
 Application Note

R11AN0120EU0103 Rev.1.03 Page 1 of 23
May.01.19

Renesas Synergy™ Platform

NetX™ HTTP Server Module Guide
Introduction
This module guide will enable you to effectively use a module in your own design. Upon completion of this
guide you will be able to add this module to your own design, configure it correctly for the target application,
and write code using the included application project code as a reference and efficient starting point.
References to more detailed API descriptions and suggestions of other application projects that illustrate
more advanced uses of the module are available in the Renesas Synergy™ Knowledge Base (as described
in the References section at the end of this document) and will be valuable resources for creating more
complex designs.
The Hypertext Transfer Protocol (HTTP) utilizes reliable Transmission Control Protocol (TCP) services to
perform its content transfer function; all operations on the Web utilize the HTTP protocol. The NetXTM Duo
HTTP Server accommodates both IPv4 and IPv6 networks while the NetXTM HTTP Server only supports IPv4
communications. IPv6 does not directly affect the HTTP protocol; however, some differences with the NetX
HTTP Server are necessary to accommodate IPv6 and are noted in this document.
Note: Except for internal processing, NetX Duo HTTP Server is almost identical in the application set up and

running an HTTP session as the NetX HTTP Server. Where they differ is noted in this document.

This document provides an overview of the key elements related to the NetX HTTP implementation on the
Renesas SynergyTM Platform. This document’s primary focus is on the addition and configuration of the NetX
HTTP module to a Renesas Synergy Platform project. For details on the operation of this module, consult the
NetX ™ Hyper Text Transfer (HTTP) Server User’s Guide for the Renesas Synergy™ Platform and the
NetX™ Duo Hyper Text Transfer (HTTP) Server User’s Guide for the Renesas Synergy™ Platform
documents. This user’s guide is part of X-Ware™ Component Documents for Renesas Synergy™ zip file
available from the Renesas Synergy Gallery (www.renesas.com/synergy/ssp).

Contents
1. NetX HTTP Server Module Features ...2
2. NetX HTTP Server Module APIs Overview ..2
3. NetX HTTP Server Module Operational Overview ..5
3.1 NetX HTTP Server Module Operational Notes and Limitations .. 7
4. Including the NetX HTTP Server Module in an Application ...7
5. Configuring the NetX HTTP Server Module ...8
5.1 Configuration Settings for the NetX and NetX Duo HTTP Server Lower-Level Modules................... 10
5.2 NetX HTTP Server Module Clock Configuration .. 16
5.3 NetX HTTP Server Module Pin Configuration ... 16
6. Using the NetX HTTP Server Module in an Application ..16
7. The NetX HTTP Server Module Application Project..17
8. Customizing the NetX HTTP Server Module for a Target Application20
9. Running the NetX HTTP Server Module Application Project ...20
10. NetX HTTP Server Module Conclusion ..21
11. NetX HTTP Server Module Next Steps ..21
12. NetX HTTP Server Module Reference Information ...21

https://www.renesas.com/synergy/ssp

Renesas Synergy™ Platform NetX™ HTTP Server Module Guide

R11AN0120EU0103 Rev.1.03 Page 2 of 23
May.01.19

1. NetX HTTP Server Module Features
• Compliant with Request for Comments (RFC) RFC1945 Hypertext Transfer Protocol/1.0, RFC 2581 TCP

Congestion Control, RFC 1122 Requirements for Internet Hosts, and related RFCs.
• Multipart support
• Basic and digest authentication support
• Callback support for several key functions:

 HTTP Authentication Callback
 HTTP Request Notify Callback
 HTTP Invalid Username/Password Callback
 HTTP Insert GMT Date Header Callback
 HTTP Cache Info Get Callback

Figure 1. NetX HTTP Server Module Block Diagram

2. NetX HTTP Server Module APIs Overview
The NetX HTTP Server module defines APIs for creating, deleting, generating response packets, response
sending, and getting information from a received packet. A complete list of the available APIs, an example API
call, and a short description of each can be found in the following table. A table of status return values follows
the API summary table.

Table 1. NetX HTTP Server Module API Summary
Function Name Example API Call and Description
nx_http_server_cache_info_callback_set nx_http_server_cache_info_callback_set(&my_se

rver, cache_info_get);
Set callback to retrieve age and last modified date of
specified URL.

nx_http_server_callback_data_send nx_http_server_callback_data_send(server_ptr,
"HTTP/1.0 200 \r\nContent-Length:
103\r\nContent-Type: text/html\r\n\r\n",63);
nx_http_server_callback_data_send(server_ptr,
"<HTML>\r\n<HEAD><TITLE>NetX HTTP Test
</TITLE></HEAD>\r\n <BODY>\r\n<H1>NetX Test
Page </H1>\r\n</BODY>\r\n</HTML>\r\n", 103);
Send HTTP data from callback function.

nx_http_server_callback_generate_respo
nse_header

nx_http_server_callback_generate_response_hea
der (server_ptr, &packet_ptr, status_code,
content_length, content_type,
additional_header);

Renesas Synergy™ Platform NetX™ HTTP Server Module Guide

R11AN0120EU0103 Rev.1.03 Page 3 of 23
May.01.19

Function Name Example API Call and Description
Create response header in callback functions.

nx_http_server_callback_packet_send nx_http_server_callback_packet_send(server_pt
r, packet_ptr);
Send an HTTP packet from an HTTP callback.

nx_http_server_callback_response_send nx_http_server_callback_response_send(server_
ptr,"HTTP/1.0 404 ", "NetX HTTP Server unable
to find file: ", resource);
Send response from callback function.

nx_http_server_content_get nx_http_server_content_get(server_ptr,
packet_ptr, 0, my_buffer, 100, &actual_size);
Get content from the request.

nx_http_server_content_get_extended nx_http_server_content_get_extended(server_pt
r, packet_ptr, 0, my_buffer, 100,
&actual_size);
Get content from the request; supports empty (zero Content
Length) requests.

nx_http_server_content_length_get nx_http_server_content_length_get(packet_ptr)
;
Get length of content in the request. Length is the status
return value. A length of zero indicates an error.

nx_http_server_content_length_get_exte
nded

nx_http_server_content_length_get_extended(pa
cket_ptr, &content_length);
Get length of content in the request; supports empty
(zero Content Length) requests.

nx_http_server_create nx_http_server_create(&my_server, “my
server”, &ip_0, &ram_disk, stack_ptr,
stack_size, &pool_0, my_authentication_check,
my_request_notify);
Create an HTTP Server instance.

nx_http_server_delete nx_http_server_delete(&my_server);
Delete an HTTP Server instance.

nx_http_server_get_entity_content nx_http_server_get_entity_content(server_ptr,
&packet_ptr, &offset, &length);
Return size and location of entity content in URL.

nx_http_server_get_entity_header nx_http_server_get_entity_header(server_ptr,
&packet_ptr, entity_header_buffer,
buffer_size);
Extract URL entity header into specified buffer.

nx_http_server_gmt_callback_set nx_http_server_gmt_callback_set(&my_server,
gmt_get);
Set callback to retrieve GMT date and time.

nx_http_server_invalid_userpassword_no
tify_set**

nx_http_server_invalid_userpassword_notify_se
t(&my_server,
invalid_username_password_callback);
Set callback for when invalid username and password is
received in a Client request.

nx_http_server_mime_maps_additional_s
et

nx_http_server_mime_maps_additional_set(&my_s
erver, &my_mime_maps[0], 2);
Define additional mime maps for HTML.

nx_http_server_packet_content_find nx_http_server_packet_content_find(server_ptr
, packet_ptr, &content_length);
Extract content length in HTTP header and set pointer to start
of content data.

Renesas Synergy™ Platform NetX™ HTTP Server Module Guide

R11AN0120EU0103 Rev.1.03 Page 4 of 23
May.01.19

Function Name Example API Call and Description
nx_http_server_packet_get nx_http_server_packet_get(server_ptr,

&packet_ptr);
Receive client packet directly.

nx_http_server_param_get nx_http_server_param_get(packet_ptr, 0,
param_destination, 30);
Get parameter from the request.

nx_http_server_query_get nx_http_server_query_get(packet_ptr, 0,
query_destination, 30);
Get query from the request.

nx_http_server_start nx_http_server_start(&my_server);
Start the HTTP Server.

nx_http_server_stop nx_http_server_stop(&my_server);
Stop the HTTP Server.

nx_http_server_type_get nx_http_server_type_get(server_ptr,
resource_name, type_string);
Extract HTTP type e.g. text/plain from header. Type is
returned in the status return. A value of zero indicates an
error.

Note: For more complete descriptions of operation and definitions for the function data structures, typedefs,
defines, API data, API structures, and function variables, review the SSP User’s Manual API
References for the associated module.
**In NetX HTTP Server this takes ULONG client_ip_address input; in NetX Duo HTTP Server this
takes a NXD_ADDRESS *client_ip_address input.

Table 2. Status Return Values
Name Description
NX_SUCCESS Successfully performed function
NX_PTR_ERROR** Invalid pointer input
NX_CALLER_ERROR ** Invalid caller of service
NX_HTTP_DATA_END End of request content
NX_HTTP_TIMEOUT HTTP Server timeout in getting next packet of

content
NX_CALLER_ERROR Invalid caller of this service
NX_HTTP_INCOMPLETE_PUT_ERROR Improper HTTP header format
NX_HTTP_POOL_ERROR Packet payload of pool is not large enough to

contain complete HTTP request
NX_HTTP_BOUNDARY_ALREADY_FOUND Content for the HTTP server internal multipart

markers is already found
NX_HTTP_NOT_FOUND Entity header field or client request parameter

or multipart component not found
NX_HTTP_IMPROPERLY_TERMINATED_PAR
AM

Client request parameter not properly
terminated

NX_HTTP_NO_QUERY_PARSED Server unable to find query in client request
NX_HTTP_TIMEOUT No packet received in the specified wait

interval
NX_HTTP_ERROR Internal HTTP Server error
NX_HTTP_SERVER_DEFAULT_MIME No matching extension type found. Return

the default MIME type. Not an error status.

Renesas Synergy™ Platform NetX™ HTTP Server Module Guide

R11AN0120EU0103 Rev.1.03 Page 5 of 23
May.01.19

Note: Lower-level drivers may return common error codes. Refer to the SSP User’s Manual API References
for the associated module for a definition of all relevant status return values.
**These are error codes are only returned if error checking is enabled. For details on error checking
services in NetX and NetX Duo, see NetX™ User’s Guide for the Renesas Synergy™ Platform or
NetX™ Duo User’s Guide for the Renesas Synergy™ Platform.

3. NetX HTTP Server Module Operational Overview
The NetX HTTP Server module creates an IP instance that carries out NetX operations and enables it for
TCP services in the NetX library; it then creates the HTTP Server instance and TCP socket for listening to
client requests on port 80. The HTTP Server requires a packet pool; the module can supply one either by
sharing the IP default packet pool (g_packet_pool0) or create a new one. The minimum packet payload is
set by the Minimum size of packets in pool property of the HTTP Server module. This packet pool is used
by the HTTP Server only to transmit packets, so the packet pool size and payload can be optimized on the
expected size and number of HTTP Server packets sent out.
The NetX Duo HTTP Server supports both IPv4 and IPv6 connections. If the HTTP Server has clients
desiring to connect over IPv6, make sure the NetX Duo IPv6 Support property is enabled in the NetX Duo
Source element. It may be necessary to enable ICMPv6 checksum computation for the underlying ICMPv6
protocols. To do so, set the Checksum computation support on transmitted ICMPv6 packets and
Checksum computation support on received ICMPv6 packets properties of the NetX Duo Source
element to Enabled. (If the host hardware automatically computes ICMPv6 checksums, these can be left
disabled.) Make sure the IPv6 Global Address of the Client host is set in the IP instance element.
Thereafter, the NetX Duo does the necessary processing to enable IPv6 and ICMPv6 services required for
IPv6 underlying protocols.
The HTTP Server is also designed for use with the FileX® embedded file system.
HTTP Server Responses
When the HTTP Server processes the client command, it returns an ASCII response string that includes a 3-
digit numeric status code. The numeric response is used by the HTTP Client software to determine whether
the operation succeeded or failed. Following is a list of various HTTP Server responses to client commands:

Table 3. HTTP Server responses to client commands
Numeric Field Meaning
200 Request was successful
400 Request was not formed properly
401 Unauthorized request, client needs to send authentication
404 Specified resource in request was not found
500 Internal HTTP Server error
501 Request not implemented by HTTP Server
502 Service is not available

For example, a successful client request to PUT the file test.htm is responded to with the message
HTTP/1.0 200 OK.
HTTP Authentication
HTTP authentication is optional and is not required for all web requests. There are two types of
authentication, basic and digest. Basic authentication is equivalent to the name and password authentication
found in many protocols. In HTTP basic authentication, the name and passwords are concatenated and
encoded in the base64 format. The main disadvantage of basic authentication is the name and password are
transmitted openly in the request, making it easy for the name and password to be stolen. Digest
authentication addresses this problem by never transmitting the name and password in the request. Instead,
an algorithm is used to derive a 128-bit key or digest from the name, password, and other information. The
NetX HTTP Server supports the standard MD5 digest algorithm.
The HTTP Server authentication callback can decide if a requested resource requires authentication. If
authentication is required and the client request did not include the proper authentication, an HTTP/1.0 401
Unauthorized response with the type of authentication required is sent to the client. The client is then
expected to form a new request with the proper authentication.

Renesas Synergy™ Platform NetX™ HTTP Server Module Guide

R11AN0120EU0103 Rev.1.03 Page 6 of 23
May.01.19

HTTP Authentication Callback
The HTTP Server authentication callback routine is specified by the Name of Authentication Checking
Function property of the HTTP Server Thread. This function is called at the beginning of each HTTP Client
request.
The callback routine provides the NetX HTTP Server with the username, password, and realm strings
associated with the resource and returns the type of authentication necessary. If no authentication is
necessary for the resource, the authentication callback should return the value of
NX_HTTP_DONT_AUTHENTICATE. If basic authentication is required for the specified resource, the routine
should return NX_HTTP_BASIC_AUTHENTICATE. If MD5 digest authentication is required, the callback
routine should return NX_HTTP_DIGEST_AUTHENTICATE.
The format of the authenticate callback routine is defined as:
UINT nx_http_server_authentication_check(NX_HTTP_SERVER *server_ptr, UINT
request_type, CHAR *resource, CHAR **name, CHAR **password, CHAR **realm);

The input parameters are defined as follows:

Table 4. Input Parameters Definitions
Parameter Meaning
request_type Specifies the HTTP Client request, valid requests are defined as:
 NX_HTTP_SERVER_GET_REQUEST
 NX_HTTP_SERVER_POST_REQUEST
 NX_HTTP_SERVER_HEAD_REQUEST
 NX_HTTP_SERVER_PUT_REQUEST
 NX_HTTP_SERVER_DELETE_REQUEST
resource Specific resource requested.
name Destination for the pointer to the required username.
password Destination for the pointer to the required password.
realm Destination for the pointer to the realm for this authentication.

Name, password, and realm pointers are not used if NX_HTTP_DONT_AUTHENTICATE is returned by the
authentication callback routine. The HTTP Server developer must ensure that the maximum size of the
username and password (defined by the Maximum username length and Maximum password length
properties of the NetX HTTP Common) are large enough for the username and password specified in the
authentication callback. These are both defaulted to size 20 characters.
HTTP Server Request Notify callback
If a request callback is specified, (the Name of Request Notify Callback Function property of the NetX
HTTP Server module) the NetX HTTP Server forwards requests to the specified function after authentication
and validity of the client request is completed without errors. The callback should indicate (by the return
status) if no more processing of the client request is required (return status
NX_HTTP_CALLBACK_COMPLETED), if there was an error in the callback processing, (status is non-zero),
or the process was completed successfully and the HTTP Server should continue processing the client
request. The format of this callback is:
UINT request_notify(NX_HTTP_SERVER *server_ptr, UINT request_type, CHAR
*resource,

 NX_PACKET *packet_ptr)

To disable the request notify callback, set the Name of Request Notify Callback Function property to NULL.
HTTP Invalid Username/Password Callback
The optional Invalid Username/Password callback in the NetX HTTP Server module is invoked if the HTTP
Server receives an invalid username-and-password combination in a client request. To set the Invalid
Username/Password callback function, use the nx_http_server_invalid_user_password_set service. Note
that for NetX Duo HTTP Server module, this takes a NXD_ADDRESS *client_ip_address, while NetX HTTP
Server module takes a ULONG client_ip_address.
HTTP Insert GMT Date Header Callback

Renesas Synergy™ Platform NetX™ HTTP Server Module Guide

R11AN0120EU0103 Rev.1.03 Page 7 of 23
May.01.19

The NetX HTTP Server supports an optional callback to insert a date header in its response messages. This
callback is invoked when the Server responds to a Client PUT or GET request. To set the GMT callback use
the nx_http_server_gmt_callback service before starting the NetX HTTP Server thread.
HTTP Cache Info Get Callback
The NetX HTTP Server has an optional callback to request the maximum age and date from the HTTP
application for a specific resource. This information is used to determine if the HTTP server sends the entire
page in response to a Client Get request. If the if modified since in the Client request is not found or does not
match the last modified date returned by the get-cache callback, the entire page is sent. To set a cache
callback function, use the nx_http_server_cache_info_callback_set service.

HTTP Multipart Support
Multipurpose Internet Mail Extensions (MIME) was originally intended for the SMTP protocol, but its use has
spread to HTTP. MIME allows messages to contain mixed message types (for example, image/jpg and
text/plain) within the same message. The NetX HTTP Server has added services to determine content type
in HTTP messages containing MIME from the client. To enable multipart support, set the Multipart HTTP
requests support property of the NetX HTTP Server module to enable.

3.1 NetX HTTP Server Module Operational Notes and Limitations
3.1.1 NetX HTTP Module Operational Notes
• The NetX HTTP Server module requires a FileX media (Block media or USB Mass Storage). When an

HTTP Server stack element is added to the project, an Add FileX box is attached to it. The configurator
automatically sets up and initializes the FileX media for the server before the server is started. For more
details for configuring FileX, see FileX™ User’s Guide for the Renesas Synergy™ Platform.

• The NetX HTTP Server also requires a packet pool for transmitting packets. It can share the IP default
packet pool or create a separate packet pool. See the section on Including the NetX HTTP Server Module
in an Application for details on setting the HTTP Server packet pool.

3.1.2 NetX HTTP Server Module Limitations
• Persistent connections are not supported.
• Request pipelining is not supported.
• The HTTP Server supports both basic and MD5 digest authentication, but not MD5-sess.
• No content compression is supported.
• Trace, Options, and Connect requests are not supported.
• The packet pool associated with the HTTP Server must be large enough to hold the complete HTTP

header.

See the latest SSP Release Notes for any additional operational limitations for this module.

4. Including the NetX HTTP Server Module in an Application
Note: It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread, and

configuring a block within the stack. If you are unfamiliar with any of these tasks, refer to the first few
chapters of the SSP User’s Manual to learn how to manage each of these important steps in creating
SSP-based applications.

Including a NetX HTTP Server module in an application using the SSP configurator involves adding it. To
add a NetX or NetX Duo HTTP Server to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the NetX and NetX Duo HTTP Server is
g_http_server0. This name can be changed in the associated Properties window.)

Table 5. NetX HTTP Server Module Selection Sequence
Resource ISDE Tab Stacks Selection Sequence
g_http_server0 NetX HTTP Server Threads New Stack> X-Ware> NetX> Protocols> NetX

HTTP Server
g_http_server0 NetX Duo HTTP Server Threads New Stack> X-Ware> NetX Duo> Protocols>

NetX Duo HTTP Server

Renesas Synergy™ Platform NetX™ HTTP Server Module Guide

R11AN0120EU0103 Rev.1.03 Page 8 of 23
May.01.19

When the NetX HTTP Server is added to the thread stack as shown in the following figure, the configurator
automatically adds any needed lower-level drivers. Any drivers that need additional configuration information
will be box text highlighted in Red. Modules with a Gray band are individual modules that stand alone.
Modules with a Blue band are shared or common and need only be added once and can be used by multiple
stacks. Modules with a Pink band can require the selection of lower-level drivers; these are either optional or
recommended. (This is indicated in the block with the inclusion of this text.) If the addition of lower-level
drivers is required, the module description will include Add in the text. Clicking on any Pink banded modules
will bring up the New icon and then display the possible choices.
Note that a FileX module must be added. Choose the Add FileX and choose either FileX on Block Media
or FileX on USB Mass Storage.
To supply a separate packet pool for the HTTP, select the Add NetX Duo Packet Pool box and choose
New. To share the packet pool with the IP instance, choose Use. Using a separate packet pool has the
benefit of optimizing the packet pool (number of packets, location of packet pool memory, and packet
payload) for the HTTP Server transmit packet operations.

Figure 2. NetX HTTP Server Module Stack

5. Configuring the NetX HTTP Server Module
The NetX HTTP Server module must be configured by the user for the desired operation. The SSP
configuration window automatically identifies (by highlighting the block in red) any required configuration
selections, such as interrupts or operating modes, which must be configured for lower-level modules for
successful operation. Only those properties that can be changed without causing conflicts are available for
modification. Other properties are locked and are not available for changes, and are identified with a lock
icon for the locked property in the Properties window in the ISDE. This approach simplifies the configuration
process and makes it much less error-prone than previous manual approaches to configuration. The
available configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP Configurator and are shown in the following tables for easy reference.
One of the properties most often identified as requiring a change is the interrupt priority; this configuration
setting is available within the Properties window of the associated module. Simply select the indicated
module and then view the Properties window; the interrupt settings are often toward the bottom of the

Renesas Synergy™ Platform NetX™ HTTP Server Module Guide

R11AN0120EU0103 Rev.1.03 Page 9 of 23
May.01.19

properties list, so scroll down until they become available. Also note that the interrupt priorities listed in the
Properties window in the ISDE includes an indication as to the validity of the setting based on the targeted
MCU (CM4 or CM0+). This level of detail is not included in the configuration properties tables below, but is
easily visible within the ISDE when configuring interrupt-priority levels.
Note: You may want to open your ISDE, create the module, and explore the property settings in parallel with

looking over the following configuration table settings. This helps orient you and can be a useful
hands-on approach to learning the ins and outs of developing with SSP.

Table 6. Configuration Settings for the NetX HTTP Server Module
Parameter Value Description
FileX Support Enable, Disable (Default:

Enable)
FileX support selection.

Multipart HTTP
requests support

Enable, Disable (Default:
Disable)

Multipart HTTP requests support selection

Internal thread priority 16 Internal thread priority selection
Server socket window
size (bytes)

2048 Server TCP socket receive window size
selection

Server time out
(seconds)

10 Server time out for packet operations
(copying data to packet buffer, appending
data into packet buffer)

Server time out for
accept (seconds)

10 Server time out for accept selection

Server time out for
disconnect (seconds)

10 Server time out for disconnect selection

Server time out for
receive (seconds)

10 Server time out for receive selection

Server time out for send
(seconds)

10 Server time out for send selection

Maximum size of
header field (bytes)

256 Maximum size of header field selection

Maximum connections
in queue

5 Maximum Client connection requests to
enqueue selection

Maximum client user
name length (bytes)

20 Maximum client user name length
selection

Maximum client user
password length (bytes)

20 Maximum client user password length
selection

Minimum size of
packets in pool (bytes)

600 Minimum size of packets in pool selection

Name g_http_server0 Module name
Internal thread stack
size (bytes)

4096 Internal thread stack size selection

Name of Authentication
Checking Function

authentication_check Name of Authentication Checking
Function selection

Name of Request Notify
Callback Function

request_notify Name of Authentication Checking
Function selection

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings. In some cases, settings other
than the defaults for lower-level modules can be desirable. For example, it might be useful to select
different MAC or IP Addresses. The configurable properties for the lower-level stack modules are
given in the following sections for completeness and as a reference. Most of the property settings for
lower-level modules are intuitive and usually can be determined by inspection of the associated
Properties window from the SSP configurator.

Renesas Synergy™ Platform NetX™ HTTP Server Module Guide

R11AN0120EU0103 Rev.1.03 Page 10 of 23
May.01.19

5.1 Configuration Settings for the NetX and NetX Duo HTTP Server Lower-Level
Modules

Typically, only a small number of settings must be modified from the default for lower-level modules as
indicated via the red text in the thread stack block. Notice that some of the configuration properties must be
set to a certain value for proper framework operation and will be locked to prevent user modification. The
following table identifies all the settings within the properties section for the module.
Table 7. Configuration Settings for the NetX IP Instance

ISDE Property Value Description
Name g_ip0 Module name
IPv4 Address (use
commas for separation)

192,168,0,2 IPv4 Address selection
Note: IP should be selected on the IP
available on local network

Subnet Mask (use
commas for separation)

255,255,255,0 Subnet Mask selection

IP Helper Thread Stack
Size (bytes)

2048 IP Helper Thread Stack Size (bytes)
selection

IP Helper Thread Priority 3 IP Helper Thread Priority selection
ARP Enable ARP selection
ARP Cache Size in Bytes 512 ARP Cache Size in Bytes selection
Reverse ARP Enable, Disable (Default: Disable) Reverse ARP selection
TCP Enable TCP selection
UDP Enable UDP selection
ICMP Enable, Disable (Default: Disable) ICMP selection
IGMP Enable, Disable (Default: Disable) IGMP selection

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Table 8. Configuration Settings for the NetX Port ETHER
ISDE Property Value Description
Parameter Checking BSP, Enabled, Disabled (Default:

BSP)
Enable or disable the parameter
checking

Channel 0 PHY Reset Pin IOPORT_PORT_09_PIN_03 Channel 0 PHY reset pin selection
Channel 0 MAC Address
High Bits

0x00002E09 Channel 0 MAC address high bits
selection

Channel 0 MAC Address
Low Bits

0x0A0076C7 Channel 0 MAC address low bits
selection

Channel 1 PHY Reset Pin IOPORT_PORT_08_PIN_06 Channel 1 PHY reset pin selection
Channel 1 MAC Address
High Bits

0x00002E09 Channel 1 MAC address high bits
selection

Channel 1 MAC Address
Low Bits

0x0A0076C8 Channel 1 MAC address low bits
selection

Number of Receive Buffer
Descriptors

8 Number of receive buffer descriptors
selection

Number of Transmit
Buffer Descriptors

32 Number of transmit buffer descriptors
selection

Ethernet Interrupt Priority Priority 0(highest)-15(lowest),
Disabled (Default: Priority 5)

Ethernet interrupt priority selection

Name g_sf_el_nx Module name
Channel 1 Channel selection
Callback NULL Callback selection

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Renesas Synergy™ Platform NetX™ HTTP Server Module Guide

R11AN0120EU0103 Rev.1.03 Page 11 of 23
May.01.19

Table 9. Configuration Settings for the FileX on Block Media

ISDE Property Value Description
Name g_fx_media0 Module name.
Format media during
initialization.

Enabled, Disabled (Default: Disabled) Format media during initialization
selection.

File System is on
SDMMC

True, False (Default: True) File System initialization selection.

Formatting Options

Formatting options selection.
Volume Name Volume 1 Volume name selection.
Number of FATs 1 Number of FATs selection.
Directory Entries 256 Directory entries selection.
Hidden Sectors 0 Hidden sectors selection.
Total Sectors 3751936 Total sectors selection.
Bytes per Sector 512 Bytes per Sector selection.
Sectors per Cluster 1 Sectors per Cluster selection.
Working media
memory size

512 Working media memory size selection.

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Table 10. Configuration Settings for the FileX Port Block Media Framework
ISDE Property Value Description
Parameter Checking BSP, Enabled, Disabled (Default: BSP) Enable or disable the parameter

checking.
Name g_sf_el_fx0 Module name.

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Table 11. Configuration Settings for the FileX Common
ISDE Property Value Description
No configurable properties.

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Table 12. Configuration Settings for the Block Media Framework
ISDE Property Value Description
Parameter Checking BSP, Enabled, Disabled (Default:

BSP)
Enable or disable the parameter
checking.

Name g_sf_block_media_sdmmc0 Module name.
Block size of media in
bytes

512 Block size selection.

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Table 13. Configuration Settings for the SD/MMC Driver on r_sdmmc
ISDE Property Value Description
Parameter Checking BSP, Enabled, Disabled

(Default: BSP)
Enable or disable the parameter
checking.

Name g_sdmmc0 The name to be used for SDMMC
module control block instance. This
name is also used as the prefix of the
other variable instances.

Renesas Synergy™ Platform NetX™ HTTP Server Module Guide

R11AN0120EU0103 Rev.1.03 Page 12 of 23
May.01.19

ISDE Property Value Description
Channel 1 Channel of SD/MMC peripheral,

channel 0 or 1
Media Type Embedded, Card

(Default: Embedded)
Media is a card or an embedded
device. This allows to firmware to know
whether to look for card
insertion/removal and write protect
pins.

Bus Width 1 bit, 4 bits, 8 bits (default: 4 bits) Data bus with as defined by hardware
interface. (8 Bits for eMMC only)

Block Size 512 Block size selection.
Callback NULL (Required if not using FileX) Set to

name of user callback function.
Provides event that caused interrupt:
SDMMC_EVENT_CARD_ REMOVED,
SDMMC_EVENT_CARD_I NSERTED,
SDMMC_EVENT_ACCES S,
SDMMC_EVENT_SDIO,
SDMMC_EVENT_TRANS
FER_COMPLETE,
SDMMC_EVENT_TRANS FER_ERROR

Access Interrupt
Priority

Priority 0 (highest),
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
(lowest, not valid if using Thread X),
Disabled (Default: Disabled)

Access interrupt priority selection.

Card Interrupt Priority Priority 0 (highest),
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
(lowest, not valid if using Thread X),
Disabled (Default: Disabled)

Card interrupt priority selection.

DMA Request Interrupt
Priority

Priority 0 (highest),
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
(lowest, not valid if using Thread X),
Disabled (Default: Disabled)

DMA request interrupt priority.

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Table 14. Configuration Settings for the Transfer Driver on r_dmac Software Activation
ISDE Property Value Description
Parameter Checking BSP, Enabled,

Disabled (Default:
BSP)

Selects if code for parameter checking
is to be included in the build

Name g_transfer0 Module name
Channel 0 Channel selection
Mode Block Mode selection
Transfer Size 1 Byte Transfer size selection
Destination Address Mode Fixed Destination address mode selection
Source Address Mode Incremented Source address mode selection
Repeat Area (Unused in Normal Mode Source Repeat area selection
Destination Pointer NULL Destination pointer selection
Source Pointer NULL Source pointer selection
Number of Transfers 0 Number of transfers selection
Number of Blocks (Valid only in Block
Mode)

0 Number of blocks selection

Activation Source (Must enable IRQ) Software Activation Activation source selection

Renesas Synergy™ Platform NetX™ HTTP Server Module Guide

R11AN0120EU0103 Rev.1.03 Page 13 of 23
May.01.19

ISDE Property Value Description
Auto Enable FALSE Auto enable selection
Callback (Only valid with Software
start)

NULL Callback selection

Interrupt Priority Priority 0 (highest),
1,2,3,4,5,6,7,8,9,10,11
,12,13,14,15 (lowest,
not valid if using
Thread X), Disabled
(Default: Disabled)

Interrupt priority selection

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Table 15. Configuration Settings for the Transfer Driver on r_dtc Software Activation 1
ISDE Property Value Description
Parameter Checking BSP, Enabled, Disabled (Default:

BSP)
Selects if code for parameter checking is
to be included in the build

Name g_transfer0 Module name
Mode Block Mode selection
Transfer Size 1 Byte Transfer size selection
Destination Address
Mode

Fixed Destination address mode selection

Source Address Mode Incremented Source address mode selection
Repeat Area (Unused
in Normal Mode

Source Repeat area selection

Interrupt Frequency After all transfers have completed Interrupt frequency selection
Destination Pointer NULL Destination pointer selection
Source Pointer NULL Source pointer selection
Number of Transfers 0 Number of transfers selection
Number of Blocks
(Valid only in Block
Mode)

0 Number of blocks selection

Activation Source
(Must enable IRQ)

Software Activation 1 Activation source selection

Auto Enable FALSE Auto enable selection
Callback (Only valid
with Software start)

NULL Callback selection

ELC Software Event
Interrupt Priority

Priority 0 (highest),
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
(lowest, not valid if using Thread
X), Disabled (Default: Disabled)

ELC software event interrupt priority
selection

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Renesas Synergy™ Platform NetX™ HTTP Server Module Guide

R11AN0120EU0103 Rev.1.03 Page 14 of 23
May.01.19

Table 16. Configuration Settings for the USB Mass Storage
ISDE Property Value Description
Name of FileX Media Control block
initialization

fx_media_init_function FileX Media Control Block
initialization function

Auto Media Initialization Enable, Disable
(Default: Disabled)

Generates a functions call for
media initialization if enable

Timeout ticks for Media Initialization
(Specify 0 if no need of thread suspension)

1000 Media initialization wait time

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Table 17. Configuration Settings for the USBXTM Host Class Mass Storage
ISDE Property Value Description
Name g_ux_host_class_storage0 Module name

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Table 18. Configuration Settings for the USBX Host Class Mass Storage Source
ISDE Property Value Description
Use FileX Stub Enable, Disable

(Default: Disable)
Use FileX stub selection

Maximum number of SCSI logical units 1 Maximum number of SCSI logical units
Maximum number of storage media
instance

1 Maximum number of storage media
instance

Storage memory size in bytes for FileX
used for data transfer

1024 Storage memory size in bytes for FileX
used for data transfer

Maximum Transfer size in bytes in one
BOT data-transport phase

1024 Maximum Transfer size in bytes in one
BOT data-transport phase

Stack size for the Mass Storage Class
internal thread

1024 Stack size for the Mass Storage Class
internal thread

Timeout in millisecond for a BOT transfer
request

100000 Timeout in millisecond for a BOT
transfer request

Timeout in millisecond for the status from a
command in the Control/Bulk/Interrupt

30000 Timeout in millisecond for the status
from a command in the
Control/Bulk/Interrupt

Show linkage warning Enable, Disable
(Default: Enable)

Linkage warning

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Table 19. Configuration Settings for the USBX Host Configuration g_ux_host_0
ISDE Property Value Description
Name g_ux_host_ 0 Module name

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Renesas Synergy™ Platform NetX™ HTTP Server Module Guide

R11AN0120EU0103 Rev.1.03 Page 15 of 23
May.01.19

Table 20. Configuration Settings for the USBX Port HCD on sf_el_ux for USBHS
ISDE Property Value Description
High Speed Interrupt Priority Priority 0 (highest),

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
(lowest, not valid if using Thread X),
Disabled (Default: Disabled)

High speed interrupt priority
selection.

FIFO size for Bulk Pipes 512, 1024, 1536, 2048 bytes (Default:
512 bytes)

FIFO size for Bulk Pipes

VBUSEN pin Signal Logic Active Low, Active High (Default:
Active High)

VBUSEN pin Signal Logic

Enable High Speed Enable, Disable (Default: Enable) Enable high speed selection
Name g_sf_el_ux_dcd_hs_0 Module name.
USB Controller Selection USBHS USB controller selection.

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Table 21. Configuration Settings for the USBX on ux

ISDE Property Value Description
USBX Pool Memory Name g_ux_pool_memory USBX pool memory name

selection.
USBX Pool Memory Size 18432 USBX pool memory size selection.
User Callback for Host Event Notification
(Only valid for USB Host)

NULL User Callback for Host Event
Notification

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Table 22. Configuration Settings for the NetX HTTP Common
ISDE Property Value Description
Type of Service Normal, Minimum delay, Maximum data,

Maximum reliability, Minimum cost.
(Default: Normal)

Type of service UDP requests
selection

Fragmentation option Don't fragment, Fragment okay (Default:
Don't fragment)

Fragment option selection

Time to live 128 Time to live selection
MD5 Support Enable, Disable (Default: Disable) MD5 support selection
Maximum name length
(bytes)

40 Size of buffer for Client Resource
name

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Table 23. Configuration Settings for the NetX MD5
ISDE Property Value Description
No configurable properties.

Note: The example values and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs
may have different default values and available configuration settings.

Renesas Synergy™ Platform NetX™ HTTP Server Module Guide

R11AN0120EU0103 Rev.1.03 Page 16 of 23
May.01.19

5.2 NetX HTTP Server Module Clock Configuration
The ETHERC peripheral module uses the PCLKA as its clock source. The PCLKA frequency is set by using
the SSP configurator clock tab prior to a build, or by using the CGC Interface at run-time.

5.3 NetX HTTP Server Module Pin Configuration
The ETHERC peripheral module uses pins on the MCU to communicate to external devices. I/O pins must
be selected and configured as required by the external device. The following table illustrates the method for
selecting the pins within the SSP configuration window and the subsequent table illustrates an example
selection for the I2C pins.
Note: The operation mode selected determines the peripheral signals available and the MCU pins required.

Table 24. Pin Selection for the ETHERC Module
Resource ISDE Tab Pin selection Sequence
ETHERC Pins Select Peripherals > Connectivity: ETHERC > ETHERC1.RMII

Note: The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Table 25. Pin Configuration Settings for the ETHERC1
Property Value Description
Operation Mode Disabled, Custom, RMII

(Default: Disabled)
Select RMII as the Operation Mode for ETHERC1

Pin Group Selection Mixed, _A only
(Default: _A only)

Pin group selection

REF50CK P701 REF50CK Pin
TXD0 P700 TXD0 Pin
TXD1 P406 TXD1 Pin
TXD_EN P405 TXD_EN Pin
RXD0 P702 RXD0 Pin
RXD1 P703 RXD1 Pin
RX_ER P704 RX_ER Pin
CRS_DV P705 CRS_DV Pin
MDC P403 MDC Pin
MDIO P404 MDIO Pin

Note: The example values are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other
Synergy Kits and other Synergy MCUs may have different available pin configuration settings.

6. Using the NetX HTTP Server Module in an Application
After successfully configuring the NetX HTTP Server using the USB Mass Storage, the typical steps to use
the NetX HTTP Server in an application are:
Auto Generated code to initialize NetX and NetX Duo HTTP Server in the Application (common_data.c)
1. Create HTTP Packet pool using nx_packet_pool_create API
2. Create IP Instance using nx_ip_create API
3. Enable ARP using nx_arp_enable API
4. Enable TCP using nx_tcp_enable API
5. Create HTTP Server using the nx_http_server_create API

Renesas Synergy™ Platform NetX™ HTTP Server Module Guide

R11AN0120EU0103 Rev.1.03 Page 17 of 23
May.01.19

User Application Code (<thread>_entry.c)
1. Wait for valid IP address using the nx_ip_status_check API.
2. Start HTTP Server using the nx_http_server_start API.
3. Handle optional callbacks if registered with the HTTP Server (Authentication Check, Request Notify,

GMT set, Cache get and Invalid Username).
4. Stop HTTP Server using the nx_http_server_stop API.
5. Delete HTTP Server using the nx_http_server_delete API.

Note: If the server packet pool is used only by the server, this can be deleted too (nx_packet_pool_delete).

Users do not have to worry about auto-generated code. Auto-generated code is included once the
user generates the project after configuring the stack. Users only need to write the user application
code in the http_server_setup_mg.c file.

These common steps are illustrated in the following operational flow diagram:

Figure 3. Flow Diagram of a Typical NetX HTTP Server Module Application

7. The NetX HTTP Server Module Application Project
The application project associated with this module guide demonstrates the steps in a full design. The project
can be found using the link provided in the References section at the end of this document. You may want to
import and open the application project within the ISDE and view the configuration settings for the NetX
HTTP Server module. You can also read over the code (in http_server_setup_mg.c) which is used to
illustrate the NetX HTTP Server APIs in a complete design.
The application project demonstrates the typical use of the NetX HTTP Server APIs. The Application
Project’s main thread entry initializes the NetX HTTP Server protocol and FileX using USB mass storage. A
user-callback function is entered when an HTTP request is made. The user-specified callback function opens
the requested file, reads the file data to the buffer, and sends the buffer data to the client. The following table
identifies the target versions for the associated software and hardware used by the application project:

Renesas Synergy™ Platform NetX™ HTTP Server Module Guide

R11AN0120EU0103 Rev.1.03 Page 18 of 23
May.01.19

Table 26. Software and Hardware Resources Used by the Application Project
Resource Revision Description
e2 studio 7.3.0 or later Integrated Solution Development Environment
SSP 1.6.0 or later Synergy Software Platform
IAR EW for Renesas Synergy 8.23.3 or later IAR Embedded Workbench for Renesas

Synergy
SSC 7.3.0 or later Synergy Standalone Configurator
SK-S7G2 v3.0/v3.1 or later Starter Kit

A simple flow diagram of the application project is given in the following figure:

Figure 4. NetX HTTP Server Module Application Project Flow Diagram

Figure 5. NetX HTTP Server Application Project User Callback Function Flow Diagram

Renesas Synergy™ Platform NetX™ HTTP Server Module Guide

R11AN0120EU0103 Rev.1.03 Page 19 of 23
May.01.19

The http_server_setup_mg.c file is in the project once it has been imported into the ISDE. You can
open this file within the ISDE and follow along with the following description to help identify key uses of APIs.
The entry function in http_server_setup_mg.c sets the current directory for FIleX for all FileX calls to
check in to current directory for requested files. The entry function also makes a function call to start the
server. A callback function my_authentication_check() handles the client authentication. In this
application, we are not using client authentication, but function declaration is required. A callback function
my_request_notify() handles client requests and returns the requested file. The requested file name is
retrieved from the resource parameter and the function then looks for the file in USB Mass Storage, opens
the file, reads the content to a buffer, and sends buffer data to the HTTP Server send function. The USB
Mass Storage Device contained the file named index.html and the images required to display in the HTML
page. (The corresponding index.html and image file is located inside /src/html_file, copy these files in the
root directory of the mass media device.)
Note: It is assumed that you are familiar with using printf() with the Debug Console in the Synergy

Software Package. If you are unfamiliar with this, refer to the How do I use Printf() with the Debug
Console in the Synergy Software Package Knowledge Base article, available as described in the
References section at the end of this document. Alternatively, the user can see results via the watch
variables in the debug mode.

A few key properties of the NetX HTTP Server Stack are configured in this application project to support the
required operations and the physical properties of the target board and MCU. The following table list
properties with the values set for this specific project. You can also open the application project and view
these settings in the Properties window as a hands-on exercise.

Table 27. NetX HTTP Server Module Configuration Settings for the Application Project
Stack Frame Name ISDE Property Value Set
g_http_server0 NetX
HTTP Server

Internal Stack Size of g_http_server0 5120
Name of Authentication Checking
Function

my_authentication_check

Name of Request Notify Callback
Function

my_request_notify

g_ip0 NetX IP Instance IPv4 Address (use commas for
separation)

192,168,0,2

ARP Cache Size in Bytes 1040
Reverse ARP Disable

g_packet_pool0 NetX
Packet Pool Instance

Packet Size in Bytes 1024

g_sf_el_nx NetX Port
ETHER on sf_el_nx

Channel1 PHY Reset Pin IOPORT_PORT_08_PIN_06
Ethernet Interrupt Priority Priority 3
Channel 1

g_fx_media0 FileX on USB
Mass Storage

Auto Media Initialization Enable

USBX Host Class Mass
Storage Source

Storage Memory size in bytes for
FileX used for data transfer

32768

Maximum transfer size in bytes in one
BOT data-transport phase

32768

Show linkage warning Disabled
USBX Host Configuration
g_us_host_0

High Speed Interrupt Priority Priority 3
FIFO Size of Bulk Pipes 2048 Bytes
VBUSEN pin Signal Logic Active Low

USBX on ux USBX Pool Memory Size 120000
g_transfer1 Transfer Driver on
r_dmac Software Activation

Channel 3
Interrupt Priority Priority 2

g_transfer0 Transfer Driver on
r_dmac Software Activation

Channel 2
Interrupt Priority Priority 2

Renesas Synergy™ Platform NetX™ HTTP Server Module Guide

R11AN0120EU0103 Rev.1.03 Page 20 of 23
May.01.19

8. Customizing the NetX HTTP Server Module for a Target Application
Some configuration settings are normally changed by the developer from those shown in the application
project. For example, the user can easily change the USB Host configuration settings to switch between USB
High-Speed or USB Full-Speed in the Threads tab. Additionally, the FileX Source can be changed from USB
Mass Storage to Block Media (the SK-S7G2 board does not support block media). You can also change the
packet size, Ethernet channel, DMA transfer module, and other stack properties. Changes can be made
using the Threads tab in the configurator.
The NetX HTTP server has an optional feature of authentication. To enable this functionality, browse to the
Threads tab in the configurator. Select server NetX HTTP Server’s stack, browse to the setting of
Authentication checking function. Name the Authentication function as my_authentication_check.

Stack Frame Name ISDE Property Value Set
g_http_server0 NetX HTTP
Server

Name of Authentication Checking
Function

my_authentication_check

Browse to the http_server_setup_mg.h and enable the #define for authentication.
Browse to the http_server_setup_mg.c and note that there is a #include “nx_http_server.h”. If using NetX
Duo HTTP Server, change that to be #include “nxd_http_server.h”. The #include “nx_http.h” is included in the
Express Logic NetX and NetX Duo HTTP Server for backward compatibility. This can be commented out.
Browse to the http_server_setup_mg.c and locate the my_authentication_check function, enter the user
name and password of your choice, as shown in the figure below

Figure 6. Authentication setting for NetX HTTP module

9. Running the NetX HTTP Server Module Application Project
Note: The following steps are described in sufficient detail for someone experienced with the basic flow

through the Synergy development process. If these steps are not familiar, refer to the first few
chapters of the SSP User’s Manual for a description of how to accomplish these steps.

1. Refer to the Synergy Project Import Guide (r11an0023eu0121-synergy-ssp-import-guide.pdf, included in

this package) for instructions on importing the project into e2 studio or the IAR Embedded Workbench®
for Renesas Synergy, and building/running the application.

2. Connect to the host PC via a micro USB cable to J19 on SK-S7G2 board.
3. Connect an Ethernet cable to J11 port to connect the board to the local network.
4. Insert a USB Stick (with an index.html file and all other required files for the HTML page) to the J6 USB

host connector.
5. Start to debug the application.
6. Connect the host computer to same local network as the board is connected to.
7. Open a web browser and type URL: http://192.168.0.2/index.html assuming the IP address of the server

is set to that IP address. To set the server address to a different IP address, set the value in the IP
instance IPv4 Address property in the configurator. See Table 27 in Section 7,

8. The output can be viewed in the web browser as the following image.

Note: As the NetX HTTP Server responds to a user’s request to provide index.html file, output of the

application project may vary based on the index.html file present in the USB Stick.

http://192.168.0.2/index.html

Renesas Synergy™ Platform NetX™ HTTP Server Module Guide

R11AN0120EU0103 Rev.1.03 Page 21 of 23
May.01.19

Figure 7. Example Output from NetX HTTP Server Module Application Project
10. NetX HTTP Server Module Conclusion
This module guide has provided all the background information needed to select, add, configure, and use the
module in an example project. Many of these steps were time consuming and error-prone activities in
previous generations of embedded systems. The Renesas Synergy Platform makes these steps much less
time consuming and removes the common errors like conflicting configuration settings or incorrect selection
of low-level drivers. The use of high-level APIs (as demonstrated in the application project) illustrates
additional development time savings by allowing work to begin at a high level and avoiding the time required
in older development environments to use or, in some cases, create, lower-level drivers and setup
frameworks.

11. NetX HTTP Server Module Next Steps
After you have mastered a simple NetX HTTP Server project, you may want to review a more complex example.
You may use the NetX HTTP Server for your IOT project with a more complex example and subsystem. This
example can also be used as a stepping stone to create a portable webserver. The NetX HTTP server is easy-
to-use and quickly configurable for your projects to control/monitor other devices connected through the
internet.

12. NetX HTTP Server Module Reference Information
SSP User’s Manual: Available in html format in the SSP distribution package and as a pdf from the Synergy
Gallery.
Links to all the most up-to-date NetX HTTP Server module reference materials and resources are available
on the Synergy Knowledge Base: https://en-support.renesas.com/knowledgeBase/16977460.

https://en-support.renesas.com/knowledgeBase/16977460

Renesas Synergy™ Platform NetX™ HTTP Server Module Guide

R11AN0120EU0103 Rev.1.03 Page 22 of 23
May.01.19

Website and Support
Visit the following vanity URLs to learn about key elements of the Synergy Platform, download components
and related documentation, and get support.

Synergy Software www.renesas.com/synergy/software
 Synergy Software Package www.renesas.com/synergy/ssp
 Software add-ons www.renesas.com/synergy/addons
 Software glossary www.renesas.com/synergy/softwareglossary

Development tools www.renesas.com/synergy/tools

Synergy Hardware www.renesas.com/synergy/hardware
 Microcontrollers www.renesas.com/synergy/mcus
 MCU glossary www.renesas.com/synergy/mcuglossary
 Parametric search www.renesas.com/synergy/parametric

Kits www.renesas.com/synergy/kits

Synergy Solutions Gallery www.renesas.com/synergy/solutionsgallery
 Partner projects www.renesas.com/synergy/partnerprojects

Application projects www.renesas.com/synergy/applicationprojects

Self-service support resources:

Documentation www.renesas.com/synergy/docs
Knowledgebase www.renesas.com/synergy/knowledgebase
Forums www.renesas.com/synergy/forum
Training www.renesas.com/synergy/training
Videos www.renesas.com/synergy/videos
Chat and web ticket www.renesas.com/synergy/resourcelibrary

https://www.renesas.com/synergy/software
https://www.renesas.com/synergy/ssp
https://www.renesas.com/synergy/addons
https://www.renesas.com/synergy/softwareglossary
https://www.renesas.com/synergy/tools
https://www.renesas.com/synergy/hardware
https://www.renesas.com/synergy/mcus
https://www.renesas.com/synergy/mcuglossary
https://www.renesas.com/synergy/parametric
https://www.renesas.com/synergy/kits
https://www.renesas.com/synergy/solutionsgallery
https://www.renesas.com/synergy/partnerprojects
https://www.renesas.com/synergy/applicationprojects
https://www.renesas.com/synergy/docs
https://www.renesas.com/synergy/knowledgebase
https://www.renesas.com/synergy/forum
https://www.renesas.com/synergy/training
https://www.renesas.com/synergy/videos
https://www.renesas.com/synergy/resourcelibrary

Renesas Synergy™ Platform NetX™ HTTP Server Module Guide

R11AN0120EU0103 Rev.1.03 Page 23 of 23
May.01.19

Revision History

Rev. Date
Description
Page Summary

1.00 Jun.07.17 - Initial version
1.01 Jan.03.18 - Minor edits for grammar and usage
1.02 Feb.07.19 - Updated for SSP 1.5.0
1.03 May.01.19 - Updated for SSP 1.6.0

© 2019 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or sy stem. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality ": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

f inancial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human lif e or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
sy stem; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specif ied ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury , injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
saf ety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible f or evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transf ers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.
(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.
(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev .4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For f urther information on a product, technology, the most up-to-date
v ersion of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. NetX HTTP Server Module Features
	2. NetX HTTP Server Module APIs Overview
	3. NetX HTTP Server Module Operational Overview
	3.1 NetX HTTP Server Module Operational Notes and Limitations
	3.1.1 NetX HTTP Module Operational Notes
	3.1.2 NetX HTTP Server Module Limitations

	4. Including the NetX HTTP Server Module in an Application
	5. Configuring the NetX HTTP Server Module
	5.1 Configuration Settings for the NetX and NetX Duo HTTP Server Lower-Level Modules
	5.2 NetX HTTP Server Module Clock Configuration
	5.3 NetX HTTP Server Module Pin Configuration

	6. Using the NetX HTTP Server Module in an Application
	7. The NetX HTTP Server Module Application Project
	8. Customizing the NetX HTTP Server Module for a Target Application
	9. Running the NetX HTTP Server Module Application Project
	10. NetX HTTP Server Module Conclusion
	11. NetX HTTP Server Module Next Steps
	12. NetX HTTP Server Module Reference Information

