To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

 “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

 “Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
M16C/80 Group
Operation of A-D Converter (in one-shot mode, an external trigger)

1.0 Abstract
In one-shot mode, choose functions from those listed in Table 1. Operations of the circled items are described below.

Table 1. Chosen functions

<table>
<thead>
<tr>
<th>Item</th>
<th>Set-up</th>
<th>Item</th>
<th>Set-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation clock φAD</td>
<td>Divided-by-4 φAD / divided-by-2 φAD</td>
<td>Expanded analog input pin</td>
<td>Not used</td>
</tr>
<tr>
<td>Resolution</td>
<td>8-bit / 10-bit</td>
<td>External operation amplifier connection mode</td>
<td>Either ANEX0 pin or ANEX1 pin</td>
</tr>
<tr>
<td>Analog input pin</td>
<td>One of ANx pin to ANy pin</td>
<td>Sample & Hold</td>
<td>Not activated</td>
</tr>
<tr>
<td>Trigger for starting A-D Conversion</td>
<td>Software trigger</td>
<td>Trigger by ADTRG</td>
<td>Activated</td>
</tr>
</tbody>
</table>

2.0 Introduction
Operation
1) If the level of the ADTRG changes from “H” to “L” with the A-D conversion start flag set to “1”, the A-D converter begins operating.
2) After A-D conversion is completed, the content of the successive comparison register (conversion result) is transmitted to A-D register i. At this time, the A-D conversion interrupt request bit goes to “1”. Also the A-D converter stops operating.
3) If the level of the ADTRG pin changes from “H” to “L”, the A-D converter carries out conversion from step (1) again. If the level of the ADTRG pin changes from “H” to “L” while conversion is in progress, the A-D converter stops the A-D conversion in process, and carries out conversion from step (1) again.

Figure 1 shows the operation timing.

Figure 1. Operation timing of one-shot mode, with an external trigger selected

Note: When φAD frequency is less than 1MHz, sample and hold function cannot be selected.
Conversion rate per analog input pin is 49 φAD cycles for 8-bit resolution and 59 φAD cycles for 10-bit resolution.
3.0 Set-up procedure

Selecting sample and hold

- A-D control register 2 [Address 0394H]
- A-D conversion method select bit
 1 : With sample and hold

Setting A-D control register 0 and A-D control register 1

- A-D control register 0 [Address 0396H]
- A-D conversion start flag
 0 : A-D conversion disabled
 1 : A-D conversion started
- Analog input pin select bit (Note 1)
 0 0 0 : AN0 is selected
 0 0 1 : AN1 is selected
 0 1 0 : AN2 is selected
 0 1 1 : AN3 is selected
 1 0 0 : AN4 is selected
 1 0 1 : AN5 is selected
 1 1 0 : AN6 is selected
 1 1 1 : AN7 is selected
- Frequency select bit 0 (Note 2)
 0 : fAD/4 is selected
 1 : fAD/2 is selected
- One-shot mode is selected (Note 1)
- Trigger select bit
 0 : ADTRG trigger
 1 : A-D conversion disabled
- A-D operation mode select bit 1 (Note 1)
 0 (Must always be "0" in one-shot mode)
- 8/10-bit mode select bit
 0 : 8-bit mode
 1 : 10-bit mode
- Frequency select bit 1 (Note 2)
 0 : fAD/4 is selected
 1 : fAD/2 is selected
- Vref connect bit
 0 : Vref connected
 1 : Vref disconnected
- External op-amp connection mode bit
 0 0 : ANEX0 and ANEX1 are not used (Note 3)

- Invalid in one-shot mode
- A-D conversion disabled

Note 1 : Rewrite to analog input pin select bit after changing A-D operation mode.
Note 2 : When f(XIN) is over 10 MHz, the fAD frequency must be under 10 MHz by dividing and set fAD frequency to 10 MHz or lower.
Note 3 : Set "0" to PS03_5 and PS03_6 of the function select register B3.

Setting A-D conversion start flag

- A-D control register 0 [Address 0396H]
- A-D conversion start flag
 0 : A-D conversion disabled
 1 : A-D conversion started

When ADTRG pin level becomes from "H" to "L"

Start A-D conversion

Reading conversion result

- Eight low-order bits of A-D conversion result
- During 10-bit mode
 Two high-order bits of A-D conversion result
- During 8-bit mode
 When read, the content is indeterminate

Setting A-D conversion start flag

- A-D control register 0 [Address 0396H]
- A-D conversion start flag
 0 : A-D conversion disabled
 1 : A-D conversion started

Stop A-D conversion
4.0 Programming Code

;**
; 4.0 Programming Code
;**

;**
; M16C/80 Program Collection
;**

;**
; FILE NAME : rj05b0476_src.a30
; CPU : M16C/80 Group
; FUNCTION : Operation of A-D Converter
; (in one-shot mode, an external trigger)
; HISTORY : 2004.02.02 Ver 1.00
; Copyright(C)2003, Renesas Technology Corp.
; Copyright(C)2003, Renesas Solutions Corp.
; All rights reserved.
;**

;**
; Include
;**

.LIST OFF ;Stops outputting lines to the assembler list file
.INCLUDE sfr80100.inc ;Reads the file that defined SFR
.LIST ON ;Starts outputting lines to the assembler list file

;**
; Symbol definition
;**

RAM_TOP .EQU 000400H ;Start address of RAM
RAM_END .EQU 002BFFH ;End address of RAM
ROM_TOP .EQU 0FFC000H ;Start address of ROM
FIXED_VEC_TOP .EQU 0FFFFDCH ;Start address of fixed vector

;**
; Allocation of work RAM area
;**

;**
; .SECTION WORKRAM, DATA
; .ORG RAM_TOP
;**

WORKRAM_TOP:
v_AD_result: .BLKW 1 ; RAM area where A-D conversion result is stored
WORKRAM_END:

;**
; Program area
;**

;**
; Start up
;**

;**
; .SECTION PROGRAM, CODE
; .ORG ROM_TOP
;**

RESET:
 LDC #RAM_END+1, ISP ;Sets initial value in stack pointer
 ; Sets Processor mode, System clock and Main clock division
 MOV.B #03H, prcr ;Removes protect
 MOV.B #10000000B, pm0 ; Single-chip mode
 MOV.B #11000000B, pm1 ; Flash memory version
 MOV.B #00001000B, cm0 ; Xcin-Xcout High
 MOV.B #00100000B, cm1 ; Xin-Xout High
 MOV.B #00010010B, mcd ; No division mode
 MOV.B #00H, prcr ;Protects all registers
 MOV.W #0, v_AD_result ;Clear area where A-D conversion result will be stored
Operation of A-D Converter (in one-shot mode, an external trigger)

; Disabling A-D conversion interrupt and clearing interrupt request bit to "0"
MOV.B #000, adic
; Setting sample and hold
MOV.B #00000001B, adcon2
; A-D conversion method select bit
(1: With sample and hold)
; Setting A-D control register 0 and A-D control register 1
MOV.B #10100000B, adcon0
; Analog input pin select bit (000: AN0 is selected)
; One-shot mode is selected
; Trigger select bit (1: ADTRG trigger)
; A-D conversion start flag (0: A-D conversion disabled)
; Frequency select bit 0 (1: fAD/2 is selected)
MOV.B #00101000B, adcon1
; Invalid in one-shot mode
; A-D operation mode select bit
; 8/10-bit mode select bit (1: 10-bit mode)
; Vref connect bit (1: Vref connected) (Note)
; External op-amp connection mode bit
; (Note) Setting function select register B3 (ANEX0 and ANEX1 are not used) (Note)

; Setting direction register of the relevant port to input
BCLR pd10_0 ; AN0 (P100): Analog input pin
; Setting direction register of the external trigger input pin
MOV.B #00000100B, prcr ; Clearing the protect (set to write-enabled state)
BCLR pd9_7 ; ADTRG (P97): A-D external trigger input pin
BCLR ps3_7 ; ADTRG (P97) is I/O port
; (Note) Setting function select register B3 (ANEX0 & ANEX1 are not used)
BCLR ps13_5 ; P95: Input peripheral function enabled
BCLR ps13_6 ; P96: Input peripheral function enabled

; Setting the direction register of the relevant port to input

; Start A-D conversion

; (Note) When the Vref connection bit is changed from 0 to 1,
; start A-D conversion after an elapsing of 1 us or longer.
MOV.W #10, R0 ; 10 * 2cy = 20cy = 1 us or longer (@20MHz)
PRE_START:
NOP
NOP
ADJNZ.W #-1, R0, PRE_START
; Setting A-D conversion start flag
BSET adst
START_AD:
; When ADTRG pin level becomes from "H" to "L", start A-D conversion
WAIT_AD_CNV:
BTST ir_adic ; Waiting A-D conversion completing
JNC WAIT_AD_CNV
BCLR ir_adic ; Clear to "0" A-D conversion interrupt request
COMPLETE_CNV:
; Reading conversion result
MOV.W ad0, v_AD_result ; Read conversion result
AND.W #03FFH, v_AD_result ; Mask 10 bits result
JMP START_AD

Operation of A-D Converter (in one-shot mode, an external trigger)

;---
; Stop A-D conversion
;---
STOP_AD:
 BCLR adst ; A-D conversion stop
;
STOPPED_AD:
 JMP STOPPED_AD
;
;---
; Dummy interrupt processing program
;---
dummy:
 REIT
;
; Setting of fixed vector
;---
 SECTION F_VECT, ROMDATA
 .ORG FIXED_VECT_TOP
 ;
 .LWORD dummy ;Undefined instruction
 .LWORD dummy ;Overflow
 .LWORD dummy ;BRK instruction execution
 .LWORD dummy ;Address match
 .LWORD dummy ;
 .LWORD dummy ;Watchdog timer
 .LWORD dummy ;
 .LWORD dummy ;NMI
 .LWORD RESET ;Reset
 ;
 .END
5.0 Reference
Renesas Technology Corporation Semiconductor Home page
http://www.renesas.com/

Technical Support
E-mail: support_apl@renesas.com

Data Sheet
M16C/80 group Rev. E3
(Use the latest version on the Home page: http://www.renesas.com/)

TECHNICAL UPDATE/TECHNICAL NEWS
(Use the latest information on the Home page: http://www.renesas.com/)
Keep safety first in your circuit designs!

- Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer’s application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.

- Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

- Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

- Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

- The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.

- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

- Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.