This application note explains the overall delay affected by feedback trace delay. An LVCMOS ZDB is used as an example. Figure 1 shows a general LVCMOS Zero Delay Buffer (ZDB) schematic.

![ZDB Schematic Example](image)

Figure 1 A ZDB Schematic Example

Delay between Point A to Point B
\[T_{ab} = Td1 - Td_{fb} + SPO + T_{skew} \]

Where
- \(Td1 \) = trace delay of the outputs
- \(Td_{fb} \) = trace delay of feedback path
- \(SPO \) is static phase offset. \(SPO \) is given in the data sheet. Ideal \(SPO \) should be 0 second
- \(T_{skew} \) is skew between the outputs. Ideal \(T_{skew} \) should be 0 second.

To explain how the output and feedback trace delays affect the overall delay, we assume the \(SPO \) and the skew are 0 second.

Case 1) Zero Delay
If \(Td1=Td_{fb} \), then the \(T_{ab} = 0 \) (zero delay)

Case 2) Delay
If \(Td1 > Td_{fb} \), then the \(T_{ab} > 0 \) (positive delay, or point B clock edge occurs lagging point A clock edge)

Case 3) Advance
If \(Td1 < Td_{fb} \), then the \(T_{ab} < 0 \) (negative delay, or point B clock edge occurs leading point A clock edge)

The trace delay is approximately 100ps to 175ps per inch. Sometimes, it is difficult to control the trace delay. If possible, adding spare footprint for small value capacitors C4 to C7 will allow delay fine tuning after the board layout. Slightly increase the small C4 value has similar affect of adding delay to the feedback path.
IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2020 Renesas Electronics Corporation. All rights reserved.