Abstract
This document describes a method for using the DMA controller (DMAC) in single transfer mode with the R32C/100 Series.

Products
MCUs: R32C/116 Group, R32C/117 Group, and R32C/118 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.
Contents

1. Specifications ... 3
2. Operation Confirmation Conditions .. 4
3. Reference Application Notes .. 4
4. Hardware .. 4
 4.1 Pin Used ... 4
5. Software ... 5
 5.1 Operation Overview ... 5
 5.2 Invariable Table .. 6
 5.3 Variable Table .. 7
 5.4 Flowcharts .. 7
 5.4.1 Main Processing ... 7
 5.4.2 DMAC Initial Setting ... 8
6. Sample Code .. 9
7. Reference Documents .. 9
8. Website and Support ... 9
1. Specifications

Direct Memory Access (DMA) is a system that can control data transfer without using the CPU. The R32C/100 Series’ four channel DMAC transmits 8-bit (byte), 16-bit (word), or 32-bit (long word) data in cycle-steal mode from a source address to a destination address every time a transfer request is generated.

Table 1.1 lists the Peripheral Function and Its Application. Figure 1.1 and Figure 1.2 show the Block Diagram and Bus Timing, respectively.

Table 1.1 Peripheral Function and Its Application

<table>
<thead>
<tr>
<th>Peripheral Function</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMAC (DMA0)</td>
<td>Data transfer</td>
</tr>
</tbody>
</table>

![Figure 1.1 Block Diagram](image)

During DMA transfer, the CPU gives up the bus.

![Figure 1.2 Bus Timing](image)

Transfer data without a CPU instruction.

The CPU cannot execute instructions during DMA transfer.
2. Operation Confirmation Conditions

The sample code accompanying this application note has been run and confirmed under the conditions below.

<table>
<thead>
<tr>
<th>Table 2.1 Operation Confirmation Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>MCU used</td>
</tr>
<tr>
<td>Operating frequencies</td>
</tr>
<tr>
<td>Operating voltage</td>
</tr>
<tr>
<td>Integrated development environment</td>
</tr>
<tr>
<td>C compiler</td>
</tr>
<tr>
<td>Compile options</td>
</tr>
<tr>
<td>Operating mode</td>
</tr>
<tr>
<td>Sample code version</td>
</tr>
<tr>
<td>Board used</td>
</tr>
</tbody>
</table>

3. Reference Application Notes

The application notes associated with this application note are listed below. Refer to the following application notes for additional information.

- R32C/100 Series Configuring PLL Mode (REJ05B1221-0100)
- R32C/100 Series Configuring DMAC (REJ05B1220-0100)

4. Hardware

4.1 Pin Used

Table 4.1 lists the Pin Used and Its Function.

<table>
<thead>
<tr>
<th>Table 4.1 Pin Used and Its Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin Name</td>
</tr>
<tr>
<td>P8_2/INT0</td>
</tr>
</tbody>
</table>
5. **Software**

5.1 **Operation Overview**

DMA0 is activated to perform memory-to-memory transfer. In this application note, set the falling edge of \(\text{INT0} \) as a trigger for DMA.

(1) **DMAC initial settings**

Set DMAC operation and a trigger for DMA. Also set the \(\text{INT0} \) pin to use the \(\text{INT0} \) interrupt as a trigger for DMA.

Settings for DMA0 are as follows:
- Transfer mode: Single transfer
- Transfer size: 8 bits
- Source addressing: Increment
- Destination addressing: Fixed
- Transfer counter (DCT0 register): Five times
- Source address (DSA0 register): Start address of source data (400h)
- Destination address (DDA0 register): Destination address (1000h)
- Select a trigger for DMA: \(\text{INT0} \) falling edge

(2) **When a DMA trigger (\(\text{INT0} \) falling edge) is generated**

When the falling edge of a signal is applied to the \(\text{INT0} \) pin, data is DMA transferred from the address specified by the DSA0 register to the address specified by the DDA0 register. After the DMA transfer, 1 is subtracted from the DCT register and 1 is added to the DSA0 register. \(^{(1)}\)

When the DCT0 register becomes 000000h, DMA transfer is not performed even if a DMA trigger is generated.

Note:

1. When the transfer size is 8 bits. When the transfer size is 16 bits, 2 is added.
Figure 5.1 shows a DMA Transfer Operation Example.

<table>
<thead>
<tr>
<th>Invariable Name</th>
<th>Setting Value</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEST_ADDRESS</td>
<td>1000h</td>
<td>DMA destination address</td>
</tr>
<tr>
<td>TRANS_COUNT</td>
<td>5</td>
<td>Number of DMA transfers</td>
</tr>
</tbody>
</table>

5.2 Invariable Table

Table 5.1 lists the Invariables Used in the Sample Code.
5.3 Variable Table

Table 5.2 lists the Global Variable.

Table 5.2 Global Variable

<table>
<thead>
<tr>
<th>Type</th>
<th>Variable Name</th>
<th>Contents</th>
<th>Function Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsigned char</td>
<td>data[]</td>
<td>DMA transfer source data (11h, 22h, 33h, 44h, and 55h)</td>
<td>DMAC_init</td>
</tr>
</tbody>
</table>

5.4 Flowcharts

5.4.1 Main Processing

Figure 5.2 shows the Main Processing.

![Figure 5.2 Main Processing](image-url)
5.4.2 DMAC Initial Setting

Figure 5.3 shows the DMAC Initial Setting.

```
DMAC_init

(1) Disable DMA0 transfer
   Bits MD01 and MD00 ← 00b : Disable DMA transfer.

(2) Set DMA0 register
   DMD0 register ← 00000010h
      Bits BW01 and BW00 = 00b : Set transfer size to 8 bits.
      USA0 bit = 1 : Set source addressing mode to incrementing addressing.
      UDA0 bit = 0 : Set destination addressing mode to non-incrementing addressing.

   DM0SL register ← 01h
      Bits DSEL4 to DSEL0 = 0001b : Set the falling edge of INT0 as a trigger for DMA0.
      DM0SL2 register ← 00h
      Bits DSEL24 to DSEL20 = 0000b
      DSR bit = 0
      DCT0 register ← TRANS_COUNT : Set the number of transfers.
      DDA0 register ← DEST_ADDRESS : Set the destination address.
      DSA0 register ← Starting address of the source address area
      DM0IC register ← 00h : Disable the DMA0 interrupts.

   USA0 bit = 1 : Set source addressing mode to incrementing addressing.
   UDA0 bit = 0 : Set destination addressing mode to non-incrementing addressing.

(3) Wait six or more peripheral clocks

(4) Set DMA0 mode register
   DMD0 register ← 00000011h
      Bits MD01 and MD00 = 01b : Single transfer

(5) Set DMA0 transfer mode

   return
```

Figure 5.3 DMAC Initial Setting
6. **Sample Code**
 Sample code can be downloaded from the Renesas Electronics website.

7. **Reference Documents**
 - R32C/118 Group User's Manual: Hardware Rev.1.10
 The latest versions can be downloaded from the Renesas Electronics website.

 Technical Update/Technical News
 The latest information can be downloaded from the Renesas Electronics website.

 - C Compiler Manual
 - R32C/100 Series C Compiler Package V.1.02
 - C Compiler User’s Manual Rev.2.00
 The latest version can be downloaded from the Renesas Electronics website.

8. **Website and Support**
 - Renesas Electronics website
 http://www.renesas.com/

 Inquiries
 http://www.renesas.com/inquiry
Revision History

R32C/100 Series
Using DMAC in Single Transfer Mode

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Page</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Jan. 31, 2011</td>
<td>—</td>
<td>First edition issued</td>
</tr>
</tbody>
</table>

All trademarks and registered trademarks are the property of their respective owners.
General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
 Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
 The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
 Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
 After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.
 - When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
 Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.
 - The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No licenses, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application example. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depend on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall have no liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failures at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of reconfigurable computer alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES
Renesas Electronics Corporation

Refer to "http://www.renesas.com" for the latest and detailed information.

Renesas Electronics America Inc.
2800 South Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6600, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1301 Richardson Road Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-998-3441, Fax: +1-905-998-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Boxme End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH
Antoniusgrun 10, 40572 Dusseldorf, Germany
Tel: +49-211-65020, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhZhouLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8255-1153, Fax: +86-10-8255-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6687-7888 / 7898

Renesas Electronics Hong Kong Limited
12/F, 18/F, 19/F, Li Sun Centre, 8 Cyberport, Hong Kong
Tel: +852-2886-9318, Fax: +852-2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesa Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +603-7955-0430, Fax: +603-7955-8510

Renesas Electronics Korea Co., Ltd.
17F, Samil Building, 72-7-2, Teoksan-Dong, Gangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2011 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0