

R32C/100 Series Remote Control Signal Reception Using the Intelligent I/O

R01AN0954EJ0100 Rev. 1.00 July 31, 2013

Abstract

This document describes receiving signals from a remote control using the time measurement function of the intelligent I/O in the R32C/118 Group.

The time measurement function of the intelligent I/O in the R32C/118 Group can use up to 16 channels - channel 0 to channel 7 in group 0, and channel 0 to channel 7 in group 1. The document uses channel 0 in group 1. When using a channel other than channel 0 in group 1, refer to the User's Manual: Hardware and modify the registers associated with the channel and group used.

Products

R32C/116 Group R32C/117 Group R32C/118 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.

Contents

1.	Sp	ecifications	3
2.	Op	peration Confirmation Conditions	4
3.	Re	ference Application Notes	4
4.	Pe	ripheral Functions	5
4.1	-	Overview of the Time Measurement Function	
5.	На	Irdware	5
5.1	-	Pins Used	
6.	So	ftware	6
6.1		Operation Overview	
6.1	1.1	Intelligent I/O	6
6.1	1.2	Timers	6
6.1	1.3	Remote Control Data Detection Specifications	7
6.2		Constants	9
6.3		Variables	10
6.4		Functions	11
6.5		Function Specifications	11
6.6		Flowcharts	15
6.6	5.1	Main Processing	15
6.6	5.2	Initial Settings of the Intelligent I/O	
6.6	5.3	Timer A0 Initialization	
6.6	5.4	Timer A1 Initialization	17
6.6	5.5	Receive Data Settings	18
6.6	6.6	Time Over Settings	
6.6	6.7	Pulse Value Settings	19
6.6	5.8	Receive Data Determination Processing	20
6.6		Receive Data Range Check	
6.6	5.10		
6.6	5.11	Inverted Data Code Buffer Settings	
6.6	5.12	Inverted Data Code Comparison	
7.	Ap	pendix	29
7.1		Overview of the Remote Control Signal Reception	29
8.	Sa	mple Code	30
9.	Re	eference Documents	30

1. Specifications

An infrared signal is transmitted from a remote control, and the remote control receiver converts the infrared signal to an electrical signal (remote control waveform). The waveform received from the remote control is recognized as transmit data after the remote control waveform pulse width is measured by the time measurement function of the intelligent I/O.

Table 1.1 lists the Peripheral Functions and Their Applications. Figure 1.1 shows the Outline Block Diagram of Remote Control Signal Reception.

Table 1.1 Peripheral Functions and Their Applications

Peripheral Function	Application
Time measurement function of the intelligent I/O (channel 0 in group 1)	Remote control waveform pulse width measurement
Timer A0	1 frame timer measurement for a timer A1 event count
Timer A1	1 frame timer measurement

Figure 1.1 Outline Block Diagram of Remote Control Signal Reception

2. Operation Confirmation Conditions

The sample code accompanying this application note has been run and confirmed under the conditions below.

Item	Contents		
MCU used	R5F64189DFD (R32C/118 Group)		
Operating frequencies	XIN clock: 16 MHz PLL clock: 100 MHz Base clock: 50 MHz CPU clock: 50 MHz Peripheral bus clock: 25 MHz Peripheral clock: 25 MHz		
Operating voltage	5 V		
Integrated development environment Renesas Electronics Corporation			
C compiler	Renesas Electronics Corporation R32C/100 Series C Compiler V.1.02 Release 01 Compile options -DSTACKSIZE=0X300 -D_ISTACKSIZE_=0X300 -DVECTOR_ADR=0x0FFFFBDC -c -finfo -dir "\$(CONFIGDIR)" The default setting is used in the integrated development environment.		
Operating mode Single-chip mode			
Sample code version	1.00		
Board used Renesas Starter Kit for R32C/118 (device part no.: R0K564			

 Table 2.1
 Operation Confirmation Conditions

3. Reference Application Notes

Application notes associated with this application note are listed below. Refer to these application notes for additional information.

- R32C/100 Series Configuring PLL Mode (REJ05B1221)
- R32C/100 Series Pulse-Width Measurement Using the Time Measurement Function of Intelligent I/O Groups 0 and 1 (R01AN0096EJ)

4. Peripheral Functions

4.1 Overview of the Time Measurement Function

The time measurement function of the intelligent I/O synchronizes with the external trigger input and stores the base timer value to the GiTMj register (i = 0, 1; j = 0 to 7). Figure 4.1 shows an Example of Measuring the Pulse Width of a Remote Control Waveform Using the Time Measurement Function.

Figure 4.1 Example of Measuring the Pulse Width of a Remote Control Waveform Using the Time Measurement Function

5. Hardware

5.1 Pins Used

Table 5.1 lists the Pin Used and Its Function.

Table 5.1 Pin Used and Its Function

Pin Name	I/O	Function
P7_3/IIO1_0	Input	Input remote control waveforms

6. Software

6.1 **Operation Overview**

The sample code accompanying this document uses the time measurement function (channel 0 in group 1) of the intelligent I/O to measure the pulse width of a remote control waveform input from the remote control receiver. Also, timer A0 and timer A1 are used to measure one frame from the leader code of the input remote control waveform.

6.1.1 Intelligent I/O

Table 6.1 lists the Settings for the Time Measurement Function (Channel 0 in Group 1) of the Intelligent I/O.

Table 6.1Settings for the Time Measurement Function (Channel 0 in Group 1) of the IntelligentI/O

Item	Setting
Count source	f1
Count source divide ratio	Divided by 50
Base timer reset source	Not used
Increment/decrement control	Increment mode
Time measurement trigger	Both edges
Digital filter	Not used
IIO1_0 input pin	P7_3 used
Base timer interrupt	Not used
Intelligent I/O group 1 time measurement function channel 0 interrupt	Not used

6.1.2 Timers

Set timer A0 to timer mode, and set timer A1 to event counter mode (count the number of timer A0 underflows). Table 6.2 lists the Timer A0 Settings and Table 6.3 lists Timer A1 Settings.

Table 6.2Timer A0 Settings

Item	Setting
Operating mode	Timer mode
Count source	f1
Gate function	Gate function not used
Count setting value	25000 - 1 (1 ms)
Timer A0 interrupt	Not used

Table 6.3Timer A1 Settings

Item	Setting
Operating mode	Event counter mode
Count operation type	Reloading
Increment/decrement select	Decrement
Timer A1 event/trigger select	Overflow or underflow of timer A0
Count setting value	140 - 1 (140 × 1 ms [timer A0 underflow] = 140 ms)
Timer A1 interrupt	Not used

6.1.3 Remote Control Data Detection Specifications

Remote control data transmitted to the receiver is processed according to the following specifications:

- For the first data, reception is determined to be complete when one frame (i.e. the interval from the leader code through the frame space) is received within 108 ms. One frame here is the leader code, custom code (8 bits), inverted custom code (8 bits), data code (8 bits), inverted data code (8 bits), stop bit (1 bit), and the frame space (interval where there is no infrared transmission).
- For the second and subsequent data, reception is determined to be complete when one frame is received within 108 ms. Here, one frame of the frame space is the leader code and a stop bit (1 bit).
- For each code, code recognition is determined to be complete if the error is within ±30% of the remote control data format value. The same applies to one frame is within 108 ms +30%.
- When the leader code is detected, detection takes place in the order of custom code, data code, stop bit, and frame space.
- If a receive error occurs on each code, the next rising or falling edge is determined as the leader code (first data) and reception starts.
- When one frame (including the +30% error) or more has elapsed after the leader code, if the frame space is being recognized in the received data, reception is determined to be complete.
- When the leader code after the frame space is detected within one frame (including the +30% error), the detected received data is recognized as the second or subsequent data. (The first leader code may be received within one frame after the frame space as the +30% error is included.)

Figure 6.1 shows the Remote Control Data Format.

Figure 6.1 Remote Control Data Format

Figure 6.2 shows Enlargements of Each Code.

Figure 6.2 Enlargements of Each Code

Table 6.4 lists the Recognition Range by Code.

Table 6.4 Recognition Range by Code

Code Name	Code Recognition Range ⁽¹⁾
Leader code high	6.3 to 11.70 ms
Leader code low	3.15 to 5.85 ms
Custom code high	0.392 to 0.728 ms
Custom code (0 data) low	0.392 to 0.728 ms
Custom code (1 data) low	1.184 to 2.196 ms
Data code high	0.392 to 0.728 ms
Data code (0 data) low	0.392 to 0.728 ms
Data code (1 data) low	1.184 to 2.196 ms
Stop bit	0.392 to 0.728 ms
Frame space	28.35 to 52.65 ms
Leader code high (repeat)	6.3 to 11.70 ms
Leader code low (repeat)	1.576 to 2.924 ms
Stop bit (repeat)	0.392 to 0.728 ms
Frame space (repeat)	67.334 to 125.046 ms

Note:

^{1.} fBT1 = count source f1 (25 MHz) divided by 50: The code can be recognized if the value is within a $\pm 30\%$ error range of the remote control data format value.

6.2 Constants

Table 6.5 lists the Constants Used in the Sample Code.

Constant Name	Setting Value	Contents
ОК	0	OK (function return value)
NG	1	NG (function return value)
IDLE	0	Measurement standby
LEADER_CODE_H	1	Leader code high interval measured
LEADER_CODE_L	2	Leader code low interval measured
CUSTM_CODE_H	3	Custom code high interval measured
CUSTM_CODE_L	4	Custom code low interval measured
DATA_CODE_H	5	Data code high interval measured
DATA_CODE_L	6	Data code low interval measured
STOP_BIT	7	Stop bit interval measurement
FRAMESPACE	8	Frame space interval measurement
RE_LEADER_CODE_H	9	Leader code high interval (repeat) measured
RE_LEADER_CODE_L	10	Leader code low interval (repeat) measured
RE_STOP_BIT	11	Stop bit interval (repeat) measurement
RE_FRAMESPACE	12	Frame space interval (repeat) measurement
LEADER_CODE_H_POS	0	Sequence position of the leader code high interval recognition range value
LEADER_CODE_L_POS	1	Sequence position of the leader code low interval recognition range value
CUSTM_H_POS	_H_POS 2 Sequence position of the custom code high interval recognition rar	
CUSTM_0_L_POS	3	Sequence position of the custom code (0 data) low interval recognition
	-	range value Sequence position of the custom code (1 data) low interval recognition
CUSTM_1_L_POS	4	range value
DATA_H_POS	5	Sequence position of the data code high interval recognition range value
DATA_0_L_POS	6	Sequence position of the data code (0 data) low interval recognition range value
DATA_1_L_POS	7	Sequence position of the data code (1 data) low interval recognition range value
STOP_BIT_POS	8	Sequence position of the stop bit interval recognition range value
FRAMESPACE_POS	9	Sequence position of the frame space interval recognition range value
RE_LEADER_CODE_H_POS	10	Sequence position of the leader code high interval (repeat) recognition range value
RE_LEADER_CODE_L_POS	11	Sequence position of the leader code low interval (repeat) recognition range value
RE_STOP_BIT_POS	12	Sequence position of the stop bit interval (repeat) recognition range value
RE_FRAMESPACE_POS 13 Sequence position of the frame space interval (repeat) value		Sequence position of the frame space interval (repeat) recognition range value
PULSE_MAX	100	Maximum position of the base timer value storage buffer
REV_PULSE_MAX	10	Maximum position of the inverted data code verification buffer
CUSTM_MAX_BIT_CNT	16	Maximum number of bits received from the custom code
DATA_MAX_8_BIT_CNT	8	Maximum number of bits received from the data code
DATA_MAX_LOW_BIT_CNT	16	Maximum number of data code low intervals received
RCV_COMP_BIT_CNT	32	Number of bits received

Table 6.5 Constants Used in the Sample Code

6.3 Variables

Table 6.6 lists the Global Variables, Table 6.7 lists the static Variable, and Table 6.8 lists the const Variable.

Туре	Variable Name	Contents	Function Used
unsigned char	rcv_mode	Processing mode	main, rcv_data, time_over, check_code
unsigned char	pulse_cnt	Measurement result storage buffer counter	main, rcv_data, time_over, set_pulse_value, check_code
unsigned short	pulse[]	Measurement result storage buffer	time_over, set_pulse_value, check_code
unsigned char	rcv_data_cnt	Number of data received	main, rcv_data, time_over, check_code
unsigned char	rcv_bit_cnt	Number of custom data and data code bits received	main, rcv_data, check_code
unsigned char	rev_pulse[]	Buffer for verifying inverted data code	set_reversing_code, cmp_reversing_code
unsigned char	rev_cnt	Buffer counter for verifying inverted data code	main, rcv_data, judge_reversing_code, set_reversing_code, cmp_reversing_code
unsigned char	code_low_cnt	Counter for counting receive data code lows	main, rcv_data, judge_reversing_code

Table 6.6Global Variables

Table 6.7static Variable

Туре	Variable Name	Contents	Function Used
static unsigned short	old_tr	Compared value	set_pulse_value

Table 6.8const Variable

Туре	Variable Name	Contents	Function Used
const unsigned short	cmp_tbl[][]	Received code compare table • [*][0]: Format value for each interval, [*][1]: Format value ±30% error range value Example of a leader code high interval: cmp_tbl[0][0] = 4500 (9.0 ms) cmp_tbl[0][1] = 1350 (2.7 ms) Start leader code high interval Start leader code high interval (Deck is OK if the value of the measurement result storage buffer value is within this range 9.0 ms [0][0]-[0][1] [0][0]-[0][1] [0][0] (0][0]+[0][1] (6.3 ms) (9.0 ms) (11.7 ms)	check_code

6.4 Functions

Table 6.9 lists the Functions.

Function Name	Outline
main	Main processing
iio_init	Intelligent I/O initialization
timer_a0_init	Timer A0 initialization
timer_a1_init	Timer A1 initialization
rcv_data	Receive data settings
time_over	Time over settings
set_pulse_value	Pulse value settings
check_code	Receive data determination processing
cmp_pulse	Receive data range check
judge_reversing_code	Inverted data code determination
set_reversing_code	Inverted data code buffer setting
cmp_reversing_code	Inverted data code comparison

6.5 Function Specifications

The following tables list the sample code function specifications.

main	
Outline	Main processing
Header	None
Declaration	void main(void)
Description	 Maskable interrupts are disabled; the system clock, intelligent I/O, timer A0, and timer A1 are initialized; after the intelligent I/O base timer starts counting, maskable interrupts are enabled; and then the following processes are performed. (1) The time measurement function TM10R interrupt request bit is monitored, and the remote control waveform input pulse width is measured. (2) Monitor the timer A1 interrupt request flag, and time manage one frame.
Argument	None
Returned value	None

iio_init	
Outline	Intelligent I/O initialization
Header	None
Declaration	void iio_init(void)
Description	Set the time measurement function (channel 0 in group 1) of the intelligent I/O.
Argument	None
Returned value	None

timer_a0_init	
Outline	Timer A0 initialization
Header	None
Declaration	void timer_a0_init(void)
Description	Set the timer A0 operating mode to timer mode.
Argument	None
Returned value	None

timer_a1_init	
Outline	Timer A1 initialization
Header	None
Declaration	void timer_a1_init(void)
Description	Set the timer A1 operating mode to event counter mode, and set the event trigger to the underflow of timer A0.
Argument	None
Returned value	None

rcv_data	
Outline	Receive data settings
Header	None
Declaration	void rcv_data(void)
Description	 The following processes are performed depending on the mode. (1) When the processing mode is "measurement standby", "frame space interval measurement", or "frame space interval (repeat) measurement: Set the count value for timer A0 and timer A1, and start the timer. (2) When the processing mode is "leader code high interval measurement": Initialize the variable for the number of custom data and data code bits received Initialize the variable for the buffer counter for verifying inverted data code Initialize the variable for the receive data code low counter and Initialize the variable for the number of received data
Argument	None
Returned value	None

time_over	
Outline	Time over settings
Header	None
Declaration	void time_over(void)
Description	After one frame of time has elapsed, 0 is set to the measurement result storage buffer, and the processing mode is set to "measurement standby".
Argument	None
Returned value	None

set_pulse_value	
Outline	Pulse value setting
Header	None
Declaration	void set_pulse_value(void)
Description	The difference between the base timer value read from the G1TM0 register and the previous base timer value are calculated, and the value of the difference is stored in the measurement result storage buffer as the pulse width. Then, store the base timer value read from the G1TM0 register to the old_tr variable.
Argument	None
Returned value	None

check_code	
Outline	Receive data determination
Header	None
Declaration	void check_code(void)
Description	Perform the receive data range check according to the processing mode, and a determination is made to see if the processing mode conforms to the pulse width stored in the measurement result storage buffer. If the values correspond, set the following processing mode to the processing mode; if the values do not correspond, set the processing mode to "measurement standby". If the processing mode is "data code low interval measurement", then the inverted data code determination processing is performed.
Argument	None
Returned value	None

cmp_pulse	
Outline	Receive data range check
Header	None
Declaration	unsigned char cmp_pulse(unsigned short d_pulse, unsigned short hi, unsigned short low)
Description	Determine the pulse width stored in the measurement result storage buffer is within ±30% error range of the pulse width for the remote control data format.
Argument	unsigned short d_pulse: Pulse width for the remote control data format unsigned short hi: +30% of the pulse width for the remote control data format unsigned short low: -30% of the pulse width for the remote control data format
Returned value	Results OK: Within the error range NG: Outside the error range

judge_reversing_code	
Outline	Inverted data code determination
Header	None
Declaration	unsigned char judge_reversing_code(unsigned char rtn0, unsigned char rtn1)
Description	When using the "non-inverted data code low interval measurement", data for inverted data code comparison is set to the inverted data code verification buffer. When using the "inverted data code low interval measurement", the inverted data code is determined based on the data set to the inverted data code verification buffer.
Argument	unsigned char rtn0: Data code (0 data) low interval determination result OK: Data code (0 data) low interval is within the error range NG: Data code (0 data) low interval is outside the error range unsigned char rtn1: Data code (1 data) low interval determination result OK: Data code (1 data) low interval is within the error range NG: Data code (1 data) low interval is outside the error range NG: Data code (1 data) low interval is outside the error range
Returned value	Results OK: Inverted data present NG: No inverted data present

set_reversing_code				
Outline	Inverted data code buffer setting			
Header	None			
Declaration	void set_reversing_code(unsigned char rtn0, unsigned char rtn1)			
Description	When OK is the determination result for the data code (0 data) low interval, F1h is set to the inverted data code verification buffer. When OK is the determination result for the data code (1 data) low interval, F0h is set to the inverted data code verification buffer.			
Argument	unsigned char rtn0: Data code (0 data) low interval determination result OK: Data code (0 data) low interval is within the error range NG: Data code (0 data) low interval is outside the error range unsigned char rtn1: Data code (1 data) low interval determination result OK: Data code (1 data) low interval is within the error range NG: Data code (1 data) low interval is outside the error range			
Returned value	None			

cmp_reversing_code				
Outline	Comparison of inverted data code			
Header	None			
Declaration	unsigned char cmp_reversing_code(unsigned char rtn0, unsigned char rtn1)			
Description	When OK is the determination result for the data code (0 data) low interval, if F0h is set to the inverted data code verification buffer, then inverted data is determined to be preset. When OK is the determination result for the data code (1 data) low interval, F1h is set to the inverted data code verification buffer, then inverted data is determined to be preset. Other than those above, inverted data is determined to be not preset.			
Argument	unsigned char rtn0: Data code (0 data) low interval determination result OK: Data code (0 data) low interval is within the error range NG: Data code (0 data) low interval is outside the error range unsigned char rtn1: Data code (1 data) low interval determination result OK: Data code (1 data) low interval is within the error range NG: Data code (1 data) low interval is outside the error range NG: Data code (1 data) low interval is outside the error range			
Returned value	Results OK: Inverted data OK NG: Inverted data NG			

6.6 Flowcharts

6.6.1 Main Processing

Figure 6.3 shows the Main Processing.

6.6.2 Initial Settings of the Intelligent I/O

Figure 6.4 shows Initial Settings of the Intelligent I/O.

6.6.3 Timer A0 Initialization

Figure 6.5 shows Timer A0 Initialization.

Figure 6.5 Timer A0 Initialization

6.6.4 Timer A1 Initialization

Figure 6.6 shows Timer A1 Initialization.

Figure 6.6 Timer A1 Initialization

6.6.5 Receive Data Settings

Figure 6.7 shows the Receive Data Settings.

Figure 6.7 Receive Data Settings

6.6.6 Time Over Settings

Figure 6.8 shows the Time Over Settings.

Figure 6.8 Time Over Settings

6.6.7 Pulse Value Settings

Figure 6.9 shows the Pulse Value Settings.

6.6.8 Receive Data Determination Processing

Figures 6.10 to 6.23 show the receive data determination processing.

Measureme	nt standby	
		Measurement standby processing
Leader code	e high interval measurement	Processing for leader code high interval measurement
Leader code	e low interval measurement	Processing for leader code low interval measurement
Custom and	a high interval massurement	
	e high interval measurement	Processing for custom code high interval measurement
Custom cod	e low interval measurement	Processing for custom code low interval measurement
Data code h	igh interval measurement	Decociar for data and bigh interval measurement
Data anda k		Processing for data code high interval measurement
	ow interval measurement	Processing for data code low interval measurement
Stop bit inter	rval measurement	Processing for stop bit interval measurement
Frame space	e interval measurement	
		Processing for frame space interval measurement
Leader code	e high interval (repeat) measurem	Processing for leader code high interval (repeat) measu
Leader code	e low interval (repeat) measureme	ent Processing for leader code low interval (repeat) measur
Stop bit inter	rval (repeat) measurement	Processing for stop bit interval (repeat) measurement
Frame anao	a interval (ranget) maggurament	Processing for stop bit interval (repeat) measurement
Frame space	e interval (repeat) measurement	Processing for frame space interval (repeat) measurement

Figure 6.10 Receive Data Determination Processing (1/14)

Figure 6.11 Receive Data Determination Processing (2/14)

Figure 6.12 Receive Data Determination Processing (3/14)

Figure 6.13 Receive Data Determination Processing (4/14)

Figure 6.14 Receive Data Determination Processing (5/14)

Figure 6.15 Receive Data Determination Processing (6/14)

Figure 6.16 Receive Data Determination Processing (7/14)

Figure 6.17 Receive Data Determination Processing (8/14)

Figure 6.18 Receive Data Determination Processing (9/14)

Figure 6.19 Receive Data Determination Processing (10/14)

Figure 6.20 Receive Data Determination Processing (11/14)

Figure 6.21 Receive Data Determination Processing (12/14)

Figure 6.22 Receive Data Determination Processing (13/14)

Figure 6.23 Receive Data Determination Processing (14/14)

6.6.9 Receive Data Range Check

Figure 6.24 shows the Receive Data Range Check.

6.6.10 Inverted Data Code Determination

Figure 6.25 shows Inverted Data Code Determination.

Figure 6.25 Inverted Data Code Determination

6.6.11 Inverted Data Code Buffer Settings

Figure 6.26 shows the Inverted Data Code Buffer Setting.

Figure 6.26 Inverted Data Code Buffer Setting

6.6.12 Inverted Data Code Comparison

Figure 6.27 shows the Inverted Data Code Comparison.

Figure 6.27 Inverted Data Code Comparison

7. Appendix

7.1 Overview of the Remote Control Signal Reception

An infrared signal transmitted from the remote control is transmitted to the receiver at a fixed frequency (carrier frequency). As the infrared signal is weakened through diffusion at the receiver, the output of the infrared receiving element must be amplified with a preamplifier. Also, passing through a bandpass filter (BPF) allows an accurate remote control signal to be obtained by extracting only the carrier waveform element and detecting and rectifying the waveform. Also, negative logic (inverted) data is output from the infrared signal remote control preamp. In this case, the carrier frequency is set to 38 kHz.

Figure 7.1 shows a Block Diagram of the Inside of the Receiving Module where infrared signals from the remote control are received, and Figure 7.2 shows a Carrier Waveform.

Figure 7.1 Block Diagram of the Inside of the Receiving Module

Figure 7.2 Carrier Waveform

8. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

9. Reference Documents

R32C/116 Group User's Manual: Hardware Rev.1.20 R32C/117 Group User's Manual: Hardware Rev.1.20 R32C/118 Group User's Manual: Hardware Rev.1.20 The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News The latest information can be downloaded from the Renesas Electronics website.

C Compiler Manual R32C Series C Compiler Package V.1.02 C Compiler User's Manual Rev.2.00 The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website http://www.renesas.com/

Inquiries http://www.renesas.com/contact/

Revision History	R32C/100 Series
Revision history	Remote Control Signal Reception Using the Intelligent I/O

Rev.	Data	Description		
	Date	Page	Summary	
1.00	July 31, 2013	— First edition issued		

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at
 - which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do not access
 these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
 Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

— The characteristics of an MPU or MCU in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
- technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

*Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by vou or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations.
- It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

 Renesas Electronics America Inc.

 2880 Scott Boulevard Santa Ciara, CA 95050-2554, U.S.A.

 Tel: +1-408-588-6000, Fast: +1-408-588-6130

 Renesas Electronics Canada Limited

 1011 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada

 Tel: +1-905-988-5441, Fast: +1-905-988-3220

 Renesas Electronics Europe Limited

 Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

 Tel: +44-1628-651-700, Fax: +444-1628-651-804

 Renesas Electronics Europe GmbH

 Arcadiastrasse 10, 40472 Disseldorf, Germany

 Tel: +49-211-65030, Fax: +449-211-6503-1327

 Renesas Electronics (Shanghal) Co., Ltd.

 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China

 Tel: +86-10-8235-1155, Fax: +862-10-8235-7679

 Renesas Electronics (Shanghal) Co., Ltd.

 Unit 204, 205, AZIA Center, No. 1233 Lujiazui Bing Rd., Pudong District, Shanghai 200120, China

 Tel: +862-78587/7588

 Renesas Electronics Hong Kong Limited

 Unit 1601-1613, 16FL, Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

 Tel: +862-28175-9600, Fax: +862 2886-9022/9044

 Renesas Electronics Taiwan Co., Ltd.

 137, No, 383, Fu Shing Notth Road, Taipei, Taiwan

 Tel: +652-785930, Fax: +852 2886-9022/9044

 Re