RA4M2 Group
Voice Recognition Demonstration (AmiVoice Micro)

Introduction
This application note explains demo operation using Advanced Media, Inc. word voice recognition library ‘AmiVoice® Micro’ and Techno Mathematical Co., Ltd. noise suppressor and beamforming(optional) middleware ‘Zoom Voice’.

Target Device
RA4M2 Voice Recognition ECM Demo Board (RTK0EA0006D00001BJ)

Related Documents
1. RA4M2 Group Voice Recognition Demo Board (R12AN0117EJ0100)
2. RA4M2 Group Voice Recognition Sample Software (AmiVoice Micro) (R11AN0539EJ0100)

AmiVoice® Micro belongs to Advanced Media, Inc.. (Shown as AmiVoice in this document.)
Zoom Voice belongs to Techno Mathematical Co., Ltd. (Shown as Zoom Voice in this document.)
Contents

1. Outline ... 3
2. Demo operation ... 4
 2.1 Power supply .. 4
 2.2 Terminal software setting .. 4
3. Demo procedure ... 6
 3.1 Voice Command .. 6
 3.2 Display on PC .. 6
4. Functions .. 7
 4.1 Recognizable voice and actions by recognition results ... 7
 4.2 Voice recognition setting on the terminal software ... 8
 4.2.1 Parameter display .. 8
 4.2.2 Parameter setting ... 8
 4.2.3 Parameter setting command ... 9
Revision History .. 11
1. Outline

This demonstration realizes the Voice Recognition using word voice recognition library ‘AmiVoice’ and noise suppressor and beamforming(optional) library ‘Zoom Voice’.

Figure 1.1 shows demo configuration.

![Demo Configuration Diagram]

Figure 1.1 Demo configuration
2. Demo operation
Demo operation procedure is explained as below.

2.1 Power supply
The power supply for this demonstration is supplied via USB microB connector.
USB 5V supply capable USB AC adopter, mobile battery and PC can be used for power supply.
If you use a PC, you can use the terminal software to display the recognition results and change settings.
(The recognition result can be checked by the RGB LED on the board without running the terminal software.)

2.2 Terminal software setting
This section shows the setup of the terminal software (Tera Term) when connected to a PC.

1. Turn off the slide switch on the board and connect the board to the PC via USB.

![Slide switch diagram]

<table>
<thead>
<tr>
<th>SW</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>USB Boot</td>
</tr>
<tr>
<td>OFF</td>
<td>Serial communication</td>
</tr>
</tbody>
</table>

2. Start Tera Term.
3. Select 'Serial' and COM port which is connected to the board, then click 'OK'.

![Tera Term setup window]
4. Select ‘Terminal’ from setting tub and set the indent code to ‘AUTO’ for receive side, then click ‘OK’.

![Terminal configuration settings](Image)
3. **Demo procedure**
Start demonstration by talking to the demo board.

3.1 **Voice Command**
Refer Chapter 4 for recognizable voice command and action according to the recognition result.

3.2 **Display on PC**
Below shows display example of Tera Term. Refer Chapter 4 for detail.

- Display the settings

![Display Settings](image1)

- Display the recognition results

 If the confidence level of a recognized word exceeds the set confidence threshold, it judges that the word is recognized and display ‘OK.’

![Display Recognition Results](image2)
4. Functions

The function of this demonstration are as below.

1. Get audio input data from microphone
2. Noise suppression, beamforming (optional) and voice recognition processing
3. Turn ON the RGB LED
4. Transfer operation information via USB

4.1 Recognizable voice and actions by recognition results

When power on, RGB LED stays off and turns white when voice is detected. After voice detection, action will be conducted based on below voice recognition results.

The color of RGB LED will stay until other voice detection.

<table>
<thead>
<tr>
<th>ID</th>
<th>Voice command</th>
<th>Activity</th>
<th>USB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L-E-D red</td>
<td>Red on</td>
<td>Send results</td>
</tr>
<tr>
<td>2</td>
<td>L-E-D green</td>
<td>Green on</td>
<td>Send results</td>
</tr>
<tr>
<td>3</td>
<td>L-E-D blue</td>
<td>Blue on</td>
<td>Send results</td>
</tr>
<tr>
<td>4</td>
<td>Electric fan power</td>
<td>Purple on</td>
<td>Send results</td>
</tr>
<tr>
<td>5</td>
<td>Electric fan swing</td>
<td>Purple on</td>
<td>Send results</td>
</tr>
<tr>
<td>6</td>
<td>Electric fan high speed</td>
<td>Purple on</td>
<td>Send results</td>
</tr>
<tr>
<td>7</td>
<td>Electric fan low speed</td>
<td>Purple on</td>
<td>Send results</td>
</tr>
</tbody>
</table>
4.2 Voice recognition setting on the terminal software

This demo can change setting and display of both AmiVoice and Zoom Voice on terminal software (Tera Term).

Changeable conditions are as below.

- **Condition1**: Beamforming reduction amount of Zoom Voice (optional)
- **Condition2**: Noise reduction of Zoom Voice
- **Condition3**: Amplification width of voice data
- **Condition4**: Utterance detection threshold of AmiVoice (Detect Threshold)
- **Condition5**: Confidence Threshold value of AmiVoice (Confidence Threshold)

4.2.1 Parameter display

To display current parameter, input ‘disp’ on Tera Term and press Enter key.

![Figure 4.1 Display parameters](image1)

4.2.2 Parameter setting

To change the parameter setting, input the condition you want to change and value on Tera Term, then press Enter key.

![Figure 4.2 Parameter setting](image2)
4.2.3 Parameter setting command
This section describes the conditions you want to change and how to enter the changed values.

- Change Zoom Voice Beamforming reduction amount (optional)
 Zoom Voice Beamforming amount can be changed by inputting number 0 to 7 after ‘bf’.

Note: To use beamforming in this demo, a microphone must be mounted on the microphone expansion connector, and software change is required. For more information about the beamforming function, please contact your sales.

Table 4.2 Zoom Voice Beamforming reduction change

<table>
<thead>
<tr>
<th>Setting</th>
<th>Changeable condition</th>
<th>String input to Tera Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Function OFF</td>
<td>bf0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>bf1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>bf2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>bf3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>bf4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>bf5</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>bf6</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>bf7</td>
</tr>
</tbody>
</table>

- Change Zoom Voice noise reduction amount
 Zoom Voice noise reduction can be changed by inputting number 0 to 9 after ‘ns’.

Table 4.3 Zoom Voice noise reduction change

<table>
<thead>
<tr>
<th>Setting</th>
<th>Changeable condition</th>
<th>String input to Tera Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Function OFF</td>
<td>ns0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>ns1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>ns2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>ns3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>ns4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>ns5</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>ns6</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>ns7</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>ns8</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>ns9</td>
</tr>
</tbody>
</table>
• Change amplification width of voice data
 To change amplification width of voice data, input number 0 to 9 after ‘gain’.

Table 4.4 Amplification width of voice data change

<table>
<thead>
<tr>
<th>Setting</th>
<th>Changeable condition</th>
<th>String input to Tera Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Function OFF</td>
<td>gain0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>gain1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>gain2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>gain3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>gain4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>gain5</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>gain6</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>gain7</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>gain8</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>gain9</td>
</tr>
</tbody>
</table>

• Change utterance detection of AmiVoice (Detect Threshold)
 To change the utterance detection threshold, input value 1000 to 1500 after ‘th.’

Table 4.5 Change utterance detection of AmiVoice

<table>
<thead>
<tr>
<th>Setting</th>
<th>Changed value</th>
<th>String input to Tera Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>Change to 13000</td>
<td>th 13000</td>
</tr>
</tbody>
</table>

• Change confidence threshold value of AmiVoice (Confidence Threshold)
 To change confidence threshold of AmiVoice, input value 0 to 255 after ‘cf.’

Table 4.6 Change confidence threshold of AmiVoice

<table>
<thead>
<tr>
<th>Setting</th>
<th>Changed value</th>
<th>String input to Tera Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>Change to 200</td>
<td>cf200</td>
</tr>
</tbody>
</table>
Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Aug.31.21</td>
<td>-</td>
<td>First release</td>
</tr>
</tbody>
</table>

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)
 A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidiﬁer should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on
 The state of the product is undeﬁned at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undeﬁned at the time when power is supplied. In a ﬁnished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is speciﬁed.

3. Input of signal during power-off state
 Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins
 Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current ﬂows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals
 After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin
 Waveform distortion due to input noise or a reﬂected wave may cause malfunction. If the input of the CMOS device stays in the area between \(V_{IL} \) (Max.) and \(V_{IH} \) (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is ﬁxed, and also in the transition period when the input level passes through the area between \(V_{IL} \) (Max.) and \(V_{IH} \) (Min.).
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of such circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. Unless explicitly expressed otherwise, any license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, condition, or copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depend on the product’s quality grade, as indicated below.

 “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space systems; underground repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INNUVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Keto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2021 Renesas Electronics Corporation. All rights reserved.