
 APPLICATION NOTE

R01AN3378EJ0100 Rev.1.00 Page 1 of 45
May 11, 2017

R8C/35C Group
I2C bus Single Master Control Program (Master Transmit/Receive)
I2C Communication for Issuing Restart Condition

Contents

1. Abstract .. 3

2. Introduction .. 3

3. Application Example ... 4
3.1 Program Outline .. 4

3.1.1 Peripheral Functions ... 10
3.1.2 Notes on Using the Attached Sample Program .. 10

3.2 Memory ... 10

4. Software ... 11
4.1 Usage Variables .. 11
4.2 Function Tables ... 13
4.3 Main Processing .. 23
4.4 System Clock Setting .. 25
4.5 Initial Setting of I/O Ports .. 26
4.6 Initial Setting of I2C Bus Interface ... 27
4.7 Initial Setting of Timer RA ... 28
4.8 Initializing Color Sensor .. 29
4.9 Copying Communication Parameters ... 30
4.10 Starting I2C Communication .. 30
4.11 Issuing Start Condition .. 32
4.12 Issuing Stop Condition .. 32
4.13 Resetting Color Sensor ... 33
4.14 Waiting for Light Intensity Measurement Completion ... 35
4.15 Starting Timer RA Operation ... 35
4.16 Reading Measurement Data ... 36
4.17 Processing Measurement Results .. 38
4.18 Waiting for Communication Restart .. 39
4.19 Processing I2C Communication Error ... 39
4.20 I2C bus Interface Interrupt Handling .. 40
4.21 Data Transmission .. 41
4.22 Continuous Data Transmission ... 41
4.23 Reception Settings .. 42
4.24 Data Reception.. 43
4.25 Communication Error End Processing .. 44
4.26 Timer RA Interrupt Handling ... 44

5. Sample Program .. 45

R01AN3378EJ0100
Rev.1.00

May 11, 2017

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 2 of 45
May 11, 2017

6. Reference Documents .. 45

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 3 of 45
May 11, 2017

1. Abstract

This document describes the I2C bus single master control program (transmit/receive processes) that can issue the

restart condition by using the R8C/35C Group I2C bus Interface.

The sample code given here controls the digital color sensor (S11059-02 DT) supporting the I2C bus Interface, for an

example.

2. Introduction
The application example described in this document applies to the following microcomputer (MCU) and parameter:

• MCU : R8C/35C Group
• High-Speed On-Chip Oscillator Clock : 20MHz

This application note can be used with other R8C Family MCUs which have the same special function registers (SFRs)
as the above group. Check the manual for any modifications to functions. Careful evaluation is recommended before
using the program described in this application note.

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 4 of 45
May 11, 2017

3. Application Example

3.1 Program Outline
To conform to the communication format of the digital color sensor (S11059-02DT), a slave address and 8-byte data

are sent in master transmission, and a slave address is sent and then 8-byte data is received in master reception. Master

transmission and master reception are repeated alternately.

The sample code given here supports issuance of the restart condition. In master transmission, after fifth byte data is

transmitted, the restart condition is issued without issuing the stop condition, and then the sixth byte is transmitted.

After eighth byte data is transmitted, the restart condition is issued without issuing the stop condition to switch to the

master reception mode.

Issuing the restart condition enables data transmission conforming to the communication format of the connection

destination device, and also switching of data transmission direction to allow data reception from the connection

destination device after the data transmission.

This transmission procedure conforms to the I2C bus communication protocol when used under the following

conditions:

• Slave address : 7 bits
• Transfer rate : Approximately 357 kHz (Standard-mode and Fast-mode supported)
• Transfer data length : 1 to 255 bytes (not including the slave address)
• Single master communication (multimaster is not supported)

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 5 of 45
May 11, 2017

Figure 3.1 shows the Communication Format, Figure 3.2 shows the Block Diagram, Figure 3.3 to Figure 3.4 show
Outline Flowcharts, and Figure 3.5 to Figure 3.7 show Timing Diagrams.

S
T

SLAVE
ADDRESS W

A
C
K

Data0
(11100100b)

Data1
(00001100b)

A
C
K

A
C
K

Data2
(00110000b)

S
P

S
T

SLAVE
ADDRESS W

A
C
K

Data3
(00000000b)

Data4
(10000100b)

A
C
K

A
C
K

R
S

SLAVE
ADDRESS W

A
C
K

Data5
(00000000b)

Data6
(00000100b)

A
C
K

A
C
K

S
P

A
C
K

S
T

SLAVE
ADDRESS W

A
C
K

Data7
(00000011b)

A
C
K

R
S

SLAVE
ADDRESS R

A
C
K

Master transmission

Master reception

Data0
A
C
K

Data1
A
C
K

Data2
A
C
K

Data3
A
C
K

Data4
A
C
K

Data5
A
C
K

Data6
A
C
K

Data7

N
A
C
K

S
P

Master → Slave Slave → Master

ST : Start condition RS : Restart condition
SP : Stop condition
W : Write mode is “0” R : Read mode is “1”
ACK : Acknowledge is “0” NACK : No Acknowledge is “1”

Figure 3.1 Communication Format

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 6 of 45
May 11, 2017

R8C/35C Group

SDA

SCL
I2C bus

Digital color
sensor module

Sensor

Light

Figure 3.2 Block Diagram

The numbers in Figure 3.3 and Figure 3.4 correspond to the numbers indicated in the program processing in the
operating timing charts in Figure 3.5 to Figure 3.7.

Start

Initial setting

Start master control
(master transmit)

(1)

Bus busy?

Set transmit data

Bus busy
Bus free

(2)

(3)
I2C bus interface interrupt

(transmit end interrupt request)
3-byte data

transmission completed?During
transmission Transmission completed

Select address of structure where
information of transmit data is stored.

Start master control
(master transmit)

Set transmit data

(2)

(3)
I2C bus interface interrupt

(transmit end interrupt request)
2-byte data

transmission completed?During
transmission Transmission completed

Select address of structure where
information of transmit data is stored.

Transmit 3-byte data to perform initial
setting of color sensor

Transmit 2-byte data to reset color
sensor
(Stop condition is not issued on
completion of transmission.)

AB

Generate stop condition

Figure 3.3 Outline Flowchart (1/2)

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 7 of 45
May 11, 2017

Start master control
(master receive)(2)

(4)
I2C bus interface interrupt

(receive data full interrupt request)

8-byte data
reception completed?During

reception Reception
completed

Perform processing after
transmission/reception completion

Wait Wait a certain period of time before starting next communication.

Start master control
(master transmit)

Set transmit data

(2)

(3)
I2C bus interface interrupt

(transmit end interrupt request)

1-byte data
transmission completed?During

transmission
Transmission
completed

Select address of structure where information
of transmit data is stored.

Wait Wait a certain period of time before starting
next communication.

Transmit 1-byte data (read address in the sensor)
to receive measurement data from color sensor.
(Stop condition is not issued on completion of
transmission.)

To receive measurement data from color sensor,
issue restart condition and make a transition to
read mode.
Subsequently, receive 8-byte data.
(After reception of last byte, stop condition is
issued in I2C bus interface interrupt processing)

Wait until color sensor completes
measurement of light intensity.

AB

Start master control
(master transmit)

Set transmit data

(2)

(3)
I2C bus interface interrupt

(transmit end interrupt request)

2-byte data
transmission completed?During

transmission Transmission
completed

Select address of structure where information
of transmit data is stored.

To release color sensor reset, issue restart
and transmit 2-byte data.

Generate stop condition

(3)
I2C bus interface interrupt

(transmit end interrupt request)

Figure 3.4 Outline Flowchart (2/2)

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 8 of 45
May 11, 2017

A process outline is described as follows:

(1) Initial setting
Initialize the system clock, I2C bus Interface associated SFRs, and variables used.

(2) Start master control
Generate a start condition.
Enable the I2C bus Interface interrupt (transmit end interrupt request) and transmit the slave address.

(3) I2C bus Interface interrupt (transmit end interrupt request)
An interrupt is generated at the rising edge of the ninth bit of the SCL clock.

At master transmit
- Determine ACK/NACK and set the next byte transmit data.

At master receive
- Disable the transmit end interrupt request and enable the receive data full interrupt request.

(4) I2C bus Interface interrupt (receive data full interrupt request)
An interrupt is generated at the rising edge of the ninth bit of the SCL clock at master receive.
Set the next byte ACK/NACK and read the receive data.
To end communication, issue the stop condition and disable the receive data full interrupt request.

TEND bit in the
ICSR register

STOP bit in the
ICSR register

(1) Initial setting

SDA
(master output)

SCL
(master output)

D7

SDA
(slave output)

Program
processing

"1"

"0"

1 2

D6

7

D1

8

D0
(W)

9 1 2

Start condition

7 8 9

Stop condition

ACK ACK

(3)

D7 D6 D1 D0

R/W

(2) Start master control

(3)

"1"

"0"

Slave address

I2C bus interface interrupt
(transmit end interrupt request)

Set to "0" by
a program.

Becomes "0" when writing
data to the ICDRT register.

Set to "0" by
a program.

Figure 3.5 Master Transmit Timing

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 9 of 45
May 11, 2017

Program
processing

Start condition

I2C bus interface interrupt
(receive data full interrupt request)

R/W

(2) Start master control I2C bus interface interrupt
(transmit end interrupt request)

(4)

SCL
(master output) 1 2 7 8 9 1 2 7 8 9

SDA
(master output) D7 D6 D1 D0

(R)

SDA
(slave output) D6 D1 D0

"1"

"0"

RDRF bit in the
ICSR register

Timing from initial setting to ACK transmission

(1) Initial setting

D7 D7

"1"

"0"

TEND bit in the
ICSR register

Master transmit mode Master receive mode

"1"

"0"

STOP bit in the
ICSR register

(3)

ACK

ACK

Set the TRS bit to "0".

Slave address

Set to "0" by a program.

Becomes "0" when reading
data from the ICDRR register.

Figure 3.6 Master Receive Timing (1/2)

Program
processing

Stop condition

SCL
(master output) 9 1 2 3 4 5 6 7 8 97 8

SDA
(master output) ACK

D7SDA
(slave output) D1 D0D0 D2D3D4D5D6

Timing from ACK transmission to stop condition generation

NACK

"1"

"0"

RDRF bit in the
ICSR register

"1"

"0"

TEND bit in the
ICSR register

"1"

"0"

STOP bit in the
ICSR register

I2C bus interface interrupt
(receive data full interrupt request)

(4) (4)

Becomes "0" when reading data
from the ICDRR register.

Set to "0" by a program.

Becomes "0" when reading data
from the ICDRR register.

Figure 3.7 Master Receive Timing (2/2)

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 10 of 45
May 11, 2017

3.1.1 Peripheral Functions
The I2C bus Interface mode of the I2C bus Interface is used under the following setting conditions:

• I2C bus format is used.
• f1/56 is used for the transfer clock (approximately 357 kHz is set as the transfer rate).
• No wait states are set (data and the acknowledge bit are transferred consecutively).
• MSB first is used for the transfer format.
• 3 × f1 cycles are used for the SDA digital delay value.
• The receive acknowledge bit (ACKBR bit) is used to determine an acknowledge signal.
• The receive data full interrupt request is used.
• The transmit end interrupt request is used.
• The stop condition detection interrupt request is not used.
• The transmit data empty interrupt request is not used.
• The NACK receive interrupt request and arbitration lost/overrun error interrupt request are not used.

Calculating the transfer rate

Transfer rate = Bits CKS3 to CKS0 in the ICCR1 register setting

 = 20 MHz (f1) / 56

 ≈ 357.142 kHz

Table 3.1 Pins Used and Their Functions
Pin I/O Function

P3_5/SCL I/O I2C bus clock I/O pin
P3_7/SDA I/O I2C bus data I/O pin

3.1.2 Notes on Using the Attached Sample Program
Note the following when using the program included with this application note:

• Do not use multiple interrupts.
• When setting the system clock to anything other than the 20 MHz High-Speed On-Chip Oscillator Clock,

change the setting value of bits CKS3 to CKS0 according to the transfer rate calculation shown in "3.1.1
Peripheral Functions".

3.2 Memory

Table 3.2 Memory
Memory Size Remarks

ROM 2146 bytes 
RAM 317 bytes 
Maximum user stack 37 bytes 
Maximum interrupt stack 25 bytes 

Usage memory size varies depending on C compiler version and compile options. The above applies under the
following conditions:

C compiler : M16C Series, R8C Family Compiler V.5.45 Release 01

Compile options : -c -finfo -dir "$(CONFIGDIR)" -R8C

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 11 of 45
May 11, 2017

4. Software
This section shows the program example to set the example described in section 3. Application Example. Refer to the
latest "R8C/35C Group User’s Manual Hardware" for details on individual registers.

4.1 Usage Variables

Table 4.1 Definition File Name: r01an3378_src.c (1/4)
Variable Name Size Description
iic_stat_fcb iic_comstat 5 bytes in

total
Structure for storing communication status

Structure
members

unsigned char
iic_status

1 byte Communication status
 b0 Communication direction flag

0: Master transmission
1: Master reception

b1 Address mismatch flag
0: No address mismatch
1: Address mismatch

b2 and
b3

Only used on command error occurrence (undefined)

b4 Error flag
0: Normal completion
1: Error

b5 Not used (undefined)
b6 Only used for command request (undefined)
b7 Communication in progress flag

0: Communication completed
1: Communication in progress

unsigned char
iic_slave_addr

1 byte Slave address (7-bit address, value of b0 is "0")

unsigned char far
*iic_data_addr

2 bytes Transmit/receive buffer address

unsigned char
iic_num_byte

1 byte Number of transmit/receive data (in bytes)

Functional Description of Structure
Acquires values set to structures iic_set_str1 to iic_set_str5 (see Table 4.3) and uses the values for
communication.
Functional Description of Structure Member iic_status
Structure member iic_status
indicates transmission instruction
command/communication status.

- Before starting communication
Value of member iic_str_command
of structures iic_set_str1 to
iic_set_str5 (command) (see Table
4.3) is stored.

- After starting communication
Value of iic_status is updated and
communication status is indicated.

<Commands>
0x40 (CWRITEMODE) : Master transmission command
0x41 (CREADMODE) : Master reception command

<Status>
0x80 (CINWRITE) : Transmission is in progress
0x81 (CINREAD) : Reception is in progress
0x00 (CSUCCESSW) : Transmission has completed normally
0x01 (CSUCCESSR) : Reception has completed normally
0x11 (CBUSBUSY) : I2C bus error
0x12 (CSLAVEBUSY) : Slave busy (NACK in address)
0x13 (CNOACK) : Data transmission error (NACK in data)
0x1f (CCOMERROR) : Command error

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 12 of 45
May 11, 2017

Table 4.2 Definition File Name: r01an3378_src.c (2/4)
Variable Name Size Description
static unsigned char iic_tx1[TX1_BUFSIZE] 3 bytes Transmit buffer 1
static unsigned char iic_tx2[TX2_BUFSIZE] 2 bytes Transmit buffer 2
static unsigned char iic_tx3[TX3_BUFSIZE] 2 bytes Transmit buffer 3
static unsigned char iic_tx4[TX4_BUFSIZE] 1 byte Transmit buffer 4
static unsigned char iic_rx1[RX1_BUFSIZE] 8 bytes Receive buffer 1

Table 4.3 Definition File Name: r01an3378_src.c (3/4)
Variable Name Size Description
static iic_set_fcb iic_set_str1,
 iic_set_str2, iic_set_str3,
 iic_set_str4, iic_set_str5

5 bytes in
total

Structure for storing communication setting
parameters

Structure
members

unsigned char
iic_str_command

1 byte Transmission/reception commands
0x40 (CWRITEMODE) : Master transmission
command
0x41 (CREADMODE) : Master reception command

unsigned char
iic_str_slave_addr

1 byte Slave address (7-bit address, value of b0 is "0")

unsigned char far
*iic_str_data_addr

2 bytes Transmit/receive buffer address
(See Table 4.2 for transmit/receive buffer.)

unsigned char
iic_str_num_byte

1 byte Number of transmit/receive data (in bytes)

Table 4.4 Definition File Name: r01an3378_src.c (4/4)
Variable Name Size Description
static unsigned int iic_red_data 2 bytes Red light data
static unsigned int iic_green_data 2 bytes Green light data
static unsigned int iic_blue_data 2 bytes Blue light data
static unsigned int iic_ir_data 2 bytes Infrared light data

Table 4.5 Definition File Name: iic.c
Variable Name Size Description
static unsigned char iic_status_buf 1 byte Status buffer
static unsigned char far *iic_data_pointer 2 bytes Pointer to transmit/receive buffer
static unsigned char iic_num_byte_buf 1 byte Transmit/receive data count buffer
static unsigned char iic_start_cond_flag 1 byte Start condition flag

Table 4.6 Definition File Name: tra.c
Variable Name Size Description
static unsigned int tra_wait_dwncnt 2 bytes Variable for timer counting

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 13 of 45
May 11, 2017

4.2 Function Tables

Declaration void main (void)
Outline Main Processing
Argument Argument name Meaning

None 
Variable (global) Variable name Contents

None 
Returned value Type Value Meaning

None  
Function After the initial setting of the system clock, I2C bus Interface, and timer RA, executes

master transmission and reception. After master transmission and reception are
completed, resumes communication after inserting a given length of wait time, and
repeats master transmission and reception.

Declaration void mcu_init (void)
Outline System Clock Setting
Argument Argument name Meaning

None 
Variable (global) Variable name Contents

None 
Returned value Type Value Meaning

None  
Function This function is called from the Main Processing. Sets the system clock (High-Speed

On-Chip Oscillator Clock).

Declaration void port_init (void)
Outline Initial Setting of I/O Ports
Argument Argument name Meaning

None 
Variable (global) Variable name Contents

None 
Returned value Type Value Meaning

None  
Function This function is called from the Main Processing. Initializes I/O Ports to use I2C bus

Interface.

Declaration void iic_init (void)
Outline Initial Setting of I2C Bus Interface
Argument Argument name Meaning

None 
Variable (global) Variable name Contents

None 
Returned value Type Value Meaning

None  
Function This function is called from the Main Processing. Initializes SFRs to use I2C bus

Interface.

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 14 of 45
May 11, 2017

Declaration void tra_init (void)
Outline Initial Setting of Timer RA
Argument Argument name Meaning

None 
Variable (global) Variable name Contents

None 
Returned value Type Value Meaning

None  
Function This function is called from the Main Processing. Initializes SFRs to use Timer RA.

Declaration unsigned char iic_sensor_init (unsigned char far *iic_set_str)
Outline Initializing Color Sensor
Argument Argument name Meaning

unsigned char far *iic_set_str Pointer to structure for storing
communication setting parameters

Variable (global) Variable name Contents
(structure) iic_comstat Communication status

Returned value Type Value Meaning
unsigned char 0 Communication error

1 Successful communication
Function This function is called from the Main Processing. Performs processing to initialize the

color sensor.
Calls the iic_copy_parameter function to acquire the transmit data, and calls the
iic_start function to start communication. During communication, checks the
communication status of the structure iic_comstat and waits for completion of data
transmission. To end communication, calls the iic_stop_cond function to perform the
communication end processing.
If the status checking shows a communication error, calls the iic_stop_cond function
to stop the communication.

Declaration static void iic_copy_parameter (unsigned char far *iic_set_str)
Outline Copying Communication Parameters
Argument Argument name Meaning

unsigned char far *iic_set_str Pointer to structure for storing
communication setting parameters

Variable (global) Variable name Contents
(structure) iic_comstat Communication status

Returned value Type Value Meaning
None  

Function This function is called before starting communication.
Copies the communication data to (structure) iic_comstat to acquire the parameters
required for communication.

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 15 of 45
May 11, 2017

Declaration static void iic_start (void)
Outline Starting I2C Communication
Argument Argument name Meaning

None 
Variable (global) Variable name Contents

(structure) iic_comstat Communication status
static unsigned char iic_status_buf Buffer for storing communication

status during communication
static unsigned char far *iic_data_pointer Pointer to indicate transmit/receive

data during communication
static unsigned char iic_num_byte_buf Buffer for indicating number of

remaining data during
communication

Returned value Type Value Meaning
None  

Function This function is called to start communication. Performs processing to start
communication.
After calling the iic_start_cond function to issue the start condition, transmits the slave
address.
In the function header, confirms that the bus is not being used by any external device
and checks the transmit/receive commands and variable iic_num_byte_buf. If the
checking shows an error, does not perform the communication start processing.

Declaration static void iic_start_cond (void)
Outline Issuing Start Condition
Argument Argument name Meaning

None 
Variable (global) Variable name Contents

static unsigned char iic_start_cond_flag Start condition flag
Returned value Type Value Meaning

None  
Function This function is called from the Starting I2C Communication processing.

Issues the start condition and sets the start condition flag.

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 16 of 45
May 11, 2017

Declaration static void iic_stop_cond (void)
Outline Issuing Stop Condition
Argument Argument name Meaning

None 
Variable (global) Variable name Contents

None 
Returned value Type Value Meaning

None  
Function This function is called to stop communication. Performs processing to issue the stop

condition.
In the function header, checks the bus status.
- When the bus is busy
Performs processing to issue the stop condition.

- When the bus is free
Does not perform processing to issue the stop condition.

Declaration unsigned char iic_sensor_reset (unsigned char far *iic_set_str,

 unsigned char far *iic_set_str_2nd)
Outline Resetting Color Sensor
Argument Argument name Meaning

unsigned char far *iic_set_str Pointer to structure for storing
communication setting parameters

unsigned char far *iic_set_str_2nd Pointer to structure for storing
communication setting parameters

Variable (global) Variable name Contents
(structure) iic_comstat Communication status

Returned value Type Value Meaning
unsigned char 0 Communication error

1 Successful communication
Function This function is called from the Main Processing. Performs processing to reset the

color sensor.
Calls the iic_copy_parameter function to acquire the transmit data, and calls the
iic_start function to start communication. During communication, checks the
communication status of the structure iic_comstat and waits for completion of data
transmission. To end communication, calls the iic_stop_cond function to perform the
communication end processing.
If the status checking shows a communication error, calls the iic_stop_cond function
to stop the communication.

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 17 of 45
May 11, 2017

Declaration void tra_measure_wait (void)
Outline Waiting for Light Intensity Measurement Completion
Argument Argument name Meaning

None 
Variable (global) Variable name Contents

static unsigned int tra_wait_dwncnt Timer count value
Returned value Type Value Meaning

None  
Function This function is called from the Main Processing. Performs processing to wait for the

color sensor to complete measurement of the light intensity.
Sets the timer count to the variable tra_wait_dwncnt and calls the tra_start function to
start the timer RA. While the timer RA is running, checks the timer RA count status
flag (TCSTF) and waits for the timer RA to stop.
The variable tra_wait_dwncnt is updated and timer RA is stopped in the timer RA
interrupt handling.

Declaration static void tra_start (void)
Outline Starting Timer RA Operation
Argument Argument name Meaning

None 
Variable (global) Variable name Contents

None 
Returned value Type Value Meaning

None  
Function This function is called to run the timer RA.

Performs processing to run the timer RA.

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 18 of 45
May 11, 2017

Declaration unsigned char iic_sensor_read (unsigned char far *iic_set_str,

 unsigned char far *iic_set_str_2nd)
Outline Reading Measurement Data
Argument Argument name Meaning

unsigned char far *iic_set_str Pointer to structure for storing
communication setting parameters

unsigned char far *iic_set_str_2nd Pointer to structure for storing
communication setting parameters

Variable (global) Variable name Contents
(structure) iic_comstat Communication status

Returned value Type Value Meaning
unsigned char 0 Communication error

1 Successful communication
Function This function is called from the Main Processing. Performs processing to read out the

measurement data of the color sensor.
Calls the iic_copy_parameter function to acquire the transmit data, and calls the
iic_start function to start communication. During communication, checks the
communication status of the structure iic_comstat and waits for completion of data
transmission/reception. After receiving the last byte, issues the stop condition in the
I2C bus Interface Interrupt Handling to end communication.
If the status checking shows a communication error, calls the iic_stop_cond function
to stop the communication.

Declaration void iic_measure_result (unsigned char far *iic_rx,

 unsigned char iic_rx_size,
 unsigned int far *iic_red_data,
 unsigned int far *iic_green_data,
 unsigned int far *iic_blue_data,
 unsigned int far *iic_ir_data)

Outline Processing Measurement Results
Argument Argument name Meaning

unsigned char far *iic_rx Pointer to receive buffer
unsigned char iic_rx_size Size of receive buffer
unsigned int far *iic_red_data Pointer to variable for storing

measurement data of red light
unsigned int far *iic_green_data Pointer to variable for storing

measurement data of green light
unsigned int far *iic_blue_data Pointer to variable for storing

measurement data of blue light
unsigned int far * ic_ir_data Pointer to variable for storing

measurement data of infrared light
Variable (global) Variable name Contents

None 
Returned value Type Value Meaning

None  
Function This function is called from the Main Processing. Performs processing to store the

receive data in the receive buffer into the variables indicating the measurement data
of each color light.

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 19 of 45
May 11, 2017

Declaration void tra_next_com_wait (void)
Outline Waiting for Communication Restart
Argument Argument name Meaning

None 
Variable (global) Variable name Contents

static unsigned int tra_wait_dwncnt Timer count value
Returned value Type Value Meaning

None  
Function This function is called from the Main Processing. Performs processing to wait for the

next communication to be resumed.
Sets the timer count to the variable tra_wait_dwncnt and calls the tra_start function to
start the timer RA. While the timer RA is running, checks the timer RA count status
flag (TCSTF) and waits for the timer RA to stop.
The variable tra_wait_dwncnt is updated and timer RA is stopped in the timer RA
interrupt handling.

Declaration void iic_error (void)
Outline Processing I2C Communication Error
Argument Argument name Meaning

None 
Variable (global) Variable name Contents

None 
Returned value Type Value Meaning

None  
Function This function is called from the Main Processing when a communication error is

detected. Ends without any processing. To process an error, add the appropriate
program.

Declaration void iic_int (void)
Outline I2C bus Interface Interrupt Handling
Argument Argument name Meaning

None 
Variable (global) Variable name Contents

(structure) iic_comstat Communication status
static unsigned char iic_status_buf Buffer for storing communication

status during communication
static unsigned char iic_start_cond_flag Start condition flag

Returned value Type Value Meaning
None  

Function An interrupt is generated at the rising edge of the 9th bit of the SCL clock.
In the function header, checks the variable iic_status_buf to see if the start condition
has been issued immediately before data transmission.
When the start condition has been issued, calls the iic_data_trs_int function in
transmit mode, and calls the iic_set_rcv_int function in receive mode.
When the start condition has not been issued, calls the iic_cont_data_trs_int function
in transmit mode, and calls the iic_data_rcv_int function in receive mode.
When a communication error is detected, calls the iic_error_exit_int function to end
communication.

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 20 of 45
May 11, 2017

Declaration static void iic_data_trs_int (void)
Outline Data Transmission
Argument Argument name Meaning

None 
Variable (global) Variable name Contents

static unsigned char far *iic_data_pointer Pointer to indicate transmit/receive
data during communication

Returned value Type Value Meaning
None  

Function This function is called from the I2C bus Interface Interrupt Handling.
Transmits the data in the transmit buffer pointed to by the pointer iic_data_pointer.
Also updates the pointer iic_data_pointer to perform the next transmission.

Declaration static void iic_cont_data_trs_int (void)
Outline Continuous Data Transmission
Argument Argument name Meaning

None 
Variable (global) Variable name Contents

(structure) iic_comstat Communication status
static unsigned char iic_status_buf Buffer for storing communication

status during communication
static unsigned char iic_num_byte_buf Buffer for indicating number of

remaining data during
communication

Returned value Type Value Meaning
None  

Function This function is called from the I2C bus Interface Interrupt Handling.
In the function header, checks if ACK has been detected.
- ACK detected
After updating the variable iic_num_byte_buf, checks the number of remaining
transmit data bytes. When there is any data to be transmitted, calls the
iic_data_trs_int function to perform the data transmit processing. When there is no
data to be transmitted, updates the communication status of the structure
iic_comstat to indicate the end of communication.

- NACK detected
Calls the iic_error_exit_int function to end the communication.

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 21 of 45
May 11, 2017

Declaration static void iic_set_rcv_int (void)
Outline Reception Settings
Argument Argument name Meaning

None 
Variable (global) Variable name Contents

static unsigned char iic_num_byte_buf Buffer for indicating number of
remaining data during
communication

Returned value Type Value Meaning
None  

Function This function is called from the I2C bus Interface Interrupt Handling. Switches from
master transmit mode to master receive mode and enables the receive data full
interrupt request.
In the function, checks the variable iic_num_byte_buf to see the number of receive
data bytes to be received.
- When the number of data bytes to be received is 1
Sets so that "1" (NACK) is transmitted at the acknowledge timing and disables
reception following the next data reception.

- When the number of data bytes to be received is 2 or more
Sets so that "0" (ACK) is transmitted at the acknowledge timing and enables
reception following the next data reception.

Declaration static void iic_data_rcv_int (void)
Outline Data Reception
Argument Argument name Meaning

None 
Variable (global) Variable name Contents

(structure) iic_comstat Communication status
static unsigned char far *iic_data_pointer Pointer to indicate transmit/receive

data during communication
static unsigned char iic_num_byte_buf Buffer for indicating number of

remaining data during
communication

Returned value Type Value Meaning
None  

Function This function is called from the I2C bus Interface Interrupt Handling.
Stores the receive data into the receive buffer area pointed to by the pointer
iic_data_pointer and updates the pointer iic_data_pointer to perform the next
reception.
Also updates the variable iic_num_byte_buf and checks the number of remaining
receive data bytes.
- When the number of data bytes to be received is 0
To end communication, issues the stop condition, disables the receive data full
interrupt request, and updates the communication status of the structure iic_comstat.

- When the number of data bytes to be received is 1
Sets so that "1" (NACK) is transmitted at the acknowledge timing and disables
reception following the next data reception.

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 22 of 45
May 11, 2017

Declaration static void iic_error_exit_int (void)
Outline Communication Error End Processing
Argument Argument name Meaning

None 
Variable (global) Variable name Contents

(structure) iic_comstat Communication status
static unsigned char iic_status_buf Buffer for storing communication

status during communication
static unsigned char iic_num_byte_buf Buffer for indicating number of

remaining data during
communication

Returned value Type Value Meaning
None  

Function This function is called if a communication error is detected during execution of the I2C
bus Interface Interrupt Handling. To end the communication, updates the
communication status of the structure iic_comstat and the number of transmit/receive
data bytes.

Declaration void tra_int (void)
Outline Timer RA Interrupt Handling
Argument Argument name Meaning

None 
Variable (global) Variable name Contents

static unsigned int tra_wait_dwncnt Timer count value
Returned value Type Value Meaning

None  
Function An interrupt is generated due to a timer RA underflow at 25-ms intervals.

This function decrements the variable tra_wait_dwncnt and checks the result.
When the variable tra_wait_dwncnt is "0", stops Timer RA counting operation.

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 23 of 45
May 11, 2017

4.3 Main Processing

main()

asm(“FCLR I”) Disable interrupts.

System clock setting
mcu_init()

System clock setting
(High-Speed On-Chip Oscillator Clock setting).

Initial setting of
I2C bus interface

iic_init()

Initial setting of Timer RA
tra_init()

Initial setting of I2C bus interface associated SFRs.

Initial setting of Timer RA associated SFRs.

Initial setting of I/O Ports
port_init() Initial setting of I/O Ports.

Clear receive buffer

Clear structure for storing
communication status

asm(“FCLR I”) Disable interrupts

AB

tstop_tracr ← 1 Initialize registers TRAPRE and TRA,
and bits TSTART and TCSTF in the TRACR register.

Disable the timer RA interrupt.
Clear the interrupt request bit.

traic ← 0x00

Set transmit data to transmit buffer

Set parameters to structures
Iic_set_str1 to Iic_set_str1 str5

Clear variables containing sensor
measurement results

Figure 4.1 Main Processing (1/2)

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 24 of 45
May 11, 2017

Initializing color sensor
iic_sensor_init()

Resetting color sensor
iic_sensor_reset()

AB

Waiting for light intensity
measurement completion

tra_measure_wait()

Reading measurement data
iic_sensor_read()

Processing measurement results
iic_measure_result()

Waiting for communication
restart

tra_next_com_wait()
Wait until next communication starts.

Returned value = 1 ?

= 1 (successful communication)

= 0 (communication error)

Returned value = 1 ?

= 1 (successful communication)

= 0 (communication error)

Returned value = 1 ?

= 1 (successful communication)

= 0 (communication error)

Master transmission

Master transmission

Master transmission
and reception

teie_icier ← 1 Enable transmit end interrupt request.

iicic ← 0x02 Enable I2C bus interface interrupt.
(Set priority level to "2".)

asm(“FSET I”) Enable interrupts.

iccr1 ← iccr1 | 0x30

bbsy_iccr2 = 1 ?

= 0 (bus free)

= 1 (bus busy)

Set to master transmit mode.

Wait for bus release.

Processing I2C communication
error

iic_error()

Figure 4.2 Main Processing (2/2)

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 25 of 45
May 11, 2017

4.4 System Clock Setting

mcu_init()

return

asm(“FCLR I”) Disable interrupts.

prc0 ← 1 Disable system control register protect.

cm14 ← 0 Start Low-Speed On-Chip Oscillator.

fra2 ← 0x00 Select High-Speed On-Chip Oscillator Clock
divide-by-2 mode.

fra00 ← 1 Start High-Speed On-Chip Oscillator.

i++; Wait until oscillation stabilizes.

fra01 ← 1 Select High-Speed On-Chip Oscillator.

cm16 ← 0

Select CPU clock no division.

cm17 ← 0

cm06 ← 0 Enable bits CM16 and CM17.

prc0 ← 0 Set system control register protect.

Repeat
(i <= 255)

Figure 4.3 System Clock Setting

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 26 of 45
May 11, 2017

4.5 Initial Setting of I/O Ports

port_init()

return

p0 ← 0x00 Set P0_0 - P0_7 output latches to 0.

prc2 ← 1 Enable writing to PD0 register.

pd0 ← 0xff Set P0_0 - P0_7 as output port.

p1 ← 0x00 Set P1_0 - P1_7 output latches to 0.

pd1 ← 0xff Set P1_0 - P1_7 as output port.

p2 ← 0x00 Set P2_0 - P2_7 output latches to 0.

pd2 ← 0xff Set P2_0 - P2_7 as output port.

p3 ← 0x00 Set P3_0 - P3_7 output latches to 0.

pd3 ← 0x5f Set P3_0 - P3_4 and P3_6 as output port.
Set P3_5(SCL) and P3_7(SDA) as input port.

p4 ← 0x00 Set P4_0 and P4_1 to 0.
Set P4_2 - P4_7 output latches to 0.

pd4 ← 0xf8

p5 ← 0x00 Set P5_0 - P5_5 to 0.
Set P5_6 and P5_7 output latches to 0.

pd5 ← 0xc0 Set PD5_0 - PD5_5 to 0.
Set P5_6 and P5_7 as output port.

p6 ← 0x00 Set P6_0 - P6_7 output latches to 0.

pd6 ← 0xff Set P6_0 - P6_7 as output port.

Set PD4_0 - PD4_2 to 0.
Set P4_3 - P4_7 as output port.

Figure 4.4 Initial setting of I/O Ports

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 27 of 45
May 11, 2017

4.6 Initial Setting of I2C Bus Interface

iic_init()

return

mstiic ← 0 Set I2C bus to active.

pd3 ← pd3 & 0x5f Set PD3_5 (SCL) to input mode.
Set PD3_7 (SDA) to input mode.

iicic ← 0x00 Disable I2C bus interface interrupt.

iicsel ← 1 Select I2C bus interface function.

icier ← 0x00
Disable stop condition detection interrupt request.
Disable receive data full interrupt request.
Disable transmit end interrupt request.

stop_icsr ← 0 Clear stop condition detection flag.

Select f1/56 as transfer clock.
Set to slave receive mode.
Continue next receive operation.
This module is enabled for transfer operations.

iccr1 ← 0x88

iccr2 ← 0xf0 Initialize I2C bus control register 2.

icmr ← 0x00
Set 000b (9 bits) for bit counter.
Set no wait states (data and the acknowledge
bit are transferred consecutively).
Use MSB first for data transfer.

pinsr ← pinsr & 0x09 Select digital delay of 3 × f1 cycles.

icsr ← icsr & 0x97
Clear stop condition detection flag.
Clear receive data register full flag.
Clear transmit end flag.

sar ← 0x00 Set slave address.

asm(“FCLR I”) Disable interrupts.

Figure 4.5 Initial Setting of I2C Bus Interface

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 28 of 45
May 11, 2017

4.7 Initial Setting of Timer RA

tra_init()

return

tstart_tracr ← 0

Disable timer RA interrupt.

tcstf_tracr = 1 ?

= 0 (count stopped)

= 1 (during count) Stop timer RA operation.

traic ← 0x00

trasr ← 0x00 The TRAIO pin is not used.

tstop_tracr ← 1 Initialize registers TRAPRE and TRA,
and bits TSTART and TCSTF in the TRACR register.

trapre ← 250 - 1
Underflow period: Set to 25ms
[{1 / (20MHz / 8)} × 250 × 250 = 25ms]

tra ← 250 - 1

traioc ← 0x00 Set to "0x00" in timer mode.

tramr ← 0x10 Select timer mode.
f8 is selected as the timer RA count source.
Provide count source.

asm(“FCLR I”) Disable interrupts.

Figure 4.6 Initial setting of Timer RA

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 29 of 45
May 11, 2017

4.8 Initializing Color Sensor

iic_sensor_init()

Starting I2C communication
iic_start()

(iic_status & 0x80)
≠ 0x00 ?

= 0x00 (communication completed)

≠ 0x00 (during
communication) Wait for

communication
completion

Issuing stop condition
iic_stop_cond()

return (ret)

(iic_status & 0x10)
= 0x00 ?

(iic_status & 0x10)
= 0x00 ?

≠ 0x00 (error)

= 0x00 (successful completion)

≠ 0x00 (error)

= 0x00 (successful completion)

ret ← 0

ret ← 1

Copying communication
parameters

iic_copy_parameter()
Set sensor initialization data.

asm(“FSET I”) Enable interrupts.

Transmit 3-byte data to make
color sensor initial settings.

Figure 4.7 Initializing Color Sensor

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 30 of 45
May 11, 2017

4.9 Copying Communication Parameters

iic_copy_parameter()

iic_status ← *iic_set_str

return

Read command.

iic_data_addr ←
(*(iic_set_str + 3) << 8)

+*(iic_set_str + 2)

iic_num_byte ← *(iic_set_str + 4)

iic_slave_addr ← *(iic_set_str + 1) Read slave address.

Read transmit/receive buffer
address.

Read transmit/receive data count.

Figure 4.8 Copying Communication Parameters

4.10 Starting I2C Communication

iic_start()

asm(“FCLR I”) Disable interrupts.

iic_status_buf ← CBUSBUSY Set "CBUSBUSY" to status buffer.

((mst_iccr1 = 0) &&
(bbsy_iccr2 = 1)) = 0 ?

= 0 (bus not occupied by external device.)

= 1 (bus occupied by external device.)

iic_status_buf ← iic_status Acquire command from FCB for storing
communication status.

Mask communication direction
(transmission/reception) indication bit.

iic_status_buf ←
iic_status_buf & 0xfe

iic_status_buf ≠ 0x40 ?

= 0x40 (valid command)

≠ 0x40 (invalid command)

iic_status_buf ← CCOMERROR

A B

Figure 4.9 Starting I2C Communication (1/2)

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 31 of 45
May 11, 2017

return

icdrt ←
iic_slave_addr | slave_addr_rw

iic_num_byte_buf = 0x00 ?

= 0x00 (no transmit/receive data remaining)

≠ 0x00 (transmit/receive data remaining)

Issuing start condition
iic_start_cond()

slave_addr_rw ←
iic_status & 0x01

iic_data_pointer ← iic_data_addr Copy transmit/receive buffer
address.

iic_num_byte_buf ← iic_num_byte Copy transmit/receive data count.

Acquire transfer direction.

Transmit slave address with
transfer direction.

iic_status_buf ← iic_status + 0x40 Generate status from command.

iic_num_byte_buf = 0 ?
= 0 (no transmit/receive data remaining)

≠ 0 (transmit/receive data remaining)

iic_status ← iic_status_buf Update communication status.

iic_status_buf ← CCOMERROR

iic_num_byte_buf
 ≠ CCOMERROR ?

= CCOMERROR (error)

≠ CCOMERROR (no error)

iic_status_buf ← CCOMERROR

BA

iic_num_byte_buf
 ≠ CCOMERROR ?

= CCOMERROR (error)

≠ CCOMERROR (no error)

Figure 4.10 Starting I2C Communication (2/2)

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 32 of 45
May 11, 2017

4.11 Issuing Start Condition

iic_start_cond()

return

Generate start condition.iccr2 ← 0xb0

Set start condition flag.iic_start_cond_flag ← 1

Figure 4.11 Issuing Start Condition

4.12 Issuing Stop Condition

iic_stop_cond()

return

bbsy_iccr2 = 1 ?
= 0 (bus free)

= 1 (bus busy)

Wait for stop condition
detection.

Clear stop condition detection flag.stop_icsr ← 0

Generate stop condition.iccr2 ← 0x30

stop_icsr = 0 ?
= 0 (stop condition not detected)

= 1 (stop condition detected)

Clear stop condition detection flag.stop_icsr ← 0

Figure 4.12 Issuing Stop Condition

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 33 of 45
May 11, 2017

4.13 Resetting Color Sensor

Transmit 2-byte data to reset color sensor.
(Stop condition is not issued on completion
of transmission.)

iic_sensor_reset()

Starting I2C communication
iic_start()

(iic_status & 0x80)
≠ 0x00 ?

= 0x00 (communication completed)

≠ 0x00 (during
communication) Wait for

communication
completion.

(iic_status & 0x10)
= 0x00 ?

= 0x00 (successful completion)

≠ 0x00 (error)

ret ← 0

Copying communication
parameters

iic_copy_parameter()
Set sensor reset data.

asm(“FSET I”) Enable interrupts.

BA

Figure 4.13 Resetting Color Sensor (1/2)

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 34 of 45
May 11, 2017

Issuing stop condition
iic_stop_cond()

return (ret)

Starting I2C communication
iic_start()

(iic_status & 0x80)
≠ 0x00 ?

= 0x00 (communication completed)

≠ 0x00 (during
communication) Wait for

communication
completion.

(iic_status & 0x10)
= 0x00 ?

= 0x00 (successful completion)

≠ 0x00 (error)

(iic_status & 0x10)
= 0x00 ?

= 0x00 (successful completion)

≠ 0x00 (error)

ret ← 1

Copying communication
parameters

iic_copy_parameter()
Set sensor reset release data.

A B

asm(“FSET I”) Enable interrupts.

To release color sensor reset, issue restart
condition and transmit 2-byte data

Figure 4.14 Resetting Color Sensor (2/2)

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 35 of 45
May 11, 2017

4.14 Waiting for Light Intensity Measurement Completion

tra_measure_wait()

return

tra_wait_dwncnt ← 100

Starting Timer RA operation
tra_start()

tcstf_tracr = 1 ?

= 0 (count stopped)

= 1 (during count) Wait until time measurement is
complete and timer RA stops.

Set count value to the variable for timer counting.
Measurement time 2.5 s [25 ms × 100 = 2500 ms]

Disable timer RA interrupt.traic ← 0x00

Figure 4.15 Waiting for Light Intensity Measurement Completion

4.15 Starting Timer RA Operation

tcstf_tracr = 0 ?

= 1 (during count)

= 0 (count stopped)
Timer RA operation starts.

tstart_tracr ← 1

traic ← 0x01

tra_start()

return

Enable the timer RA interrupt
(Set interrupt priority level to "1").

tstop_tracr ← 1 Initialize registers TRAPRE and TRA,
and bits TSTART and TCSTF in the TRACR register.

trapre ← 250 - 1
Underflow period: Set to 25ms
[{1 / (20MHz / 8)} × 250 × 250 = 25ms]

tra ← 250 - 1

Figure 4.16 Starting Timer RA Operation

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 36 of 45
May 11, 2017

4.16 Reading Measurement Data

iic_sensor_read()

Starting I2C communication
iic_start()

(iic_status & 0x80)
≠ 0x00 ?

= 0x00 (communication completed)

≠ 0x00 (during
communication)

(iic_status & 0x10)
= 0x00 ?

= 0x00 (successful completion)

≠ 0x00 (error)

ret ← 0

Copying communication
parameters

iic_copy_parameter()
Set sensor read specification data.

asm(“FSET I”) Enable interrupts.

A B

To receive measurement data from color sensor,
transmit 1-byte data (read address in sensor).
(Stop condition is not issued on completion of
transmission.)

Wait for
communication
completion.

Figure 4.17 Reading Measurement Data (1/2)

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 37 of 45
May 11, 2017

return (ret)

Starting I2C communication
iic_start()

(iic_status & 0x80)
≠ 0x00 ?

= 0x00 (communication completed)

≠ 0x00 (during
communication) Wait for

communication
completion.

(iic_status & 0x10)
= 0x00 ?

= 0x00 (successful completion)

≠ 0x00 (error)

(iic_status & 0x10)
= 0x00 ?

= 0x00 (successful completion)

≠ 0x00 (error)

ret ← 1

Copying communication
parameters

iic_copy_parameter() Set sensor read start data.

asm(“FSET I”) Enable interrupts.

A B

To receive measurement data from color
sensor, issue restart condition and make
a transition to read mode.
Subsequently, receive 8-byte data.
(After reception of last byte, stop
condition is issued in I2C bus interface
interrupt handling.)

ret = 0 ?
= 1 (successful
communication)

= 0 (communication error)

Issuing stop condition
iic_stop_cond()

Figure 4.18 Reading Measurement Data (2/2)

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 38 of 45
May 11, 2017

4.17 Processing Measurement Results

iic_measure_result()

return

Store red light measurement data in variable
iic_red_data.

Store green light measurement data in variable
iic_green_data.

Store blue light measurement data in variable
iic_blue_data.

Store infrared light measurement data in variable
iic_ir_data.

iic_result_pointer ← iic_rx_buf

*iic_red_data ←
*iic_result_pointer

iic_rx_buf[i] ← *(iic_rx + (i － 1))

iic_rx_buf[i] ← *(iic_rx + (i + 1))

i++

i++

i < iic_rx_size ?

No (i >= iic_rx_size)

Yes
(i < iic_rx_size)

i ← 0

*iic_green_data ←
*(iic_result_pointer + 1)

*iic_blue_data ←
*(iic_result_pointer + 2)

*iic_ir_data ←
*(iic_result_pointer + 3)

Rearrange receive data of each color
stored in receive buffer so that lower byte
precedes upper byte, and store them in
array iic_rx_buF[].

Variable Iic_rx_size: Indicates receive data count

Set address of array iic_rx_buf[] to pointer
iic_result_pointer.

Figure 4.19 Processing Measurement Results

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 39 of 45
May 11, 2017

4.18 Waiting for Communication Restart

tra_next_com_wait()

return

tra_wait_dwncnt ← 40

Starting Timer RA operation
tra_start()

tcstf_tracr = 1 ?

= 0 (count stopped)

= 1 (during count) Wait until time measurement is
complete and timer RA stops.

Set count value to the variable for timer counting.
Measurement time 1 s [25 ms × 40 = 1000 ms]

Disable timer RA interrupt.traic ← 0x00

Figure 4.20 Waiting for Communication Restart

4.19 Processing I2C Communication Error

iic_error()

return

Figure 4.21 Processing I2C Communication Error

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 40 of 45
May 11, 2017

4.20 I2C bus Interface Interrupt Handling

iic_int()

return

tend_icsr ← 0 Clear transmission end flag.

iic_status_buf ← CBUSBUSY Set "CBUSBUSY" to status buffer.

mst_iccr1 = 1 ?
= 0 (slave mode)

= 1 (master mode)

iic_start_cond_flag = 1 ?
= 0 (start condition not issued)

= 1 (start condition issued)

iic_start_cond_flag ← 0 Clear start condition flag.

iic_status_buf ← CSLAVEBUSY Set "CSLAVEBUSY" to status buffer.

ackbr_icier = 0 ?

= 0 (ACK detected)

= 1 (NACK detected)

slave_addr_rw ←
iic_status & 0x01 Acquire transfer direction.

slave_addr_rw = 0 ?

= 0 (transmission mode)

= 1 (reception mode)

Data transmission
iic_data_trs_int()

trs_iccr1 = 1 ?
= 0 (reception mode)

= 1 (transmission
mode)

Continuous data transmission
iic_cont_data_trs_int()

Data reception
iic_data_rcv_int()

Reception setting
iic_set_rcv_int()

Communication error end
processing

iic_error_exit_int()

Communication error end
processing

iic_error_exit_int()

Processing when interrupt is
generated by address transmission

Processing when interrupt is generated
by data transmission/reception

Figure 4.22 I2C bus Interface Interrupt Handling

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 41 of 45
May 11, 2017

4.21 Data Transmission

iic_data_trs_int()

return

icdrt ← *iic_data_pointer Transmit data stored in transmit buffer.

iic_data_pointer++ Increment pointer to transmit buffer by 1.

Figure 4.23 Data Transmission

4.22 Continuous Data Transmission

iic_cont_data_trs_int()

return

iic_status_buf ← CNOACK Set "CNOACK" to status buffer.

ackbr_icier = 0 ?

= 0 (ACK detected)

= 1 (NACK detected)

iic_num_byte_buf－－ Update remaining transmit data count.

iic_num_byte_buf ≠ 0 ?
= 0 (no transmit data remaining)

≠ 0 (transmit data remaining)

iic_status ← iic_status & 0x7f Clear communication-in-
progress flag.

Communication error end
processing

iic_error_exit_int()

Data transmission
iic_data_trs_int()

Figure 4.24 Continuous Data Transmission

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 42 of 45
May 11, 2017

4.23 Reception Settings

iic_set_rcv_int()

return

tend_icsr ← 0 Clear transmission end flag.

sclo_iccr2 = 1 ?
= 1 (SCL pin is "H".)

= 0 (SCL pin is "L".)

iccr1 ← iccr1 & 0xef Set reception mode.

iic_num_byte_buf ≠ 1 ?
= 1 (Data to be received is one byte.)

≠ 1 (Data to be received is two bytes or more.)

ackbt_icier ← 0 ackbt_icier ← 1

Set to disable reception after
next data reception.rcvd_iccr1 ← 1Set to continue reception after

next data reception.rcvd_iccr1 ← 0

tdre_icsr ← 0 Clear transmit data empty flag.

teie_icier ← 0 Disable transmission end interrupt request.

rie_icier ← 1 Enable receive data full interrupt request.

dummy_data ← icdrr Start reception by dummy read.

Set to send "1" (NACK) at
acknowledge timing.

Set to send "0" (ACK) at
acknowledge timing.

Figure 4.25 Reception Settings

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 43 of 45
May 11, 2017

4.24 Data Reception

iic_data_rcv_int()

return

*iic_data_pointer ← icdrr Store data read from ICDRR register in
receive buffer.

iic_data_pointer++ Increment pointer to receive buffer by 1.

iic_num_byte_buf－－ Update remaining receive data count.

iic_num_byte_buf = 1 ?
= 1 (Data to be received is one byte.)

≠ 1 (Data to be
received is two bytes
or more.)

ackbt_icier ← 1

rcvd_iccr1 ← 1

Set to send "1"(NACK) at
acknowledge timing.

iic_num_byte_buf ≠ 0 ?
= 0 (no receive data remaining)

≠ 0 (receive data remaining)

bbsy_iccr2 = 1 ?
= 0 (bus free)

= 1 (bus busy)

Wait for stop
condition detection.

Clear stop condition detection flag.stop_icsr ← 0

Issue stop condition.iccr2 ← 0x30

stop_icsr = 0 ?
= 0 (stop condition not detected)

= 1 (stop condition detected)

Clear stop condition detection flag.stop_icsr ← 0

Set to disable reception after
next data reception.

*iic_data_pointer ← icdrr Store data read from ICDRR register in
receive buffer.

rie_icier ← 0 Disable receive data full interrupt request.

iic_status ← iic_status & 0x7f Clear communication-in-progress flag.

Set to continue reception after next data
reception.rcvd_iccr1 ← 0

iccr1 ← iccr1 & 0xcf Set slave reception mode.

sclo_iccr2 = 1 ?
= 1 (SCL pin is "H".)

= 0 (SCL pin is "L".)

Figure 4.26 Data Reception

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 44 of 45
May 11, 2017

4.25 Communication Error End Processing

iic_error_exit_int()

return

iic_status ← iic_status_buf

iic_num_byte ← iic_num_byte_buf Update transmit/receive data count.

Update communication status.

iic_num_byte_buf ← 0x00 Clear transmit/receive data count.

iic_status ← iic_status & 0x7f Clear communication-in-progress flag.

Figure 4.27 Communication Error End Processing

4.26 Timer RA Interrupt Handling

tra_int()

return

tra_wait_dwncnt－－

tra_wait_dwncnt = 0 ?

= 0 (time measurement completed)

≠ 0 (time measurement in progress)

tstart_tracr ← 0 Stop timer RA count.

Update variable for timer counting.

Figure 4.28 Timer RA Interrupt Handling

R8C/35C Group I2C Communication for Issuing Restart Condition

R01AN3378EJ0100 Rev.1.00 Page 45 of 45
May 11, 2017

5. Sample Program
Sample code can be downloaded from the Renesas Electronics website.

6. Reference Documents
R8C/35C Group User’s Manual Hardware Rev.1.00

The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

Website and Support
Renesas Electronics website

http://japan.renesas.com/

Inquiries

http://japan.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://japan.renesas.com/
http://japan.renesas.com/inquiry

A-1

Revision History

Rev. Date
Description
Page Summary

1.00 May 11, 2017 ― First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as
well as any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of Microprocessing unit or Microcontroller unit products in the same group but

having a different part number may differ in terms of the internal memory capacity, layout pattern,
and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a
product with a different part number, implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages

incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas

Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them

against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and

software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty

for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and

regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all

these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction,

such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development,

design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics

products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting,

selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the

countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice,

and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2017 Renesas Electronics Corporation. All rights reserved.
Colophon 6.0

(Rev.3.0-1 November 2016)

	Contents
	1. Abstract
	2. Introduction
	3. Application Example
	3.1 Program Outline
	3.1.1 Peripheral Functions
	3.1.2 Notes on Using the Attached Sample Program

	3.2 Memory

	4. Software
	4.1 Usage Variables
	4.2 Function Tables
	4.3 Main Processing
	4.4 System Clock Setting
	4.5 Initial Setting of I/O Ports
	4.6 Initial Setting of I2C Bus Interface
	4.7 Initial Setting of Timer RA
	4.8 Initializing Color Sensor
	4.9 Copying Communication Parameters
	4.10 Starting I2C Communication
	4.11 Issuing Start Condition
	4.12 Issuing Stop Condition
	4.13 Resetting Color Sensor
	4.14 Waiting for Light Intensity Measurement Completion
	4.15 Starting Timer RA Operation
	4.16 Reading Measurement Data
	4.17 Processing Measurement Results
	4.18 Waiting for Communication Restart
	4.19 Processing I2C Communication Error
	4.20 I2C bus Interface Interrupt Handling
	4.21 Data Transmission
	4.22 Continuous Data Transmission
	4.23 Reception Settings
	4.24 Data Reception
	4.25 Communication Error End Processing
	4.26 Timer RA Interrupt Handling

	5. Sample Program
	6. Reference Documents
	Website and Support
	Revision History

