration Macro Configuration Value Description

ANSI_CSI_EN 0 Disable ANSI CSI Output to Console Log
1 Enable ANSI CSI Output to Console Log

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 36 of 76
Dec. 27, 2022

• Console String Reception Configuration
String reception from console is enabled by setting the SCI_RCV_STRING_EN macro to (1). String
received is notified by a callback function.

Configuration Macro Configuration Value Description

SCI_RCV_STRING_EN 0 Disable String Reception from Console
1 Enable String Reception from Console

SCI_RCV_STRING_BUFFER_LEN 0x0001 to 0xFFFF String Reception Buffer Size

Mesh Sample Program has setting macros to configure Provisioning operation. Setting macros are
implemented in "mesh_core.c".

#define CORE_PROV_BEACON_OOB_INFO (0)
#define CORE_PROV_BEACON_URI_INFO {.payload = "\x17//www.example.com", .length = 18}

• OOB Information
OOB Information should be set to CORE_PROV_STATIC_OOBINFO macro. OOB Information is delivered
by Unprovisioned Device Beacon. Multiple OOB Information can be set. When URI and Barcode are
set, (PROV_OOB_TYPE_URI | PROV_OOB_TYPE_BARCODE) should be set.

Configuration Macro Configuration Value Description
CORE_PROV_BEACON_OOB_INFO PROV_OOB_TYPE_OTHER Other

PROV_OOB_TYPE_URI URI
PROV_OOB_TYPE_2DMRC 2D machine-readable code
PROV_OOB_TYPE_BARCODE Bar code
PROV_OOB_TYPE_NFC Near Field Communication (NFC)
PROV_OOB_TYPE_NUMBER Number
PROV_OOB_TYPE_STRING String
PROV_OOB_TYPE_ONBOX On box
PROV_OOB_TYPE_INSIDEBOX Inside box
PROV_OOB_TYPE_ONPIECEOFPAPER On piece of paper
PROV_OOB_TYPE_INSIDEMANUAL Inside manual
PROV_OOB_TYPE_ONDEVICE On device

• Encoded URI Information
When PROV_OOB_TYPE_URI is set to CORE_PROV_BEACON_OOB_INFO macro described above, Encoded
URI Information must be set to CORE_PROV_BEACON_URI_INFO macro. Encoded URI Information will be
delivered with <<URI>> of AD Type and Hash value of Encoded URI Information will be delivered with
Unprovisioned Device Beacon.

Configuration Macro Configuration
Value

Description

CORE_PROV_BEACON_URI_INFO max.29 octets Encoded URI
URI Scheme must be encoded with "URI Scheme Name String
Mapping" defined in Assigned Numbers of Bluetooth SIG

https://www.bluetooth.com/specifications/assigned-numbers/

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 37 of 76
Dec. 27, 2022

2.8 Bluetooth Bearer Configuration
The following are advertising, scan, and connection parameters performed by Bluetooth bearer. These
parameters cannot be changed by the user application except for the device address type.

• Device Address Type Configuration
Device Address Type property used by Bluetooth Bearer can be configured by
rm_mesh_bearer_platform module.

Property Configuration Value Description

BLEBRR_VS_ADDR_TYPE 0 Public Device Address
1 Random Device Address

• GATT Bearer Connectable Advertising Configuration
Parameter Value

Advertising Type Connectable and Scannable Undirected Legacy
Advertising

Advertising Interval 100msec

Channel Map Ch37, 38, 39

Filter Policy Process Scan Requests and Connection Requests
from All Devices

Advertising Data length 31 bytes

• ADV Bearer Scan Configuration
Parameter Value

Scan type Passive

Scan interval 5msec

Filter Policy None

Duplicate filter None

• GATT Bearer GATT Client Connection Configuration

Parameter Value

Connection Interval 80msec

Peripheral latency 0

Supervision timeout 9.5sec

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 38 of 76
Dec. 27, 2022

3. Application Development
This chapter describes how to develop an application using Bluetooth Mesh Stack while referring to the
implementation of “Mesh Sample Program” (R01AN5847). Figure 3-1 shows the sequence chart of Mesh
Sample Program.

Figure 3-1 Sequence Chart of Mesh Sample Program

Mesh Sample Program

BLE Protocol Stack, Bluetooth Bearer
Wrapper, and Mesh Stack Initialization

Mesh Node, Element, and Model Configuration

GATT Interface Callback Registration

Configuration Client node

Vendor message communication

Proxy Connection Establishment

Proxy Client node

Vendor message communication

Update Friend Subscription List

Friend node

Friendship is established

Vendor Client model nodes

Generic OnOff message communication

Generic OnOff Server model nodes

Provisioner device

PB-GATT Bearer Connection Establishment
or PB-ADV Link Establishment

Provisioning Process

PB-GATT Bearer Connection Termination
or PB-ADV Link Close

Saving Configuration Information to non-volatile storage

Saving Provisioning Data to non-volatile storage

[Proxy feature is enabled]opt

[Low Power feature is enabled]opt

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 39 of 76
Dec. 27, 2022

3.1 Main Routine
This section describes processing that should be implemented in main routine of user application. In the
Mesh sample program given as an example, these processes are implemented in app_main.c.

• Main Routine (app_main.c)
The application must initialize the Bluetooth LE stack and Bluetooth bearer. These initialization processes
are performed by the Bluetooth LE stack scheduler. In the mesh sample program in the bearmetal
environment, the R_BLE_Execute() API of the scheduler API is repeatedly called in the while infinite loop.
The mesh sample program in the FreeRTOS environment creates a task that repeatedly called the scheduler
API. The completion of initialization is notified to the callback function described later in this section.

void app_main(void)
{
 API_RESULT retval;
………
 /* Initialize BLE Protocol Stack */
 R_BLE_Open();

#if (BSP_CFG_RTOS == 2)
 /* Create Semaphore */
 g_semaphore = xSemaphoreCreateBinary();

 /* Get Current Task handle */
 g_ble_core_task = xTaskGetCurrentTaskHandle();

 /* Create Execute Task */
 xTaskCreate(execute_task_entry, "execute_task", 1280, &g_ble_core_task,

4, &g_exe_task);
#endif /* (BSP_CFG_RTOS == 2) */

………
 /* Initialize underlying BLE Protocol Stack to use as a Mesh Bearer */
 retval = RM_MESH_BEARER_PLATFORM_Open(&g_rm_mesh_bearer_platform0_ctrl,

&g_rm_mesh_bearer_platform0_cfg);
………

<Continue to next page>

FreeRTOS case.

Create task for periodically calling
R_BLE_Execute API.

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 40 of 76
Dec. 27, 2022

<Continue from previous page>

 while (1)
 {

/* When this BLE application works on the FreeRTOS */

#if (BSP_CFG_RTOS == 2)
 if(0 != R_BLE_IsTaskFree())
 {
 vTaskSuspend(NULL);
 }
 else
 {
 xSemaphoreGive(g_semaphore);
 }
#else /* (BSP_CFG_RTOS == 2) */
 /* Process BLE Event */
 R_BLE_Execute();
#endif /* (BSP_CFG_RTOS == 2) */

………
}

………

#if (BSP_CFG_RTOS == 2)
void execute_task_entry(void *pvParameters)
{
 FSP_PARAMETER_NOT_USED(pvParameters);
 while(1)
 {
 xSemaphoreTake(g_semaphore, portMAX_DELAY);

 while(0 == R_BLE_IsTaskFree())
 R_BLE_Execute();

 vTaskResume(g_ble_core_task);
 }
}
………
#endif /* (BSP_CFG_RTOS == 2) */

FreeRTOS case.

If there is a task to be executed in the scheduler, transfer to
task for periodically calling R_BLE_Execute API.

Baremetal case.

periodically calling R_BLE_Execute API.

FreeRTOS case.

periodically calling R_BLE_Execute API.

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 41 of 76
Dec. 27, 2022

• Callback Function of Bluetooth Bearer Initialization Completion
The application must implement a callback function that receives Bluetooth bearer initialization complete
notification mentioned in previous page. In the Mesh sample program, the callback function is implemented
in the blebrr_init_cb function of app_main.c. In this callback function, the Mesh stack itself is initialized and
the Bluetooth bearer is registered to the Mesh stack by calling RM_BLE_Mesh_Open API and
RM_MESH_BEARER_PLATFORM_Setup API. After these initializations, the Mesh application can be
started. In the Mesh sample program given as an example, these processes are implemented as following.
The mesh_model_config function and mesh_core_setup functions are explained in the following sections.

static void blebrr_init_cb(st_ble_dev_addr_t * own_addr)
{
………
 /* Initialize Mesh Stack */
 RM_BLE_MESH_Open(&g_ble_mesh0_ctrl, &g_ble_mesh0_cfg);

………

 /* Registers ADV Bearer with Mesh Stack and Start Scan */
 RM_MESH_BEARER_PLATFORM_Setup(&g_ble_mesh_bearer_platform0_ctrl);

………

 /* Start Mesh Application */
 mesh_model_config(&gs_mesh_model_callbacks);

 mesh_core_setup();
}

• Mesh Stack Termination
When Mesh Stack is no longer needed, Mesh Stack can be terminated by RM_BLE_MESH_Close().
If Light LC Server Model is used, Light LC Server Model is terminated by
RM_MESH_LIGHT_LC_SRV_Close(). Health Server Model is terminated by
RM_MESH_HEALTH_SERVER_Close().Mesh Stack is terminated by RM_BLE_MESH_Close(). Resources
used by Bluetooth Bearer are freed by RM_MESH_BEARER_PLATFORM_Close().
When Bluetooth LE Stack is no longer needed, Bluetooth LE Stack can be terminated by R_BLE_Close().

 /* Deinitialize Light LC Server Model, if it was initialized */
 RM_MESH_LIGHT_LC_SRV_Close(&g_rm_mesh_light_lc_srv0_ctrl);

 /* Deinitialize Health Server Model */
 RM_MESH_HEALTH_SERVER_Close(&g_rm_mesh_health_srv0_ctrl);

 /* Terminate Mesh Stack */
 RM_BLE_MESH_Close(&g_rm_ble_mesh0_ctrl);

 /* Free the resources allocated by Bluetooth Bearer */
 RM_MESH_BEARER_PLATFORM_Close(&g_rm_mesh_bearer_platform0_ctrl);

 /* Terminate Bluetooth LE Protocol Stack */
 R_BLE_Close();

Node configuration.

Start beaconing.

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 42 of 76
Dec. 27, 2022

3.2 Node Configuration
The application needs to set up node configurations that include elements and models. This configuration
depends on the user scenario. In the Mesh sample program, the node configuration is set by the
mesh_model_config function implemented in mesh_model.c as follows.

API_RESULT mesh_model_config(const mesh_model_callbacks_t * callbacks)
{
 API_RESULT retval;

………

 /* Create Node *//* Register Element */
 retval = g_rm_ble_mesh_access0.p_api->open(&g_rm_ble_mesh_access0_ctrl,

&g_rm_ble_mesh_access0_cfg);
………
 retval = mesh_foundation_model_register();

………

 retval = mesh_application_model_register();

retval = mesh_application_model_states_init();
………
}

Register foundation model.

Register models used in application.

Initialize states referred in application.

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 43 of 76
Dec. 27, 2022

3.3 Provisioning
After the node configuration is complete, the application should perform provisioning procedure as a
provisioning server and receive provisioning data from provisioning client to join the network. The
provisioning process of the Mesh sample program is implemented in mesh_core.c as follows.

3.3.1 Provisioning Server

(1) Registration of Provisioning Capabilities and Provisioning Callback Function (mesh_core.c)
In mesh_core_setup function of mesh_core.c, register a callback function for handling provisioning
event and starting broadcast beacons when the device has not been provisioned. The callback function
that implements provisioning event handling is specified in the Provision Callback property of the
rm_ble_mesh_provision module in FSP configurator. mesh_core_setup function also implements the
processing when the device has been provisioned. See section 3.4 for the implementation of this part.

API_RESULT mesh_core_setup(void)
{
 API_RESULT retval = API_SUCCESS;
………
 retval = RM_MESH_BEARER_PLATFORM_CallbackSet(&g_rm_mesh_bearer_platform0_ctrl,

mesh_core_gatt_iface_cb);
………

 /* Check if Provisioning is not complete */
 if (API_SUCCESS != mesh_core_get_primary_unicast_address(&addr))
 {

/* Register Provisioning capabilities */

 retval = (API_RESULT) RM_BLE_MESH_PROVISION_Open(
&g_rm_ble_mesh_provision0_ctrl,
&g_rm_ble_mesh_provision0_cfg);

 if ((FSP_SUCCESS == retval) || (FSP_ERR_ALREADY_OPEN == retval))
 {

 /* Configure as Unprovisioned Device (Provisioning Server) */
 retval = mesh_core_prov_setup(RM_BLE_MESH_PROVISION_ROLE_DEVICE,

RM_BLE_MESH_PROVISION_BEARER_TYPE_ADV |
RM_BLE_MESH_PROVISION_BEARER_TYPE_GATT);

 }
 }
 else
 {

 /* Configure as a Proxy Server and Start Connectable Advertising */
 mesh_core_proxy_setup ();
 mesh_core_proxy_start(RM_BLE_MESH_NETWORK_GATT_PROXY_ADV_MODE_NET_ID);
………
 }
………
}

Register callback function for processing
provisioning event.

Specify provisioning attribute and start
broadcasting beacons.

See section 3.4.

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 44 of 76
Dec. 27, 2022

(2) Start of Provisioning (mesh_core.c)
In mesh_core_prov_setup function of mesh_core.c, starts beacon transmission based on the attribute
specified by the argument.

static API_RESULT mesh_core_prov_setup(rm_ble_mesh_provision_role_t role,
rm_ble_mesh_provision_bearer_type_t brr)

{
 API_RESULT retval;
………
 if (RM_BLE_MESH_PROVISION_BEARER_TYPE_GATT & brr)
 {
 RM_MESH_BEARER_PLATFORM_SetGattMode(&g_rm_mesh_bearer_platform0_ctrl,

RM_MESH_BEARER_PLATFORM_GATT_MODE_PROVISION);
 }

………
 retval = (API_RESULT)RM_BLE_MESH_PROVISION_Setup
 (
 &g_rm_ble_mesh_provision0_ctrl,
 role,
 info,
 CORE_PROV_SETUP_TIMEOUT_SECS
);
………
 if (API_SUCCESS == retval)
 {
 if ((RM_BLE_MESH_PROVISION_ROLE_DEVICE == role) &&

(RM_BLE_MESH_PROVISION_BEARER_TYPE_ADV & brr))
 {
 mesh_core_prov_bind(RM_BLE_MESH_PROVISION_BEARER_TYPE_ADV,

&gs_prov_device);
 }
 }
………
}

When PB-GATT use as provisioning
bearer.

Start broadcasting beacon.

Configure provisioning parameters.

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 45 of 76
Dec. 27, 2022

(3) Provisioning Callback Function (mesh_core.c)
Implement a callback function to receive Provisioning events. Provisioning Data provided from a
Provisioning Client is required to be registered with Mesh Stack by setProvisioningData API of
rm_ble_mesh_access module in RM_BLE_MESH_PROVISION_EVENT_TYPE_PROVDATA_INFO
event.

void mesh_core_prov_cb(rm_ble_mesh_provision_callback_args_t * p_args)
{
………

 switch (p_args->event_type)
 {
………
 case RM_BLE_MESH_PROVISION_EVENT_TYPE_PROVDATA_INFO:
 rdata = (rm_ble_mesh_provision_data_t *)(p_args->event_data.payload);
 /* Provide Provisioning Data to Access Layer */
 retval = g_rm_ble_mesh_access0.p_api->

setProvisioningData(&g_rm_ble_mesh_access0_ctrl, rdata);
 break;
………
 }

 return;
}

(4) Cancellation of provisioning (app_main.c)
When provisioning is completed, 11 bytes of magic number indicating that provisioning has been
completed is saved from top of the data flash (address 0x40100000). The magic number can be deleted
at any time using reset API of the rm_ble_mesh_access module and the transmission of the un-
provisioned device beacon can be resumed after rebooting a program. Sample program included with
"RA4W1 Group Bluetooth Mesh sample application" (R01AN5848), the magic number will be erased
when SW1 mounted on EK-RA4W1 is pressed and rebooted.

static void platform_reboot_timer_cb(void)
{
 API_RESULT retval;
 retval = g_rm_ble_mesh_access0.p_api->reset(&g_rm_ble_mesh_access0_ctrl);
………
}

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 46 of 76
Dec. 27, 2022

3.3.2 Provisioning Sequence
(1) Provisioning Setup

This sample program supports both PB-ADV bearer and PB-GATT bearer and transmits Unprovisioned
Device beacon for PB-ADV bearer and connectable advertising for PB-GATT bearer alternately.

Figure 3-2 Provisioning Setup

(2) Session Establishment over PB-ADV

To perform Provisioning Process over PB-ADV, Provisioning Server establishes a session with Provisioning
Client. Also, Provisioning Server closes a session after Provisioning Process.

Figure 3-3 Session Establishment over PB-ADV

Provisioning Setup

Unprovisioned Device

RM_BLE_MESH_PROVISION_Open()

RM_BLE_MESH_PROVISION_Bind()

RM_MESH_BEARER_PLATFORM_SetGattMode()

RM_BLE_MESH_PROVISION_Setup()

Connectable Advertising
for PB-GATT

Unprovisioned Device Beacon

RM_MESH_BEARER_PLATFORM_CallbackSet()

loop

Mesh Application Mesh Stack Bluetooth Bearer

PB-ADV Link Establishment
Unprovisioned Device Beacon

Link Open

Link Ack

PB-ADV Link Close

Link Close

Unprovisioned Device

Provisioning Process

Mesh Application Mesh Stack Bluetooth Bearer Provisioner Device

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 47 of 76
Dec. 27, 2022

(3) Connection Establishment over PB-GATT

To perform Provisioning Process over PB-GATT, Provisioning Client establishes a connection with
Provisioning Server and enables notification of the Mesh Provisioning Service. Also, Provisioning Client
terminates the connection after Provisioning Process.

Figure 3-4 Connection Establishment over PB-GATT

PB-GATT Bearer Connection Establishment
Connectable Advertising

for PB-GATT

Connection RequestBLEBRR_GATT_IFACE_UP event

Enable Notification by
Write Characteristic

RM_BLE_MESH_PROVISION_Bind()

PB-GATT Bearer Connection Termination

RM_BLE_MESH_BEARER_RemoveBearer()

Disable Notification by
Write Characteristic

Disconnection Indication

Provisioning Process

Unprovisioned Device

BLEBRR_GATT_IFACE_DISABLE event

BLEBRR_GATT_IFACE_DOWN event

BLEBRR_GATT_IFACE_ENABLE event

RM_BLE_MESH_BEARER_AddBearer()

Mesh Application Mesh Stack Bluetooth Bearer Provisioner Device

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 48 of 76
Dec. 27, 2022

(4) Provisioning Process

After establishing a session or a connection over Provisioning Bearer, Provisioning Process, from Invitation
to Distribution of provisioning data, is performed and Provisioning PDUs are exchanged. The same process
is performed over either PB-ADV or PB-GATT during Provisioning Process.

Figure 3-5 Provisioning Process

To reduce security risk of Provisioning Procedure, the followings are recommended:

• Using OOB (Out Of Band) in Public Key Exchange step.

 To deliver Public Key via OOB, generate a Public and a Private Key by
RM_BLE_MESH_PROVISION_GenerateEcdhKey() and set the Public Key to Mesh Stack by
RM_BLE_MESH_PROVISION_SetLocalPublicKey(). Deliver the Public Key to peer Provisioner
device via OOB.

• Selecting a cryptographically secure random value or a pseudorandom number having the maximum
permitted 128bit entropy as AuthValue in Authentication step.

 128bit random number, that can be used as a AuthValue for OOB Authentication, can be generated
by RM_BLE_MESH_PROVISION_GenerateRandomizedNumber(). When Static OOB
Authentication is available. set the generated AuthValue to Mesh Stack with
RM_BLE_MESH_PROVISION_SetOobAuthInfo(). When Output OOB Authentication is available.
set the generated AuthValue to Mesh Stack with RM_BLE_MESH_PROVISION_SetAuthVal().

Figure 3-6 shows the provisioning process flow when using OOB.

Unprovisioned Device

Provisioning Process
Provisioning Invite

Provisioning Capabilities

Provisioning Start

Provisioning Random

Provisioning Data

Provisioning Complete

RM_BLE_MESH_PROVISION_EVENT_TYPE_PROVDATA_INFO event

RM_BLE_MESH_PROVISION_EVENT_TYPE_PROVISIONING_COMPLETE event

Provisioning Public Key

Provisioning Confirmation

RM_BLE_MESH_PROVISION_EVENT_TYPE_PROVISIONING_SETUP event

RM_BLE_MESH_ACCESS_SetProvisioningData()

Mesh Application Mesh Stack Bluetooth Bearer Provisioner Device

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 49 of 76
Dec. 27, 2022

Figure 3-6 Provisioning Process with OOB

Unprovisioned Device

Provisioning Process

Provisioning Invite

Provisioning Capabilities

Provisioning Start

Provisioning Random

Provisioning Data

Provisioning Complete

RM_BLE_MESH_PROVISION_EVENT_TYPE_PROVDATA_INFO event

RM_BLE_MESH_PROVISION_EVENT_TYPE_PROVISIONING_COMPLETE event

Provisioning Confirmation

RM_BLE_MESH_PROVISION_EVENT_TYPE_PROVISIONING_SETUP event

RM_BLE_MESH_ACCESS_SetProvisioningData()

Provisioning Setup

RM_BLE_MESH_PROVISION_Open()

Connectable Advertising
for PB-GATT

Unprovisioned Device Beacon

loop

alt with OOB Public Key

alt Output OOB

RM_BLE_MESH_PROVISION_SetAuthVal()

Provisioning Public Key
without OOB Public Key

Provisioning Public Key

RM_BLE_MESH_PROVISION_EVENT_TYPE_OOB_DISPLAY event

RM_BLE_MESH_PROVISION_SendPdu()

RM_BLE_MESH_PROVISION_EVENT_TYPE_OOB_ENTRY event

Input OOB Authentication

Provisioning Input Complete

Mesh Application Mesh Stack Bluetooth Bearer Provisioner Device

RM_BLE_MESH_PROVISION_Bind()

RM_BLE_MESH_PROVISION_Setup()

opt Static OOB Authentication

RM_BLE_MESH_PROVISION_SetOobAuthInfo()

opt OOB Public Key
RM_BLE_MESH_PROVISION_GenerateEcdhKey()

RM_BLE_MESH_PROVISION_SetLocalPublicKey()

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 50 of 76
Dec. 27, 2022

3.4 Proxy
Mesh sample program can work as a proxy server or proxy client. This section describes the implementation
required to work as a proxy server or proxy client.

3.4.1 Proxy Server
Processing for working as a Proxy Server is shown as below.

(1) Registration of Proxy Callback Function (mesh_core.c)
Set Bluetooth Bearer Mode to BLEBRR_GATT_PROXY_MODE by using
RM_MESH_BEARER_PLATFORM_SetGattMode() API. The callback function that implements proxy
server related event handling is registered in the mesh stack by using
RM_BLE_MESH_NETWORK_Open() API. The callback function can be specified Callback property of
rm_ble_mesh_network module in FSP configuration. These processes are implemented in the
mesh_core_proxy_setup function of mesh_core.c in the Mesh sample program.

static API_RESULT mesh_core_proxy_setup(void)
{
 API_RESULT retval;

 RM_MESH_BEARER_PLATFORM_SetGattMode(&g_rm_mesh_bearer_platform0_ctrl,

RM_MESH_BEARER_PLATFORM_GATT_MODE_PROXY);

 /* Register Proxy Callback */
 retval = RM_BLE_MESH_NETWORK_Open(&g_rm_ble_mesh_network0_ctrl,

&g_rm_ble_mesh_network0_cfg);
………
 return retval;
}

(2) Starting Connectable Advertising (mesh_core.c)
To establish a Proxy connection with Proxy Client, start Connection Advertising by
RM_BLE_MESH_NETWORK_StartProxyServerAdv() API. These processes are implemented in the
mesh_core_proxy_start function of mesh_core.c in the Mesh sample program.

API_RESULT mesh_core_proxy_start(uint8_t proxy_adv_mode)
{
………
 if (0 != proxy_adv_mode)
 {

RM_BLE_MESH_NETWORK_StartProxyServerAdv(&g_rm_ble_mesh_network0_ctrl,
RM_BLE_MESH_NETWORK_PRIMARY_SUBNET, proxy_adv_mode);

 CONSOLE_STATUS("[PROXY] RM_BLE_MESH_NETWORK_StartProxyServerAdv()", retval);
………
 }
}

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 51 of 76
Dec. 27, 2022

(3) Proxy Callback Function (mesh_core.c)
Implement a callback function to receive Proxy events. The callback function implemented in the
mesh_core_proxy_cb function of mesh_core.c in the Mesh sample program. When a connection is
established and GATT Proxy Service is enabled, RM_BLE_MESH_NETWORK_EVENT_PROXY_UP
event will be notified to the callback function. To deliver Key Refresh Flag, IV Update Flag, and current
IV Index to Proxy Client. send Secure Network Beacon by using
RM_BLE_MESH_NETWORK_BroadcastSecureBeacon() API.

void mesh_core_proxy_cb(rm_ble_mesh_network_callback_args_t * p_args)
{
………
 switch (p_args->event)
 {
 case RM_BLE_MESH_NETWORK_EVENT_PROXY_UP:
………
 for (subnet_handle = 0; subnet_handle <

g_rm_ble_mesh0_cfg.maximum_subnets; subnet_handle++)
 {
………
 retval =(API_RESULT)RM_BLE_MESH_NETWORK_BroadcastSecureBeacon

(&g_rm_ble_mesh_network0_ctrl, subnet_handle);
………
 }
………
 }
}

(4) Terminating Proxy Connection (mesh_core.c)
To terminate a connection, call RM_MESH_BEARER_PLATFORM_Disconnect() API. In the Mesh
sample program, it is implemented in the mesh_core_proxy_disconnect function of mesh_core.c.

API_RESULT mesh_core_proxy_disconnect(void)
{
 API_RESULT retval = API_SUCCESS;

 for (uint8_t idx = 0; idx < CORE_NUM_GATT_INTERFACES; idx++)
 {
 if (BLE_GAP_INVALID_CONN_HDL != gs_proxy_client_conn_hdl[idx])
 {
 retval = (API_SUCCESS ==

RM_MESH_BEARER_PLATFORM_Disconnect(&g_rm_mesh_bearer_platform
0_ctrl, gs_proxy_client_conn_hdl[idx])) ? retval :
API_FAILURE;

 }
 }

 return retval;
}

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 52 of 76
Dec. 27, 2022

3.4.2 Proxy Client
Processing for working as a Proxy Client is shown as below.

(1) Registration of Proxy Callback Function (appl_proxy.c)
Refer to section “3.4.1(1) Registration of Proxy Callback Function (mesh_core.c)”.

(2) Establishing Proxy Connection (cli_brr.c)
Call RM_MESH_BEARER_PLATFORM_Connect() API to establish a proxy connection with the proxy
server. In the Mesh sample program, the connection procedure is implemented as connect command by
user. Refer to the cli_create_gatt_conn function in ./src/mesh/mesh_cli/cli_brr.c.

API_RESULT cli_create_gatt_conn(uint32_t argc, uint8_t *argv[])
{
 st_ble_dev_addr_t peer_bd_addr;
 uint8_t service_mode;
 API_RESULT retval;

………

 peer_bd_addr.type = (uint8_t)CLI_strtoi(argv[0],

(uint8_t)strlen((char*)argv[0]), 16);
 CLI_strtoarray_le
 (
 argv[1],
 (uint16_t)strlen((char*)argv[1]),
 &peer_bd_addr.addr[0],
 6
);
 service_mode = (uint8_t)CLI_strtoi(argv[2], (uint8_t)strlen((char*)argv[2]), 16);

………
 retval = RM_MESH_BEARER_PLATFORM_Connect(&g_rm_mesh_bearer_platform0_ctrl,

(uint8_t*)&(peer_bd_addr.addr), peer_bd_addr.type, service_mode);

………
}

The scan operation to search the proxy server is also implemented as scan command input by the user.
As a result of the scan, the device address of the found proxy server is notified in the
BLEBRR_GATT_IFACE_SCAN event to GATT callback function specified by
RM_MESH_BEARER_PLATFORM_CallbackSet () API in section 3.3.1.

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 53 of 76
Dec. 27, 2022

(3) Proxy Callback Function (mesh_core.c)
Implement a callback function to receive Proxy events. In the Mesh sample program, the callback
function is implemented as mesh_core_procy_cb function in mesh_core.c. When a connection is
established and GATT Proxy Service is enabled, RM_BLE_MESH_NETWORK_EVENT_PROXY_UP
event will be notified. Configure Proxy Filter Type of Proxy Server with
RM_BLE_MESH_NETWORK_SetProxyFilter() API, add Subscription Address to Proxy Filter List of
Proxy Server by getAllModelSubscriptionList () API of rm_ble_mesh_access module and
RM_BLE_MESH_NETWORK_ConfigProxyFilter() API in the event handling part.

void mesh_core_proxy_cb(ble_mesh_network_callback_args_t * p_args)
{
 switch (event)
 {
 case RM_BLE_MESH_NETWORK_EVENT_PROXY_UP:
 retval = (API_RESULT)RM_BLE_MESH_NETWORK_SetProxyFilter(NULL, &route_info,

BLE_MESH_NETWORK_PROXY_FILTER_TYPE_WHITELIST);
 gs_proxy_opcode = RM_BLE_MESH_NETWORK_PROXY_CONFIG_OPECODE_SET_FILTER;
 break;

 case RM_BLE_MESH_NETWORK_EVENT_PROXY_STATUS:
 switch (gs_proxy_opcode)
 {
 case RM_BLE_MESH_NETWORK_PROXY_CONFIG_OPECODE_SET_FILTER:
 /* Add Subscription Addresses to Proxy filter list */
 retval = mesh_core_proxy_add_addresses(handle,

BLE_MESH_NETWORK_PRIMARY_SUBNET);
 gs_proxy_opcode = RM_BLE_MESH_NETWORK_PROXY_CONFIG_OPECODE_ADD_TO_FILTER;
 break;
 }
 }
 break;
 }
}

static API_RESULT mesh_core_proxy_add_addresses(NETIF_HANDLE * netif_hdl, ble_mesh_network_subnet_handle_t

subnet_hdl)
{
 PROXY_ADDR addr_list[g_rm_ble_mesh0_cfg.maximum_virtual_address +
g_rm_ble_mesh0_cfg.maximum_non_virtual_address];
 UINT16 addr_count = ARRAY_SIZE(addr_list);

 retval = g_ble_mesh_access0.p_api->getAllModelSubscriptionList(&g_ble_mesh_access0_ctrl,

&addr_count, addr_list);
 if (0 != addr_count)
 {
 ble_mesh_network_route_info_t route_info;
 route_info.interface_handle = netif_hdl;
 route_info.subnet_handle = subnet_hdl;
 ble_mesh_network_proxy_address_list_t proxy_address_list;
 proxy_address_list.address = addr_list;
 proxy_address_list.count = addr_count;
 retval = (API_RESULT)RM_BLE_MESH_NETWORK_ConfigProxyFilter(NULL, &route_info,

RM_BLE_MESH_NETWORK_PROXY_CONFIG_OPECODE_ADD_TO_FILTER,
&proxy_address_list);

 }

 return retval;
}

(4) Terminating Proxy Connection (cli_brr.c)
Refer to section “3.4.1(4) Terminating Proxy Connection (mesh_core.c)”.

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 54 of 76
Dec. 27, 2022

3.4.3 Proxy Sequence

(1) Proxy Setup

Mesh sample program supports Proxy feature so Configuration Client that supports only GATT bearer can
configure the sample program over GATT bearer. Moreover, this sample program can forward messages
between GATT bearer and ADV bearer for a node that supports only GATT bearer.

Figure 3-7 Proxy Setup

RM_BLE_MESH_NETWORK_Open()

RM_BLE_MESH_NETWORK_StartProxyServerAdv()

RM_MESH_BEARER_PLATFORM_SetGattMode()

Proxy Server Setup

RM_MESH_BEARER_PLATFORM_CallbackSet()

Connectable Advertising
for Proxy connection

Proxy Server node

loop

Mesh Application Mesh Stack Bluetooth Bearer

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 55 of 76
Dec. 27, 2022

(2) Proxy Connection Establishment

Proxy Client establishes a connection with Proxy Server and enables notification of the Mesh Proxy Service.
After enabling Notification, Proxy Client becomes able to perform Message Communication over GATT
bearer.

Figure 3-8 Proxy Connection Establishment and Termination

Proxy Connection Establishment

Proxy Connection Termination

Termination by Proxy Server

Termination by Proxy Client

RM_MESH_BEARER_PLATFORM_Disconnect()

Connectable Advertising
for Proxy connection

Connection RequestBLEBRR_GATT_IFACE_UP event

BLEBRR_GATT_IFACE_ENABLE event

Enable Notification by
Write Characteristic Descriptor

Secure Network Beacon

Message Communication over GATT Bearer

RM_BLE_MESH_BEARER_RemoveBearer()

Disable Notification by
Write Characteristic DescriptorRM_BLE_MESH_NETWORK_EVENT_PROXY_DOWN event

BLEBRR_GATT_IFACE_DISABLE event

Disconnection Indication

Disconnection IndicationBLEBRR_GATT_IFACE_DOWN event

BLEBRR_GATT_IFACE_DOWN event

Proxy Server node

RM_BLE_MESH_BEARER_AddBearer()

RM_BLE_MESH_NETWORK_BroadcastSecureBeacon()

RM_BLE_MESH_NETWORK_EVENT_PROXY_UP event

Mesh Application Mesh Stack Bluetooth Bearer Proxy Client node

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 56 of 76
Dec. 27, 2022

3.5 Friendship
This section describes how to implement for working as a Friend node or Low Power node.

3.5.1 Friend Node
To work as a Friend node, Friend feature must be enabled. Friend feature is enabled by the following way:

• Configuration Client sends Config Friend Set message.

• Application calls setFeaturesField () API of rm_ble_mesh_access module.

After enabling Friend feature, Friend-related-processing such as Friendship establishment, Friend Queue
management, and response for Low Power node is handled automatically by Mesh Stack, so application
does not have to handle it.

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 57 of 76
Dec. 27, 2022

3.5.2 Low Power Node
To work as a Low Power node, application must enable Low Power feature and request a Friend node to

establish a Friendship. After establishing a Friendship, Mesh Stack polls the Friend node if any messages
are stored and suspends and resumes Scan automatically. Mesh Sample Program can work as a Low Power
Node. Processing for establishing a Friendship as a Low Power node is shown as below.

NOTE: This feature is disabled by default in the Mesh sample application. To enable this feature, change
the value of LOW_POWER_FEATURE_EN macro by referring to Section 2.7.

(1) Enabling Low Power feature (mesh_core.c)

Enable the low power feature by using set_featureField () API of rm_ble_mesh_access module when
provisioning is completed. The API call is implemented in mesh_core_prov_cb function of mesh_core.c
which explained in section 3.3.1.

void mesh_core_prov_cb(rm_ble_mesh_provision_callback_args_t * p_args)
{
………
 switch (p_args->event_type)
 {
………
 case RM_BLE_MESH_PROVISION_EVENT_TYPE_PROVISIONING_COMPLETE:
………

 #if LOW_POWER_FEATURE_EN
 g_rm_ble_mesh_access0.p_api->setFeaturesField

(&g_rm_ble_mesh_access0_ctrl, MS_ENABLE, MS_FEATURE_LPN);
 #endif /* LOW_POWER_FEATURE_EN */

 if (!gs_prov_is_gatt_iface)
 {
 /* Configure as a Proxy Server and Start Connectable Advertising */
 mesh_core_proxy_setup();

 #if LOW_POWER_FEATURE_EN
 /* Seek a Friend Node */
 mesh_core_lpn_setup();
 #endif /* LOW_POWER_FEATURE_EN */

………
 break;
………
 }
 return;
}

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 58 of 76
Dec. 27, 2022

(2) Requirement for Friendship Establishment (mesh_core.c)
After enabling the low power feature, register the friendship callback function by using
RM_BLE_MESH_UPPER_TRANS_Open() API. The callback function is specified by Callback property
of rm_ble_mesh_upper_trans module in FSP configuration. After calling
RM_BLE_MESH_UPPER_TRANS_Open() API, send Friend Request message by
RM_BLE_MESH_UPPER_TRANS_LpnSetupFriendship() API to establish a friendship as a Low Power
node. Set parameters related to timing of polling Friend node as arguments for this function.

#if LOW_POWER_FEATURE_EN
API_RESULT mesh_core_lpn_setup(void)
{
 API_RESULT retval;

 RM_BLE_MESH_UPPER_TRANS_Open(&g_ble_mesh_upper_trans0_ctrl, &g_ble_mesh_upper_trans0_cfg);

 ble_mesh_upper_trans_friendship_setting_t friendship_setting;
 friendship_setting.subnet_handle = 0x00;
 friendship_setting.criteria = CORE_FRIEND_CRITERIA;
 friendship_setting.rx_delay = CORE_FRIEND_RECEIVE_DELAY;
 friendship_setting.poll_timeout = CORE_FRIEND_POLLTIMEOUT;
 friendship_setting.setup_timeout = CORE_FRIEND_SETUPTIMEOUT;

 retval = RM_BLE_MESH_UPPER_TRANS_LpnSetupFriendship
 (
 &g_ble_mesh_upper_trans0_ctrl,
 &friendship_setting
);

 return retval;
}
#endif /* LOW_POWER_FEATURE_EN */

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 59 of 76
Dec. 27, 2022

(3) Friendship Callback Function (mesh_core.c)
Implement a callback function to receive Friendship events notified by Mesh Stack. In the mesh sample
program, the callback function is implemented as mesh_core_lpn_cb of mesh_core.c. When a friendship
is established, RM_BLE_MESH_UPPER_TRANS_EVENT_FRIENDSHIP_SETUP will be notified. Also,
when a friendship is terminated,
RM_BLE_MESH_UPPER_TRANS_EVENT_FRIENDSHIP_TERMINATE will be notified.

Low Power node can add and remove Subscription Addresses to/from Friend Subscription List of Friend
node. After establishing a Friendship, Mesh Sample Program gets all Subscription Addresses from
Subscription List by using getAllModelSubscriptionListI API of rm_ble_mesh_access module and edit the
subscription list by using RM_BLE_MESH_UPPER_TRANS_LpnManageSubscription() API.

void mesh_core_lpn_cb(ble_mesh_upper_trans_callback_args_t * p_args)
{
 UCHAR seek_req = MS_FALSE;
 UINT16 subscrn_list[g_rm_ble_mesh0_cfg.maximum_friend_subscription_list];
 UINT16 subscrn_count = g_rm_ble_mesh0_cfg.maximum_friend_subscription_list;

 switch(event_type)
 {
 case RM_BLE_MESH_UPPER_TRANS_EVENT_FRIENDSHIP_SETUP:
 {
 /* Friendship is established. */
 if (API_SUCCESS == status)
 {
 retval = g_ble_mesh_access0.p_api->getAllModelSubscriptionList

(&g_ble_mesh_access0_ctrl, &subscrn_count, subscrn_list);

 if (0 != subscrn_count)
 {
 retval = RM_BLE_MESH_UPPER_TRANS_LpnManageSubscription(NULL,

RM_BLE_MESH_UPPER_TRANS_CONTROL_OPCODE_FRIEND_SUBSCRN_LIST_ADD,
addr_list, count);

 }
 }
 /* Setup timeout is expired, and Friendship is not established. */
 else
 {
 seek_req = MS_TRUE;
 }
 }
 break;

 case RM_BLE_MESH_UPPER_TRANS_EVENT_FRIENDSHIP_TERMINATE:
 {
 /* Friendship is terminated. */
 seek_req = MS_TRUE;
 }
 break;
 }
………
}

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 60 of 76
Dec. 27, 2022

3.5.3 Low Power Node Sequence
(1) Enabling Low Power Feature and Friendship Request

This sample program supports Low Power feature and transmits Friend Request to establish a Friendship.

Figure 3-9 Enabling Low Power Feature and Friendship Request

RM_BLE_MESH_UPPER_TRANS_LpnSetupFriendship()

Enabling Low Power feature and Friendship Request

RM_BLE_MESH_ACCESS_SetFeaturesField()

Low Power node

loop

Friend Request

Mesh Application Mesh Stack Bluetooth Bearer

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 61 of 76
Dec. 27, 2022

(2) Friendship Establishment and Termination

Friendship is established by receiving Friend Offer. After Friendship establishment, this sample program
registers all Subscription Addresses with Friend Subscription List of Friend node. After registration, the
Friend node stores messages addressed to the Subscription Addresses. Also, Low Power node performs
Message Polling periodically and receives messages from the Friend node.

When Message Polling fails continuously and then Friendship is terminated by arising Friend Poll Timeout,
this sample program transmits Friend Request to establish a Friendship again.

Figure 3-10 Friendship Establishment and Termination

RM_BLE_MESH_ACCESS_GetAllModelSubscriptionList()

Friendship establishment and Updating Friend Subscription List

Friend Poll

Friend Update

RM_BLE_MESH_UPPER_TRANS_LpnManageSubscription()

Friend Subscription List Add

Friend Subscription List Confirm

Friend Request

Friend Offer

RM_BLE_MESH_UPPER_TRANS_EVENT_FRIENDSHIP_SETUP event

Low Power node

Low Power operation and Polling Message

Friendship termination

Friend Poll

RM_BLE_MESH_UPPER_TRANS_EVENT_FRIENDSHIP_TERMINATE event

loop

Friend Request

Friendship Request

Friend Poll Timeout expires

Mesh Application Mesh Stack Bluetooth Bearer Friend node

RM_BLE_MESH_UPPER_TRANS_EVENT_FRIENDSHIP_SUBSCRIPTION_LIST event

RM_BLE_MESH_UPPER_TRANS_LpnSetupFriendship()

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 62 of 76
Dec. 27, 2022

If Low Power Node terminates a Friendship spontaneously, send Friend Clear message by
RM_BLE_MESH_UPPER_TRANS_LpnClearFriendship() API. Completion of termination will be notified by
RM_BLE_MESH_UPPER_TRANS_EVENT_FRIENDSHIP_CLEAR event.

Figure 3-11 Friendship Termination

3.5.4 Friend Node Sequence
(1) Enabling Friend Feature

By being enabled Friend feature by Configuration Client, this sample program can work as a Friend Node.
Mesh Stack does not notify any events regarding Friend Node operation such as friendship establishment
and termination.

Figure 3-12 Enabling Friend Feature

Friendship termination

RM_BLE_MESH_UPPER_TRANS_LpnClearFriendship()

Friend Clear

Friend Clear ConfirmRM_BLE_MESH_UPPER_TRANS_EVENT_FRIENDSHIP_CLEAR event

Low Power node

Mesh Application Mesh Stack Bluetooth Bearer Friend node

Friend Node Setup

Config Friend Status

Config Friend Set

Friend node

Mesh Application Mesh Stack Bluetooth Bearer
Configuration Client

node

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 63 of 76
Dec. 27, 2022

(2) Friendship Establishment and Termination

Figure 3-13 Friendship Establishment and Termination

Friendship establishment and Updating Friend Subscription List

Friend node

Friend Poll

Friend Update

Friend Request

Friend Offer

Friend Subscription List Add

Friend Subscription List Confirm

Friend operation

Friendship termination

Friend Poll Timeout expires

Mesh Application Mesh Stack Bluetooth Bearer Low Power node

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 64 of 76
Dec. 27, 2022

3.6 Configuration
Mesh Sample Program works as a Configuration Server. Implementation for Configuration Server Model of
Mesh Sample Program is shown as below.

3.6.1 Configuration Server
After Provisioning, a node must receive configuration information such as Application Key, Publish Address,
and Subscription Address from Configuration Client so that a node communicates by each model. There
configuration information is handled as Configuration States by Configuration model.

When application registers Configuration Server model, memory region for Configuration states are allocated
in Mesh Stack. By receiving Configuration messages from Configuration Client, Mesh Stack updates the
Configuration states automatically. Therefore, application does not have to manage the Configuration states.

Mesh Stack provides application with API to access local Configuration states. Application can access the
Configuration states directly by using Mesh Stack API. Regarding API to access local Configuration states,
refer to RM_BLE_MESH_ACCESS_*() API in "Renesas Flexible Software Package User’s Manual".

(1) Registration of Configuration Server Model (mesh_model.c)
Register Configuration Server model with element by RM_MESH_CONFIG_SRV_Open() API. In the
mesh sample program, the registration process is implemented in mesh_foundation_model_register
function called from mesh_model_config function which described in section 3.2.

static API_RESULT mesh_foundation_model_register(void)
{
 API_RESULT retval;

 retval = (API_RESULT)RM_MESH_CONFIG_SRV_Open(&g_rm_mesh_config_srv0_ctrl,

&g_rm_mesh_config_srv0_cfg);

 retval = RM_MESH_HEALTH_SERVER_Open(&g_rm_mesh_health_srv0_ctrl,

&g_rm_mesh_health_srv0_cfg);

 return retval;
}

(2) Configuration Server Callback Function (mesh_model.c)
Implement a callback function to receive a message from Configuration Client. The callback function
specified in Callback property of rm_mesh_config_srv module in FSP configuration. In this mesh sample
application, the callback function is implemented as mesh_model_config_server_cb.

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 65 of 76
Dec. 27, 2022

3.6.2 Configuration Server Sequence
When receiving Config Node Reset message, Mesh Stack delete all Configuration states. Also, this sample
program resets MCU and performs Provisioning again.

Figure 3-14 Configuration Server Model Operation of Mesh Sample Program

RM_MESH_CONFIG_SRV_Open()

Configuration messagecallback function for Configuration Server

Configuration Acknowledgement message

Config Node Resetcallback function for Configuration Server

Config Node Reset Status

MCU Reset

Configuration Server Setup

Configuration Message Reception

Config Node Reset Message Reception

Configuration Server node

Configuration Information Deletion

Configuration Information Update

Mesh Application Mesh Stack

Configuration Client
node

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 66 of 76
Dec. 27, 2022

3.7 Health Model
This section describes how to implement for working as a Health Server.

3.7.1 Health Server
Health Server performs self-testing when receiving Health Fault Test message from Health Client. Also,
Health Server starts Attention Timer when receiving Health Attention Set message from Health Client. In the
mesh sample program, these procedures are implemented in app_main.c.

(1) Registration of Health Server Model (mesh_model.c)
Register Health Server model with element by RM_MESH_HEALTH_SERVER_Open() API. In the
mesh sample program, the registration procedure is performed in the
mesh_founddation_model_register function called from mesh_model_config function implemented in
mesh_model.c which described in section 3.2.

static API_RESULT mesh_foundation_model_register (void)
{
 API_RESULT retval;

 retval = (API_RESULT)RM_MESH_CONFIG_SRV_Open(&g_rm_mesh_config_srv0_ctrl,

&g_rm_mesh_config_srv0_cfg);

 retval = RM_MESH_HEALTH_SERVER_Open(&g_rm_mesh_health_srv0_ctrl,

&g_rm_mesh_health_srv0_cfg);

 return retval;
}

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 67 of 76
Dec. 27, 2022

(2) Definition of Test ID (app_main.c)
Declare a structure in app_main.c that contains a function pointer to the function called by the Health
Fault Test message, and specify it in the Self Test property of the rm_mesh_health_srv module in FSP
configuration.

typedef enum
{
 MESH_HEALTH_TEST_ID_00 = 0x00,
 MESH_HEALTH_TEST_ID_01 = 0x01,
 MESH_HEALTH_TEST_ID_02 = 0x02,
} e_mesh_health_test_id_t;

………

rm_ble_mesh_health_server_self_test_t gs_health_server_self_tests[] =
{
 { MESH_HEALTH_TEST_ID_00, mesh_health_self_test_00 },
 { MESH_HEALTH_TEST_ID_01, mesh_health_self_test_01 },
 { MESH_HEALTH_TEST_ID_02, mesh_health_self_test_02 },
};

The function itself called when receiving Health Fault Test message as follows. In the Mesh sample
program, Call RM_MESH_HEALTH_SERVER_ReportFault () API with health test result as argument of
the API to the fault state and send Health Fault Status message.

static void mesh_health_self_test_00(UINT8 test_id, UINT16 company_id)
{
 if ((MESH_HEALTH_TEST_ID_00 == test_id) && (g_rm_ble_mesh0_cfg.default_company_id ==
company_id))
 {
 CONSOLE_OUT("[HEALTH] A Self-Test Procedure(TestID: 0x00)\n");
 mesh_model_health_server_fault_status(MESH_HEALTH_TEST_ID_00,

RM_MESH_HEALTH_SERVER_FAULT_NO_FAULT);
 }
}

………

<mesh_model.c>

API_RESULT mesh_model_health_server_fault_status(UINT8 test_id, UINT8 fault_code)
{
 API_RESULT retval;

 retval = RM_MESH_HEALTH_SERVER_ReportFault
 (
 &g_mesh_health_srv0_ctrl,
 &(g_mesh_health_srv0_ctrl.model_handle),
 test_id,
 g_rm_ble_mesh0_cfg.default_company_id,
 fault_code
);

 return retval;
}

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 68 of 76
Dec. 27, 2022

(3) Attention Timer Callback Function (app_main.c)
Implement an Attention Timer callback function performed when receiving Health Attention Set message.
The callback function is specified in the Callback properties of rm_mesh_health_srv module in FSP
configuration. In the Mesh sample program, it is implemented as mesh_health_server_cb.

RM_MESH_HEALTH_SERVER_SERVER_ATTENTION_START event will be notified when Attention
Timer starts, and RM_MESH_HEALTH_SERVER_SERVER_ATTENTION_RESTART event will be
notified when Attention Timer restarts. Start attention behavior such as LED blinking in the event
handling.

RM_MESH_HEALTH_SERVER_SERVER_ATTENTION_STOP event will be notified when Attention
Timer stops. Stop attention behavior by this event.

void mesh_health_server_cb(ble_mesh_model_health_callback_args_t * p_args)
{
 UINT8 attention_sec;

 switch (event_type)
 {
 case RM_MESH_HEALTH_SERVER_SERVER_ATTENTION_START:
 case RM_MESH_HEALTH_SERVER_SERVER_ATTENTION_RESTART:
 attention_sec = *event_param;
 if (0 != attention_sec)
 {
 }
 break;

 case RM_MESH_HEALTH_SERVER_SERVER_ATTENTION_STOP:
 break;
 }

 return API_SUCCESS;
}

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 69 of 76
Dec. 27, 2022

3.7.2 Health Server Sequence

Figure 3-15 Health Server Model Operation of Mesh Sample Program

RM_MESH_HEALTH_SERVER_Open()

Health Server Setup

Attention Timer Start

Health Server node

Health Attention Set messageRM_MESH_HEALTH_SERVER_SERVER_ATTENTION_STOP

alt

Health Attention Set message

Health Attention Status message

RM_MESH_HEALTH_SERVER_SERVER_ATTENTION_START

Health Attention Set messageRM_MESH_HEALTH_SERVER_SERVER_ATTENTION_START

when receiving Health Attention Set Acknowledged

when receiving Health Attention Set Unacknowledged

alt

opt

Health Attention Set message

Health Attention Status message

RM_MESH_HEALTH_SERVER_SERVER_ATTENTION_RESTART

Health Attention Set messageRM_MESH_HEALTH_SERVER_SERVER_ATTENTION_RESTART

when receiving Health Attention Set Acknowledged

when receiving Health Attention Set Unacknowledged

Attention Timer Restart

Attention Timer Stop

Performing Self-Test

alt

Health Fault Test message

Health Fault Status message

Self-test function

Health Fault Test Unaknowledged messageRM_MESH_HEALTH_SERVER_SERVER_ATTENTION_START

when receiving Health Fault Test

when receiving Health Fault Test Unaknowledged

RM_MESH_HEALTH_SERVER_ReportFault()

RM_MESH_HEALTH_SERVER_ReportFault()

Health Client node

Mesh Application Mesh Stack

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 70 of 76
Dec. 27, 2022

3.8 Application Model
Models that should be used by application differs depends on each application scenario. Application can use
single model or multiple models. Mesh Stack provides application with API to use models defined by
Bluetooth Mesh Model Specification.

This section shows how to implement Application Models while referring to the implementation of Generic
OnOff model of Mesh Sample Program.

Mesh Sample Program works as a Generic OnOff Client or Generic OnOff Server. Generic OnOff Client
model can change the Generic OnOff state of Generic OnOff Server model into either ON or OFF.
Implementation for Generic OnOff Server Model of Mesh Sample Program is shown as below.

3.8.1 Server Model
(1) Instance of state (mesh_model.c)

Implement a global variable as instance of state by using the structure type for each state. In the Mesh
sample program, the variable is declared in mesh_modelc.c as global variable. Refer to the “Renesas
Flexible Software Package User ’s manual” for structure types of states other model.

#ifdef ONOFF_SERVER_MODEL
static rm_mesh_generic_on_off_srv_info_t gs_onoff_state;
#endif /* ONOFF_SERVER_MODEL */

(2) Initialization of the state (mesh_model.c)
Initialize the state defined as the global variable in the Mesh sample program. The initialization is
implemented by the mesh_application_model_states_init function called from the mesh_config function
described in Section 3.2.

 #ifdef ONOFF_SERVER_MODEL
 memset(&gs_onoff_state, 0, sizeof(gs_onoff_state));
 #endif /* ONOFF_SERVER_MODEL */

(3) Registration of Server Model (mesh_model.c)
Register Server Model to register its element handle and the callback function. The callback function is
specified by Callback property of rm_mesh_generic_on_off_srv module in FSP configuration. In the
Mesh sample program, this initialization is implemented by the mesh_application_model_register
function called from the mesh_config function described in Section 3.2.

 #ifdef ONOFF_SERVER_MODEL
 retval = RM_MESH_GENERIC_ON_OFF_SRV_Open(&g_ble_mesh_generic_on_off_srv0_ctrl,

&g_ble_mesh_generic_on_off_srv0_cfg);
 #endif /* ONOFF_SERVER_MODEL */

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 71 of 76
Dec. 27, 2022

(4) Server Model Callback function (mesh_model.c)
Implement a callback function to receive messages from Client and handle the state defined as the
global variable. In the Mesh sample program, it is implemented in mesh_model_onoff_server_cb
function.

void mesh_model_onoff_server_cb(ble_mesh_model_server_callback_args_t * p_args)
{
………

 retval = g_ble_mesh_access0.p_api->getElementHandleForModelHandle(&g_ble_mesh_access0_ctrl,

p_args->p_msg_context->handle, &elem_handle);

 if (API_SUCCESS == retval)
 {
 /* Check Message Type */
 switch (req_type->type)
 {
 case BLE_MESH_ACCESS_MODEL_REQ_MSG_TYPE_GET:
 {
 retval = mesh_model_onoff_server_state_get(state_params->state_type, ¶m);
………
 }
 break;

 case BLE_MESH_ACCESS_MODEL_REQ_MSG_TYPE_SET:
 {
 retval = mesh_model_onoff_server_state_set
 (
 state_params->state_type, state_params->state
);
………
 }
 break;

 default:
 break;
 }

 if (API_SUCCESS == retval)
 {
 retval = RM_MESH_GENERIC_ON_OFF_SRV_StateUpdate(&g_ble_mesh_generic_on_off_srv0_ctrl,

&state);
 }
 }

 return retval;
}

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 72 of 76
Dec. 27, 2022

3.8.2 Client Model
(1) Registration of Client Model (mesh_model.c)

Register Client Model to register its element handle and the callback function. The callback function is
specified by Callback property of rm_mesh_generic_on_off_clt module in FSP configuration. In the
Mesh sample program, this initialization is implemented by the mesh_application_model_register
function called from the mesh_config function described in Section 3.2.

#ifdef ONOFF_CLIENT_MODEL
 retval = RM_MESH_GENERIC_ON_OFF_CLT_Open(&g_ble_mesh_generic_on_off_clt0_ctrl,

&g_ble_mesh_generic_on_off_clt0_cfg);
#endif /* ONOFF_CLIENT_MODEL */

(2) Callback function to receive messages (mesh_model.c)
Implement a callback function to receive messages from Server. In the Mesh sample program, it is
implemented in mesh_model_onoff_client_cb function.

#ifdef ONOFF_CLIENT_MODEL
void mesh_model_onoff_client_cb(ble_mesh_model_client_callback_args_t * p_args)
{
 API_RESULT retval = API_SUCCESS;
 mesh_generic_on_off_status_info_t status;

 switch (opcode)
 {
 case RM_BLE_MESH_ACCESS_MESSAGE_OPCODE_GENERIC_ONOFF_STATUS:
 {
 memcpy(&status, data_param, data_len);
 status.optional_fields_present =
 (data_len > sizeof(status.present_onoff)) ? MS_TRUE : MS_FALSE;
 }
 break;
 }

 return retval;
}
#endif /* ONOFF_CLIENT_MODEL */

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 73 of 76
Dec. 27, 2022

(3) Functions to transmit messages (mesh_model.c)
Implement functions to transmit message such as GET and SET. These methods are implemented as a
mesh_model_onoff_client_get, mesh_model_onoff_client_set, mesh_model_onoff_client_set_unack
function. These functions are called by pressing a switch mounted on the board or inputting a command
from a terminal emulator.

#ifdef ONOFF_CLIENT_MODEL
API_RESULT mesh_model_onoff_client_get(void)
{
 API_RESULT retval;

 retval = RM_MESH_GENERIC_ON_OFF_CLT_Get(&g_ble_mesh_generic_on_off_clt0_ctrl);

 return retval;
}

API_RESULT mesh_model_onoff_client_set(UCHAR tid, UINT8 state)
{
 API_RESULT retval;
 mesh_generic_on_off_set_info_t param;

 memset(¶m, 0, sizeof(param));
 param.onoff = state;
 param.tid = tid;

 retval = RM_MESH_GENERIC_ON_OFF_CLT_Set(&g_ble_mesh_generic_on_off_clt0_ctrl, ¶m);

 return retval;
}

API_RESULT mesh_model_onoff_client_set_unack(UCHAR tid, UINT8 state)
{
 API_RESULT retval;
 mesh_generic_on_off_set_info_t param;

 memset(¶m, 0, sizeof(param));
 param.onoff = state;
 param.tid = tid;

 retval = RM_MESH_GENERIC_ON_OFF_CLT_SetUnacknowledged(&g_ble_mesh_generic_on_off_clt0_ctrl,
¶m);

 return retval;
}
#endif /* ONOFF_CLIENT_MODEL */

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 74 of 76
Dec. 27, 2022

3.8.3 Generic OnOff Model Sequence
Mesh Sample Program which works as a Generic OnOff Client node sends Generic OnOff Set
Unacknowledged message when a switch on board is pushed. On the other hand, Mesh Sample Program
which works as a Generic OnOff Server node turns LED on board either on or off when receiving Generic
OnOff Set message or Generic OnOff Set Unacknowledged message.

Figure 3-16 Generic OnOff Model Operation of Mesh Sample Program

3.8.4 Vendor Model Sequence
Mesh Sample Program which works as a Vendor Server node sends Vendor Set Unacknowledged message
when character string is input from console. On the other hand, Mesh Sample Program which works as a
Vendor Server output character string to console when receiving Vendor Set message or Vendor Set
Unacknowledged message.

Figure 3-17 Vendor Model Operation of Mesh Sample Program

Generic OnOff Set
Unacknowledged message

Switch is pushed

turn LED on/off

Callback function for
Generic OnOff Server

RM_MESH_GENERIC_ON_OFF_CLT_SetUnacknowledged()

Generic OnOff Client node Generic OnOff Server node

Mesh Application Mesh Stack Mesh Stack Mesh Application

Vendor Set Unacknowledged
message

Console input

Console output

Callback function for
Vendor Server

MS_vendor_set_unack()

Vendor Client node Vendor Server node

Mesh Application Mesh Stack Mesh Stack Mesh Application

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 75 of 76
Dec. 27, 2022

4. Appendix
4.1 Command Line Interface Program
Command Line Interface (CLI) is an interface to execute Mesh Stack API over serial interface from PC.
Command Line Interface Program (mesh_cli) is included in "RA4W1 Group Bluetooth Mesh sample
application" (R01AN5848). By using this program, you can check wireless communication operation of Mesh
Stack. In addition, you can refer to the implementation of this program as an example for using Mesh Stack
API. Figure 4-1 shows the example usage of Command Line Interface Program.

Figure 4-1 Example Usage of Command Line Interface Program

Figure 4-2 shows the example sequence of Command Line Interface. This program can work as both role
such as Provisioning Client and Provisioning Server, Configuration Client and Configuration Server.

Figure 4-2 Example Sequence of Command Line Interface

PC

Developement Board

Configuration Model

mesh_climesh_cli

Beaconing

root->core->provision->setup 2 1 root->core->provision->setup 1 1

root->core->provision->bind 1 0

root->core->provision->bind 1 0

Invitation
Exchanging public keys

Authentication
Distribution of provisioning data

Composition Data

root->model->modelc->config->
compositiondataget 0

root->model->modelc->config->
publishaddr 100

AppKey List

root->model->modelc->config->
appkeyadd 0 0 12345678

Model Publication

root->model->modelc->config->
modelpublicationset
100 c001 0 0 3f 0 0 0 1000

Model to AppKey List

root->model->modelc->config->
bind 100 0 1000 1001

Provisioning

Configuration Client Configuration Server

Provisioning Client Provisioning Server

RA4W1 Group Bluetooth Mesh Development Guide

R01AN5849EJ0105 Rev.1.05 Page 76 of 76
Dec. 27, 2022

Regarding the environment setup for building Command Line Interface, refer to Chapter 2 in "RA4W1 Group
Bluetooth Mesh sample application" (R01AN5848) and use "mesh_cli" project generated in the workspace
directory.

EK-RA4W1 has USB Serial Converter for communicating with PC. To operate Command Line Interface, use
serial terminal tool on PC. (e.g. Tera Term)

Table 4-1 shows the serial port setting to communicate with Command Line Interface Program.

Table 4-1 Serial Port Setting

Regarding the specification of Command Line Interface, refer to "mesh_cli_guide.pdf" included in "RA4W1
Group Bluetooth Mesh sample application " (R01AN5848).

4.2 Program size
The program size required for,

• Mesh core and model module which describes in section 2.3.1 and 2.3.2.

• Mesh stack provided by Flexible software package as static library.

• Bluetooth LE stack provided by Flexible software package as static library.

Category ROM RAM

Mesh Core module 4.77KB 0.03KB

Mesh Model module 3.61KB 0.12KB

Bluetooth LE + Mesh stack*1 *2 304.81KB 46.56KB
*1 Includes Generic ON/OF, Configuration, Health model.

*2 Bluetooth LE stack configuration is extended.

Above table does NOT include user application, MCU peripheral which use user application, FreeRTOS
kernel and BSP.

Item Setting
Baud rate 115200 bps
Data 8 bits
Parity none
Stop 1 bit
Flow Control none

https://ttssh2.osdn.jp/index.html.en

Trademark and Copyright
The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of
such marks by Renesas Electronics Corporation is under license. Other trademarks and registered
trademarks are the property of their respective owners.

RA4W1 Group Bluetooth Mesh Stack uses the following open source software.

crackle; AES-CCM, AES-128bit functionality
BSD 2-Clause License

Copyright (c) 2013-2018, Mike Ryan
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

https://github.com/mikeryan/crackle

Revision History
Rev. Date Description
1.00 Feb. 25, 2022 - First edition

1.01 Apr.27, 2022 - Add section 3.3.1 item (4).

1.05 Dec. 27, 2022 P.35
P.36

P.37
P.41
P.48

Added the description of "Console String Reception Configuration".
Added the description of configurations for Provisioning operation of Mesh
Sample Program.
Fixed GATT Bearer Connectable Advertising Interval.
Added the description of "Mesh Stack Termination".
Updated the description of using OOB Public Key and OOB Authentication.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2022 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Bluetooth Mesh Overview
	1.1 Node
	1.2 Element
	1.3 Address
	1.4 State
	1.5 Model
	1.5.1 Client and server
	1.5.2 Foundation models
	1.5.3 Configuration model
	1.5.4 Health model
	1.5.5 Publication and subscription

	1.6 Message
	1.7 Mesh Bearer
	1.8 Provisioning
	1.9 Configuration
	1.10 Optional Features
	1.10.1 Relay
	1.10.2 Proxy
	1.10.3 Friendship

	2. Mesh Application Overview
	2.1 Software Structure
	2.2 File Structure
	2.3 Mesh Application
	2.3.1 Mesh Core Module
	2.3.2 Mesh Model Module
	2.3.3 Mesh Model Composition
	2.3.3.1 Configuration Model
	2.3.3.2 Health Model
	2.3.3.3 Generic OnOff Model
	2.3.3.4 Vendor Model

	2.4 Bluetooth Mesh Stack
	2.5 Bluetooth Bearer
	2.5.1 Bearer Functions for Message Transmission and Reception
	2.5.2 Bearer Functions for Connection Control
	2.5.3 Mesh GATT Services
	2.5.4 ADV Bearer Operation
	2.5.5 GATT Bearer Operation

	2.6 MCU Peripheral Functions
	2.7 Mesh Sample Program Configuration
	2.8 Bluetooth Bearer Configuration

	3. Application Development
	3.1 Main Routine
	3.2 Node Configuration
	3.3 Provisioning
	3.3.1 Provisioning Server
	(1) Registration of Provisioning Capabilities and Provisioning Callback Function (mesh_core.c)
	(2) Start of Provisioning (mesh_core.c)
	(3) Provisioning Callback Function (mesh_core.c)
	(4) Cancellation of provisioning (app_main.c)

	3.3.2 Provisioning Sequence
	(1) Provisioning Setup
	(2) Session Establishment over PB-ADV
	(3) Connection Establishment over PB-GATT
	(4) Provisioning Process

	3.4 Proxy
	3.4.1 Proxy Server
	(1) Registration of Proxy Callback Function (mesh_core.c)
	(2) Starting Connectable Advertising (mesh_core.c)
	(3) Proxy Callback Function (mesh_core.c)
	(4) Terminating Proxy Connection (mesh_core.c)

	3.4.2 Proxy Client
	(1) Registration of Proxy Callback Function (appl_proxy.c)
	(2) Establishing Proxy Connection (cli_brr.c)
	(3) Proxy Callback Function (mesh_core.c)
	(4) Terminating Proxy Connection (cli_brr.c)

	3.4.3 Proxy Sequence
	(1) Proxy Setup
	(2) Proxy Connection Establishment

	3.5 Friendship
	3.5.1 Friend Node
	3.5.2 Low Power Node
	(1) Enabling Low Power feature (mesh_core.c)
	(2) Requirement for Friendship Establishment (mesh_core.c)
	(3) Friendship Callback Function (mesh_core.c)

	3.5.3 Low Power Node Sequence
	(1) Enabling Low Power Feature and Friendship Request
	(2) Friendship Establishment and Termination

	3.5.4 Friend Node Sequence
	(1) Enabling Friend Feature
	(2) Friendship Establishment and Termination

	3.6 Configuration
	3.6.1 Configuration Server
	(1) Registration of Configuration Server Model (mesh_model.c)
	(2) Configuration Server Callback Function (mesh_model.c)

	3.6.2 Configuration Server Sequence

	3.7 Health Model
	3.7.1 Health Server
	(1) Registration of Health Server Model (mesh_model.c)
	(2) Definition of Test ID (app_main.c)
	(3) Attention Timer Callback Function (app_main.c)

	3.7.2 Health Server Sequence

	3.8 Application Model
	3.8.1 Server Model
	(1) Instance of state (mesh_model.c)
	(2) Initialization of the state (mesh_model.c)
	(3) Registration of Server Model (mesh_model.c)
	(4) Server Model Callback function (mesh_model.c)

	3.8.2 Client Model
	(1) Registration of Client Model (mesh_model.c)
	(2) Callback function to receive messages (mesh_model.c)
	(3) Functions to transmit messages (mesh_model.c)

	3.8.3 Generic OnOff Model Sequence
	3.8.4 Vendor Model Sequence

	4. Appendix
	4.1 Command Line Interface Program
	4.2 Program size

