To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depend on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 - “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - “Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
R8C/35C Group
A/D Converter in Single Sweep Mode

1. Abstract

This document describes the setting method and an application example for inputting an analog voltage by A/D converter (single sweep mode) on R8C/35C Group.

2. Introduction

The application example described in this document applies to the following MCU and parameters.

- MCU : R8C/35C Group
- VCC/AVCC, VREF : 5 V

The sample program in this application note can be used with other R8C Family MCUs which have the same special function registers (SFRs) as the above group. Check the manual for any modifications to functions. Careful evaluation is recommended before using this application note.
3. Application Example

3.1 Program Outline

Perform A/D conversion on the analog voltage which is input from the analog input pins (two pins).

Main settings
- Select P0_6/AN1 pin and P0_7/AN0 pin for analog input
- Select single sweep mode as the A/D operating mode
- Select f1 as the clock source of fAD
- Select fAD divided-by-2 as the φAD operation clock
- Select 10 bits resolution
- Select a software trigger as the A/D conversion start condition
- Disable the A/D open-circuit detection assist function

Figure 3.1 shows the block diagram, and Figure 3.2 shows the operation in single sweep mode. Table 3.1 lists the pins used and their functions.

![Block Diagram](image1)

Figure 3.1 Block Diagram

![Operation Diagram](image2)

Figure 3.2 Operation in Single Sweep Mode
Table 3.1 Pins and Functions

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>I/O</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0_6/AN1</td>
<td>Input</td>
<td>A/D input 1</td>
</tr>
<tr>
<td>P0_7/AN0</td>
<td>Input</td>
<td>A/D input 0</td>
</tr>
</tbody>
</table>

3.2 Memory

Table 3.2 Memory

<table>
<thead>
<tr>
<th>Memory</th>
<th>Size</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROM</td>
<td>197 bytes</td>
<td>In the rej05b1332_src.c module</td>
</tr>
<tr>
<td>RAM</td>
<td>4 bytes</td>
<td>In the rej05b1332_src.c module</td>
</tr>
<tr>
<td>Maximum user stack</td>
<td>12 bytes</td>
<td></td>
</tr>
<tr>
<td>Maximum interrupt stack</td>
<td>0 bytes</td>
<td></td>
</tr>
</tbody>
</table>

Memory size varies depending on the C compiler version and compile options. The above applies to the following conditions:

- C compiler: M16C/60, 30, 20, 10, and Tiny and R8C/Tiny Series Compiler V5.45 Release 00
- Compile option: -c -finfo -dir "$(CONFIGDIR)" -R8C
4. Software

This section shows the initial setting procedures and values to set the example described in section 3. Application Example. Refer to the latest R8C/35C Group Hardware Manual for details on individual registers.

The × in the register’s Setting Value represents bits not used in this application, blank spaces represent bits that do not change, and the dash represents reserved bits or bits that have nothing assigned.

4.1 Function Tables

<table>
<thead>
<tr>
<th>Declaration</th>
<th>void mcu_init(void)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outline</td>
<td>System clock setting</td>
</tr>
<tr>
<td>Argument</td>
<td>Argument name</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Variable (global)</td>
<td>Variable name</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Returned value</td>
<td>Type</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Function</td>
<td>The system clock (high-speed on-chip oscillator) is set.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Declaration</th>
<th>void ad_init(void)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outline</td>
<td>A/D conversion initial setting</td>
</tr>
<tr>
<td>Argument</td>
<td>Argument name</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Variable (global)</td>
<td>Variable name</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Returned value</td>
<td>Type</td>
</tr>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Function</td>
<td>Set the SFR registers to use A/D conversion in single sweep mode.</td>
</tr>
</tbody>
</table>
4.2 Main Function

- Flowchart

```
main()

asm("FCLR I")

System clock setting
mcu_init()

A/D conversion initial setting
ad_init()

(1) adst ← 1

Repeat
i ← 0 ; i < 10 ; i++

(2) Yes
   adst = 1 ?

   No (A/D conversion is completed)

   (3) ad_data[0] ← 0x03ff & ad0

   Read AD0 register.

   (4) ad_data[1] ← 0x03ff & ad1

   Read AD1 register.
```

- Register Setting

(1) Start A/D conversion.

A/D Control Register 0 (ADCON0)

<table>
<thead>
<tr>
<th>Setting Value</th>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Symbol</th>
<th>Bit Name</th>
<th>Function</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>b0</td>
<td>ADST</td>
<td>A/D conversion start flag</td>
<td>1: Start A/D conversion</td>
<td>R/W</td>
</tr>
</tbody>
</table>

(2) Wait until A/D conversion is completed.

(3) Read the A/D conversion result in AN0.

(4) Read the A/D conversion result in AN1.
4.3 System Clock Setting

- Flowchart

```
mcu_init()

(1) prc0 ← 1

(2) cm14 ← 0

(3) fra2 ← 0x00

(4) fra00 ← 1

(5) Repeat
   (i <= 240)

   i++

   Wait until oscillation stabilizes.

(6) fra01 ← 1

(7) ocd2 ← 1

(8) cm1 ← cm1 & 0x3f

(9) cm06 ← 0

(10) prc0 ← 0

return
```

- Disable system control register protection.
- Start the low-speed on-chip oscillator.
- High-speed on-chip oscillator clock divide-by-2 mode
- Start the high-speed on-chip oscillator.
- Select the high-speed on-chip oscillator.
- The on-chip oscillator clock is selected as the system clock.
- System clock no division
- Enable bits CM17 and CM16.
- Enable system control register protection.
Register Setting

(1) Enable writing to registers CM0, CM1, CM3, OCD, FRA0, FRA1, FRA2, and FRA3.

Protect Register (PRCR)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Symbol</th>
<th>Bit Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>b0</td>
<td>PRC0</td>
<td>Protect bit 0</td>
<td>Enables writing to registers CM0, CM1, CM3, OCD, FRA0, FRA1, FRA2, and FRA3. 1: Write enabled</td>
</tr>
</tbody>
</table>

(2) Start the low-speed on-chip oscillator.

System Clock Control Register 1 (CM1)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Symbol</th>
<th>Bit Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>b4</td>
<td>CM14</td>
<td>Low-speed on-chip oscillator stop bit</td>
<td>0: Low-speed on-chip oscillator on</td>
</tr>
</tbody>
</table>

(3) Set the divide ratio of the high-speed on-chip oscillator.

High-Speed On-Chip Oscillator Control Register 2 (FRA2)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Symbol</th>
<th>Bit Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>b0</td>
<td>FRA00</td>
<td>High-speed on-chip oscillator enable bit</td>
<td>1: High-speed on-chip oscillator on</td>
</tr>
</tbody>
</table>

(4) Start the high-speed on-chip oscillator.

High-Speed On-Chip Oscillator Control Register 2 (FRA2)

(5) Wait until oscillation stabilizes.
(6) Select the high-speed on-chip oscillator.

High-Speed On-Chip Oscillator Control Register 0 (FRA0)

<table>
<thead>
<tr>
<th>Bit Symbol</th>
<th>Bit Name</th>
<th>Function</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1</td>
<td>FRA01</td>
<td>High-speed on-chip oscillator select bit</td>
<td>R/W</td>
</tr>
</tbody>
</table>

(7) Select the on-chip oscillator clock as a system clock.

Oscillation Stop Detection Register (OCD)

<table>
<thead>
<tr>
<th>Bit Symbol</th>
<th>Bit Name</th>
<th>Function</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>b2</td>
<td>OCD2</td>
<td>System clock select bit</td>
<td>R/W</td>
</tr>
</tbody>
</table>

(8) Set CPU clock division select bit 1.

System Clock Control Register 1 (CM1)

<table>
<thead>
<tr>
<th>Bit Symbol</th>
<th>Bit Name</th>
<th>Function</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>b6</td>
<td>CM16</td>
<td>CPU clock division select bit 1</td>
<td>R/W</td>
</tr>
<tr>
<td>b7</td>
<td>CM17</td>
<td>CPU clock division select bit 1</td>
<td>R/W</td>
</tr>
</tbody>
</table>

(9) Set CPU clock division select bit 0.

System Clock Control Register 0 (CM0)

<table>
<thead>
<tr>
<th>Bit Symbol</th>
<th>Bit Name</th>
<th>Function</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>b6</td>
<td>CM06</td>
<td>CPU clock division select bit 0</td>
<td>R/W</td>
</tr>
</tbody>
</table>

(10) Disable writing to registers CM0, CM1, CM3, OCD, FRA0, FRA1, FRA2, and FRA3.

Protect Register (PRCR)

<table>
<thead>
<tr>
<th>Bit Symbol</th>
<th>Bit Name</th>
<th>Function</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>b0</td>
<td>PRC0</td>
<td>Protect bit 0</td>
<td>R/W</td>
</tr>
</tbody>
</table>
4.4 A/D Conversion Initial Setting

- Flowchart

```
ad_init()

(1) work ← pd0 & 0x3f
    Read PD0 register.

(2) prc2 ← 1
    Disable PD0 register protect.

(3) pd0 ← work
    P0_6/AN1, P0_7/AN0: Set as input port

(4) adic ← 0x00
    Disable A/D conversion interrupt.

(5) adcon0 ← 0x00
    Stop A/D conversion.

(6) prc3 ← 1
    Disable the protects to registers OCVREFCR, VCA2, VD1LS, VW0C, VW1C, and VW2C.

(7) ocvrefan ← 0
    On-chip reference voltage to analog input connect: cut off

(8) prc3 ← 0
    Enable the protects to registers OCVREFCR, VCA2, VD1LS, VW0C, VW1C, and VW2C.

(9) admod ← 0x22
    Division: fAD divided by 2
    Clock source: f1
    Select single sweep mode
    A/D conversion trigger: software trigger

    Repeat
    i ← 0 ; i < 10 ; i++

    When the CKS2 bit is changed, wait for 3 φAD cycles or more before starting A/D conversion.

(10) adinsel ← 0x00
    A/D sweep pin count: 2 pins
    Select port 0 group

(11) adcon1 ← 0x30
    Extended analog input pin not selected
    8/10-bit mode: 10-bit mode
    A/D standby: A/D operation enabled
    Disable A/D open-circuit detection assist function

    Repeat
    i ← 0 ; i < 10 ; i++

    When the ADSTBY bit is changed from 0 (A/D operation stops) to 1 (A/D operation enabled), wait for 1 φAD cycle or more before starting A/D conversion.

return
```
Register Setting

1. Read the PD0 register.

2. Enable writing to the PD0 register.

Protect Register (PRCR)

3. Set P0_6 and P0_7 direction bits as input ports.

Port P0 Direction Register (PD0)

Interrupt Control Register (ADIC)

5. Stop A/D conversion.

A/D Control Register 0 (ADCON0)
(6) Enable writing to the registers OCVREFCR, VCA2, VD1LS, VW0C, VW1C, and VW2C.

Protect Register (PRCR)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Symbol</th>
<th>Bit Name</th>
<th>Function</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>b3</td>
<td>PRC3</td>
<td>Protect bit 3</td>
<td>Enables writing to registers OCVREFCR, VCA2, VD1LS, VW0C, VW1C, and VW2C. 1: Write enabled</td>
<td>R/W</td>
</tr>
</tbody>
</table>

(7) Cut off on-chip reference voltage from the analog input.

On-Chip Reference Voltage Control Register (OCVREFCR)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Symbol</th>
<th>Bit Name</th>
<th>Function</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>b0</td>
<td>OCVREFAN</td>
<td>On-chip reference voltage to analog input connect bit</td>
<td>0: On-chip reference voltage and analog input are cut off</td>
<td>R/W</td>
</tr>
</tbody>
</table>

(8) Disable writing to the registers OCVREFCR, VCA2, VD1LS, VW0C, VW1C, and VW2C.

Protect Register (PRCR)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Symbol</th>
<th>Bit Name</th>
<th>Function</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>b3</td>
<td>PRC3</td>
<td>Protect bit 3</td>
<td>Enables writing to registers OCVREFCR, VCA2, VD1LS, VW0C, VW1C, and VW2C. 0: Write disabled</td>
<td>R/W</td>
</tr>
</tbody>
</table>

(9) Set the A/D mode register.

A/D Mode Register (ADMOD)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Symbol</th>
<th>Bit Name</th>
<th>Function</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>b0</td>
<td>CKS0</td>
<td>Division select bit</td>
<td>b1 b0: fAD divided by 2</td>
<td>R/W</td>
</tr>
<tr>
<td>b1</td>
<td>CKS1</td>
<td></td>
<td>1 0: Select f1</td>
<td>R/W</td>
</tr>
<tr>
<td>b2</td>
<td>CKS2</td>
<td>Clock source select bit</td>
<td>0: Select f1</td>
<td>R/W</td>
</tr>
<tr>
<td>b3</td>
<td>MD0</td>
<td>A/D operating mode select bit</td>
<td>b5 b4 b3 1 0 0: Single sweep mode</td>
<td>R/W</td>
</tr>
<tr>
<td>b4</td>
<td>MD1</td>
<td></td>
<td>1 0 0: Single sweep mode</td>
<td>R/W</td>
</tr>
<tr>
<td>b5</td>
<td>MD2</td>
<td></td>
<td>0 0 0: A/D conversion start by software trigger (ADST bit in the ADCON0 register)</td>
<td>R/W</td>
</tr>
<tr>
<td>b6</td>
<td>ADCAP0</td>
<td>A/D conversion trigger select bit</td>
<td>b7 b6</td>
<td>R/W</td>
</tr>
<tr>
<td>b7</td>
<td>ADCAP1</td>
<td></td>
<td>0 0</td>
<td>R/W</td>
</tr>
</tbody>
</table>
(10) Select the A/D sweep pin count as 2 pins and A/D input group as port P0.

A/D Input Select Register (ADINSEL)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Symbol</th>
<th>Bit Name/Function</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>b4</td>
<td>SCAN0</td>
<td>A/D sweep pin count select bits b4 b5 0 0: 2 pins</td>
<td>R/W</td>
</tr>
<tr>
<td>b5</td>
<td>SCAN1</td>
<td>A/D input group select bits b7 b6 0 0: Port P0 group selected</td>
<td>R/W</td>
</tr>
</tbody>
</table>

(11) Set the A/D control register 1.

A/D Control Register 1 (ADCON1)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Symbol</th>
<th>Bit Name/Function</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>b0</td>
<td>ADEX0</td>
<td>Extended analog input pin select bit 0: Extended analog input pin not selected</td>
<td>R/W</td>
</tr>
<tr>
<td>b4</td>
<td>BITS</td>
<td>8/10-bit mode select bit 1: 10-bit mode</td>
<td>R/W</td>
</tr>
<tr>
<td>b5</td>
<td>ADSTBY</td>
<td>A/D standby bit 1: A/D operation enabled</td>
<td>R/W</td>
</tr>
<tr>
<td>b6</td>
<td>ADDDAEN</td>
<td>A/D open-circuit detection assist function enable bit 0: Disabled</td>
<td>R/W</td>
</tr>
</tbody>
</table>
5. Sample Program

A sample program can be downloaded from the Renesas Technology website.
To download, click “Application Notes” in the left-hand side menu of the R8C Family page.

6. Reference Documents

Hardware Manual
R8C/35C Group Hardware Manual Rev.0.10
The latest version can be downloaded from the Renesas Technology website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Technology website.
Website and Support

Renesas Technology website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
csc@renesas.com

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Oct 22, 2009</td>
<td>– First Edition issued</td>
</tr>
</tbody>
</table>

All trademarks and registered trademarks are the property of their respective owners
Notes regarding these materials

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military application such as the development of weapons of mass destruction or for any purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

© 2009. Renesas Technology Corp., All rights reserved. Printed in Japan.