
APPLICATION NOTE

R01AN1198EJ0100 Rev. 1.00 Page 1 of 31
Dec. 14, 2012

Abstract
This document describes accessing a Renesas Electronics R1EX25032ASA00A serial EEPROM using
synchronous serial interface mode.
The R32C/118 Group MCU has nine channels (UART0 to UART8) that can be used while in synchronous
serial interface mode. This application note uses UART2. When using a channel other than UART2, refer to
the User’s Manual: Hardware and rewrite the registers associated with the corresponding channel.

Products
R32C/116 Group
R32C/117 Group
R32C/118 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after
making modifications to comply with the alternate MCU.

R01AN1198EJ0100
Rev. 1.00

Dec. 14, 2012

R32C/100 Series
Accessing an EEPROM Using Synchronous Serial Interface Mode

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 2 of 31
Dec. 14, 2012

Contents

1. Specifications ... 3

2. Operation Confirmation Conditions .. 4

3. Reference Application Notes ... 4

4. Hardware ... 5

4.1 Pins Used ... 5

5. Software ... 6

5.1 Operation Overview .. 8

5.1.1 Commands for Serial Transfer ... 8

5.1.2 Command Sequence ... 8

5.1.3 Procedures for Executing EEPROM Initialization, EEPROM Write Processing, and EEPROM
Read Processing 8

5.2 Constants .. 10

5.3 Structure/Union List ...11

5.4 Variables ... 12

5.5 Functions .. 13

5.6 Function Specifications ... 14

5.7 Flowcharts .. 19

5.7.1 Main Processing .. 19

5.7.2 EEPROM Initialization Sequence Start .. 20

5.7.3 EEPROM Write Sequence Start .. 20

5.7.4 EEPROM Read Sequence Start .. 21

5.7.5 Clear Variable of Proceed to Next Command Determination .. 21

5.7.6 Command Execution Start Processing .. 22

5.7.7 Command Execution Complete Processing .. 23

5.7.8 Processing to Proceed to the Next Command .. 24

5.7.9 Controlling the EEPROM S Pin ... 26

5.7.10 UART2 Serial Transmission (UART2 Transmit Interrupt) .. 26

5.7.11 UART2 Serial Reception (UART2 Receive Interrupt) .. 27

5.7.12 5 ms Timeout Processing (Timer A0 Interrupt) .. 27

5.7.13 Accepting an EEPROM Write Request (INT0 Interrupt) .. 28

5.7.14 Accepting an EEPROM Read Request (INT1 Interrupt) .. 28

5.7.15 Timer A0 Initialization .. 29

5.7.16 UART2 Initialization ... 30

6. Sample Code ... 31

7. Reference Documents ... 31

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 3 of 31
Dec. 14, 2012

1. Specifications
This document describes how to access an EEPROM using synchronous serial interface mode through
UART2. After initializing the EEPROM status register (EEPROM initialization), data is written to the
EEPROM (EEPROM write processing) and then data is read from the EEPROM (EEPROM read
processing).
This application note uses a Renesas Electronics R1EX25xxx Series EEPROM. For details on the
EEPROM, refer to the product datasheet.

Conditions for accessing the EEPROM:
• Bit rate: 1 Mbps
• Transfer data length: 1 to 32 bytes (not including the instruction codes or memory address)

Table 1.1 lists the Peripheral Functions and Their Applications. Figure 1.1 shows the Connection Diagram.

Figure 1.1 Connection Diagram

Table 1.1 Peripheral Functions and Their Applications

Peripheral Function Application

Serial interface (UART2) Communication with the EEPROM

INT0 interrupt Executes EEPROM write processing

INT1 interrupt Executes EEPROM read processing

Timer A0
5 ms timer for timeout detection (5 ms is the maximum amount of time
needed to write to the EEPROM or write to the EEPROM status register)

R32C/118 Group

CLK2

Serial interface
(UART2)

TXD2

VCC

W (1)

HOLD (2)

VSS

S

C

D

Q

VCC

VSS

EEPROM
(R1EX25032ASA00A)

INT0

INT1

RXD2

P0_0

Notes:
1. In this application note, EEPROM W pin control is not performed.
2. In this application note, EEPROM HOLD pin control is not performed.
3. The LED is ON when key input can be accepted. The LED is OFF when the

EEPROM is being accessed or when there is an EEPROM hardware error.

P4_0
LED (3)

Key input

Key input

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 4 of 31
Dec. 14, 2012

2. Operation Confirmation Conditions
The sample code accompanying this application note has been run and confirmed under the conditions
below.

3. Reference Application Notes
Application notes associated with this application note are listed below. Refer to these application notes for
additional information.

• R32C/100 Series Configuring PLL Mode (REJ05B1221)
• R32C/100 Series Serial Interface Operation in Special Mode 2 Using Master Transmission/Reception

(R01AN0493EJ)
• R32C/100 Series Serial Interface Operation (Transmission in Clock Synchronized Serial Interface

Mode) (REJ05B1233)
• R32C/100 Series Serial Interface Operation When Receiving Data in Synchronous Serial Interface

Mode (R01AN0178EJ)

Table 2.1 Operation Confirmation Conditions

Item Contents

MCU used R5F64189DFD (R32C/118 Group)

Device used R1EX25032ASA00A

Operating frequencies

• XIN clock: 16 MHz
• PLL clock: 100 MHz
• Base clock: 50 MHz
• CPU clock: 50 MHz
• Peripheral bus clock: 25 MHz
• Peripheral clock: 25 MHz

Operating voltage 5 V

Integrated development
environment

Renesas Electronics
High-performance Embedded Workshop Version 4.08

C compiler

Renesas Electronics
R32C/100 Series C Compiler V.1.02 Release 01

Compile options
-D__STACKSIZE__=0X300
-D__ISTACKSIZE__=0X300
-DVECTOR_ADR=0x0FFFFFBDC
-c -finfo -dir “$(CONFIGDIR)”
Default setting is used in the integrated development environment.

Operating mode Single-chip mode

Sample code version 1.00

Board used Renesas Starter Kit for R32C/118 (product name: R0K564189S000BE)

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 5 of 31
Dec. 14, 2012

4. Hardware

4.1 Pins Used
Table 4.1 lists the Pins Used and Their Functions.

Table 4.1 Pins Used and Their Functions

Pin Name I/O Function

P0_0 Output Outputs to control the EEPROM S pin (chip-select pin)

P7_0/TXD2 Output Outputs serial data to the EEPROM

P7_1/RXD2 Input Inputs serial data from the EEPROM

P7_2/CLK2 Output Outputs a clock to set the timing for serial data I/O with the EEPROM

P4_0 Output Outputs for the LED that indicates the EEPROM is being accessed

P8_2/INT0 Input Executes EEPROM write processing

P8_3/INT1 Input Executes EEPROM read processing

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 6 of 31
Dec. 14, 2012

5. Software
In the sample code for this application note, EEPROM initialization is performed when the MCU is reset, 32

bytes of data are written to the EEPROM (EEPROM write processing) (1) when a falling edge is detected on

the INT0 signal, and 32 bytes of data are read from the EEPROM (EEPROM read processing) (2) when a
falling edge is detected on the INT1 signal.

Notes:
1. When writing to the EEPROM with user data based on the sample code provided with this

application note, designate the EEPROM address and size of the write data so the EEPROM
address written does not straddle the page boundaries.

2. When reading the EEPROM with user data based on the sample code provided with this
application note, designate the EEPROM address and size of the read data so the EEPROM
address read is not larger than the last address.

Table 5.1 lists the instructions for accessing the EEPROM. For details on the instructions, refer to the
R1EX25xxx Series datasheet.

Figure 5.1 shows the format of the EEPROM status register. Use the RDSR instruction to read the register
and use the WRSR instruction to write to the register. For details on the instructions, refer to the R1EX25xxx
Series datasheet.

Figure 5.1 EEPROM Status Register Format

Table 5.1 Instructions for Accessing the EEPROM

Instruction Instruction Format

WREN: Write enable 0000 0110

WRDI: Write disable (This instruction is not used in this application note.) 0000 0100

RDSR: Read the EEPROM status register 0000 0101

WRSR: Write to the EEPROM status register 0000 0001

READ: Read the data 0000 0011

WRITE: Write the data 0000 0010

SRWD 0 0 0 BP1 BP0 WEL WIP

b7 b0

Status Register Write Disable Bit

Block Protect Bits

Write Enable Latch Bit

Write In Progress Bit

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 7 of 31
Dec. 14, 2012

Table 5.2 lists the UART2 channel settings used when accessing the EEPROM.

The formula for calculating the transfer rate is as follows:

Transfer rate = =  1 Mbps

Table 5.2 UART2 Channel Settings Used When Accessing the EEPROM

Mode Synchronous serial interface mode

Transmit/receive clock Internal clock

U2BRG count source f1

TXD2 pin and CLK2 pin output method Push-pull output

Bit order MSB first

CTS function Disabled

CLK polarity
Output transmit data on the falling edge of the transmit/receive
clock and input receive data on the rising edge.

Data logic Not inverted

UART2 transmit interrupt Used (interrupt source: U2TB register empty)

UART2 receive interrupt Used

Bit rate 1 Mbps

U2BRG count source
2 U2BRG register setting value 1+  

--- 25 MHz (f1)
2 11 1+  

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 8 of 31
Dec. 14, 2012

5.1 Operation Overview

5.1.1 Commands for Serial Transfer
In this application note, EEPROM instructions (WREN, WRSR, RDSR, WRITE, and READ) for port
operation and serial transfer are performed in minimum units called “commands”. A command performs
the following:

(1) Drive port P0_0, which is connected to the S pin, low.
(2) Transmit EEPROM instruction.
(3) When necessary, transmit and receive EEPROM instruction parameters.
(4) Set port P0_0 to high.

5.1.2 Command Sequence
In EEPROM initialization, EEPROM write processing, and EEPROM read processing, commands are
executed in a predetermined order. In this application note, the order for executing these commands is
called the “command sequence”. The command sequence for each process is shown below.

• EEPROM initialization sequence:
WREN command  RDSR command  WRSR command  RDSR command

• EEPROM write sequence:
WREN command  RDSR command  WRITE command  RDSR command

• EEPROM read sequence:
READ command

5.1.3 Procedures for Executing EEPROM Initialization, EEPROM Write
Processing, and EEPROM Read Processing

In this application note, synchronous serial interface mode of the serial interface is used to perform half-
duplex communication with the EEPROM.

(1) Command sequence start
An MCU reset calls the EEPROM initialization sequence start, an INT0 interrupt calls the
function to start the EEPROM write sequence, and an INT1 interrupt calls the function to start
the EEPROM read sequence.
The following processes are executed by functions:
• The variable that determines whether or not to proceed to the next command is cleared.
• The command sequence is set.
• The command execution status flag (proc_state) is set to command execution started

(STATE_BEGIN).
• The transmit data is stored in the transmit data array (txdata_rw[]) for EEPROM write

processing and EEPROM read processing.
(2) Command execution start processing

When the command execution status f lag becomes command execution started
(STATE_BEGIN), the following processes are executed:
• The variables used in the transmit interrupt and receive interrupt are set.
• Low is output from port P0_0.
• The timer used for timeout detection starts when the RDSR (WIP bit confirmation) command

is executed.
• The command execution status flag is set to command executed (STATE_EXECUTE).
• UART2 transmit/receive is enabled.
• EEPROM instructions are transmitted.

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 9 of 31
Dec. 14, 2012

(3) Transmitting transmit data
When the data in the U2TB register is transferred to the transmit shift register, a transmit
interrupt is generated. In the transmit interrupt handler, 1 byte of transmit data stored in the
transmit data array (depending on the command, stored in txdata_rw[], txdata_wren[],
txdata_rdsr[], or txdata_wrsr[]) is written to the U2TB register. This process is repeated each
time a transmit interrupt is generated until the transmit data has been completely transmitted.

(4) Storing received data
A receive interrupt is generated when the MCU receives data. In the receive interrupt handler,
the U2RB register is read and the data is stored in the receive data storage buffer
(rxdata_buf[]). After all data has been received, transmission and reception stop, and the
command execution status flag is set to command execution complete (STATE_END).

(5) Command execution complete processing
When the command execution status flag becomes command execution complete
(STATE_END), the following processes are executed:
• High is output from port P0_0
• When the RDSR command is executed

The value in the EEPROM status register is stored in the EEPROM status variable (rdsr_val)
• When the READ command is executed

Data read from the EEPROM is stored in the user designated area.
(6) Processing to proceed to next command

After step (5) is performed, the following processing is executed. Whether or not to proceed to
the next command is determined, p_cmd_type is incremented, and the command sequence
continues. Also, the command execution status flag is set to command execution started
(STATE_BEGIN) in order to start the next command.

Subsequently, steps (2) to (6) are repeated. When all commands are completed, the command execution
status flag is set to command not executed (STATE_NON), and the command sequence is completed.

Figure 5.2 shows the Timing Diagram.

Figure 5.2 Timing Diagram

D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1

D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0

Receive data

Transmit dataEEPROM instruction

D0

(1) (2)

(3)

(3)(4) (3)(4) (4)
(5)
(6)

P0_0 pin
(MCU output)

CLK2 pin
(MCU output)

TXD2 pin
(MCU output)

RXD2 pin
(MCU input)

IR bit in the
S2RIC register

IR bit in the
S2TIC register

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 10 of 31
Dec. 14, 2012

5.2 Constants
Table 5.3 lists the Constants Used in the Sample Code.

Table 5.3 Constants Used in the Sample Code

Constant Name Setting Value Contents

EEP_T_S_HOLD 0x000A S pin set-up and hold wait time

EEP_REG_INI 0x00 Initial setting value for the EEPROM status register

EEP_REG_WEL 0x02 WEL bit in the EEPROM status register

EEP_REG_WIP 0x01 WIP bit in the EEPROM status register

EEPROM_MEM_ADDR 0x0000
Address on the EEPROM when executing the READ
command or WRITE command

BUFSIZE 32 Size of the body of the transmit/receive data

TXSIZE (BUFSIZE+3)
Maximum transmit data size (+3 indicates the EEPROM
instruction plus the EEPROM address)

DUMMY 0xff Dummy data transmitted during data receive processing

UART_BRG (12 - 1) Setting value for the UART baud rate

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 11 of 31
Dec. 14, 2012

5.3 Structure/Union List
Figure 5.3 shows the Structure/Union Used in the Sample Code.

Figure 5.3 Structure/Union Used in the Sample Code

/* **** Port definition **** */
#define EEP_P_S p0_0 /* Port register for EEPROM S pin control */
#define EEP_D_S pd0_0 /* Port direction register for EEPROM S pin control */
#define EEP_P_LED p4_0 /* Port register for the LED */
#define EEP_D_LED pd4_0 /* Port direction register for the LED */

/* **** Command definition **** */
typedef enum
{
 CMD_WREN, /* WREN */
 CMD_RDSR_WEL, /* RDSR[Read the WEL bit] */
 CMD_RDSR_WIP, /* RDSR[Read the WIP bit] */
 CMD_WRSR, /* WRSR */
 CMD_READ, /* READ */
 CMD_WRITE, /* WRITE */
 CMD_TERMINATE, /* All commands complete */
} eeprom_command_t;

/* **** Command execution status definition **** */
typedef enum
{
 STATE_NON, /* Command not executed */
 STATE_BEGIN, /* Command execution started */
 STATE_EXCECUTE, /* Command mid-execution */
 STATE_END, /* Command execution completed */
 STATE_ERROR, /* Error occurred during command execution */
} command_process_state_t;

/* **** Interrupt request level definition **** */
typedef enum
{
 INT_LEVEL_DISABLE = 0, /* Interrupts disabled */
 INT_LEVEL_1 = 1, /* Level 1 */
 INT_LEVEL_2 = 2, /* Level 2 */
 INT_LEVEL_3 = 3, /* Level 3 */
 INT_LEVEL_4 = 4, /* Level 4 */
 INT_LEVEL_5 = 5, /* Level 5 */
 INT_LEVEL_6 = 6, /* Level 6 */
 INT_LEVEL_7 = 7, /* Level 7 */
} interrupt_level_t;

/* **** Port status definition **** */
typedef enum
{
 LEVEL_LOW, /* Low level */
 LEVEL_HIGH /* High level */
} logic_level_t;

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 12 of 31
Dec. 14, 2012

5.4 Variables
Table 5.4 lists the Global Variables and Table 5.5 lists the const Variables.

Note:
1. This function is used as an element in the composition of p_tx_data_array[].

Table 5.4 Global Variables

Type Variable Name Contents Function Used

uint8_t rdsr_val EEPROM status variable
variable_clear, cmd_proc_end,
cmd_proc_change

uint8_t txdata_rw[]
Transmit data array when
executing a READ or
WRITE command

R_EEP_StartWriteSeq,

R_EEP_StartReadSeq (1)

uint8_t rxdata_buf[] Receive data storage buffer cmd_proc_begin, cmd_proc_end

uint8_t comm_data_size_array[]
Transmit data size for each
command

R_EEP_StartWriteSeq,
R_EEP_StartReadSeq, cmd_proc_begin,
cmd_proc_end

uint8_t const * p_cmd_type Command pointer

R_EEP_StartInitSeq,
R_EEP_StartWriteSeq,
R_EEP_StartReadSeq, cmd_proc_begin,
cmd_proc_end, cmd_proc_change

uint8_t proc_state
Command execution status
flag

main, R_EEP_StartInitSeq,
R_EEP_StartWriteSeq,
R_EEP_StartReadSeq, cmd_proc_begin,
cmd_proc_change, uart2_rx_interrupt,
int0_interrupt, int1_interrupt

bool f_timeout Timeout flag variable_clear, cmd_proc_begin,
cmd_proc_change, timer_a0_interrupt

uint8_t * p_txdata Transmit data pointer cmd_proc_begin, uart2_tx_interrupt

uint8_t remaining_tx_size Untransmitted data size cmd_proc_begin, uart2_tx_interrupt

uint8_t * p_rxdata_buf
Pointer for the receive data
storage buffer cmd_proc_begin, uart2_rx_interrupt

uint8_t remaining_rx_size Unreceived data size cmd_proc_begin, uart2_rx_interrupt

uint8_t * p_eep_read_data
Pointer for the area where
the data read from the
EEPROM is stored

R_EEP_StartReadSeq, cmd_proc_end

uint8_t write_buffer[BUFSIZE]
Area for EEPROM write
data int0_interrupt, main

uint8_t read_buffer[BUFSIZE]
Area for storing data read
from the EEPROM

int1_interrupt

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 13 of 31
Dec. 14, 2012

Note:
1. This function is used as an element in the composition of p_tx_data_array[].

5.5 Functions
Table 5.6 lists the Functions.

Table 5.5 const Variables

Type Variable Name Contents Function Used

const uint8_t cmd_seq_init[]
Command sequence storage array for
EEPROM initialization

R_EEP_StartInitSeq

const uint8_t cmd_seq_write[]
Command sequence storage array for
EEPROM write processing

R_EEP_StartWriteSeq

const uint8_t cmd_seq_read[]
Command sequence storage array for
EEPROM read processing

R_EEP_StartReadSeq

const uint8_t txdata_wren[] Transmit data array when using WREN See Note 1.

const uint8_t txdata_rdsr[] Transmit data array when using RDSR See Note 1.

const uint8_t txdata_wrsr[] Transmit data array when using WRSR See Note 1.

const uint8_t * const p_tx_data_array[]
Pointer for the transmit data arrays
corresponding to each command

cmd_proc_begin

Table 5.6 Functions

Function Name Outline

main Main processing

R_EEP_StartIntSeq EEPROM initialization sequence start

R_EEP_StartWriteSeq EEPROM write sequence start

R_EEP_StartReadSeq EEPROM read sequence start

variable_clear Clear variable of proceed to next command determination

cmd_proc_begin Command execution start processing

cmd_proc_end Command execution complete processing

cmd_proc_change Processing to proceed to next command

eep_s_control Controlling the EEPROM S pin

uart2_tx_interrupt UART2 serial transmission (UART2 transmit interrupt)

uart2_rx_interrupt UART2 serial reception (UART2 receive interrupt)

timer_a0_interrupt 5 ms timeout processing (timer A0 interrupt)

int0_interrupt Accepting an EEPROM write request (INT0 interrupt)

int1_interrupt Accepting an EEPROM read request (INT1 interrupt)

timer_a0_init Timer A0 initialization

uart2_init UART2 initialization

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 14 of 31
Dec. 14, 2012

5.6 Function Specifications
The following tables list the sample code function specifications.

main

Outline Main processing

Header None

Declaration void main(void)

Description

This function performs the initial settings for the system clock, UART2, and timer A0,
and initializes the variables. Then, EEPROM initialization sequence is started and the
MCU enters the main loop. In the main loop, the command execution start processing,
command execution complete processing, and processing to proceed to the next
command are performed according to the command execution status flag.

Argument None

Returned value None

R_EEP_StartInitSeq

Outline EEPROM initialization sequence start

Header None

Declaration void R_EEP_StartInitSeq(void)

Description
The command sequence is performed in the EEPROM initialization sequence, and the
command execution status flag is set to command execution started (STATE_BEGIN).

Argument None

Returned value None

R_EEP_StartWriteSeq

Outline EEPROM write sequence start

Header None

Declaration void R_EEP_StartWriteSeq(uint8_t *p_write_data, uint8_t size, uint16_t eeprom_adrs)

Description
This function sets the WRITE command transmit data size and generates serial data.
Then, the command sequence is set in the EEPROM write processing, and the
command execution status flag is set to command execution start (STATE_BEGIN).

Argument
uint8_t *p_write_data: Pointer for the area where the write data is stored
uint8_tsize: Size of the write data (in bytes)
uint16_t eeprom_adrs: EEPROM address

Returned value None

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 15 of 31
Dec. 14, 2012

R_EEP_StartReadSeq

Outline EEPROM read sequence start

Header None

Declaration void R_EEP_StartReadSeq(uint8_t *p_read_data, uint8_t size, uint16_t eeprom_adrs)

Description

This function sets the READ command transmit data size and generates serial data. It
also sets the pointer (p_eep_read_data) for the area where the data read from the
EEPROM is stored. Then, the command sequence is set in the EEPROM read
processing, and the command execution status flag is set to command execution start
(STATE_BEGIN).

Argument
uint8_t *p_read_data: Pointer for the area where the read data is stored
uint8_tsize: Size of the read data (in bytes)
uint16_t eeprom_adrs: EEPROM address

Returned value None

variable_clear

Outline Clear variable of proceed to next command determination

Header None

Declaration void variable_clear(void)

Description This function clears the variable used in determining command transition.

Argument None

Returned value None

cmd_proc_begin

Outline Command execution start processing

Header None

Declaration void cmd_proc_begin(void)

Description

This function sets the variable for the serial transmit/receive processing, and after the S
pin, which is connected to the P0_0 port, is driven low. Also, when executing the RDSR
command (read the WIP bit), the timer for the timeout detection starts. Then, the
command execution status flag is set to command execution in progress
(STATE_EXECUTE), UART2 is transmit/receive enabled, and the first byte of data is
transmitted.

Argument None

Returned value None

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 16 of 31
Dec. 14, 2012

cmd_proc_end

Outline Command execution complete processing

Header None

Declaration void cmd_proc_end(void)

Description

This function drives S pin, which is connected to the P0_0 port, high. When executing
the RDSR command, the value received from the EEPROM status register is set to the
EEPROM status variable. When executing the READ command, the EEPROM data
received is stored in the user designated area.

Argument None

Returned value None

cmd_proc_change

Outline Processing to proceed to next command

Header None

Declaration void cmd_proc_change(void)

Description

This function performs proceed to next command determination and proceed to next
command.
• Proceed to next command determination:

This function reads the EEPROM status register and confirms that a timeout has
occurred. This function also determines whether or not to proceed to the next
command, and determines if an error occurred during command execution.

• Proceed to next command:
No error occurred during command execution and the command sequence proceeds
to the next command
Increment p_cmd_type and continue the command sequence. When the command
becomes all commands complete (CMD_TERMINATE), the command execution
status flag becomes command not executed (STATE_NON). In all other cases, the
command execut ion s ta tus f lag becomes command execut ion s tar ted
(STATE_BEGIN).
No error occurred during command execution and the command sequence does not
proceed to the next command
The command execution status f lag is set to command execution started
(STATE_BEGIN).
An error occurred during command execution
The command execution status flag is set to error occurred during command
execution (STATE_ERROR). Also, in the sample code accompanying this application
note, there is no processing to transition out of the STATE_ERROR state.

Argument None

Returned value None

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 17 of 31
Dec. 14, 2012

eep_s_control

Outline Controlling the EEPROM S pin

Header None

Declaration void eep_s_control(logic_level_t level)

Description High or low is output from port P0_0 to the EEPROM S pin.

Argument
logic_level_t level: Output level is set
 LEVEL_LOW: Low level
 LEVEL_HIGH: High level

Returned value None

uart2_tx_interrupt

Outline UART2 serial transmission (UART2 transmit interrupt)

Header None

Declaration void uart2_tx_interrupt(void)

Description
This function is called by the UART2 transmit interrupt that occurs when the U2TB
register becomes empty. If there is untransmitted data, 1 byte of the untransmitted data
is transmitted.

Argument None

Returned value None

uart2_rx_interrupt

Outline UART2 serial reception (UART2 receive interrupt)

Header None

Declaration void uart2_rx_interrupt(void)

Description

This function is called by the UART2 receive interrupt that occurs when reception is
completed. After reading the UART2 receive buffer (U2RB), this function stores the data
in the receive data storage buffer (rxdata_buf[]). When all data is received, UART2
transmission/reception is disabled, and the command execution status flag is set to
command execution completed (STATE_END).

Argument None

Returned value None

timer_a0_interrupt

Outline 5 ms timeout processing (timer A0 interrupt)

Header None

Declaration void timer_a0_interrupt(void)

Description
After starting timer A0 and 5 ms elapse, this function is called by the timer A0 interrupt
that occurs. This function sets the timeout flag (f_timeout) and stops the timer for
timeout detection.

Argument None

Returned value None

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 18 of 31
Dec. 14, 2012

int0_interrupt

Outline Accepting an EEPROM write request (INT0 interrupt)

Header None

Declaration void int0_interrupt(void)

Description
This function is called by the INT0 interrupt that occurs when a low is input to port P8_2.
This function executes the EEPROM write sequence start (R_EEP_StartWriteSeq).

Argument None

Returned value None

int1_interrupt

Outline Accepting an EEPROM read request (INT1 interrupt)

Header None

Declaration void int1_interrupt(void)

Description
This function is called by the INT1 interrupt that occurs when a low is input to port P8_3.
This function executes the EEPROM read sequence start (R_EEP_StartReadSeq).

Argument None

Returned value None

timer_a0_init

Outline Timer A0 initialization

Header None

Declaration void timer_a0_init(void)

Description This function sets timer A0 to timer mode.

Argument None

Returned value None

uart2_init

Outline UART2 initialization

Header None

Declaration void uart2_init(void)

Description This functions sets the UART2 channel to synchronous serial interface mode.

Argument None

Returned value None

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 19 of 31
Dec. 14, 2012

5.7 Flowcharts

5.7.1 Main Processing
Figure 5.4 shows the Main Processing.

Figure 5.4 Main Processing

main

Disable maskable interrupts I flag  0

Enable maskable interrupts I flag  1

Command execution
status flag

STATE_END

STATE_BEGIN

Set write data write_buffer[]  0 to 31

default

Enable interrupts INT0 and INT1

Turn ON the LED

Is the command
execution status flag set to
"command not executed

(STATE_NON)"?

Yes

No

EEP_P_LED  0

Processing to proceed
to next command

cmd_proc_change()

Turn OFF the LED EEP_P_LED  1

Initialize the command execution status flag proc_state  STATE_NON

Command execution
start processing

cmd_proc_begin()

Command execution
complete processing

cmd_proc_end()

EEPROM initialization sequence start
R_EEP_StartInitSeq()

UART2 initialization
uart2_init() UART2 is set to synchronous serial interface mode

Timer A0 initialization
timer_a0_init() Set timer A0 to timer mode

PLL clock setting
SetPLLClock() Clock frequencies are set while in PLL mode

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 20 of 31
Dec. 14, 2012

5.7.2 EEPROM Initialization Sequence Start
Figure 5.5 shows the start of the EEPROM initialization sequence.

Figure 5.5 EEPROM Initialization Sequence Start

5.7.3 EEPROM Write Sequence Start
Figure 5.6 shows the start of the EEPROM write sequence.

Figure 5.6 EEPROM Write Sequence Start

R_EEP_StartInitSeq

Is the command execution
status flag set to "command not executed

(STATE_NON)"?

return

Yes

No

Set command sequence to EEPROM initialization p_cmd_type  cmd_seq_init

proc_state  STATE_BEGIN
Set the command execution status flag to

command execution started

Clear variable of proceed to command determination
variable_clear()

R_EEP_StartWriteSeq

Is the command
execution status flag set to "command not executed

(STATE_NON)"?

return

Arguments
uint8_t *p_write_data: Pointer for the area
where write data is stored
uint8_t size: Write data size (in bytes)
uint16_t eeprom_adrs: EEPROM address

Yes

No

Is the write data size 0?

No

Yes

proc_state  STATE_BEGIN
Set the command execution status flag to

command execution started

Clear variable of proceed
to next command determination

variable_clear()

p_cmd_type  cmd_seq_write

Set the data size to be transmitted with the WRITE command comm_data_size_array[CMD_WRITE]
 size (maximum 32 bytes) + 3 (+ 3 is the amount of the
EEPROM instruction plus the EEPROM address)

Generate the serial data to be transmitted and store it in the
transmit data array until a READ command or WRITE

command is executed

txdata_rw[0]  02h: EEPROM instruction
txdata_rw[1]  (eeprom_adrs >> 8): EEPROM address
txdata_rw[2]  (eeprom_adrs)
txdata_rw[i+3]  p_write_data[i]: Body of write data

Set the command sequence to the EEPROM write processing

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 21 of 31
Dec. 14, 2012

5.7.4 EEPROM Read Sequence Start
Figure 5.7 shows the start of the EEPROM read sequence.

Figure 5.7 EEPROM Read Sequence Start

5.7.5 Clear Variable of Proceed to Next Command Determination
Figure 5.8 shows how to clear the variable of the proceed to the next command determination.

Figure 5.8 Clear Variable of Proceed to Next Command Determination

R_EEP_StartReadSeq

Is the command
 execution status flag set to "command not

executed (STATE_NON)"?

return

Arguments
uint8_t *p_read_data: Pointer for the area
where read data is stored
uint8_t size: Size of read data (in bytes)
uint16_t eeprom_adrs: EEPROM address

Yes

No

Is the read data size 0?

No

Yes

proc_state  STATE_BEGIN
Set the command execution status flag to

command execution started

Clear variable of proceed
to next command determination

variable_clear()

Set the command sequence with
the EEPROM read processing p_cmd_type  cmd_seq_read

Set the size of the data to be transmitted using the READ
command

comm_data_size_array[CMD_READ]  size
(maximum 32 bytes) + 3 (+ 3 is the amount of the
EEPROM instruction plus the EEPROM address)

Generate serial data for transmission, and store that data in the
transmit data array until a READ or WRITE command is

executed

txdata_rw[0]  03h: EEPROM instruction
txdata_rw[1]  (eeprom_adrs >> 8): EEPROM address
txdata_rw[2]  (eeprom_adrs)
txdata_rw[i+3]  DUMMY: Dummy data

Set the pointer for the area where the data read from the
EEPROM is stored

p_eep_read_data  p_read_data

variable_clear

return

Clear variable of proceed
to next command determination

rdsr_val  0: EEPROM status variable
f_timeout  false: Timeout flag

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 22 of 31
Dec. 14, 2012

5.7.6 Command Execution Start Processing
Figure 5.9 shows the command execution start processing.

Figure 5.9 Command Execution Start Processing

Is the command
"RDSR [read the WIP bit]

(CMD_RDSR_WIP)"?

Yes

No

return

Note:
1. If the first byte of data is written directly to the UART transmit buffer, a transmit interrupt is generated before

the pointer indicated by the transmit buffer is updated, causing the pointer to become misaligned. To
prevent this from happening, the first byte of transmit data should be saved to the automatic variable first.

command  *p_txdataSave the first byte of transmit data (1)

Decrement the untransmitted data size

Increment the transmit data pointer

Low is output from port P0_0
eep_s_control()

Clear the timeout flag f_timeout  false

Start the timer for timeout detection TA0 register  15625 - 1
TABSR register
 TA0S bit  1

proc_state  STATE_EXECUTE
Set the command execution status flag to

command mid-execution

Enable UART2 transmit/receive U2C1 register
 TE bit  1
 RE bit  1

Automatic variable
uint8_t command: First byte of data in the transmit data array

cmd_proc_begin

U2TB  commandTransmit the first byte of data

Set the variable for serial transmit/receive
processing

p_txdata  p_tx_data_array[*p_cmd_type]
: Transmit data pointer

p_rxdata_buf  rxdata_buf
: Pointer for the receive data storage buffer

remaining_tx_size  comm_data_size_array[*p_cmd_type]
: Set the untransmitted data size

remaining_rx_size  remaining_tx_size
: Set the unreceived data size

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 23 of 31
Dec. 14, 2012

5.7.7 Command Execution Complete Processing
Figure 5.10 shows the command execution complete processing.

Figure 5.10 Command Execution Complete Processing

cmd_proc_end

return

Command

CMD_READ

CMD_RDSR_WEL
CMD_RDSR_WIP

default

High is output from port P0_0
eep_s_control()

Set the value read from the EEPROM status register
to the EEPROM status variable

(rdsr_val  rxdata_buf[1])

Store the data read from the EEPROM to the designated area
(p_eep_read_data[i] ← rxdata_buf[i+3])

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 24 of 31
Dec. 14, 2012

5.7.8 Processing to Proceed to the Next Command
Figure 5.11 and Figure 5.12 show the processing to proceed to the next command.

Figure 5.11 Processing to Proceed to the Next Command (1/2)

Proceed to next command determination

cmd_proc_change

Is the command
"RDSR [read the WEL bit]

(CMD_RDSR_WEL)"?

Yes

No

Is the command
"RDSR [read the WIP bit]

(CMD_RDSR_WIP)"?

Initialize automatic variables

Is the WEL
bit in the EEPROM status

register 1?

Yes

No

No

Yes

Is the WIP
bit in the EEPROM status

register 1?

Yes

No

Do not proceed to next command
Error occurred during command execution

Do not proceed to next command

Timeout occurred?

Yes

No

Error occurred during command execution

A

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 25 of 31
Dec. 14, 2012

Figure 5.12 Processing to Proceed to the Next Command (2/2)

Proceed to next command

return

Proceed to
next command?

Yes

No

Error occurred during
command execution?

Set the command execution status
flag to "command execution started"

(proc_state  STATE_BEGIN)

Yes

No

Set the command execution status
flag to "command not executed"

(proc_state  STATE_NON)

Is the command "all
commands complete

(CMD_TERMINATE)"?

No

Yes

Set the command execution status
flag to "command execution started"

(proc_state  STATE_BEGIN)

Note:
1. The sample code does not include processing of the command execution status flag (proc_state) transiting

from "error occurred during command execution (STATE_ERROR)" to the original processing.

Clear the timeout flag
(f_timeout  false)

Set the command execution status
flag to "error occurred during

command execution" (1)

(proc_state  STATE_ERROR)

Clear the command sequence
(p_cmd_type  (void*)0)

Stop the timer for timeout
detection (TA0S bit in the

TABSR register  0)

Continue command sequence
(p_cmd_type  p_cmd_type + 1)

Stop the timer for timeout
detection (TA0S bit in the

TABSR register  0)

Clear the timeout flag
(f_timeout  false)

Clear the command sequence
(p_cmd_type  (void*)0)

A

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 26 of 31
Dec. 14, 2012

5.7.9 Controlling the EEPROM S Pin
Figure 5.13 shows controlling the EEPROM S pin.

Figure 5.13 Controlling the EEPROM S Pin

5.7.10 UART2 Serial Transmission (UART2 Transmit Interrupt)
Figure 5.14 shows UART2 serial transmission (UART2 transmit interrupt).

Figure 5.14 UART2 Serial Transmission (UART2 Transmit Interrupt)

eep_s_control

Set the output of the EEPROM S pin
control port (P0_0) to high

return

Is the output
level set to high?

Yes

No

Set the output of the EEPROM S pin
control port (P0_0) to low

Wait 90 ns

Wait 90 ns

Argument
logic_level_t level: Set the output level

LEVEL_LOW: Low is output
LEVEL_HIGH: High is output

uart2_tx_interrupt

Has all data
been transmitted?

Yes

No

return

Transmit 1 byte of data U2TB  *p_txdata

Decrement the untransmitted data size

Increment the transmit data pointer

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 27 of 31
Dec. 14, 2012

5.7.11 UART2 Serial Reception (UART2 Receive Interrupt)
Figure 5.15 shows UART2 serial reception (UART2 receive interrupt).

Figure 5.15 UART2 Serial Reception (UART2 Receive Interrupt)

5.7.12 5 ms Timeout Processing (Timer A0 Interrupt)
Figure 5.16 shows 5 ms timeout processing (timer A0 interrupt).

Figure 5.16 5 ms Timeout Processing (Timer A0 Interrupt)

uart2_rx_interrupt

return

Has all data been received?

Yes

No

proc_state STATE_END
Set the command execution status flag to

"command execution completed"

Decrement the unreceived data size

Increment the pointer for the receive data storage buffer

Disable UART2 transmission and reception U2C1 register
 TE bit  0
 RE bit  0

Read the UART2 receive buffer and store the value in the
receive data storage buffer

*p_rxdata_buf U2RB

timer_a0_interrupt

return

Stop the timer for
timeout detection

TABSR register
 TA0S bit  0

Set the timeout flag f_timeout  true

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 28 of 31
Dec. 14, 2012

5.7.13 Accepting an EEPROM Write Request (INT0 Interrupt)
Figure 5.17 shows accepting an EEPROM write request (INT0 interrupt).

Figure 5.17 Accepting an EEPROM Write Request (INT0 Interrupt)

5.7.14 Accepting an EEPROM Read Request (INT1 Interrupt)
Figure 5.18 shows accepting an EEPROM read request (INT1 interrupt).

Figure 5.18 Accepting an EEPROM Read Request (INT1 Interrupt)

int0_interrupt

return

Disable interrupts INT0 and INT1 INT0IC register  00h
 Bits ILVL2 to ILVL0 = 000b: Level 0 (interrupt disabled)
INT1IC register  00h

Bits ILVL2 to ILVL0 = 000b: Level 0 (interrupt disabled)

Turn OFF the LED EEP_P_LED  1

Yes

No

EEPROM write sequence start
R_EEP_StartWriteSeq()

Is the command execution
status flag set to "command execution started

(STATE_BEGIN)"?

int1_interrupt

return

Disable interrupts INT0 and INT1 INT0IC register  00h
 Bits ILVL2 to ILVL0 = 000b: Level 0 (interrupt disabled)
INT1IC register  00h

Bits ILVL2 to ILVL0 = 000b: Level 0 (interrupt disabled)

Turn OFF the LED EEP_P_LED  1

Yes

No

EEPROM read sequence start
R_EEP_StartReadSeq()

Is the command execution
status flag set to "command execution started

(STATE_BEGIN)"?

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 29 of 31
Dec. 14, 2012

5.7.15 Timer A0 Initialization
Figure 5.19 shows timer A0 initialization.

Figure 5.19 Timer A0 Initialization

timer_a0_init

return

Disable the timer A0 interrupt TA0IC register  00h
Bits ILVL2 to ILVL0 = 000b: Level 0 (interrupt disabled)

Stop the timer A0 count TABSR register
TA0S bit  0

Set the timer A0 mode register TA0MR register  40h
Bits TMOD1 and TMOD0 = 00b: Timer mode
Bits MR2 and MR1 = 00b: No gate function
Bits TCK1 and TCK0 = 01b: f8

TA0IC register  02h
Bits ILVL2 to ILVL0 = 010b: Level 2

Set the timer A0 interrupt control register

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 30 of 31
Dec. 14, 2012

5.7.16 UART2 Initialization
Figure 5.20 shows UART2 initialization.

Figure 5.20 UART2 Initialization

uart2_init

return

Set the P4_0 pin (output for the
LED that indicates the EEPROM

is being accessed)

P4 register
P4_0 bit  0

PD4 register
PD4_0 bit  1

Set the P0_0 pin

(EEPROM S pin)

P0 register
P0_0 bit  1

PD0 register
PD0_0 bit  1

Set the UART2 transmit interrupt
control register and UART2

receive interrupt control register

S2TIC register  03h
Bits ILVL2 to ILVL0 = 011b: Level 3

S2RIC register  03h
Bits ILVL2 to ILVL0 = 011b: Level 3

Set the UART2 special mode
registers

U2SMR register  00h
U2SMR2 register  00h
U2SMR3 register  00h
U2SMR4 register  00h

Set the UART2 bit rate register U2BRG register  UART_BRG: Approximately 1 Mbps

Set UART2 transmit/receive
control register 0

U2C0 register  90h
 Bits CLK1 and CLK0 = 00b: f1
 CRD bit = 1: CTS disabled
 CKPOL bit = 0: Output transmit data on the falling edge of the transmit/receive

clock and input receive data on the rising edge
 UFORM bit = 1: MSB first

Set the UART2 transmit/receive
mode register

U2MR register  01h
 Bits SMD2 to SMD0 = 001b: Synchronous serial interface mode
 CKDIR bit = 0: Internal clock

U2C1 register  00h
 TE bit = 0: Transmission disabled
 RE bit = 0: Reception disabled

Disable transmission
and reception

Disable transmit and
receive interrupts

S2TIC register  00h
 Bits ILVL2 to ILVL0 = 000b: Level 0 (interrupt disabled)
S2RIC register  00h
 Bits ILVL2 to ILVL0 = 000b: Level 0 (interrupt disabled)

Set UART2 transmit/receive
control register 1

U2C1 register  00h
 U2RRM bit = 0: Continuous receive mode disabled
 U2LCH bit = 0: Data is not logic inverted

Set I/O pins P7_0S register  03h
 Bits PSEL2 to PSEL0 = 011b: UART2 output (TXD2)
P7_1S register  00h
 Bits PSEL2 to PSEL0 = 000b: I/O port P7_1
P7_2S register  03h
 Bits PSEL2 to PSEL0 = 011b: UART2 output (CLK2 output)
PD7 register  05h
 PD7_0 bit = 1: Output port
 PD7_1 bit = 0: Input port
 PD7_2 bit = 1: Output port

R32C/100 Series Accessing an EEPROM Using Synchronous Serial Interface Mode

R01AN1198EJ0100 Rev. 1.00 Page 31 of 31
Dec. 14, 2012

6. Sample Code
Sample code can be downloaded from the Renesas Electronics website.

7. Reference Documents
R32C/116 Group User’s Manual: Hardware Rev.1.10
R32C/117 Group User’s Manual: Hardware Rev.1.10
R32C/118 Group User’s Manual: Hardware Rev.1.10
The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

C Compiler Manual
R32C/100 Series C Compiler Package V.1.02
C Compiler User’s Manual Rev.2.00
The latest version can be downloaded from the Renesas Electronics website.

R1EX25xxx Series EEPROM Datasheet Rev. 0.01
The latest version can be downloaded from the Renesas Electronics website.

Website and Support
Renesas Electronics website
http://www.renesas.com/

Inquiries
http://www.renesas.com/contact/

A - 1

Revision History
R32C/100 Series

Accessing an EEPROM Using Synchronous Serial Interface Mode

Rev. Date
Description

Page Summary

1.00 Dec. 14, 2012 — First edition issued

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes
on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under
General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each
other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation

with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the
vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur
due to the false recognition of the pin state as an input signal become possible. Unused
pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register

settings and pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states
of pins are not guaranteed from the moment when power is supplied until the reset
process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset
function are not guaranteed from the moment when power is supplied until the power
reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do

not access these addresses; the correct operation of LSI is not guaranteed if they are
accessed.

4. Clock Signals
After applying a reset, only release the reset line after the operating clock signal has become
stable. When switching the clock signal during program execution, wait until the target clock
signal has stabilized.
 When the clock signal is generated with an external resonator (or from an external

oscillator) during a reset, ensure that the reset line is only released after full stabilization of
the clock signal. Moreover, when switching to a clock signal produced with an external
resonator (or by an external oscillator) while program execution is in progress, wait until
the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different part number, confirm
that the change will not lead to problems.
 The characteristics of MPU/MCU in the same group but having different part numbers may

differ because of the differences in internal memory capacity and layout pattern. When
changing to products of different part numbers, implement a system-evaluation test for
each of the products.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2012 Renesas Electronics Corporation. All rights reserved.
Colophon 2.2

	Abstract
	Products
	Contents
	1. Specifications
	2. Operation Confirmation Conditions
	3. Reference Application Notes
	4. Hardware
	4.1 Pins Used

	5. Software
	5.1 Operation Overview
	5.1.1 Commands for Serial Transfer
	5.1.2 Command Sequence
	5.1.3 Procedures for Executing EEPROM Initialization, EEPROM Write Processing, and EEPROM Read Processing

	5.2 Constants
	5.3 Structure/Union List
	5.4 Variables
	5.5 Functions
	5.6 Function Specifications
	5.7 Flowcharts
	5.7.1 Main Processing
	5.7.2 EEPROM Initialization Sequence Start
	5.7.3 EEPROM Write Sequence Start
	5.7.4 EEPROM Read Sequence Start
	5.7.5 Clear Variable of Proceed to Next Command Determination
	5.7.6 Command Execution Start Processing
	5.7.7 Command Execution Complete Processing
	5.7.8 Processing to Proceed to the Next Command
	5.7.9 Controlling the EEPROM S Pin
	5.7.10 UART2 Serial Transmission (UART2 Transmit Interrupt)
	5.7.11 UART2 Serial Reception (UART2 Receive Interrupt)
	5.7.12 5 ms Timeout Processing (Timer A0 Interrupt)
	5.7.13 Accepting an EEPROM Write Request (INT0 Interrupt)
	5.7.14 Accepting an EEPROM Read Request (INT1 Interrupt)
	5.7.15 Timer A0 Initialization
	5.7.16 UART2 Initialization

	6. Sample Code
	7. Reference Documents
	Website and Support

