Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

R8C/35C Group

Serial I/O Operation in Clock Synchronous Serial I/O Mode with DTC

1. Abstract

This document describes the setting method and an application example for the serial interface (clock synchronous serial I/O mode) and DTC (normal mode).

2. Introduction

The application example described in this document applies to the following MCU:

• MCU : R8C/35C Group

The sample program in this application note can be used with other R8C/35C Group MCUs which have the same special function registers (SFRs) as the above group. Check the manual for any modifications to functions. Careful evaluation is recommended before using this application note.

3. Application Example

3.1 Program Outline

3.1.1 Serial Interface

In clock synchronous serial I/O mode, 1-byte data is transmitted/received consecutively for 8 bytes.

Table 3.1 shows the communication method and Figure 3.1 shows the communication format.

Table 3.1 Communication Method

Channel	UART0
Communication mode	Clock synchronous serial I/O mode
Transfer clock frequency	9600 Hz (104 μs period)
Internal/external clock	Internal clock
TXD0 pin data output	CMOS output
CLK polarity	Transmit data is output at the falling edge and receive data input at the rising edge of the transfer clock.
Transfer format	MSB first
UART0 transmit interrupt source	Transmission completed (TXEPT = 1)
UART0 continuous receive mode	Disabled

Figure 3.1 Communication Format

3.1.2 DTC Activation by UART0 Transmit Interrupt

Transmission of the first byte of the transmit data is triggered when the data is written to lower byte of the U0TB register. As a UART0 transmit interrupt is generated by this data transmission, DTC is activated and transfers the contents of the transmit data array (address where variables "uart0_tx_data[1]" to "uart0_tx_data[7]" are allocated) to the UART0 transmit register buffer (lower byte of the U0TB register (address 00A2h)).

Table 3.2 shows the settings for DTC triggered by UART0 transmit interrupt and Figure 3.2 shows the DTC activation by UART0 transmit interrupt.

Table 3.2 Settings for DTC (Triggered by UART0 Transmit

DTC activation source	UART0 transmit interrupt
Control data	Control data 0 (addresses 2C40h to 2C47h)
Transfer mode	Normal mode
Source address control	Incremented
Destination address control	Fixed
Chain transfer	Disabled
Size of the data block to be transferred by one activation	1 byte
Number of times of DTC data transfers	7 times
Transfer source address for data transfer	Address where variable "uart0_tx_data[1]" is allocated
Transfer destination address for data transfer	Address 00A2h (address of the lower byte of the U0TB register)

Figure 3.2 DTC Activation by UART0 Transmit Interrupt

3.1.3 DTC Activation by UART0 Receive Interrupt

DTC is activated by a UART0 receive interrupt and transfers the contents of the receive data array (address where variables "uart0_rx_data[0]" to "uart0_rx_data[7]" are allocated) to the UART0 receive register buffer (U0RB register (addresses 00A7h to 00A6h)).

Table 3.3 shows the settings for DTC triggered by the UART0 receive interrupt and Figure 3.3 shows the DTC activation by UART0 receive interrupt.

DTC activation source	UART0 receive interrupt
Control data	Control data 1 (addresses 2C48h to 2C4Fh)
Transfer mode	Normal mode
Source address control	Fixed
Destination address control	Incremented
Chain transfer	Disabled
Size of the data block to be transferred by one activation	2 bytes
Number of times of DTC data transfers	8 times
Transfer source address for data transfer	Address 00A6h (address of the lower byte of the U0RB register)
Transfer destination address for data transfer	Address where variable "uart0_rx_data[1]" is allocated

Figure 3.3 DTC Activation by UART0 Receive Interrupt

3.2 Pins and Memory

3.2.1 Pins

Table 3.4Pins and Their Functions

Pin	I/O	Function
P1_4(/TXD0/TRCCLK)	Output	Serial data output
P1_5(/INT1/RXD0/TRAIO)	Input	Serial data input
P1_6/LVCOUT2/IVREF1(/CLK0)	Output	Transfer clock output

3.2.2 Memory

Table 3.5 Memory

Memory	Size	Remarks
ROM	319 bytes	In the rej05b1336_src.c module
RAM	32 bytes	In the rej05b1336_src.c module
Maximum user stack	9 bytes	
Maximum interrupt stack	19 bytes	

Memory size varies depending on the C compiler version and compile options.

The above applies under the following conditions:

C compiler: M16C/60, 30, 20, 10, and Tiny, and R8C/Tiny Series Compiler V.5.45 Release 00 Compile option: -c -finfo -dir "\$(CONFIGDIR)" -R8C

4. Software

This section shows the initial setting procedures and values to set the example described in section **3. Application Example**. Refer to the latest **R8C/35C Group Hardware Manual** for details on individual registers.

The \times in the register's Setting Value represents bits not used in this application, blank spaces represent bits that do not change, and the dash represents reserved bits or bits that have nothing assigned.

4.1 Function Tables

Declaration	void mcu_init(void)			
Outline	System clock settin	System clock setting		
Argumont	Argument name		Meaning	
Argument	None		—	
Variable (global)	Variable name		Contents	
valiable (global)	None		—	
Returned value	Туре	Value	Meaning	
Returned value	None	—	—	
Function	The system clock (high-speed on-chip oscillator) is set.			

Declaration	void uart_enable(void)			
Outline	Serial interface setti	Serial interface setting		
Argument	Argument name		Meaning	
Argument	None		—	
Variable (global)	Variable name		Contents	
Vallable (global)	None		—	
Returned value	Туре	Value	Meaning	
Returned value	None	—	—	
Function	The serial interface (clock synchronous serial I/O mode) is set.			

Declaration	void dtc_enable(void)			
Outline	DTC setting	DTC setting		
Argument	Argument name		Meaning	
Argument	None		—	
Variable (rishe) Variable name			Content	
Variable (global)	None		—	
Returned value	Туре	Value	Meaning	
Neturned value	None	—	—	
Function	DTC (normal mode) is set.			

Declaration	void transmit_start(void)			
Outline	Transmission start	Transmission start		
Argument	Argument name		Meaning	
Argument	None		—	
Variable name			Contents	
Variable (global)	unsigned char uart0_tx_data[TX_RX_DATA_SIZE]		Array of transmit data	
Returned value Type		Value	Meaning	
Returned value	None	—	—	
Function	Transmission is started.			

Declaration	void transmit_data_set(void)			
Outline	Transmit data settir	Transmit data setting		
Argumont	Argument name None		Meaning	
Argument			—	
Variable (global)	Variable name None		Contents	
Vallable (global)			—	
Returned value	Туре	Value	Meaning	
Returned value	None	—	—	
Function	Transmit data is created. This application note does not include any processes. Add a process if necessary.			

Declaration	void _uart0_receive	roid _uart0_receive(void)							
Outline	UART0 receive inte	errupt							
Argument	Argument name		Meaning						
Argument	None		—						
	Variable name		Contents						
Variable (global)	unsigned short uart0_rx_data[TX_F	RX_DATA_SIZE]	Variable which is assigned as DTC data transfer destination address						
	unsigned char set_rx_data[TX_RX	_DATA_SIZE]	Array of receive data						
Returned value	Туре	Value	Meaning						
Returned value	None	—	—						
Function		ceive data transferred by	enerated after DTC transfer is / DTC is set to the receive data array,						

- 4.2 Main Function
 - Flowchart

4.3 System Clock Setting

• Flowchart

• Register Setting

(1) Enable writing to registers CM0, CM1, CM3, OCD, FRA0, FRA1, FRA2, and FRA3.

Prote	ect Regis	ster (Pl	RCR)											
	Bit	b7	b6	b5	b4	b3	b2	b1	b0					
Setting	Value	—		—		х	х	х	1					
Bit	Symbol		Bit Nar	ne		Function								
b0	PRC0	Proteo	ct bit 0			RA2, and I		M0, CM1,	CM3, OCD	, FRA0,	R/W			

(2) Start the low-speed on-chip oscillator.

System	Clock	Control	Register ²	1 (CM1)
--------	-------	---------	-----------------------	-----	-----	---

	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Setting '	Value			—	0	Х	Х	х	х		
		1						Functio			<u>1 1</u>
Bit	Symbol		Bit Name						R/W		
b4	CM14	Low-speed on-chip oscillator stop bit				0: Lov	0: Low-speed on-chip oscillator on				

(3) Set the divide ratio of the high-speed on-chip oscillator.

High-Speed On-Chip Oscillator Control Register 2 (FRA2)

	Bit	b7 b6 b5 b4					b3	b2	b1	b0				
Setting	Value	_	—	—	—		—	0	0	0]			
Dit	Currente e			Dit Norse					Euro etia			R/W		
Bit	Symbo	1	Bit Name					Function						
b0	FRA20		High-speed on-chip oscillator frequency switching bit					Division selection These bits select the division ratio for the high- speed on-chip oscillator clock.						
b1	FRA21	-												
b2	FRA22	2					0 0 0: Divide-by-2 mode					R/W		

(4) Start the high-speed on-chip oscillator.

High-Speed On-Chip Oscillator Control Register 0 (FRA0)

	Bit	b	7	b6	b5	b4	b	3	b2	b1	b0			
Settin	g Value		—	_	_	_	Х	(_		1]		
D:4	C	hal			Dit Name					Euro etia			R/W	1
Bit	Sym	IODI	Bit Name					Function					R/W	
b0	FRA	100	High-speed on-chip oscillator enable bit					1: High-speed on-chip oscillator on					R/W	

(5) Wait until oscillation stabilizes.

(6)	Select	the	high-speed	1 on-chip	oscillator.
-----	--------	-----	------------	-----------	-------------

High-Sp	eed Or	n-Chi	p Oscillat	or Contro	Regist	er 0 (FRA	.0)					
В	it b [.]	7	b6	b5	b4	b3	b2	b1	b0			
Setting Valu	e –	_	—	—		х		1				
Bit Sy	mbol			Bit Name				Funct	ion		R/W	
-		Hiah-	speed on-o	chip oscilla	tor selec	t bit 1:	High-speed	d on-chip os		ected	R/W	
		_		clock as th	-	ı clock.						
	-			egister (O								
B		7	b6	b5	b4	b3	b2	b1	b0	-		
Setting Valu	e –	-	_	—		X	1	X	Х			
Bit Syı	mbol		Bi	it Name				Functior	า		R/W	
b2 O0	CD2 S	Syster	n clock sel	lect bit		1: On-	chip oscillat	tor clock sel	ected		R/W	
(8) Set sy	vstem cl	lock o	livision se	lect bit 1.								
System	Clock (Cont	rol Regist	er 1 (CM1)							
B			b6	b5	, b4	b3	b2	b1	b0			
Setting Valu			0		0 4	x	x	x	x			
g		-									R/W	
	mbol		Bi	t Name			Function					
	M16	Syste	m clock di	vision sele	ct bit 1	^{b7 b6} 0 0: No division mode					R/W	
b7 C	M17										R/W	
(9) Set sy	vstem cl	lock c	livision se	lect bit 0.								
Svstem	Clock (Conti	rol Reaist	er 0 (CMC))							
В			b6	b5	, b4	b3	b2	b1	b0			
Setting Valu			0	x	x	x	x	x		7		
	ļ											
-	nbol		Bit N					Function			R/W	
b6 CN	106 Sy	stem	clock divis	sion select	bit 0	0: Bits CM	16 and CM	17 in CM1 r	egister ena	abled	R/W	
(10) Disa	ble wri	ting t	o registers	CM0, CM	1, CM3,	OCD, FR	A0, FRA1,	FRA2, and	FRA3.			
Protect I	Reaiste	er (Pl	RCR)									
В	•		b6	b5	b4	b3	b2	b1	b0			
Setting Value		-	_	_	_	x	x	x	0	7		

Bit	Symbol	Bit Name	Function	R/W
b0	PRC0	Protect bit 0	Enables writing to registers CM0, CM1, CM3, OCD, FRA0, FRA1, FRA2, and FRA3. 0: Write disabled	R/W

4.4 Serial Interface Setting

• Flowchart

Register	Setting
----------	---------

(1) Set P1_5/RXD0 as an input port.

Port P1 Direction Register (PD1)

	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Setting	Value	х	Х	0	х	х	х	Х	Х]	
Bit	Symb	ol	Bi	t Name				Function			RΛ
b5	PD1_	5 Por	rt PD1_5 dire	ction bit		0: Input m		R/V			

(2) Set the UART0 pin select register.

UART0 Pin Select Register (U0SR)

	Bit	p.	7	b6	b5	b4	b3	b2	b1	b0	_	
Setting	Value		-	—	—	1		1	—	1		
Bit	Sym	bol Bit Name					Function					
b0	TXD0	SEL0	TXD	0 pin seleo	ct bit		1: P1_4	assigned				R/W
b2	RXD0SEL0 RXD0 pin select bit				1: P1_5 assigned					R/W		

1: P1_6 assigned

(3) Disable the UART0 transmit interrupt.

CLK0SEL0 CLK0 pin select bit

b4

Interrupt Control Register (S0TIC)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	_	—			0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	ILVL0			R/W
b1	ILVL1	Interrupt priority level select bit	0 0 0: Level 0 (interrupt disabled)	R/W
b2	ILVL2			R/W
b3	IR	Interrupt request bit	0: No interrupt requested	R/W

(4) Disable the UART0 receive interrupt.

Interrupt Control Register (S0RIC)

 Bit
 b7
 b6
 b5
 b4
 b3
 b2
 b1
 b0

 Setting Value
 - - 0
 0
 0
 0
 0

Bit	Symbol	Bit Name	Function	R/W
b0	ILVL0			R/W
b1	ILVL1	Interrupt priority level select bit	0 0 0: Level 0 (interrupt disabled)	R/W
b2	ILVL2			R/W
b3	IR	Interrupt request bit	0: No interrupt requested	R/W

R/W

UAR	RT0 Trar	nsmit/Re	eceive Co	ntrol Regi	ster 1 (U	0C1)					
	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Setting	Value		—	х		х			0		
Bit	Symbo	bl	Bit	Name				Function			R/W
b0	TE		mit enable	bit		0: Transm	ission disa	bled			R/W
UAR	T0 Trar Bit		eception. eceive Co b6	ntrol Regi b5	ster 1 (U(b4	b3	b2	b1	b0	1	
Setting '	Value	_				Х	0	х		l	
Bit	Symbo	bl	Bit	Name		İ		Function			R/W
b2	RE	Rece	ive enable	bit		0: Recept	ion disable	d			R/W
(7) S	et the U	ART0 tra	ansmit/rece	eive mode	register (U	J0MR).					

UART0 Transmit/Receive Mode Register (U0MR)

	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Setting	Value		х	Х	х	0	0	0	1		
Bit	Symbol		Bi	t Name				Function			R/W
b0	SMD0										R/W
b1	SMD1	Serial	I/O mode	select bit		0 0 1: Cl	ock synchi	onous seri	al I/O mode	•	R/W
b2	SMD2										R/W
b3	CKDIR	Intern	al/external	clock sele	ct bit	0: Interna	l clock				R/W

(8) Set UART0 transmit/receive register 0 (U0C0).

UART0 Transmit/Receive Control Register 0 (U0C0)

	Bit	b7	b6	b5	b4		b3	b2	b1	b0			
Setting	Value	1	0	0			х		0	1]		
Bit Symbol Bit Name						Function							
DIL	Symbol		DILI	Name				Г	unction			R/W	
b0	CLK0		count sour	aa aalaat b	:4	b1 b0							
b1	CLK1	DRG	count sour	ce select d	п	01	: f8 select	ed				R/W	
b5	NCH	Data	output sele	ct bit		0: T	XD0 pin s	set to CMO	S output			R/W	
b6	CKPOL	CLK p	polarity sele	ect bit						ig edge and he transfer		R/W	
b7	UFORM	Trans	fer format	select bit		1: N	ISB first					R/W	

(9) Set UART0 transmit/receive control register 1 (U0C1).

UART0 Transmit/Receive Control Register 1 (U0C1)

	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting	Value	—	—	0	1	х	0		0	
		_								
Bit	Symbol		Bit	Name				Function		R/W
b0	TE	Trans	smit enable	bit		0: Transmi	R/W			
b2	RE	Rece	ive enable	bit		0: Recepti	R/W			
b4	U0IRS	UAR selec	Γ0 transmit t bit	interrupt s	source	1: Transmi	R/W			
b5	LIARTO continuous receive mode				e mode	0: Continu	ous receiv	ve mode dis	abled	R/W

(10) Set the UART0 bit rate register (U0BRG). In this program, set the register to 130 - 1 (81h), which is calculated from the formula below to use 9600 Hz.

9600 Hz = $f8 \times 1/130 \times 1/2$ ($f8 = fOCO \times 1/8 = 40$ MHz $\times 1/2 \times 1/8$)

UART0 Bit Rate Register (U0BRG)

Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting Value	1	0	0	0	0	0	0	1	
									-

Bit	Function	Setting Range	R/W
b7 to b0	If the setting value is n, U0BRG divides the count source by n+1.	00h to FFh	W

(11) Disable the UART0 transmit interrupt.

Interrupt Control Register (S0TIC)

 Bit
 b7
 b6
 b5
 b4
 b3
 b2
 b1
 b0

 Setting Value
 —
 —
 —
 0
 0
 0
 0

Bit	Symbol	Bit Name	Function	R/W
b0	ILVL0			R/W
b1	ILVL1	Interrupt priority level select bit	0 0 0: Level 0 (interrupt disabled)	R/W
b2	ILVL2			R/W
b3	IR	Interrupt request bit	0: No interrupt requested	R/W

ILVL2

IR

b2

b3

(12) Set the UART0 receive interrupt priority level.

Interrupt request bit

Inter	Interrupt Control Register (S0RIC)										
	Bit	b7	b6	b5	b4		b3	b2	b1	b0	
Setting	Value	_					0	1	1	1]
Bit	Symbol		Bit I	Name					Function		
b0	ILVL0										
b1	b1 ILVL1 Interrupt priority level select bit					b2 b ²	1 b0 1: Level	7			

0: No interrupt requested

R/W R/W R/W

R/W

R/W

4.5 DTC Setting

Flowchart

Register Setting

- (1) Set the DTC control data number to the DTC vector address (address 2C0Bh), which is assigned to the UART0 transmit interrupt. In this program, set address 2C0Bh to 0 to use control data 0.
- DTC Vector Address of UART0 Transmit Interrupt

	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Setting Val	lue	0	0	0	0	0	0	0	0		
Bit					Function				Setting	g Range	R/W
			re the data trol data.	from 0000	0000b to 0	0010111b.	Select on	e of the 24	00h	to 17h	R/W

(2) Set the DTCCR0 register for control data 0. Set the transfer mode to normal mode, source address to incremented, destination address to fixed, and chain transfer to disabled.

DTC Control Register 0 (DTCCR0)

Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting Value	—	—	х	0	0	1	х	0	

Bit	Symbol	Bit Name	Function	R/W
b0	MODE	Transfer mode select bit	0: Normal mode	R/W
b2	SAMOD	Source address control bit	1: Incremented	R/W
b3	DAMOD	Destination address control bit	0: Fixed	R/W
b4	CHNE	Chain transfer enable bit	0: Chain transfers disabled	R/W

(3) Set the DTBLS0 register for control data 0. In this program, set it to 1 to transfer 1-byte data seven times.

DTC Block Size Register 0 (DTBLS0)

Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Setting Value	0	0	0	0	0	0	0	1		
									-	
Bit				Function				Settin	g Range	R/V

Bit	Function	Setting Range	R/W
b7 to b0	These bits specify the size of the data block to be transferred by one activation.	00h to FFh	R/W

(4) Set the DTCCT0 register for control data 0. In this program, set it to 7 to transfer 1-byte data seven times.

DTC Transfer Count Register 0 (DTCCT0)

E	Bit b7	7	b6	b5	b4	b3	b2	b1	b0				
Setting Valu	ue 0		0	0	0	0	1	1	1				
i	Bit Function Setting Range R												
Bit			Set	ing Range	R/W								
b7 to b0	These bi	ts spe	00	h to FFh	R/W								

(5) Set the DTRLD0 register for control data 0. As this register is not used in normal mode, set it to 0.

DTC T	DTC Transfer Count Reload Register 0 (DTRLD0)												
	Bit b7 b6 b5 b4 b3 b2 b1												
Setting Val	ue	0	0	0	0	0	0	0	0				
									n				
Bit		g Range	R/W										
b7 to b0	This register value is reloaded to the DTCCT register in repeat mode. 00h to Fi												

(6) Set the DTSAR0 register for control data 0. In this program, set the address where the second byte of the transmit data array (uart0_tx_data[1]) is allocated.

Bi	it b7	b6	b5	b4	b3	b2	b1	b0			
Setting Value	e 0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1]		
B	it b15	b14	b13	b12	b11	b10	b9	b8			
Setting Value	e 0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1]		
Bit	Function Setting Range										
b15 to b0		0000h to I	FFFFh								

(7) Set the DTDAR0 register for control data 0. In this program, set address 00A2h where the UART0 transmit buffer register (lower byte of U0TB) is allocated.

DTC Destination Address Register 0 (DTDAR0)

DTC Source Address Register 0 (DTSAR0)

Bi	it b7	b6	b5	b4	b3	b2	b1	b0		
Setting Value	e 1	0	1	0	0	0	1	0		
Bi	it b15	b14	b13	b12	b11	b10	b9	b8		
Setting Value	e 0	0	0	0	0	0	0	0		
Bit			F	unction				Setting R	ange	R/W
b15 to b0								0000h to F	FFFh	R/W

- (8) Set the DTC control data number to the DTC vector address (address 2C0Ah), which is assigned to the UART0 receive interrupt. In this program, set address 2C0Ah to 1 to use control data 1.
- DTC Vector Address of UART0 Receive Interrupt

Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting Value	0	0	0	0	0	0	0	1	1

Bit	Function	Setting Range	R/W
b7 to b0	These bits store the data from 00000000b to 00010111b. Select one of the 24 groups of control data.	00h to 17h	R/W

R/W R/W

(9) Set the DTCCR1 register for control data 1. Set the transfer mode to normal mode, source address to fixed, destination address to incremented, and chain transfer to disabled.

DTC Control Register 1 (DTCCR1)													
	Bit	b7	b6	b5	b4	b3	b2	b1	b0				
Setting Value — — x 0					0	1	0	х	0]			
Bit	Symbo	1	Bit Name				Function						
b0	MODE	Trans	fer mode s	elect bit		0: Norma		R/W					
b2	SAMO) Sourc	e address	control bit		0: Fixed		R/W					
b3	DAMO	D Desti	Destination address control bit				nented				R/W		
b4	CHNE	Chair	n transfer e	nable bit		0: Chain transfers disabled					R/W		

(10) Set the DTBLS1 register for control data 1. In this program, set it to 2 to transfer 2-byte data eight times.

DTC Block Size Register 1 (DTBLS1)

E	Bit b7	b6	b5	b4	b3	b2	b1	b0		
Setting Valu	ue 0	0	0	0	0	0	1	0]	
Bit		Settin	g Range	R/W						
b7 to b0	These bits	specify the s	ize of the c	data block t	o be transf	erred by or	ne activatio	n. 00h	to FFh	R/W

(11) Set the DTCCT1 register for control data 1. In this program, set it to 8 to transfer 2-byte data eight times.

DTC Transfer Count Register 1 (DTCCT1)

Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Setting Value	0	0	0	0	1	0	0	0		
Bit				Functio	n			Set	ting Range	R/W
b7 to b0	These bit	s specify th	ne number	of times of	DTC data	transfers.		0	0h to FFh	R/W

(12) Set the DTRLD1 register for control data 1. As this register is not used in normal mode, set it to 0.

DTC Transfer Count Reload Register 1 (DTRLD1)

	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Setting Val	lue	0	0	0	0	0	0	0	0		
Bit					Function				Setting	g Range	R/W
b7 to b0	This r	egister v	alue is relo	aded to th	e DTCCT r	egister in r	epeat mode	ə.	00h t	o FFh	R/W

(13) Set the DTSAR1 register for control data 1. In this program, set address 00A6h where the UART0 receive buffer register (lower byte of U0RB) is allocated.

DTC Sou	rce Addres	ss Registe	er 1 (DTS/	AR1)						
Bit	t b7	b6	b5	b4	b3	b2	b1	b0		
Setting Value	e 1	0	1	0	0	1	1	0)	
Bit	t b15	b14	b13	b12	b11	b10	b9	b8		
Setting Value	e 0	0	0	0	0	0	0	0)	
Bit			F	unction				Setting R	ange	R/W
b15 to b0	These bits s	specify a tra	ansfer sour	ce address	for data tr	ansfer.		0000h to I	FFFh	R/W

(14) Set the DTDAR1 register for control data 1. In this program, set the address where the first byte of the receive data array ("uart0_rx_data[0]") is allocated.

DTC Destination Address Register 1 (DTDAR1)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Bit	b15	b14	b13	b12	b11	b10	b9	b8
Setting Value	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

Bit	Function	Setting Range	R/W
b15 to b0	These bits specify a transfer destination address for data transfer.	0000h to FFFFh	R/W

DTCEN04

DTCEN05

DTCEN06

DTCEN07

b4

b5

b6

b7

0: Activation disabled

0: Activation disabled

0: Activation disabled

0: Activation disabled

(15) Set DTC activation enable register 0 (DTCEN0). Disable all DTC activation sources.

DTC	Activ	ation E	nable Register 0 (DTCEN0)								
	Bit	b7	b6	b5	b4		b3	b2	b1	b0	
Setting	Value	0	0	0	0		0		—		
Bit	Syr	mbol		Bit Name Function					l		
b3	DTC	EN03	DTC activation of the second s	on by INT4	interrupt		0: Act	ivation disa	bled		

DTC activation by INT3 interrupt

DTC activation by INT2 interrupt

DTC activation by INT1 interrupt

DTC activation by INT0 interrupt

(16) Set DTC activation enable register 1 (DTCEN1). Disable all DTC activation sources.

DTC Activation Enable Register 1 (DTCEN1)

enable bit

enable bit

enable bit

enable bit

Bit b7 b6 b5 b4 b3 b2 b0 b1 Setting Value 0 0 0 0 0 0 0 0

Bit	Symbol	Bit Name	Function	R/W
b0	DTCEN10	DTC activation by UART2 transmit interrupt enable bit	0: Activation disabled	R/W
b1	DTCEN11	DTC activation by UART2 receive interrupt enable bit	0: Activation disabled	R/W
b2	DTCEN12	DTC activation by UART1 transmit interrupt enable bit	0: Activation disabled	R/W
b3	DTCEN13	DTC activation by UART1 receive interrupt enable bit	0: Activation disabled	R/W
b4	DTCEN14	DTC activation by UART0 transmit interrupt enable bit	0: Activation disabled	R/W
b5	DTCEN15	DTC activation by UART0 receive interrupt enable bit	0: Activation disabled	R/W
b6	DTCEN16	DTC activation by A/D conversion interrupt enable bit	0: Activation disabled	R/W
b7	DTCEN17	DTC activation by key input interrupt enable bit	0: Activation disabled	R/W

R/W

R/W

R/W

R/W

R/W

R/W

(17) Set DTC activation enable register 2 (DTCEN2). Disable all DTC activation sources.

DTC Activation Enable Register 2 (DTCEN2)	DTC Activation	Enable	Reaister 2	(DTCEN2)
---	-----------------------	--------	------------	----------

Bit b7 b6 b5 b4 b3 b2 b1 b0 Setting Value 0 0 0 0 ____ ____ 0 0

Bit	Symbol	Bit Name	Function	R/W
b0	DTCEN20	DTC activation by Timer RC input- capture/compare-match B interrupt enable bit	0: Activation disabled	R/W
b1	DTCEN21	DTC activation by timer RC input- capture/compare-match A interrupt enable bit	0: Activation disabled	R/W
b4	DTCEN24	DTC activation by comparator A1 interrupt enable bit	0: Activation disabled	R/W
b5	DTCEN25	DTC activation by comparator A2 interrupt enable bit	0: Activation disabled	R/W
b6	DTCEN26	DTC activation by SSU/I ² C bus transmit data empty interrupt enable bit	0: Activation disabled	R/W
b7	DTCEN27	DTC activation by SSU/I ² C bus receive data full interrupt enable bit	0: Activation disabled	R/W

(18) Set DTC activation enable register 3 (DTCEN3). Disable all DTC activation sources.

DTC Activation	Enable	Register 3	(DTCEN3)
DIC Activation	Enable	Register 3	(DICENS)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	DTCEN30	DTC activation by timer RD1 input- capture/compare-match B interrupt enable bit	0: Activation disabled	R/W
b1	DTCEN31	DTC activation by timer RD1 input- capture/compare-match A interrupt enable bit	0: Activation disabled	R/W
b2	DTCEN32	DTC activation by timer RD0 input- capture/compare-match D interrupt enable bit	0: Activation disabled	R/W
b3	DTCEN33	DTC activation by timer RD0 input- capture/compare-match C interrupt enable bit	0: Activation disabled	R/W
b4	DTCEN34	DTC activation by timer RD0 input- capture/compare-match B interrupt enable bit	0: Activation disabled	R/W
b5	DTCEN35	DTC activation by timer RD0 input- capture/compare-match A interrupt enable bit	0: Activation disabled	R/W
b6	DTCEN36	DTC activation by timer RC input- capture/compare-match D interrupt enable bit	0: Activation disabled	R/W
b7	DTCEN37	DTC activation by timer RC input- capture/compare-match C interrupt enable bit	0: Activation disabled	R/W

(19) Set DTC activation enable register 4 (DTCEN4). Disable all DTC activation sources.

Bit b7 b6 b5 b4 b3 b2 b1 b0 Setting Value 0 0 _ _ _ _ _ ____

Bit	Symbol	Bit Name	Function	R/W
b6	DTCEN46	DTC activation by timer RD1 input- capture/compare-match D interrupt enable bit	0: Activation disabled	R/W
b7	DTCEN47	DTC activation by timer RD1 input- capture/compare-match C interrupt enable bit	0: Activation disabled	R/W

(20) Set DTC activation enable register 5 (DTCEN5). Disable all DTC activation sources.

DTC	DTC Activation Enable Register 5 (DTCEN5)										
	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Setting	Value			0			—	—			
Bit	Syr	mbol		Bit Name	9			Function	n		R/W
b5	DTC	EN55	DTC activat enable bit	tion by time	r RE interrup	t 0: Ac	ivation dis	abled			R/W

(21) Set DTC activation enable register 6 (DTCEN6). Disable all DTC activation sources.

DTC Activation Enable Register 6 (DTCEN6)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	_	0	_	0	0	—		—

Bit	Symbol	Bit Name	Function	R/W
b3	DTCEN63	DTC activation by flash ready status interrupt enable bit	0: Activation disabled	R/W
b4	DTCEN64	DTC activation by timer RB interrupt enable bit	0: Activation disabled	R/W
b5	DTCEN65	DTC activation by timer RA interrupt enable bit	0: Activation disabled	R/W

(22) Set the DTC activation control register. Disable DTC activation when a non-maskable interrupt (watchdog timer, oscillation stop detection, voltage monitor 1, or voltage monitor 2) is generated.

DTC Activation Control Register (DTCTL)

	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setti	ng Value	—	—		—	—	—	0	—	
	<u> </u>	i				1		Function		
Bit	Symbol	Bit Name					R/W			
b1	NMIF	Non-mas	skable inter	rrupt gener	ation bit	0: Non-ma	skable inte	errupts not	generated	R/W

4.6 Transmit Start

Register Setting

(1) Check whether DTC activation by the UART0 transmit interrupt enable bit is disabled (DTCEN14 is 0).

(2) Check whether DTC activation by the UART0 receive interrupt enable bit is disabled (DTCEN15 is 0).

(3) Set the DTCCT0 register for control data 0. In this program, set it to 7 to transfer 1-byte data seven times.

DTC Transfer Count Register 0 (DTCCT0)

Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting Value	0	0	0	0	0	1	1	1	

Bit	Function	Setting Range	R/W
b7 to b0	These bits specify the number of times of DTC data transfers.	00h to FFh	R/W

(4) Set the DTSAR0 register for control data 0. In this program, set the address where the second byte of the transmit data array ("uart0_tx_data[1]") is allocated.

DTC Sourc	DTC Source Address Register 0 (DTSAR0)									
Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Setting Value	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1]	
Bit	b15	b14	b13	b12	b11	b10	b9	b8		
Setting Value	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1]	
Bit	Function Setting Range							lange		

Bit	Function	Setting Range	R/W
b15 to b0	These bits specify a transfer source address for data transfer.	0000h to FFFFh	R/W

(5) Enable DTC activation by UART0 transmit interrupt.

DTC Activation Enable Register 1 (DTCEN1)

Bit b7 b6 b5 b4 b3 b2 b1 b0 Setting Value х х х 1 Х х х х

Bit	Symbol	Bit Name	Function	R/W
b4	1)1(.+N14	DTC activation by UART0 transmit interrupt enable bit	1: Activation enabled	R/W

(6) Set the DTCCT1 register for control data 1. In this program, set it to 8 to transfer 2-byte data eight times.

DTC TI	DTC Transfer Count Register 1 (DTCCT1)										
	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Setting Val	ue	0	0	0	0	1	0	0	0]	
Bit	Function Setting Range R/W										
b7 to b0	These bits specify the number of times of DTC data transfers. 00h to FFh R/M								R/W		

(7) Set the DTDAR1 register for control data 1. In this program, set the address where the first byte of the receive data array ("uart0_rx_data[0]") is allocated.

DTC Destination Address Register 1 (DTDAR1)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
Bit	b15	b14	b13	b12	b11	b10	b9	b8
Setting Value	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1

Bit	Function	Setting Range	R/W
b15 to b0	These bits specify a transfer destination address for data transfer.	0000h to FFFFh	R/W

(8) Enable DTC activation by UART0 receive interrupt.

DTC Activation Enable Register 1 (DTCEN1)

	Bit	b	7	b6	b5	b4	b3	b2	b1	b0	_	
Setting	Value	Х		х	1	х	х	х	х	х]	
Bit	Symt	bol		В	it Name				Function			R/W
b5	b5 DTCEN15 DTC a		activation l upt enable	by UART0 i bit	receive	1: Activati	on enabled	ł			R/W	

(9) Enable UART0 transmission.

UART0 Transmit/Receive Control Register 1 (U0C1)

	Bit	b7	b6	b5	b4	b3	b2	b1	b0			
Setting \	Value	_	—			х		х	1]		
Bit	Symbo	nbol Bit Name						Function			R/W	1
b0	TE	Transmit enable bit				1: Transmission enabled						

RE

b2

1: Reception enabled

(10) Enable UART0 reception.

UAR	UART0 Transmit/Receive Control Register 1 (U0C1)									
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting V	Value	—	—			х	1	х		
Bit Symbol			Bit	Name		Function				

(11) Check whether the transmit buffer is empty (TI_U0C1 is 1).

Receive enable bit

(12) Write the transmit data to the UART0 transmit buffer register (lower byte of U0TB).

R/W

R/W

4.7 UART0 Receive Interrupt

Flowchart

5. Sample Program

A sample program can be downloaded from the Renesas Technology website. To download, click "Application Notes" in the left-hand side menu of the R8C/Tiny Family page.

6. Reference Documents

Hardware Manual R8C/35C Group Hardware Manual Rev.0.10 The latest version can be downloaded from the Renesas Technology website.

Technical Update/Technical News The latest information can be downloaded from the Renesas Technology website.

Website and Support

Renesas Technology website http://www.renesas.com/

Inquiries http://www.renesas.com/inquiry csc@renesas.com

	R8C/35C Group
REVISION HISTORY	Serial I/O Operation in Clock Synchronous Serial I/O Mode
	with DTC

Rev.	Date	Description					
	Dale	Page	Summary				
1.00	Oct 23, 2009	-	First Edition issued				

All trademarks and registered trademarks are the property of their respective owners.

Notes regarding these materials

- This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
- 2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
- 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
- 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
- 5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
- 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below: (1) artificial life support devices or systems
 - (2) surgical implantations
 - (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 - (4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

- 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
- 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
- 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

© 2009. Renesas Technology Corp., All rights reserved. Printed in Japan.