

R8C/LA8A Group

Timer RJ in Pulse Output Mode

R01AN0107EJ0100 Rev.1.00 Feb. 10, 2011

1. Abstract

This document describes a setting method and an application example for timer RJ pulse output mode in the R8C/LA8A Group.

2. Introduction

The application example described in this document applies to the following microcomputer (MCU) and parameter:

- MCU: R8C/LA8A Group
- XIN clock frequency: 20 MHz

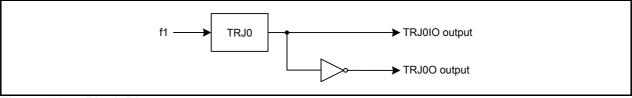
This application note can be used with other R8C Family MCUs which have the same special function registers (SFRs) as the above group. Check the manual for any modifications to functions. Careful evaluation is recommended before using the program described in this application note.

3. Application Example

3.1 Program Outline

A inverted waveform is output from the TRJ0IO pin every 1 ms using timer RJ pulse output mode. Inverted pulses from the TRJ0IO output polarity can be output from the TRJ0O pin

Settings


- Use timer RJ0.
- Use pulse output mode.
- Select f1 (20 MHz) as the count source of timer RJ0.
- Start TRJ0IO output at high.
- Use TRJ0IO output.
- Enable TRJ0O output.
- Assign the TRJ0IO pin to P6 2.
- Do not use the timer RJ0 interrupt.

Calculating setting time

 $1 \text{ ms} = 1/f1 \times (\text{TRJ0} + 1)$

- $= 1/20 \text{ MHz} \times (19999 + 1)$
- $= 50 \text{ ns} \times 20000$

Figure 3.1 shows a Block Diagram and Figure 3.2 shows a Timing Diagram. Table 3.1 lists the pins used and their functions.

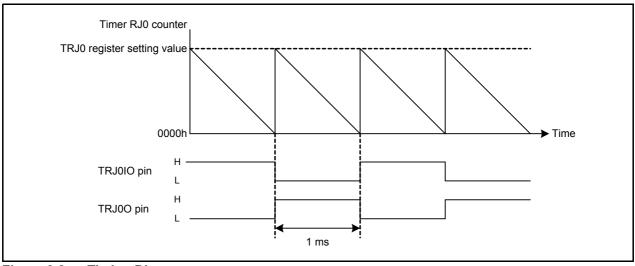


Figure 3.2 Timing Diagram

Table 3.1 Pins Used and Their Functions

Pin Name	I/O	Function
P6_2/TRJ0IO	Output	Pulse output
P7_2/RJ00	Output	Pulses inverted from the TRJ0IO output polarity

3.2 Memory

Table 3.2 Memory

Memory	Size	Remarks
ROM	140 bytes	In the r01an0107_src.c module
RAM	0 bytes	In the r01an0107_src.c module
Maximum user stack	10 bytes	
Maximum interrupt stack	0 bytes	

Memory size varies depending on the C compiler version and compile options.

The above applies to the following conditions:

C compiler: M16C Series, R8C Family C Compiler V.5.45 Release 01

Compile options: -c -finfo -dir "\$(CONFIGDIR)" -R8C

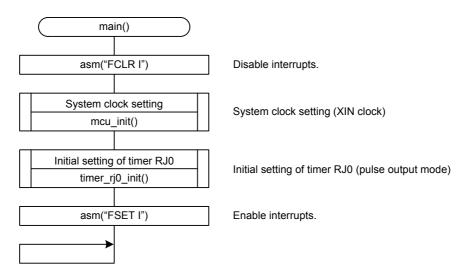
4. Software

This section shows the initial setting procedures and values to set the example described in section **3. Application Example**. Refer to the latest **R8C/LA8A Group** hardware user's manual for details on individual registers.

The \times in the register's Setting Value represents bits not used in this application, blank spaces represent bits that do not change, and the dash represents reserved bits or bits that have nothing assigned.

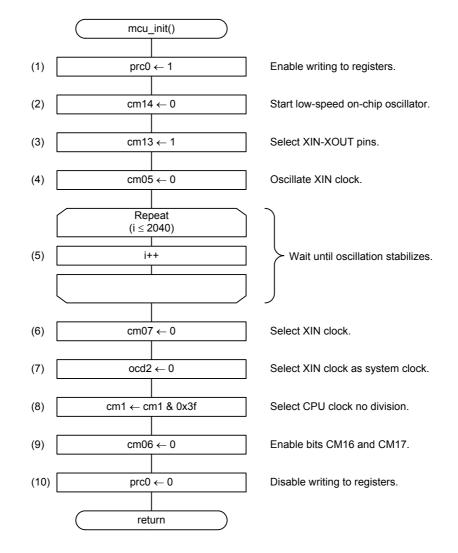
4.1 Function Tables

Declaration	void main (void)		
Outline	Main function		
Argument	Argument name		Meaning
Argument	None		—
Variable (global)	Variable name		Contents
variable (global)	None		—
Returned value	Туре	Value	Meaning
	None	—	—
Function	Initialize the system	clock and timer RJ0.	·


Declaration	void mcu_init (void	void mcu_init (void)							
Outline	System clock settir	System clock setting							
Argument	Argument name		Meaning						
Argument	None		—						
Variable (global)	Variable name		Contents						
valiable (global)	None		—						
Returned value	Туре	Value	Meaning						
	None	—	—						
Function	Set the system clo	ck (XIN clock).							

Declaration	void timer_rj0_init (v	void timer_rj0_init (void)							
Outline	Initial setting of time	Initial setting of timer RJ0							
Argument	Argument name		Meaning						
Argument	None		—						
Variable (global)	Variable name		Contents						
Vallable (global)	None		—						
Returned value	Туре	Value	Meaning						
	None	—	—						
Function	Initialize SFRs to us	e timer RJ0 in pulse out	put mode.						

4.2 Main Function


• Flowchart

4.3 System Clock Setting

• Flowchart

• Register settings

(1) Enable writing to registers CM0, CM1, CM3, OCD, FRA0, FRC0, FRA2, and FRC1.

Protect Register (PRCR)

		Bit	b7	b6	b5	b4	b3	b2	b1	b0	
	Setting	Value	—	_	—	_	Х	х	Х	1	
ĺ	Bit	Symbol			Bit Name				Functio		R/W
	b0	PRC0	Protect	bit 0			OCD	bles writing t , FRA0, FR rite enabled	C0, FRA2,		R/W

(2) Start the low-speed on-chip oscillator.

Systen	System Clock Control Register 1 (CM1)													
	Bit	b7	,	b6	b5	b4	b3	b2	b1	b0				
Setting	Value					0		х	х	х				
Bit	Syn	lodr			Bit Name				Function	on		R/W		
b4	CN	114		speed on ation stop	-chip oscilla bit	ator	0: L	ow-speed o	on-chip osc	illator on		R/W		

(3) Select the XIN-XOUT pins.

Syster	System Clock Control Register 1 (CM1)													
	Bit	b7	b6	b5	b4	b3		b2	b1	b0				
Setting	Value					1		х	х	х				
Bit	Symbol			Bit Name					Function	on		R/W		
b3	CM13	Port/X	IN-XOUT 🛚	switch bit		1	: XII	N-XOUT pi	n			R/W		

(4) Oscillate the XIN clock.

System	System Clock Control Register 0 (CM0)													
	Bit	b7	b6	b5	b4	t	03	b2	b1	b0				
Setting Value			0	х		х	х	х	_					
Bit	Symbol			Bit Name					Functio	n		R/W		
b5 CM05 XIN clock (XIN-XOUT) stop bit 0: XIN clock oscillates									R/W					

(5) Wait until the XIN clock oscillation stabilizes.

(6) Select the XIN clock.

System Clock Control Register 0 (CM0)

	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting '	Value	0			Х	Х	х	х		
Bit	Symbo	ol		Bit Name				Function		R/W
b7	CM07	7 8	System cloo	ck select bit		0: XIN clo	ock or on-o	hip oscillat	or clock	R/W

(7) Select the XIN clock as the system clock.

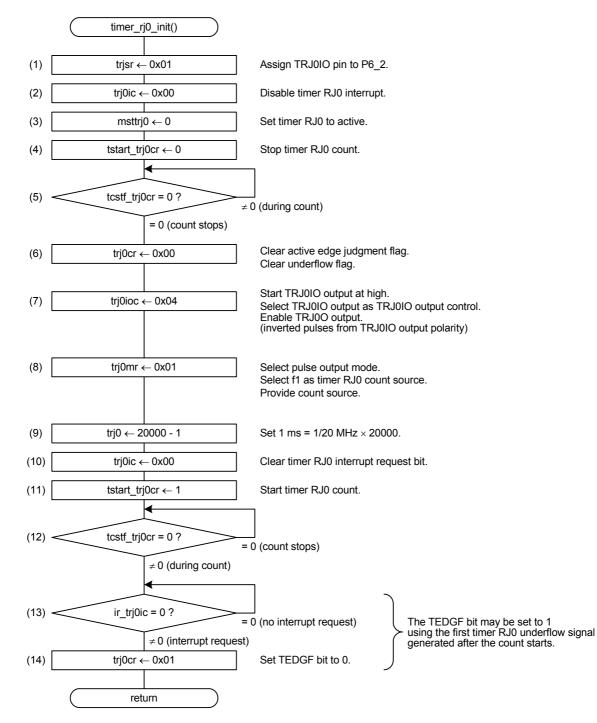
Oscilla	Oscillation Stop Detection Register (OCD)												
	Bit	b	7	b6	b5	b4	b3	b2	b1	b0			
Setting	Value	_	-	_	—	_	х	0	х	х			
Bit	Symb	loc			Bit Name				Function	on		R/W	
b2	OCE)2	On-ch	ip oscillate	or clock sel	ect bit	0: >	(IN clock se	lected			R/W	

(8) Set CPU clock division select bit 1.

Systen	n Clock (Control	Register	1 (CM1)						
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting	Value	0	0				х	х	х	
D ''	0	1		DILNI		-		F		
Bit	Symbol			Bit Name				Functio	on	R/W
b6	CM16	CPU c	lock divisio	on select hi	+ 1	b7 b6				R/W
b7	b7 CM17 CPU clock division select bit 1					0 0: 1	No division	mode		R/W

(9) Set CPU clock division select bit 0.

System	n Clock C	Control	Register	0 (CM0)							
	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Setting \	Value		0		х	Х	х	х	—]	
Bit	Symbol		E	Bit Name				Functio	n		R/W
b6	CM06	CPU cl	ock divisio	on select bit	t 0	0: Bits	CM16 and	CM17 in (CM1 registe	er enabled	R/W


(10)Disable writing to registers CM0, CM1, CM3, OCD, FRA0, FRC0, FRA2, and FRC1.

Protect	t Registe	er (PRC	R)								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Setting V	Value	—		—	—	х	х	х	0		
Bit	Symbol		Bit Nar	ne			Fur	nction			R/W
b0	PRC0	Protec	t bit 0			RA2, and I	egisters Cl FRC1	M0, CM1,	CM3, OCE), FRA0,	R/W

4.4 Initial Setting of Timer RJ0

• Flowchart

• Register settings

(1) Set the timer RJ pin select register.

Timer I	RJ Pir	າ Select F	Register (T	RJSR)								
	Bit	b7	b6	b5	b4		b3	b2	b1	b0		
Setting	Value	_	—	х	Х		—	_	0	1]	
Bit	Sy	ymbol	В	Bit Name					Function			R/W
b0	TRJ	DIOSEL0	TRJ0IO pir	n select hit		b1 b						R/W
b1	TRJ	DIOSEL1		i select bit		0 1	: P6_2 ass	signed				R/W

(2) Disable the timer RJ0 interrupt.

Interrupt Control Register (TRJ0IC)

	Bit t	b7 b6	b5	b	4	b3	b2	b1	b0	
Setting	Value -		—		-	0	0	0	0	
Bit	Symbol	E	Bit Name				F	Function		R/W
b0	ILVL0					_				R/W
b1	ILVL1	Interrupt price	ority level sele	ect bit	b2 b1 b 0 0	0: Level 0	R/W			
b2	ILVL2					R/W				
b3	IR	Interrupt req	uest bit		0: No	o interrupt	requested			R/W

(3) Set timer RJ0 to active.

Module Standby Control Register 1 (MSTCR1)

	Bit t	57	b6	b5	b4	b3	b2	b1	b0	
Setting '	Value -	_	—	х	х	0	х	х	х	
	-									
Bit	Symbol		Bit Na	me			Fu	nction		R/W
b3	MSTTRJ0	Timer	RJ0 stan	dby bit	0: Activ	e				R/W

(4) Stop the timer RJ0 count.

Timer RJ0 Control Register (TRJ0CR)

	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting	Value	_				—			0	
D ''		1	Dit					-		DAV
Bit	Symbol		Bit	Name				Function		R/W
b0	TSTART	Timer	RJ0 count	t start bit		0: Count sto	ps			R/W

(5) Wait until the timer RJ0 count stops.

Timer RJ0 Control Register (TRJ0CR)

Bit	Symbol	Bit Name	Function	R/W
b1	TCSTF	Limer RJO count status flag	0: Count stops 1: During count operation	R

(6) Set the timer RJ0 control register.

Timer RJ0 Control Register (TRJ0CR)

	Bit	b7	b6	b5	b4	b3		b2	b1	b0		
Setting	Value	_	_	0	0	—]	
Bit	Symbol		Bit	Name					Function			R/W
b4	TEDGF	Active	e edge judg	gment flag		0: Active	edge	not rece	ived			R/W
b5	TUNDF	Timer	RJ0 unde	rflow flag		0: No unc	erflov	N				R/W

(7) Set the timer RJ0 I/O control register.

Timer RJ0 I/O Control Register (TRJ0IOC)

Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting Value	0	0	0	0	_	1	0	0	

Bit	Symbol	Bit Name	Function	R/W
b0	TEDGSEL	TRJ0IO polarity switch bit	0: TRJ0IO output starts at high	R/W
b1	TOPCR	TRJ0IO output control bit	0: TRJ0IO output	R/W
b2	TOENA	TRJ0O output enable bit	1: TRJ0O output enabled (inverted TRJ0IO output is output from each port)	R/W
b4	TIPF0	TRJ0IO input filter select bit		R/W
b5	TIPF1		Set to 0 in pulse output mode.	R/W
b6	TIOGT0	TR INIO event input control bit		R/W
b7	b7 TIOGT1	TRJ0IO event input control bit		R/W

h٨

(8) Set the timer RJ0 mode register.

Timer RJ0 Mode Register (TRJ0MR)

	DIL	D	1	00	05	04		03	02	DT	00	
Setting	Value	0)	0	0	0		х	0	0	1	
							1					
Bit	Syml	bol		Bit	Name					Function		R/W
b0	TMO		Time or		ting mode	aalaat						R/W
b1	ТМО	1)1	himer bit	RJU opera	ating mode	select	b2 t 0	R/W				
b2	ТМО		Dit						R/W			
b4	TCK	<0							R/W			
b5	TCK	(1]	Timer RJ0 count source select bi					^{b5 b4} 0 0: f1	R/W			
b6	TCK2											R/W
b7	TCKC	UT 1	Timer	RJ0 count	t source cu	t off bit	0:	Count sou	rce provid	ed		R/W

h2

h1

b1

1

b9

1

b0

1

b8

0

(9) Set 20000-1 (4E1Fh) to the timer RJ0 register.

Timer RJ0 Register (TRJ0) Bit b7 b6 b5 b4 b3 b2 Setting Value 0 0 0 1 1 1 Bit b15 b14 b13 b12 b11 b10 Setting Value 0 1 0 0 1 1

	·			
Bit	Mode	Function	Setting Range	R/W
b15-b0	Pulse output mode	Counts an internal count source.	0000h to FFFFh	R/W

(10) Clear the timer RJ0 interrupt request bit.

Interrupt Control Register (TRJ0IC)

	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Setting V	Value					0]	
Bit	Symbol		Bit I	Name				Function			R/W
b3	IR	Interru	upt request	t bit		0: No interru	upt request	ed			R/W

(11) Start the timer RJ0 count.

Timer RJ0 Control Register (TRJ0CR) Bit b7 b6 b5 b0 b4 b3 b2 b1 Setting Value 1 Function Bit Symbol Bit Name R/W b0 TSTART Timer RJ0 count start bit 1: Count starts R/W

(12) Wait until the timer RJ0 count starts.

Timer RJ0 Control Register (TRJ0CR)

Bit	Symbol	Bit Name	Function	R/W
b1	TCSTF	Limer R.IO count status flag	0: Count stops 1: During count operation	R

(13) Wait until the first timer RJ0 underflow signal is generated.

Interrupt Control Register (TRJ0IC)

Bit	Symbol	Bit Name	Function	R/W
b3	IR	Interrupt request bit	0: No interrupt requested 1: Interrupt requested	R/W

(14) Set the TEDGF bit to 0.

Timer RJ0 Control Register (TRJ0CR)

		Bit	b7	b6	b5	b4	b3	b2	b1	b0		
	Setting	Value		—		0	—					
1	Bit	Symbo	bl	Bit	Name				Function		R/W	
	b4	TEDG	F Activ	/e edge judo	gment flag		0: Active e	dge not re	ceived		R/W	

5. Sample Program

A sample program can be downloaded from the Renesas Electronics website. To download, click "Application Notes" in the left-hand side menu of the R8C Family page.

6. Reference Documents

R8C/LA8A Group User's Manual: Hardware Rev.1.01 The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News The latest information can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website http://www.renesas.com/

Inquiries http://www.renesas.com/inquiry

Revision History	R8C/LA8A Group
,	Timer RJ in Pulse Output Mode
	-

Rev.	Date		Description				
itev.	Rev. Dale		Summary				
1.00	Feb. 10, 2011	_	First edition issued				

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The recommended where you have failed to obtain the prior written consent of Renesas Electronics and the prior written consent of Renesas Electronics and the prior written consent of Renesas Electronics. The recommended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools
 - personal electronic equipment; and industrial robots.

Refer to "http://www.renesas.com/" for the latest and detailed information

- "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-orime systems; safety equipment; and medical equipment not specifically designed for life support.
- "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and mafunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and mafunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-4000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1011 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renesas Electronics Compe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renesas Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +480-12453-1155, Tax: +480-21823-F679 Renesas Electronics (Shanghai) Co., Ltd. Unit 204, 205, A221 Center, No.1233 Lujiazul Ring Rd., Pudong District, Shanghai 200120, China Tel: +482-13877-1818, Fax: +480-21887-7859 Renesas Electronics Hong Kong Limited Unit 1001.161, 16/F., Tower 2, Grand Century Plaze, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +482-286-9318, Fax: +4852-2886-9022/9044 Renesas Electronics Taiwan Co., Ltd. 7F, No. 363 Fu Shing North Road Taipel, Taiwan Tel: +486-2-4175-9900, Fax: +4882-24175-9870 Renesas Electronics Taiwan Co., Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +656-2175-9900, Fax: +4882-24175-9870 Renesas Electronics Kong Acnog, Amorop Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-37755-9390, Fax: +60-57955-9500, Fax: +885-95001 Renesas Electronics Korea Co., Ltd. 11F, Samik Lavied or Bildy, 720-2 Veoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +60-57955-930, Fax: +882-2555-95101