

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas

Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog

and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)

Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand

names are mentioned in the document, these names have in fact all been changed to Renesas

Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and

corporate statement, no changes whatsoever have been made to the contents of the document, and

these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.

Customer Support Dept.

April 1, 2003

To all our customers

Cautions

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corporation
or an authorized Renesas Technology Corporation product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate all information as a total system before
making a final decision on the applicability of the information and products. Renesas Technology
Corporation assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device
or system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor
when considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the products
contained therein.

H8S/2655 Series
On-Chip Supporting Modules
Application Note

16

A
pplication N

ote

Rev.1.0 1997.09

Renesas Microcomputer

2

Notice

When using this document, keep the following in mind:

1. This document may, wholly or partially, be subject to change without notice.

2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form,
the whole or part of this document without Hitachi’s permission.

3. Hitachi will not be held responsible for any damage to the user that may result from
accidents or any other reasons during operation of the user’s unit according to this
document.

4. Circuitry and other examples described herein are meant merely to indicate the
characteristics and performance of Hitachi’s semiconductor products. Hitachi
assumes no responsibility for any intellectual property claims or other problems that
may result from applications based on the examples described herein.

5. No license is granted by implication or otherwise under any patents or other rights of
any third party or Hitachi, Ltd.

6. MEDICAL APPLICATIONS: Hitachi’s products are not authorized for use in
MEDICAL APPLICATIONS without the written consent of the appropriate officer
of Hitachi’s sales company. Such use includes, but is not limited to, use in life
support systems. Buyers of Hitachi’s products are requested to notify the relevant
Hitachi sales offices when planning to use the products in MEDICAL
APPLICATIONS.

Preface

The H8S/2655 Series comprises high-performance microcomputers with a 32-bit H8S/2600 CPU
core and a comprehensive set of peripheral functions.

On-chip peripherals include RAM, a 16-bit timer-pulse unit (TPU), programmable pulse generator
(PPG), serial communication interface (SCI), data transfer controller (DTC), and DMA controller
(DMAC), enabling this series to be used for compact, high-performance system applications.

This Application Note consists of an introductory section containing operating examples that use
the on-chip peripheral functions independently, and an application section in which on-chip
peripheral functions are used in combination.

The operation of the programs and circuits shown in this Application Note has been checked, but
correct operation should be reconfirmed before any of these examples are actually used.

4

Contents

Section 1 Using the H8S/2655 Series Application Note.. 1
1.1 Organization of Introductory Section .. 2
1.2 Organization of Application Section.. 4

Section 2 Common Files Used by Tasks... 7
2.1 Vector Table Definition File.. 7
2.2 Register Definition File.. 10
2.3 Stack Initialization File .. 10
2.4 File Linkage ... 11

Section 3 Introductory Section... 13
3.1 Pulse Output (TPU) .. 13
3.2 Two-Phase Encoder Count (TPU) .. 19
3.3 Pulse High and Low Width Measurement (TPU) .. 29
3.4 Long-Cycle Pulse Output (TPU) .. 37
3.5 PWM 15-Phase Output (TPU) .. 43
3.6 Externally Triggered 7-Phase Pulse Output (TPU) .. 52
3.7 One-Shot Pulse Output (TPU) .. 61
3.8 Four 4-Bit Outputs (TPU, PPG)....................................... 70
3.9 Asynchronous SCI (SCI).. 83
3.10 Simultaneous Transmit/Receive Operation (SCI).. 94
3.11 Multiprocessor Communication (SCI).. 102
3.12 Scan Mode A/D Conversion (A/D) ... 119
3.13 Block Transfer (DTC).. 129
3.14 Software-Activated Data Transfer (DTC).. 140
3.15 Single Address Mode Data Transfer (DMAC).. 149
3.16 Pulse Counting (8-Bit Timer)..................................... 157

Section 4 Application Section.. 165
4.1 High-Speed Data Output (TPU, PPG, DMAC)......................... 165
4.2 SCI Continuous Transmission/Reception (SCI, DMAC).................................... 176
4.3 Four-Phase Stepping Motor Application Example (TPU, PPG, DTC)............................. 190
4.4 Timer-Triggered A/D Conversion (TPU, A/D, DMAC) 228
4.5 D/A Conversion (TPU, D/A, DMAC) 239
4.6 Simultaneous DTC, DMAC, and CPU Activation (TPU, DTC, DMAC) 250

Section 5 Appendix.. 265
5.1 Internal Register Definitions.. 265

6

1

Section 1 Using the H8S/2655 Series Application Note

This Application Note is divided into two parts as shown in figure 1-1.

Application Note
(Internal I/O Volume)

Introductory Section

Application Section

Figure 1-1 Organization of Application Note

Introductory Section

This section describes the operation of the H8S/2655 Series peripheral functions, based on
examples of individual tasks.

Application Section

This section describes the operation of combinations of H8S/2655 Series peripheral functions,
based on examples of combined tasks.

2

1.1 Introductory Section

The introductory section uses the layout shown in figure 1-2 to describe the individual use of the
peripheral functions.

Introductory section Specifications

Functions Used

Operation

Software

PAD

Program List

Modules

Arguments

Internal Registers

General registers

RAM

Figure 1-2 Organization of Introductory Section

1. Specifications

Describes the system specifications for each task.

2. Functions Used

Describes the features of the peripheral function(s) used in the sample task, and peripheral
function assignments.

3. Operation

Describes the operation of each task, using timing charts.

3

4. Software

a. Modules

Describes the software modules used in the operation of the sample task.

b. Arguments

Describes the input arguments needed to execute the modules, and the output arguments
after execution.

c. Internal Registers

Describes the peripheral function internal registers (timer control registers, serial mode
registers, etc.) set by the modules.

d. RAM

Describes the labels and functions of the RAM used by the modules.

5. PAD

Describes the software that executes the sample task, using a PAD.

6. Program List

Shows a program list of the software that executes the sample task.

4

1.2 Application Section

The application section uses the layout shown in figure 1-3 to describe the combined use of
peripheral functions.

Application section Specifications

Design Concept

Functions Used

Operation

Software

PAD

Program List

Modules

Arguments

Internal Registers

RAM

Figure 1-3 Organization of Application Section

1. Specifications

Describes the system specifications for each task.

2. Design Concept

Describes the method used to implement the sample task system.

3. Functions Used

Describes the features of the peripheral functions used in the sample task, and peripheral
function assignments.

4. Operation

Describes the operation of each task, using timing charts.

5

5. Software

a. Modules

Describes the software modules used in the operation of the sample task.

b. Arguments

Describes the input arguments needed to execute the modules, and the output arguments
after execution.

c. Internal Registers

Describes the peripheral function internal registers (timer control registers, serial mode
registers, etc.) set by the modules.

d. RAM

Describes the labels and functions of the RAM used by the modules.

6. PAD

Describes the software that executes the sample task, using a PAD.

7. Program List

Shows a program list of the software that executes the sample task.

6

7

Section 2 Common Files Used by Tasks

2.1 Vector Table Definition File

Figure 2-1 shows a vector table definition file that uses the C language. As shown in the figure, a
file is created that secures the interrupt handling start addresses. When an interrupt is used, the
start label of the interrupt handling routine is written in the vector location corresponding to the
interrupt. In the example shown here, the TPU channel 0 compare-match A interrupt is used. The
start address (PWHL1) is an external reference (see A). The label for the location of TGI0A is
PWHL1 (see B).

8

/**/
/* */
/* H8S/2600 VECTOR TABLE */
/* */
/**/
#pragma section VECT

extern void INIT(void);
extern void PWHL1 (void);
const void (*const vect_tbl[])(void) =
{
 INIT, /* H'000000 POWER-ON Reset */
 INIT, /* H'000004 Manual Reset */
 INIT, /* H'000008 (System Reserve) */
 INIT, /* H'00000C (System Reserve) */
 INIT, /* H'000010 (System Reserve) */
 INIT, /* H'000014 Trace */
 INIT, /* H'000018 (System Reserve) */
 INIT, /* H'00001C NMI */
 INIT, /* H'000020 TRAPA1 */
 INIT, /* H'000024 TRAPA2 */
 INIT, /* H'000028 TRAPA3 */
 INIT, /* H'00002C TRAPA4 */
 INIT, /* H'000030 (System Reserve) */
 INIT, /* H'000034 (System Reserve) */
 INIT, /* H'000038 (System Reserve) */
 INIT, /* H'00003C (System Reserve) */
 INIT, /* H'000040 IRQ0 */
 INIT, /* H'000044 IRQ1 */
 INIT, /* H'000048 IRQ2 */
 INIT, /* H'00004C IRQ3 */
 INIT, /* H'000050 IRQ4 */
 INIT, /* H'000054 IRQ5 */
 INIT, /* H'000058 IRQ6 */
 INIT, /* H'00005C IRQ7 */
 INIT, /* H'000060 SWDTEND */
 INIT, /* H'000064 WOVI */
 INIT, /* H'000068 CMI */
 INIT, /* H'00006C (System Reserve) */
 INIT, /* H'000070 A/D */
 INIT, /* H'000074 (System Reserve) */
 INIT, /* H'000078 (System Reserve) */
 INIT, /* H'00007C (System Reserve) */
 PWHL1, /* H'000080 TGI0A */
 INIT, /* H'000084 TGI0B */
 INIT, /* H'000088 TGI0C */
 INIT, /* H'00008C TGI0D */
 INIT, /* H'000090 TCI0V */
 INIT, /* H'000094 (System Reserve) */
 INIT, /* H'000098 (System Reserve) */
 INIT, /* H'00009C (System Reserve) */

External reference
to label PWHL1

A

Label PWHL1
description

B

Figure 2.1 Vector Table Definition File (1)

9

 INIT, /* H'0000A0 TGI1A */
 INIT, /* H'0000A4 TGI1B */
 INIT, /* H'0000A8 TCI1V */
 INIT, /* H'0000AC TCI1U */
 INIT, /* H'0000B0 TGI2A */
 INIT, /* H'0000B4 TGI2B */
 INIT, /* H'0000B8 TCI2V */
 INIT, /* H'0000BC TCI2U */
 INIT, /* H'0000C0 TGI3A */
 INIT, /* H'0000C4 TGI3B */
 INIT, /* H'0000C8 TGI3C */
 INIT, /* H'0000CC TGI3D */
 INIT, /* H'0000D0 TCI3V */
 INIT, /* H'0000D4 (System Reserve) */
 INIT, /* H'0000D8 (System Reserve) */
 INIT, /* H'0000DC (System Reserve) */
 INIT, /* H'0000E0 TGI4A */
 INIT, /* H'0000E4 TGI4B */
 INIT, /* H'0000E8 TCI4V */
 INIT, /* H'0000EC TCI4U */
 INIT, /* H'0000F0 TGI5A */
 INIT, /* H'0000F4 TGI5B */
 INIT, /* H'0000F8 TCI5V */
 INIT, /* H'0000FC TCI5U */
 INIT, /* H'000100 CMIA0 */
 INIT, /* H'000104 CMIB0 */
 INIT, /* H'000108 OVI0 */
 INIT, /* H'00010C (System Reserve) */
 INIT, /* H'000110 CMIA1 */
 INIT, /* H'000114 CMIB1 */
 INIT, /* H'000118 OVI1 */
 INIT, /* H'00011C (System Reserve) */
 INIT, /* H'000120 DEND0A */
 INIT, /* H'000124 DEND0B */
 INIT, /* H'000128 DEND1A */
 INIT, /* H'00012C DEND1B */
 INIT, /* H'000130 (System Reserve) */
 INIT, /* H'000134 (System Reserve) */
 INIT, /* H'000138 (System Reserve) */
 INIT, /* H'00013C (System Reserve) */
 INIT, /* H'000140 ERI0 */
 INIT, /* H'000144 RXI0 */
 INIT, /* H'000148 TXI0 */
 INIT, /* H'00014C TEI0 */
 INIT, /* H'000150 ERI1 */
 INIT, /* H'000154 RXI1 */
 INIT, /* H'000158 TXI1 */
 INIT, /* H'00015C TEI1 */
 INIT, /* H'000160 ERI2 */
 INIT, /* H'000164 RXI2 */
 INIT, /* H'000168 TXI2 */
 INIT, /* H'00016C TEI2 */
};
#pragma section

Figure 2.1 Vector Table Definition File (2)

10

2.2 Register Definition File

The register definition file is shown in the appendix. As shown there, a bit field declaration is
made for the bits in each register, allowing bit access.

2.3 Stack Initialization File

Figure 2-2 shows the stack initialization file. As C cannot be used for the stack initialization
description, assembly language is embedded in C, and individual tasks are called after stack
initialization.

The C compiler (CH38.EXE) cannot create an object file directly when assembler is embedded. It
is therefore necessary to create an assembler expansion file “subfile_name.SRC” as a code option,
and assemble this file with the assembler (ASM38.EXE) to create the object file.

The code option specification for creating the CH38.EXE assembler expansion file is -c=a. See the
compiler manual for details.

#include <machine.h>
#pragma noregsave(INIT)

void PWHLMN(void);
void _INITSCT(void);

void INIT(void)
#pragma asm
 mov.l #h'fffc00,er7
#pragma endasm
{
 _INITSCT();
 PWHLMN();
 sleep();
}

Figure 2-2 Stack Initialization File

11

2.4 File Linkage

Figure 2-3 shows the submit file used in file linkage. The vector definition file, register definition
file, stack initialization file, and individual tasks are linked in accordance with the submit file
shown here.

input vec3,init3,ap3
library c:\ch38\lib\c8s26a
output ap3
print ap3
DEBUG
start VECT(0),P,C,D(2000)
rom (D,R)
form a
exit

Specifies vector definition file (vec3.obj), stack initialization file
(init3.obj), and task file (ap3.obj) object files for linkage.

H8S/2600 advanced mode library (c8s26a.lib) specification

Object file name specification (output by ap3.abs)

Map file name specification (output by ap3.map)

Debug option specification

Start address specification (In this example, vector is H'0000.
Program (P), constants (C), and data (D), are located in that order
from address H'2000.)

Figure 2.3 Submit File

12

13

Section 3 Introductory Section

3.1 Pulse Output 16-Bit Timer-Pulse Unit (TPU)

Specifications

1. A 50% duty pulse is output based on the cycle data set in RAM is output as shown in figure 1.

2. At 20 MHz operation, any output pulse cycle from 100 ns to 3.27 ms can be set.

Pulse cycle

Pulse output

50% 50%

Figure 1 Example of Pulse Output

14

Functions Used

1. In this sample task, a pulse with a 50% duty cycle is output using TPU0.

a. Figure 2 shows the TPU0 block diagram for this sample task. The following functions are
used by TPU0:

• A function that automatically outputs pulses by hardware without software intervention
(output compare)

• A function that clears the timer counter in the event of a compare-match (counter clear)

• A function that inverts the output each time a compare-match occurs (toggle output)

(Counter clear source setting)

Timer control register
(TCR0)

(Input clock selection)

Clock
selection

circuit

General register A
(TGR0A)

ø

Comparator A

Timer counter
(TCNT0)

Compare-
match

(Toggle output setting)

Timer I/O control register
(TIOR0)

Output compare
signal generator

Pulse
output pin
(TIOCA0)

Figure 2 Pulse Output Block Diagram

2. Table 1 shows the function assignments for this sample task. H8S/2655 functions are assigned
as shown in this table to perform pulse output.

Table 1 H8S/2655 Function Assignments

H8S/2655 Function Function

TCR0 Selects TCNT0 input clock and counter clear source

TIOCA0 Pulse output

TIOR0 Pulse output level setting

TGR0A 1/2 pulse cycle setting

15

Operation

Figure 3 shows the principles of the operation. Pulses are output by means of H8S/2655 hardware
and software processing as shown in the figure.

Hardware processing

Software processing

Initialization

None

1.

2.

3.

4.

Set ø as TCNT0 input,
compare-match A as
counter clear source
Set toggle output
using TPU0 compare-
match A
Set 1/2 pulse cycle in
TGRA0
Start count operation

1.

2.
3.

1.

2.
3.

TPU0 compare-match
A generation
Counter clear
Low-level output from
TIOCA0

TPU0 compare-match
A generation
Counter clear
High-level output from
TIOCA0

TCNT0
count value

TGR0A

H'0000

Pulse output
(TIOCA0)

Immediately
after reset

Time

Hardware processing

Software processing

None

Hardware processing

Software processing

None

Figure 3 Principles of Pulse Output Operation

16

Software

1. Modules

Module Name Label Function

Main routine poutmn TPU and RAM initialization, and pulse output

2. Arguments

Label/Register
Name Function

Data
Length Module

Input/
Output

pul_cyc Setting of timer value corresponding to pulse cycle

Pulse cycle is found from the following formula:

Pulse cycle (ns) = Timer value × ø cycle
(50 ns at 20 MHz operation)

Unsigned
short

Main
routine

Input

3. Internal Registers Used

Register Name Function Module

TSTR Sets timer counter operation/disabling Main routine

TCR0 Sets TCNT input clock and counter clear source Main routine

TIOR0 Sets output pulse level on compare-match A Main routine

TGR0A 1/2 output pulse cycle setting Main routine

MSTPCR Clears TPU module stop mode Main routine

4. RAM Used

This application example does not use any RAM apart from the arguments.

17

PAD

1. Main routine

Pulse output

Clear TPU module stop mode

Set TCNT input clock and counter
clear source in TCR0

Set compare-match A toggle
output with TIOR

Set value corresponding to 1/2
pulse cycle in TGR0A

Start TCNT0 count

While (1)

poutmn

18

Program List

#include <machine.h>
#include <h8s.h>

/**/
/* PROTCOL */
/**/
void poutmn(void);

/**/
/* RAM ALLOCATION */
/**/
#define pul_cyc (*(unsigned short *)0xffec00)

/**/
/* MAIN PROGRAM : poutmn */
/**/
void poutmn(void)
{
 MSTPCR = 0x1fff;
 TPU_TCR0 = 0x20; /* initialize TCR0 */
 TIOR0H = 0x03; /* initialize TIOR0 */
 TGR0A = pul_cyc/2; /* set data to TGR0A */
 TSTR = 0x01; /* TCNT0 start */
 while(1); /* loop */
}

19

3.2 Two Phase Encoder Count TPU

Specifications

The phase difference between two-phase encoder pulses input to external clock pins TCLKA and
TCLKB is detected, and the number of incrementations/decrementations within the measurement
period is stored in RAM.

TCLKA pin

TCLKB pin

Counting down

Measurement time

TCLKA pin

TCLKB pin

Counting up

Measurement time

Figure 1 Two-Phase Encoder Count

Functions Used

1. In this sample task, two-phase encoder counting is performed using TPU1. The two-phase
encoder count block diagram is shown in figure 2. This task uses the following functions.

a. A function that detects the phase difference between two-phase encoder pulses input to
external clock pins TCLKA and TCLKB is detected, and increments or decrements the
TPU1 counter (phase counting mode)

b. A function that transfers the value of the counter operating on the external clock to a
general register on compare-match with the other channel

20

TCLKA pin

TCLKB pin
Edge

detection
circuit

Two-phase
encoder

TPU0 (compare-match generation channel)

(Measurement period
setting)

General register A
(TGR0A)

Comparator

16-bit counter
(TCNT0)

Compare-
match

Clear

(TGR0A compare-
match set as counter
clear source)

Timer control
register (TCR0)

Control
logic

TPU1 (capture channel)

(Set to input capture on
TGR0A compare-match)

Timer I/O control
register (TIOR1H)

Capture Control
logic

16-bit counter
(TCNT1)

General register A
(TGR1A)

Incrementing/decrementing

Figure 2 Two-Phase Encoder Count Block Diagram

2. Table 1 shows the function assignments for this sample task. H8S/2655 functions are assigned
as shown in this table to perform two-phase encoder counting.

Table 1 H8S/2655 Function Assignments

H8S/2655 Function Function

TCLKA, B Two-phase encoder pulse input pins

TCR0 Sets TGR0A compare-match as counter clear source

TGR0A Measurement period setting

TIOR1 Sets input capture on TGR0A compare-match

TGR1A Holds input capture A count result

21

Operation

Figure 3 shows the principles of the operation. Two-phase encoder counting (incrementing) is
performed by means of H8S/2655 hardware and software processing as shown in the figure.

Immediately after reset

TCLKA

TCLKB

TCNT1 count value
H'FFFF

H'8004
H'8003
H'8002
H'8001
H'8000

H'0000

TCNT0 count value
TGR0A

H'0000

Hardware processing

Software processing

None

Initialization

1.

2.

3.

4.

5.

Set TPU1 to phase counting
mode 1
Set TGR1A as TPU0
compare-match A capture
register
Set measurement period in
TGR0A
Set TGR0A compare-match
as TPU1 counter clear source
Start TPU0 and TPU1 timers

Hardware processing

Software processing

Overflow interrupt (TCI1V)
generation

TCI1V handling
Set error flag

Hardware processing

Software processing

TGR1A input capture
interrupt (TGI1A) generation

TGI1A handling
TGR1A → two-phase
encoder count result

Figure 3 Principles of Two-Phase Encoder Count (Increment) Operation

22

Figure 4 shows the principles of the operation. Two-phase encoder counting (decrementing) is
performed by means of H8S/2655 hardware and software processing as shown in the figure.

Hardware processing

Software processing

None

Initialization

1.

2.

3.

4.

5.

Set TPU1 to phase counting
mode 1
Set TGR1A as TPU0
compare-match A capture
register
Set measurement period in
TGR0A
Set TGR0A compare-match
as TPU1 counter clear source
Start TPU0 and TPU1 timers

Hardware processing

Software processing

Underflow interrupt (TCI1U)
generation

TCI1U handling
Set error flag

Hardware processing

Software processing

TGR1A input capture
interrupt (TGI1A) generation

TGI1A handling
TGR1A → two-phase
encoder count result

Immediately after reset

TCLKA

TCLKB
TCNT1 count value

H'FFFF
H'FFFE
H'FFFD
H'FFFC

H'8000
H'7FFF
H'7FFE
H'7FFD

H'0002
H'0001
H'0000

TCNT2 count value
TGR0A

H'0000

Figure 4 Principles of Two-Phase Encoder Count (Decrement) Operation

23

Software

1. Modules

Module Name Label Function

Main routine cntmn Two-phase encoder count initialization

Capture interrupt ramset Stores count result in RAM

Overflow detection error1 Sets overflow generation flag

Underflow detection error2 Sets underflow generation flag

2. Arguments

Label Function
Data
Length Module

Input/
Output

count Setting of count result within measurement period Unsigned
short

Capture
interrupt

Output

err_over Indicates whether overflow has been generated

1: Overflow
0: No overflow

Unsigned
char

Overflow
detection

Output

err_under Indicates whether underflow has been generated

1: Underflow
0: No underflow

Unsigned
char

Underflow
detection

Output

cnttim Sets measurement period Unsigned
short

Main
routine

Input

24

3. Internal Registers Used

Register Name Function Module

TSTR Controls TPU0 and TPU1 timer counter count start/stop Main routine

TCR0 Sets TGR0A compare-match as counter clear source Main routine

TIOR0 Sets TGR0A as output compare register Main routine

TMDR1 Sets TPU1 to phase counting mode 1 Main routine

TCR1 Sets TGR0A compare-match as counter clear source Main routine

TIOR1 Sets TGR1A as TGR0A compare-match capture register Main routine

TCNT1 Initialized to H'8000 Main routine

TIER1 Enables interrupts by bits TGFA, TCFU, TCFV Main routine

TSR1 Enables input capture and overflow/underflow interrupts Main routine
Capture interrupt

MSTPCR Clears TPU module stop mode Main routine

4. RAM Used

This sample task does not use any RAM apart from the arguments.

25

PAD

1. Main routine

Two-phase encoder
count

Clear TPU module stop mode

Set TPU1 to phase counting mode

Set TGR1A as TPU0
compare-match A capture register

Set TGR0A compare-match as
TPU0 timer counter clear source

Set measurement period in TGR0A

Set H'8000 in TPU1 timer counter

Clear error generation flags

Enable TGR1A capture interrupt

Enable TPU1 overflow/underflow
interrupt

Clear I flag to enable interrupts

Start TPU0 and TPU1 counts

While (1)

cntmn

26

2. Capture interrupt

Count result

Clear TGR1A capture interrupt
request flag
(Clear TSR1:TGFA1)

Store TGR1A value as
two-phase encoder count result
(COUNT ← TGR1A)

Stop timer operation

ramset

3. Overflow detection

Overflow detection

Clear TPU1 overflow interrupt
request flag

Set error generation flag
error1

4. Underflow detection

Underflow detection

Clear TPU1 underflow interrupt
request flag

Set error generation flag
error2

27

Program List

#include <machine.h>
#include "..\h8sapn\h8s.h"

/***/
/* PROTCOL */
/***/
void cntmn(void);
/***/
/* RAM ALLOCATION */
/***/
#define count (*(unsigned short *)0xffec00)
#define cnttime (*(unsigned short *)0xffec02)
volatile struct ERROR{
 char over;
 char under;
};
#define err (*(struct ERROR *)0xffec04)

/***/
/* MAIN PROGRAM : cntmnd */
/***/
void cntmn(void)
{
 MSTPCR = 0x1fff; /* Disable module(TPU) stop mode*/
 TMDR1 = 0xc4; /* Initialize TMDR1 ch1:phase counting mode1 */
 TIOR0H = 0; /* Initialize TIOR0H */
 TIOR1H = 0x0c; /* Initialize TIOR1H *
 TPU_TCR0 = 0x20; /* Initialize TCR0 */
 TPU_TCR1 = 0x20; /* Initialize TCR1 */
 TGR0A = cnttime; /* Set counting time */
 TPU_TCNT1 = 0x8000; /* Counter start H'8000 */
 err.over = 0x00; /* Over flow flag clear */
 err.under = 0x00; /* Under flow flag clear */
 TIER1 = 0x71; /* Enable timer interrupt */
 set_imask_ccr(0); /* CCR Ibit clear */
 TSTR = 0x03; /* Start TCNT0,1 */
 while(1);
}
/***/
/* NAME : ramset */
/***/
#pragma interrupt (ramset)
void ramset(void)
{
 TSR1_BP.TGFA1 = 0; /* Clear TGFA1 request */
 count = TGR1A; /* Store count data */
 TSTR = 0x00; /* Stop counter */
}
/**/
/* NAME : error1 */
/**/
#pragma interrupt (error1)
void error1(void)
{

28

 TSR1_BP.TCFV1 = 0; /* Clear TCFV1 request */
 err.over = 0x01;
}
/**/
/* NAME : error2 */
/**/
#pragma interrupt (error2)
void error2(void)
{
 TSR1_BP.TCFU1 = 0; /* Clear TCFU1 request */
 err.under = 0x01;
}

29

3.3 Pulse High and Low Width Measurement TPU

Specifications

1. Pulse high and low widths are measured as shown in figure 1, and the results are stored in
RAM.

2. At 20 MHz operation, pulse high and low widths of 1.9 µs to 3.27 ms can be measured, in 50
ns units.

Pulse

Pulse high width Pulse low width

Figure 1 Pulse Width Measurement Timing

30

Functions Used

1. In this sample task, pulse high and low widths are measured using TPU0.

a. Figure 2 shows the TPU0 block diagram. This task uses the following functions:

• A function that performs detection of the rising and falling edges of a pulse, and sets the
timer value at those points in an internal register (input capture)

• A function that clears the timer counter when input capture occurs

• A function that initiates interrupt handling on detection of the rising and falling edges
of a pulse

Timer I/O
control register

(TIOR0)

(Detected edge
specification)

Timer
control register

(TCR0)

(Input capture clear
specification)

Pulse input

Input capture A input pin
(TIOCA0)

Edge detection and
capture signal

generation circuit

Input capture
interrupt A (TGI0A)

General register A
(TGR0A)

16-bit counter
(TCNT0)

Figure 2 Pulse High and Low Width Measurement Block Diagram

2. Table 1 shows the function assignments for this sample task. H8S/2655 functions are assigned
as shown in this table to measure pulse high and low widths.

Table 1 H8S/2655 Function Assignments

H8S/2655 Function Function

TCR0 Selects counter clear source

TIOR0 Selects input capture signal input edge

TIOCA0 Inputs pulse to be measured

TGR0A Detects counter value at rise and fall of pulse

TGI0A Initiates pulse high and low width measurement on rise and fall of pulse

31

Operation

Figure 3 shows the principles of the operation. Pulse high and low widths are measured by means
of H8S/2655 hardware and software processing as shown in the figure.

Software processing

Initialization

None

1.

2.

3.
4.

Enable pulse input
from TIOCA0
Set TGR0A rising edge
as pulse detected edge
Start count operation
Enable TGI0A

Hardware processing Hardware processing

Software processing

TGI0A processing

1.
2.

TGI0A generation
Transfer TCNT0 value
to TGR0A

Hardware processing

Software processing

TGI0A processing

1.
2.

TGI0A generation
Transfer TCNT0 value
to TGR0A

Immediately
after reset

Input pulse
(TIOCA0)

TPU0
counter
value

TimeH'0000

1.

2.

TGR0A value → pulse
low width
Set falling edge as
pulse detected edge

1.

2.

TGR0A value → pulse
high width
Set rising edge as
pulse detected edge

Figure 3 Principles of Pulse Width Measurement Operation

32

Software

1. Modules

Module Name Label Function

Main routine PWHLMN TPU and RAM initialization.

Pulse high and low
width measurement

PWHL1 Initiated by TGI0A; measures pulse high and low widths
according to TGR0A value and sets result in RAM

2. Arguments

Label Function
Data
Length Module

Input/
Output

pwh_hdata Setting of timer value corresponding to pulse
high width

Pulse high width is found from the following
formula:

Pulse high width (ns) = Timer value × ø cycle
(50 ns at 20 MHz
operation)

Unsigned
short

Pulse high
and low width
measurement

Output

pwh_ldata Setting of timer value corresponding to pulse
low width

Pulse low width is found from the following
formula:

Pulse low width (ns) = Timer value × ø cycle
(50 ns at 20 MHz
operation)

Unsigned
short

33

3. Internal Registers Used

Register Name Function Module

TSTR Specifies timer counter operation/disabling Main routine

TCR0 Selects TCNT counter clock, specifies input
capture A as counter clear source

Main routine, pulse high
and low width
measurement

TIOR0 Set so that transfer is performed from TCNT to
TGR0A on detection of pulse rise or fall

Main routine

TIER0 Enables interrupts by TGI0A Main routine

TGR0A TCNT value at rise or fall of pulse is set in this
register and used to calculate pulse cycle

Pulse high and low width
measurement

TSR0 Indicates input capture A generation Pulse high and low width
measurement

MSTPCR Clears TPU module stop mode Main routine

4. RAM Used

This sample task does not use any RAM apart from the arguments.

34

PAD

1. Main routine

Main routine

Clear TPU module stop mode

Set TCR0 to select input capture A
as counter clear source

Set TIOR0 to select rising edge
as pulse detected edge

Set TIER0 to enable interrupts
by TGFA bit

Clear I flag to enable interrupts

While (1)

PWHLMN

Start TPU0 count

35

2. Pulse high and low width measurement

Pulse high and low
width measurement

Yes

No

PWHL1

Clear TGFA0 in TSR0

Rising edge
detected?

Set pulse width
in low-width area

Set falling edge as pulse
detected edge

Set pulse width
in high-width area

Set rising edge as pulse
detected edge

36

Program List

#include <machine.h>
#include <H8S.H>
/**********************************/
/* PROTOCOL */
/**********************************/
void PWHLMN(void);
#pragma interrupt (PWHL1)
/**********************************/
/* SYMBOL DEFINITIONS */
/**********************************/

define pwh_ldata (*(unsigned short *)0xffec00) /* Pulse high width time
*/
define pwh_hdata (*(unsigned short *)0xffec02) /* Pulse low width time */

/**********************************/
/* MAIN PROGRAM: PWHLMN */
/**********************************/
void PWHLMN(void)
{
 MSTPCR = 0xdfff; /* Disable module(TPU) stop mode*/
 TPU_TCR0 = 0x20; /* Initialize TCR0 */
 TIOR0H = 0x08; /* Initialize TIOR0H */
 TIER0 = 0x41; /* Initialize TIER0 */
 set_imask_ccr(0); /* Enable interrupt */
 TSTR = 0x01; /* Start TCNT0 */
 while(1); /* Loop */
}

/**********************************/
/* INTERRUPT PROGRAM: PWHL1 */
/**********************************/
void PWHL1(void)
{
 TSR0_BP.TGFA0 = 0; /* Clear TGFA0 request */
 if(TIOR0H == 0x08) /* Edge is "high"? */
 { /* Yes */
 pwh_ldata = TGR0A;
 TIOR0H = 0x09; /* Set TGR0A captures falling edge of input */
 }
 else{ /* No */
 pwh_hdata = TGR0A;
 TIOR0H = 0x08; /* Set TGR0A captures rising edge of
input */
 }
}

37

3.4 Long-Cycle Pulse Output TPU (Cascaded Connection)

Specifications

1. 32-bit counter operations are performed to vary the pulse high width and output a variable-duty
long-cycle pulse.

2. A duty cycle of 0% to 100% can be set, with a resolution of 1/65,535.

3. At 20 MHz operation, a pulse cycle of 6.55 ms to 214.7 s can be set in 3.27 ms units.

Pulse cycle

Output pulse
Pulse high width Pulse low width

Figure 1 Example of Long-Cycle Pulse Output

Functions Used

1. In this sample task, the TPU1 and TPU2 16-bit counters are connected to operate as a 32-bit
counter, to output a long-cycle pulse from TPU1. Figure 2 shows the TPU block diagram for
this sample task. This sample task uses the following functions:

• A function that connects two 16-bit counter channels for operation as a 32-bit counter
(cascaded operation)

• A function that automatically outputs pulses by hardware without software intervention
(output compare)

• PWM output generation using TGR1A and TGR1B as a pair (PWM mode 1)

38

(Counter clock selection)

Timer control
register
(TCR2)

TPU2 TPU1

16-bit counter (TCNT2)

Control
logic

Overflow
generation

Output
compare
register B
(TGR1B)

Comparator B

16-bit counter

Comparator A

Output
compare
register A
(TGR1A)

Compare-
match B

Compare-
match A

(Selection of count on
TCNT2 overflow)

Timer control
register
(TCR1)

Pulse I/O
control

TIOCA1 pin

Timer mode
register
(TMDR1)

(Set to PWM mode)

Figure 2 Long-Cycle Pulse Output Block Diagram

2. Table 1 shows the function assignments for this sample task. H8S/2655 functions are assigned
as shown in this table to create a timer counter that performs 32-bit operation.

 Table 1 H8S/2655 Function Assignments

H8S/2655 Function Function

TPU1 TMDR1 Selects PWM mode 1

TCR1 Selects TCNT1 input clock and counter clear source

TCNT1 Upper 16 bits of 32-bit counter

TGR1A Pulse low width setting

TGR1B Pulse high width setting

TIOCA1 Pulse output

TPU2 TCR2 Selects TCNT2 input clock

TCNT2 Lower 16 bits of 32-bit counter

39

Operation

Figure 3 shows the principles of the operation. Long-cycle pulses are output by means of
H8S/2655 hardware and software processing as shown in the figure.

1 2 3 1. m n. .

Software processing

Initialization

None

1.

2.

3.

4.

5.

Set ø as TPU2 counter
clock, TPU1 as TPU2
overflow counter
Set compare-match B
as TPU1 counter clear
source
Set pulse low width in
TGR1A and pulse
cycle in TGR1B
Set TPU1 to PWM
mode 1
Start count operation

Hardware processing Hardware processing

Software processing

None

1.

2.

TPU1 compare-match
A generation
High-level output from
TIOCA1

Hardware processing

Software processing

None

1.

2.
3.

TPU1 compare-match
B generation
Counter clear
Low-level output from
TIOCA1

TPU1 counter
value

Immediately after reset

Time

TCNT2
overflow

Pulse output
(TIOCA1)

TGR1B

TGR1A

H'0000

Figure 3 Principles of Long-Cycle Pulse Output Operation

40

Software

1. Modules

Module Name Label Function

Main routine LPULMN Performs 32-bit counter operation using TPU1 and TPU2
counters, and outputs long-cycle pulses

2. Arguments

Label/Register
Name Function

Data
Length Module

Input/
Output

lpul_wid Setting of timer value corresponding to output pulse
low width

Pulse low width is found from the following formula:

Low width (ms) = Timer value × external clock
(3.27 ms at 20 MHz operation)

Unsigned
short

Main
routine

Input

lpul_cyc Setting of timer value corresponding to output pulse
cycle

Cycle is found from the following formula:

Cycle (ms) = Timer value × external clock*
(3.27 ms at 20 MHz operation)

Unsigned
short

Main
routine

Input

Note: * External clock: TCNT2 overflow output

3. Internal Registers Used

Register Name Function Module

TPU1 TSTR Sets timer counter operation/disabling Main routine

TMDR1 Selects PWM mode 1 Main routine

TCR1 Sets TCNT1 input clock and counter clear source Main routine

TCNT1 Counts TCNT2 overflows to perform 32-bit counter
operation

Main routine

TGR1A Pulse low width setting Main routine

TGR1B Pulse high width setting Main routine

TIOCA1 Pulse output Main routine

TPU2 TCR2 Selects TCNT2 input clock Main routine

TCNT2 16-bit free-running counter Main routine

4. RAM Used

41

This sample task does not use any RAM apart from the arguments.

PAD

1. Main routine

Main routine

Clear TPU module stop mode

Set TCR2 to select ø as input clock

Set TCR1 to select counting
on TPU2 overflow, and
compare-match B as counter clear
source

Set TMDR1 to set TPU1 to PWM
mode 1

Set TIOR1H, specifying high-level
output on TGR1A generation
and low-level output on TGR1B
generation

While (1)

LPULMN

Set TPU1 output pulse low width
(lpul_wid) in TGR1A

Set TPU2 output pulse cycle
(lpul_cyc) in TGR1B

Start TPU1 and TPU2 counts

42

Program List

#include <machine.h>
#include "H8S.H"
/**********************************/
/* PROTOCOL */
/**********************************/
void LPULMN(void);

/**********************************/
/* SYMBOL DEFINITIONS */
/**********************************/

define lpul_wid (*(unsigned short *)0xffec00) /* Pulse width */
define lpul_cyc (*(unsigned short *)0xffec02) /* Pulse cycle */

/**********************************/
/* MAIN PROGRAM: LPULMN */
/**********************************/
void LPULMN(void)
{
 MSTPCR = 0xdfff; /* Disable module(TPU) stop mode*/
 TCR2 = 0; /* Initialize TCR2 */
 TPU_TCR1 = 0x47; /* Initialize TCR1 */
 TMDR1 = 0xC2; /* Initialize TMDR1 ch1:PWM mode */
 TIOR1H = 0x52; /* Initialize TIOR1H */
 TGR1A = lpul_wid; /* Set pulse low period time */
 TGR1B = lpul_cyc; /* Set pulse cycle time */
 TSTR = 0x06; /* Start TCNT1,2 */
 while(1); /* Loop */
}

43

3.5 PWM 15-Phase Output TPU (PWM Mode 2)

Specifications

1. The pulse high width is varied to produce variable-duty 15-phase PWM waveform output, as
shown in figure 1.

2. At 20 MHz operation, any output PWM cycle from 100 ns to 3.27 ms can be set.

PWM cycle

Pulse 1

Pulse 2

Pulse 3

Pulse 4

Pulse 5

Pulse 6

Pulse 7

Pulse 8

Pulse 9

Pulse 10

Pulse 11

Pulse 12

Pulse 13

Pulse 14

Pulse 15

TPU0

TPU1

TPU2

TPU3

TPU4

TPU5

Figure 1 Example of PWM Waveform Output

44

Functions Used

1. In this sample task, TPU0 to TPU5 are operated synchronously to produce 15-phase PWM
waveform output.

a. Figure 2 shows the TPU block diagram for this sample task.

This sample task uses the following function:

• The ability to generate a maximum of 15-phase PWM output through a combination of
synchronous operations (PWM mode 2)

TPU0 (master)

(TGR0A compare-match set
as counter clear source)

Timer control register
(TCR0A)

(PWM cycle setting)

General register A (TGR0A)

Comparator A

16-bit counter (TCNT0)

Control
logic

Compare-match

Clear

TPU1 to TPU5 (slaves)

Synchronous clear
source generation

(Synchronous clear set as
counter clear source)

Timer control registers
(TCR1 to TCR5)

General registers
(respective duty value

settings)

Comparator

16-bit counters
(TCNT1 to TCNT5)

Control
logic

Compare-match

Clear

(TPU0 to TPU5 set to PWM
mode 2)

Timer mode registers
(TMDR0 to TMDR5)

Pulse
I/O

control
TIOC pin

16–bit counter
(TCNT1 to TCNT5)

Figure 2 PWM 15-Phase Output Block Diagram

45

2. Table 1 shows the function assignments for this sample task. H8S/2655 functions are assigned
as shown in this table to perform PWM pulse output.

Table 1 H8S/2655 Function Assignments

H8S/2655 Function Function

TIOCA1 to TIOCA5
TIOCB0 to TIOCB5,
TIOCC0, TIOCC3,
TIOCD1, TIOCD3

PWM pulse output pins

TCR0 to TCR5 Select TPU0 to TPU5 timer counter clear sources

TMDR0 to TMDR5 Specify operation of TPU0 to TPU5 in PWM mode 2

TGR0A PWM cycle setting

TGR0B to TGR5B Duty value settings

46

Operation

Figure 3 shows the principles of the PWM 15-phase output operation. Pulses are output from the
TPU0 to TPU5 PWM output pins by means of H8S/2655 hardware and software processing as
shown in the figure.

TGR0A
TGR0B
TGR0C
TGR0D
TGR1A
TGR1B
TGR2A
TGR2B
TGR3A
TGR3B
TGR3C
TGR3D
TGR4A
TGR4B
TGR5A
TGR5B

H'0000

.

.

.

.

.

.

.

.

Hardware processing

Software processing

None

Initialization
1.
2.
3.

4.
5.

6.

Set ø as counter clock
Select TGR for use as TCNT clear source
Set TGR as output compare register, and
select initial value and output value
Select PWM mode 2
Set pulse cycle in cycle register (TGR0A)
and duty cycles in other TGRs
Start count operation

Hardware processing

Software processing

1.

None

TCNT0 to TCNT5
count value

Immediately after reset

Time

PWM output pins
TIOCB0

TIOCC0

TIOCA3

TIOCA5

TIOCB5

.

.

.

.

.

.

.

.

High-level output
on TGR compare-
match

Hardware processing

Software processing

1.

2.

None

Clear counter on TGR0A
compare-match
Pulse low-level output

Figure 3 Principles of PWM 15-Phase Output Operation

47

Software

1. Modules

Module Name Label Function

Main routine pwm15mn TPU0 to TPU5 synchronous clear and PWM output setting

2. Arguments

Label/Register
Name Function

Data
Length Module

Input/
Output

pwm[0] to
pwm[14]

Setting of timer counter value corresponding to
pulse high width

Pulse high width is found from the following formula:

Pulse high width (ns) = Timer counter value ×
ø cycle (50 ns at 20 MHz
operation) × individual
channel input clock division
ratio

Unsigned
short

Main
routine

Input

pwm_cyc Setting of timer counter value corresponding to
PWM cycle

PWM cycle is found from the following formula:

PWM cycle (ns) = Timer counter value × ø cycle
(50 ns at 20 MHz operation) ×
individual channel input clock
division ratio

Unsigned
short

Main
routine

Input

48

3. Internal Registers Used

Register Name Function Module

TSTR Performs count starting and stopping for TPU0 to TPU5
timer counters

Main routine

TSYR Selects synchronous operation of TPU0 to TPU5 TCNT
counters

Main routine

TCR0 Sets TGR0A compare-match as timer counter clear
source

Main routine

TCR1 to TCR5 Set synchronous clear as timer counter clear source Main routine

TIOR0 to TIOR5 Set output level of each PWM output pin Main routine

TMDR0 to TMDR5 Select PWM mode 2 Main routine

TGR0A Sets PWM cycle Main routine

TGR0B to TGR5B Set timer counter value at which high level is output from
PWM output pin

Main routine

MSTPCR Clears TPU module stop mode Main routine

4. RAM Used

This sample task does not use any RAM apart from the arguments.

49

PAD

1. Main routine

PWM 15-phase
output

Clear TPU module stop mode

Set TPU0 to TPU5 timer counter
clear sources as follows:
• TPU0: TGR0A compare-match
• TPU1 to TPU5: synchronous clear

Set 0 initial value and 1 output
value for output level of each PWM
output pin

Set PWM cycle in TGR0A and duty
cycles in other TGRs

Set synchronous operation for
TPU0 to TPU5

While (1)

pwm15mn

Select PWM mode 2 as TPU0 to
TPU5 operating mode

Start TPU0 to TPU5 counts

50

Program List

 #include <machine.h>
 #include <h8s.h>

 /**/
 /* PROTOCOL */
 /**/
 void pwm15mn(void);

 /**/
 /* RAM ALLOCATION */
 /**/
 # define pwm ((unsigned short *) 0xffec00) /* Pulse high width */
 # define pwm_cyc (*(unsigned short *)0xffec1e) /* Pulse cycle */

 /**/
 /* MAIN PROGRAM : pwm15mn */
 /**/
 void pwm15mn(void)
 {
 MSTPCR = 0x1fff; /* Disable module stop mode*/

 TPU_TCR0 = 0x20; /* Initialize TCR0 */
 TPU_TCR1 = 0x60; /* Initialize TCR1 */
 TCR2 = 0x60; /* Initialize TCR2 */
 TCR3 = 0x60; /* Initialize TCR3 */
 TCR4 = 0x60; /* Initialize TCR4 */
 TCR5 = 0x60; /* Initialize TCR5 */

 TIOR0H = 0x20; /* Initialize TIOR0H */
 TIOR0L = 0x22; /* Initialize TIOR0L */
 TIOR1H = 0x22; /* Initialize TIOR1H */
 TIOR2H = 0x22; /* Initialize TIOR2H */
 TIOR3H = 0x22; /* Initialize TIOR3H */
 TIOR3L = 0x22; /* Initialize TIOR3L */
 TIOR4H = 0x22; /* Initialize TIOR4H */
 TIOR5H = 0x22; /* Initialize TIOR5H */

 TGR0A = pwm_cyc; /* Set PWM cycle */
 TGR0B = pwm[0]; /* Set duty */
 TGR0C = pwm[1];
 TGR0D = pwm[2];
 TGR1A = pwm[3];
 TGR1B = pwm[4];
 TGR2A = pwm[5];
 TGR2B = pwm[6];
 TGR3A = pwm[7];
 TGR3B = pwm[8];
 TGR3C = pwm[9];
 TGR3D = pwm[10];
 TGR4A = pwm[11];
 TGR4B = pwm[12];
 TGR5A = pwm[13];
 TGR5B = pwm[14];

51

 TSYR = 0x3f; /* Set synchronization mode ch0-5 */

 TMDR0 = 0xc3; /* Set PWM mode2 */
 TMDR1 = 0xc3; /* Set PWM mode2 */
 TMDR2 = 0xc3; /* Set PWM mode2 */
 TMDR3 = 0xc3; /* Set PWM mode2 */
 TMDR4 = 0xc3; /* Set PWM mode2 */
 TMDR5 = 0xc3; /* Set PWM mode2 */

 TSTR = 0x3f; /* Start TCNT0-5 */
 while(1); /* Loop */
}

52

3.6 Externally Triggered 7-Phase Pulse
Output

TPU (Synchronous
Operation/PWM Mode 1)

Specifications

1. 7-phase pulse output is performed in synchronization with the falling edge of an external
signal, as shown in figure 1.

2. The delay time from the external signal falling edge and the pulse width can be varied within
the following ranges:

200 ns ≤ delay time < external signal cycle—pulse width

50 ns ≤ pulse width < external signal cycle—delay time

3. At 20 MHz operation, any external signal pulse width from 250 ns to 3.27 ms can be set.

External signal
(falling edge) input

Output
pulses

Delay time 1 Pulse width 1

Delay time 2 Pulse width 2

Delay time 3 Pulse width 3

Delay time 4 Pulse width 4

Delay time 5 Pulse width 5

Delay time 6 Pulse width 6

Delay time 7 Pulse width 7

Figure 1 Example of Synchronous Pulse Output

53

Functions Used

1. In this sample task, simultaneous resetting of multiple timer counters is performed using an
external signal, to generate 7-phase pulse output.

a. Figure 2 shows the TPU block diagram for this sample task. The following TPU functions
are used to generate 7-phase pulse output synchronized with an external signal:

• A function that clears the timer counter when a pulse falling edge is detected

• A function that simultaneously clears multiple timer counters (synchronous operation)

• Generation of PWM output using TGRA and TGRB as a pair, and TGRC and TGRD as
a pair (PWM mode 1)

External
signal

T1OCA1 pin

TPU1 (master)

(External input as
counter clear source)

Timer control
register (TCR1)

Control
logicCapture

General register A
(TGR1A)

Comparator A

16-bit counter
(TCNT1)

Synchronous clear source generation

Counter
control

TPU0, TPU2 to TPU5 (slaves)

(Synchronous clear set as
counter clear source)

Timer control registers
(TCR0, TCR2 to TCR5)

Control
logic

Synchronous
clear

General registers A and C
(TGR0A, TGR0C,
TGR2A to TGR5A)

Comparators A and C

16-bit counters
(TCNT0, TCNT2 to TCNT5)

Clear

Comparators B and D

General registers B and D
(TGR0B, TGR0D,
TGR2B to TGR5B)

(TPU0, TPU2 to TPU5
set to PWM mode 1)

Timer mode registers
(TMDR0 to TMDR5)

Pulse
I/O

control

TIOCA0 pin
TIOCC0 pin
TIOCA2pin to
TIOCA5 pin

Figure 2 Externally Triggered 7-Phase Pulse Output Block Diagram

54

2. Table 1 shows the function assignments for this sample task. H8S/2655 functions are assigned
as shown in this table to perform externally triggered 7-phase pulse output.

Table 1 H8S/2655 Function Assignments

H8S/2655 Function Function

TMDR0 to TMDR5 Select PWM mode 1 as operating mode for TPU0 and TPU2 to TPU5

TCR0 to TCR5 Select timer counter clear sources

TIOCA1 Trigger signal input

TIOCA0, TIOCC0,
TIOCA2 to TIOCA5

PWM pulse output

TGR0A, TGR0C,
TGR2A to TGR5A

Set high pulse output level (delay time)

TGR0B, TGR0D,
TGR2B to TGR5B

Set low pulse output level (pulse width)

55

Operation

Figure 3 shows the principles of 7-phase pulse output synchronized with an external signal. PWM
pulses are output by means of H8S/2655 hardware and software processing as shown in the figure.

Hardware processing

Software processing

None

Initialization
1.
2.

3.

4.
5.

6.

Set ø as counter clock
Select TGR for use as TCNT clear
source
Set TGR1A as capture register and
other TGRs as compare registers,
and select initial and output values.
Select PWM mode 1
Set output pulse delay times in
TGR0A, TGR0C, and TGR2A to
TGR5A, and high widths in TGR0B,
TGR0D, and TGR2B to TGR5B.
Start count operation

TCNT0 to TCNT5
count value

.

.

.

.

Immediately after reset

Time

External signal
(TIOCA1)

TGR0D
TGR0B
TGR5B

TGR0C
TGR5A
TGR0A

H'0000

Output pulses
(TIOCA0)

(TIOCC0)

(TIOCA5)

.

.

.

.

Hardware processing

Software processing

1.

2.

None

TGR1A input
capture
generation
Synchronous
clear of TCNT0
to TCNT5

Hardware processing

Software processing

1.

2.

None

TGR0C
compare-match
generation
High-level output
from TIOCC0

Hardware processing

Software processing

1.

2.

None

TGR0D
compare-match
generation
Low-level output
from TIOCC0

Figure 3 Principles of Pulse Output Operation

56

Software

1. Modules

Module Name Label Function

Main routine cntrsmn TPU0 to TPU5 synchronous clear and PWM output setting

2. Arguments

Label Function
Data
Length Module

Input/
Output

set_wid[0] to
set_wid[6]

Setting of timer counter value corresponding to
pulse high width

Pulse high width is found from the following formula:

Pulse high width (ns) = Timer counter value ×
ø cycle (50 ns at 20 MHz
operation) × individual channel
input clock division ratio

Unsigned
short

Main
routine

Input

set_dly[0] to
set_dly[6]

Setting of timer counter value corresponding to
delay time from fall of external input pulse

Delay time is found from the following formula:

Delay time (ns) = Timer counter value × ø cycle
(50 ns at 20 MHz operation) ×
individual channel input clock
division ratio

Unsigned
short

Main
routine

Input

57

3. Internal Registers Used

Register Name Function Module

TSTR Performs count starting and stopping for TPU0 to TPU5
timer counters

Main routine

TSYR Selects synchronous operation of TPU0 to TPU5 TCNT
counters

Main routine

TCR0 Sets TGR0A input capture as timer counter clear source Main routine

TCR1 to TCR5 Set synchronous clear as timer counter clear source Main routine

TIOR0 to TIOR5 Set output level of each PWM output pin
TGRA, TGRC: 0 initial output value
TGRB, TGRD: 1 initial output value

Main routine

TMDR0 to TMDR5 Select PWM mode 1 Main routine

TGR0A, TGR0C
TGR2A to 5A

Set timer counter values corresponding to delay times
from fall of external input pulse

Main routine

TGR0A, TGR0C
TGR2A to 5A

Set timer counter values at which low level is output
from PWM output pins

Main routine

MSTPCR Clears TPU module stop mode Main routine

4. RAM Used

This sample task does not use any RAM apart from the arguments.

58

PAD

1. Main routine

Externally triggered
7-phase pulse output

Clear TPU module stop mode

Set TPU0 to TPU5 timer counter
clear sources as follows:
• TPU1: TGR1A input capture
• TPU0, TPU2 to TPU5:
 synchronous clear

Set 0 as TGRA and TGRC initial
output value, and 1 as TGRB and
TGRD initial output value for output
level of each PWM output pin

Set delay times in TGR0A, TGR0C,
TGR2A to TGR5A, and pulse reset
values in TGR0B, TGR0D,
TGR2D to TGR5D

Set synchronous operation for
TPU0 to TPU5 counters

While (1)

cntrsmn

Select PWM mode 1 as TPU0 to
TPU5 operating mode

Start TPU0 to TPU5 counts

59

Program List

#include <machine.h>
#include <h8s.h>

/**/
/* PROTOCOL */
/**/
void cntrsmn(void);

/**/
/* RAM ALLOCATION */
/**/
define set_wid ((unsigned short *) 0xffec00) /* Pulse width time*/
define set_dly ((unsigned short *) 0xffec0e) /* Delay time */
define point ((unsigned short *) 0xffec1c) /* Work */

/**/
/* MAIN PROGRAM : cntrsmn */
/**/
void cntrsmn(void)
{
 MSTPCR = 0x1fff; /* Disable module(TPU) stop mode*/
 TPU_TCR0 = 0x60; /* Initialize TCR0 */
 TPU_TCR1 = 0x20; /* Initialize TCR1 */
 TCR2 = 0x60; /* Initialize TCR2 */
 TCR3 = 0x60; /* Initialize TCR3 */
 TCR4 = 0x60; /* Initialize TCR4 */
 TCR5 = 0x60; /* Initialize TCR5 */
 TIOR0H = 0x52; /* Set TGR0A capture falling edge of input */
 TIOR0L = 0x52; /* Initialize TIOR0L */
 TIOR1H = 0x09; /* Initialize TIOR1H */
 TIOR2H = 0x52; /* Initialize TIOR2H */
 TIOR3H = 0x52; /* Initialize TIOR3H */
 TIOR3L = 0x52; /* Initialize TIOR3L */
 TIOR4H = 0x52; /* Initialize TIOR4H */
 TIOR5H = 0x52; /* Initialize TIOR5H */

 TGR0A = set_dly[0]; /* Set delay time */
 TGR0C = set_dly[1];
 TGR2A = set_dly[2];
 TGR3A = set_dly[3];
 TGR3C = set_dly[4];
 TGR4A = set_dly[5];
 TGR5A = set_dly[6];

 TGR0B = set_wid[0]; /* Set reset timing */
 TGR0D = set_wid[1];
 TGR2B = set_wid[2];
 TGR3B = set_wid[3];
 TGR3D = set_wid[4];
 TGR4B = set_wid[5];
 TGR5B = set_wid[6];

 TSYR = 0x3f; /* Set synchronization mode ch0-5 */

60

 TMDR0 = 0xc2; /* Set PWM mode1 */
 TMDR1 = 0xc0; /* Set usual mode */
 TMDR2 = 0xc2; /* Set PWM mode1 */
 TMDR3 = 0xc2; /* Set PWM mode1 */
 TMDR4 = 0xc2; /* Set PWM mode1 */
 TMDR5 = 0xc2; /* Set PWM mode1 */

 TSTR = 0x3f; /* Start TCNT0-5 */
 while(1); /* Loop */
}

61

3.7 One-Shot Pulse Output TPU (Buffered Operation)

Specifications

1. A one-shot pulse is output in synchronization with the falling edge of an external signal, as
shown in figure 1.

2. The delay time from the external signal falling edge and the pulse width can be varied within
the following ranges:

1 µs ≤ delay time < reference pulse cycle—pulse width

50 ns ≤ pulse width < reference pulse cycle—delay time

3. A reference pulse frequency of Hz or higher can be input.

External signal
(falling edge) input

One-shot pulse

Delay time Pulse width

Figure 1 Example of One-Shot Pulse Output

62

Functions Used

1. In this sample task, a one-shot pulse is output using DMAC0A, DMAC0B, and TPU0.

a. Figure 2 shows the on-chip function block diagram for this sample task. The following
TPU and DMAC functions are used to output a one-shot pulse:

TPU

• A function that transfers the buffer register contents to a general register when a
compare-match occurs (buffered operation)

• Output/input capture register setting for each register

• Counter clearing by input capture

DMAC

• A function that activates the DMAC when TPU input capture occurs

External
signal

TIOCA0 pin

RAM

DMAC0A

(One-shot pulse
delay time)

(External input as counter
clear source)

Timer control
register (TCR0)

Control
logic

Capture

General register
(TGR0A)

(Pulse low-level output
timing setting)

General register
(TGR0C)

Comparator C

16-bit counter

Comparator B Compare-
match B

General register
(TGR0B)

General register
(TGR0D)

(Compare-match
output data)

RAM

01111001

DMAC0B

(Output level
setting)

Timer I/O control
register (TIOR0)

Pulse I/O
control

TIOCB0 pin

Timer mode
register

(TMDR0)

(Buffered operation
setting)

Figure 2 One-Shot Pulse Output Block Diagram

63

2. Table 1 shows the function assignments for this sample task. H8S/2655 functions are assigned
as shown in this table to perform one-shot pulse output.

Table 1 H8S/2655 Function Assignments

H8S/2655 Function Function

TPU0 TCR0 Sets counter clear source

TIER0 Enables TGI0C interrupt

TIOR0 Sets TGR0A as capture register, TGR0B and TGR0C as compare-
match registers

TMDR0 Sets buffered operation

TGR0B One-shot pulse delay time setting

TGR0C One-shot pulse output disabled timing value setting

TGR0D One-shot pulse reset timing value setting

TIOCA0 External signal input

TIOCB0 One-shot pulse output

DMAC DMABCRH,
DMABCRL

Controls operation of each DMAC channel

DMACR0A,
DMACR0B

Sets transfer size, mode, and activation source for each channel

MAR0A,B Transfer source address setting

IORA0A,B Transfer destination address setting

ETCR0A,B Transfer number setting

64

Operation

Figure 3 shows the principles of the operation. A one-shot pulse is output by means of H8S/2655
hardware and software processing as shown in the figure.

Hardware processing

Software processing

None

Initialization
DMAC0A/B
1.
2.

3.

TPU0
1.
2.

3.

4.

Set transfer format
Select channel 0 input
capture A as data
transfer activation source
Activate DMAC0A/B

Enable count operation
Set falling edge as input
capture A detected edge
Set input capture A
clearing as counter
clear source
Set buffered mode

Hardware processing

Software processing

TPU0
Input capture A
generation

DMAC0A
Transfer one-shot
pulse output enable
data to TIOR0

DMAC0B
Transfer one-shot
pulse delay time to
TGR0B

None

Hardware processing

Software processing

TGI0C handling
Disable one-shot
pulse output

TGI0C generation

TCNT0 count
value

Immediately after reset

Time

H'FFFF

TGR0C/
TGR0D

TGR0B

H'0000

External signal
(TIOCA0)

Output pulse
(TIOCB0)

Delay time Pulse width

Hardware processing

Software processing

None

TPU0
1.

2.

3.

Compare-match B
generation
TGR0D → TGR0B
data transfer
TIOCB0 compare-
match output

Figure 3 Principles of One-Shot Pulse Output Operation

65

Software

1. Modules

Module Name Label Function

Main routine ONEMN Sets delay time and pulse width in TGR0B and TGR0D,
and one-shot pulse reset value in TGR0C, and outputs
one-shot pulse

Pulse output disable POUTDLE Disables pulse output

2. Arguments

Label/Register
Name Function

Data
Length Module

Input/
Output

set_dly Setting of timer value corresponding to one-shot
pulse delay time

Delay time is found from the following formula:

Delay time (ns) = Timer value × ø cycle
(50 ns at 20 MHz operation)

Unsigned
short

Main
routine

Input

one_rst Setting of timer value corresponding to one-shot
pulse reset timing

Pulse reset timing is found from the following
formula:

Pulse reset timing (ns) =Timer value × ø cycle
(50 ns at 20 MHz operation)

Unsigned
short

Main
routine

Input

io_cntr Setting of one-shot pulse output enable data
(Input capture A: fall; compare-match B: toggle
output)

Unsigned
char

Main
routine

Output

66

3. Internal Registers Used

Register Name Function Module

TPU0 TSTR Selects timer counter operation/stopping Main routine

TMDR Sets TGR0B and TGR0D to buffered operation Main routine

TCR0 Sets TCNT input clock and counter clear source Main routine

TIOR0 Detects falling edge of input pulse Main routine

Sets level output from TIOCB0 on compare-match B Pulse output
disable

TIER0 Enables TGI0C interrupt Main routine/
pulse output
disable

TSR0 Indicates generation of compare-match by TGR0B Main routine

TGR0B One-shot pulse delay time setting Main routine

TGR0C One-shot pulse output disabled timing value setting Main routine

TGR0D One-shot pulse reset timing value setting Main routine

DMAC DMABCR0
DMACR0A/B

Set operation of each DMAC channel Main routine

MAR0A/B Set address of data to be transferred to each register Main routine

IOAR0A/B Set address of transfer destination register of each
channel

Main routine

ETCR0A/B Set transfer count of each channel Main routine

MSTPCR Clears TPU and DMAC module stop mode Main routine

4. RAM Used

This sample task does not use any RAM apart from the arguments.

67

PAD

1. Main routine

Main routine

ONEMN

Clear TPU and DMAC
module stop mode

Set TCR0, specifying input
capture A as counter
clear source

Set TMDR0, specifying
buffered operation for
TGR0B and TGR0D

Set one-shot pulse reset
timing (one_rst) in TGR0D

Set one-shot pulse
compare-match output
disabled timing in TGR0C

Set TIOCB0 output enable
data in (io_cntr)

Set one-shot pulse delay
time setting address
(set_dly) in MAR0A as
transfer source address

Set TPU0 compare-match
output setting address
(io_cntr) in MAR0B as
transfer source address

Set TGR0B address in
IOAR0A as transfer
destination address

Set TIOR0 address in
IOAR0B as transfer
destination address

Set transfer counts in
ETCR0A and ETCR0B

DMAC0A operation settings
in DMACR0A
• Activation source =
 ITU0 input capture A
• Repeat mode
• 1-byte data transfer

DMAC0B operation settings
in DMACR0B
Activation source = ITU0
input capture A
• Repeat mode
• 1-word data transfer

Read DMACR0L

Set DMAC0A and DMAC0B
to transfer enabled state
with DMACR0H/L

Set enabling of DMAC
activation source interrupt
in TIER0

Set TIER0 to enable
interrupts by TGFC

Clear I flag to enable
interrupts

Start TPU0 count

While (1)

1

1

68

2. Pulse output disable

Pulse output disable

Clear interrupt request flag
(TGFC)

Set TIOR0 and disable TGR0B
compare-match outputPOUTDLE

69

Program List

#include <machine.h>
#include "H8S.H"
/**********************************/
/* PROTOCOL */
/**********************************/
void ONEMN(void);
#pragma interrupt (POUTDLE)
/**********************************/
/* SYMBOL DEFINITIONS */
/**********************************/
define set_dly ((unsigned short *)0xffec00) /* Pulse delay time */
define one_rst (*(unsigned short *)0xffec02) /* Pulse reset timing */
define io_cntr ((unsigned char *)0xffec04) /* I/O control */

/**********************************/
/* MAIN PROGRAM: ONEMN */
/**********************************/
void ONEMN(void)
{
 MSTPCR = 0x5fff; /* Disable module(DMA,TPU) stop mode*/
 TPU_TCR0 = 0x20; /* Initialize TCR0 */
 TMDR0 = 0xE0; /* TGR0B,D: buffer register */
 TGR0D = one_rst;
 TGR0C = one_rst;
 io_cntr[0] = 0x39; /* Set output toggles at GRB compare match */
 /* Set TGRA0 captures falling edge of input */

 MAR0A_W = set_dly; /* Set base address */
 MAR0B_B = io_cntr; /* Set base address */
 IOAR0A = 0xffda; /* Set excute (TGR0B) address */
 IOAR0B = 0xffd2; /* Set excute (TIOR0H) address */
 ETCR0A = 0x0101; /* Set excute count */
 ETCR0B = 0x0101; /* Set excute count */
 DMACR0A = 0xA8; /* Initialize DMACR0 */
 DMACR0B = 0x28;

 DMABCRH = 0x03; /* Initialize DMABCR0 */
 DMABCRL |= 0x30;

 TIER0_BP.TGIEA0 = 1; /* Enable DMAC */
 TIER0_BP.TGIEC0 = 1; /* Enable TGI0C */
 set_imask_ccr(0); /* Enable interrupt */
 TSTR = 0x01; /* Start TCNT0 */
 while(1); /* Loop */
}

/**********************************/
/* INTERRUPT PROGRAM: POUTDLE */
/**********************************/
void POUTDLE(void)
{
 TSR0_BP.TGFC0 = 0; /* Clear TGFC0 request */
 TIOR0H = 0x09; /* Set disenable output data */
}

70

3.8 Four 4-Bit Outputs PPG

Specifications

1. Four sets of asynchronous 4-bit pulse outputs are generated using PPG output, as shown in
figure 1.

2. A TPU compare-match is used as the PPG activation source.

PO15

PO14

PO13

PO12

PO11

PO10

PO9

PO8

PO7

PO6

PO5

PO4

PO3

PO2

PO1

PO0

Non-overlap time

Figure 1 Example of Four 4-Bit Outputs

71

Functions Used

1. In this sample task, four sets of asynchronous 4-bit pulse outputs are generated using TPU0 to
TPU3 and PPG output groups 3 to 0.

a. Figure 2 shows the block diagram for this sample task, taking the example of TPU3/PPG
group 3 pulse output. This task uses the following functions:

• The ability to select output trigger signals in 4-bit groups, and to generate a maximum
of four 4-bit outputs

• The ability to select the output trigger signal for each group from among TPU 4-
channel compare-match signals

• The ability to set the non-overlap time between different pulse outputs

Output compare
register B
(TGRB)

Comparator B

16-bit counter

Comparator A

Output compare
register A
(TGRA)

Compare-
match B

TIOCB

TIOCA

Compare-
match A

(Interrupt request enabling/disabling)

TPU3

Timer status register
(TSR)

Interrupt control
circuit

(Output level
setting)

Timer I/O control
register
(TIOR)

Control logic

Next data register (NDRH)

Output data register
(PODRH)

PPG
L → H H → L

PO15
 to
PO12

Figure 2 Four 4-Bit Output (Group 3) Block Diagram

72

2. Table 1 shows the function assignments for this sample task. H8S/2655 functions are assigned
as shown in this table to generate four 4-bit outputs.

Table 1 H8S/2655 Function Assignments

H8S/2655 Function Function

PPG PO15 to PO0 Four 4-bit outputs

PMR Non-overlap mode setting

PCR PPG output trigger signal setting

NDERH Enables PO15 to PO8 PPG output

NDERL Enables PO7 to PO0 PPG output

NDRH Stores PPG output data to be output next

NDRL Stores PPG output data to be output next

P1DDR PPG output pin setting

P2DDR PPG output pin setting

PODRH Stores PO15 to PO8 output data

PODRL Stores PO7 to PO0 output data

TPU TGR0A to TGR3A Non-overlap mode time setting

TGR0B to TGR3B PPG output trigger cycle setting

TCR0 to TCR3 Counter clock and counter clear source setting

TSR0 to TSR3 Indicate compare-match generation

TIOR0 to TIOR3 TGR control

TSTR Selects timer counter operation/stopping

MSTPCR Clears TPU and DMAC module stop mode

73

Operation

Figure 3 shows the principles of the data output operation using PPG output group 3. Four-phase
non-overlap output is performed by means of H8S/2655 hardware and software processing.

Hardware processing

Software processing

None

Initialization
—TPU processing—
1.

2.

3.
4.

—PPG processing—
1.

2.

3.

4.

Hardware processing

Software processing

1.

2.

3.

TGI3A handling

Hardware processing

Software processing

1.

2.

None

TCNT3 count
value

Immediately after reset

Compare-
match

Time
TGR3A

NDRH

PODRH

PO15

PO14

PO13

PO12

TGR3B

80

00

40

80

20

4000 00

10

20

TGR3A compare-match
generation
Transfer NDRH contents
to PODRH
Output 4-bit data from
group 3 PPG output pins

TPU/TGR3B compare-
match generation
PPG output at non-overlap
time

1. Set next data to be
output in NDRH

Set non-overlap period in
TGR3A
Set PPG output
trigger cycle in TGR3B
Set TGIA interrupt
Start TPU0 to TPU3 count
operation

Set initial output value in
PODR and PPG output
Enable group 3 PPG
output, and selection
transfer trigger
Select non-overlap for
operation group 3
Set next pulse output
value in NDR

Figure 3 Principles of Four 4-Bit Output (Group 3) Operation

74

Software

1. Modules

Module Name Label Function

Main routine ppg16mn PPG and TPU initialization

Data setting 0 setdat0 Sets next data to be output in NDR0 (group 0)

Data setting 1 setdat1 Sets next data to be output in NDR1 (group 1)

Data setting 2 setdat2 Sets next data to be output in NDR2 (group 2)

Data setting 3 setdat3 Sets next data to be output in NDR3 (group 3)

2. Arguments

Label Function Data Length Module Input/Output

addcnt0 PPG group 0 output transfer counter Unsigned char Data setting 0 Output

addcnt1 PPG group 1 output transfer counter Unsigned char Data setting 1 Output

addcnt2 PPG group 2 output transfer counter Unsigned char Data setting 2 Output

addcnt3 PPG group 3 output transfer counter Unsigned char Data setting 3 Output

75

3. Internal Registers Used

Register Name Function Module

PPG P1DDR Enables PPG output for PO15 to PO8 Main routine

P2DDR Enables PPG output for PO7 to PO0 Main routine

P1DR Stores PO15 to PO8 output pattern data Main routine

P2DR Stores PO7 to PO0 output pattern data Main routine

PMR Sets PO15 to PO0 as non-overlap outputs Main routine

PCR Selects pulse output trigger signal for each group

Group 3: TPU3 compare-match
Group 2: TPU2 compare-match
Group 1: TPU1 compare-match
Group 0: TPU0 compare-match

Main routine

NDERL Enables PPG outputs PO7 to PO0 Main routine

NDERH Enables PPG outputs PO15 to PO8 Main routine

NDRL Sets next output pattern for PO7 to PO0 Main routine

Data setting 0,
data setting 1

NDRH Sets next output pattern for PO15 to PO8 Main routine

Data setting 2,
data setting 3

TPU TGR0A to TGR3A Non-overlap time settings Main routine

TGR0B to TGR3B PPG output trigger cycle settings Main routine

TCR0 to TCR3 Following TCR settings:

• Counter clearing on TGRB compare-match

• Counting on ø internal clock

Main routine

TSR0 to TSR3 Indicate compare-match generation Main routine

TIER0 to TIER3 Enable TGIA interrupts Main routine

TSTR Enables TCNT count operation Main routine

MSTPCR Clears TPU and PPG module stop mode Main routine

4. RAM Used

This sample task does not use any RAM apart from the arguments.

76

5. Data Tables

Table Name Function Data Length Data Capacity

ndat_tab0 Stores data output from PPG group 0 Unsigned char 4 bytes

ndat_tab1 Stores data output from PPG group 1 Unsigned char 4 bytes

ndat_tab2 Stores data output from PPG group 2 Unsigned char 4 bytes

ndat_tab3 Stores data output from PPG group 3 Unsigned char 4 bytes

77

PAD

1. Main routine

Four 4-bit outputs

Clear PPG and TPU module stop mode

Clear PPG output transfer counter

Set TGRA and TGRB as output
compare registers (output disabled)
with TIOR

Set non-overlap time in TPU’s TGRA,
and PPG output trigger cycle in TGRB

Set TCR to TCNT clearing on TGRB
compare-match

While (1)

ppg16mn

Set initial output value in PODR

Set ports 1 and 2 as output ports, set 1
in NDER to enable output

Select output trigger signals with PCR
Group 3: TPU3 compare-match
Group 2: TPU2 compare-match
Group 1: TPU1 compare-match
Group 0: TPU0 compare-match

Set non-overlap operation with PMR

Set next output value in NDR

Enable TGIA interrupt with TIER

Clear I flag to enable interrupts

Start TPU0 to TPU3 counts

78

2. Data setting 0

Data setting 0

Yes

No

setdat0

Clear interrupt request
flag (TGFA0)

Set next output data
in NDR0

Increment counter
(ADDCNT0)

Stop TCNT0 operation

ADDCNT0 == 6?

3. Data setting 1

Data setting 1

Yes

No

setdat1

Clear interrupt request
flag (TGFA1)

Set next output data
in NDR1

Increment counter
(ADDCNT1)

Stop TCNT1 operation

ADDCNT1 == 6?

79

4. Data setting 2

Data setting 2

Yes

No

setdat2

Clear interrupt request
flag (TGFA2)

Set next output data
in NDR2

Increment counter
(ADDCNT2)

Stop TCNT2 operation

ADDCNT2 == 6?

5. Data setting 3

Data setting 3

Yes

No

setdat3

Clear interrupt request
flag (TGFA3)

Set next output data
in NDR3

Increment counter
(ADDCNT3)

Stop TCNT3 operation

ADDCNT3 == 6?

80

Program List

#include <machine.h>
#include <h8s.h>

/**/
/* PROTOCOL */
/**/
void ppg16mn(void);

/**/
/* RAM ALLOCATION */
/**/
define ndat_tab0 ((unsigned char *) 0xffec00) /* Outout data table */
define addcnt0 (*(unsigned char *) 0xffec05) /* Group0 transmit counter */
define ndat_tab1 ((unsigned char *) 0xffec06) /* Outout data table */
define addcnt1 (*(unsigned char *) 0xffec0b) /* Group1 transmit counter */
define ndat_tab2 ((unsigned char *) 0xffec0c) /* Outout data table */
define addcnt2 (*(unsigned char *) 0xffec11) /* Group2 transmit counter */
define ndat_tab3 ((unsigned char *) 0xffec12) /* Outout data table */
define addcnt3 (*(unsigned char *) 0xffec17) /* Group3 transmit counter */

/**/
/* MAIN PROGRAM : ppg16mn */
/**/
void ppg16mn(void)
{
 MSTPCR = 0x17ff; /* Disable module(PPG,TPU) stop mode */

 addcnt0 = 0; /* Transmit counter clear */
 addcnt1 = 0;
 addcnt2 = 0;
 addcnt3 = 0;

 TIOR0H = 0x00; /* Initialize TIOR0H */
 TIOR1H = 0x00; /* Initialize TIOR1H */
 TIOR2H = 0x00; /* Initialize TIOR2H */
 TIOR3H = 0x00; /* Initialize TIOR3H */

 TGR0A = 0x00c8; /* Set non overlap time */
 TGR0B = 0x1388; /* Set PPG output cycle */
 TGR1A = 0x00c8; /* Set non overlap time */
 TGR1B = 0x2710; /* Set PPG output cycle */
 TGR2A = 0x00c8; /* Set non overlap time */
 TGR2B = 0x3a98; /* Set PPG output cycle */
 TGR3A = 0x00c8; /* Set non overlap time */
 TGR3B = 0x4e20; /* Set PPG output cycle */

 TPU_TCR0 = 0x40; /* Initialize TCR0 */
 TPU_TCR1 = 0x40; /* Initialize TCR1 */
 TCR2 = 0x40; /* Initialize TCR2 */
 TCR3 = 0x40; /* Initialize TCR3 */

 PODRH = 0; /* Set first output data */
 PODRL = 0; /* Set first output data */

81

 P1DDR = 0xff; /* Port1: output */
 P2DDR = 0xff; /* Port2: output */
 NDERH = 0xff; /* Enable transmit data */
 NDERL = 0xff; /* Enable transmit data */

 PCR = 0xe4; /* Set output toriga */
 PMR = 0xff; /* Set non overlap mode */

 NDR0 = ndat_tab0[addcnt0++]; /* Set second output data */
 NDR1 = ndat_tab1[addcnt1++]; /* Set second output data */
 NDR2 = ndat_tab2[addcnt2++]; /* Set second output data */
 NDR3 = ndat_tab3[addcnt3++]; /* Set second output data */

 TIER0 = 0x41; /* Initialize TIER0 */
 TIER1 = 0x41; /* Initialize TIER1 */
 TIER2 = 0x41; /* Initialize TIER2 */
 TIER3 = 0x41; /* Initialize TIER3 */
 set_imask_ccr(0); /* Enable interrupt */
 TSTR = 0x0f; /* Start TCNT0-3 */
 while(1); /* Loop */
}
/**********************************/
/* INTERRUPT PROGRAM: setdat0 */
/**********************************/
#pragma interrupt (setdat0)
void setdat0(void)
{
 TSR0_BP.TGFA0 = 0; /* Clear TGFA0 request*/
 NDR0 = ndat_tab0[addcnt0++]; /* Set next output data */
 if(addcnt0 == 6) /* All output end ? */
 TSTR_BP.CST0 = 0; /* Stop TCNT0 */
}

/**********************************/
/* INTERRUPT PROGRAM: setdat1 */
/**********************************/
#pragma interrupt (setdat1)
void setdat1(void)
{
 TSR1_BP.TGFA1 = 0; /* Clear TGFA1 request*/
 NDR1 = ndat_tab1[addcnt1++]; /* Set next output data */
 if(addcnt1 == 6) /* All output end ? */
 TSTR_BP.CST1 = 0; /* Stop TCNT1 */
}

/**********************************/
/* INTERRUPT PROGRAM: setdat2 */
/**********************************/
#pragma interrupt (setdat2)
void setdat2(void)
{
 TSR2_BP.TGFA2 = 0; /* Clear TGFA2 request */
 NDR2 = ndat_tab2[addcnt2++]; /* Next output data */
 if(addcnt2 == 6) /* All output end ? */
 TSTR_BP.CST2 = 0; /* Stop TCNT2 */
}

82

/**********************************/
/* INTERRUPT PROGRAM: setdat3 */
/**********************************/
#pragma interrupt (setdat3)
void setdat3(void)
{
 TSR3_BP.TGFA3 = 0; /* Clear TGFA3 request */
 NDR3 = ndat_tab3[addcnt3++]; /* Set next output data */
 if(addcnt3 == 6) /* All output end ? */
 TSTR_BP.CST3 = 0; /* Stop TCNT3 */
}

83

3.9 Asynchronous SCI SCI (Asynchronous Mode)

Specifications

1. One-byte data is transferred asynchronously between an H8S/2655 chip and H8/3314 chip, as
shown in figure 1.

2. The communication format is 9600 bps, 8-bit data, one stop bit, and no parity.

3. Communication control is performed by means of RTS and CTS.

H8S/2655 H8/3314

RXD

TXD

RTS

CTS

TX

RX

CTS

RTS

RS-232C
level
conversion

Figure 1 H8S/2655 Asynchronous SCI Block Diagram

84

Functions Used

1. In this sample task, data transmission/reception is performed using SCI0. Port 3 is used for the
communication control pins (RTS, CTS).

a. Figure 2 shows the SCI transmission block diagram for this sample task. Data is
transmitted to the H8/3314 using the following functions:

• A function that performs data communication asynchronously, establishing
synchronization character by character (asynchronous mode)

• A function that generates an interrupt when transmission is completed (TEI interrupt)

Interrupt setting
Transmit mode setting

Serial control register
(SCR0)

Asynchronous mode setting
Communication format setting

Serial mode register
(SMR0)

Transmission/reception
control circuit

Directs start of transmission

Serial status register
(SSR0)

Transfer rate generation

Baud rate generator

Baud rate register
(BRR0)

Transmit shift register
(TSR0)

Serial output pin
(TXD0)

Transmit data register
(TDR0)

Transmit data setting

Transmit end interrupt (TEI)

Figure 2 SCI Transmission Block Diagram

85

b. Figure 3 shows the SCI reception block diagram for this sample task. Data is received from
the H8/3314 using the following functions:

• A function that performs data communication asynchronously, establishing
synchronization character by character (asynchronous mode)

• A function that generates an interrupt when reception is completed (RXI interrupt)

Serial input pin
(RXD0)

Stores receive data

Receive data register
(RDR0)

Receive shift register
(RSR0)

Transmission/reception
control circuit

Interrupt setting
Receive mode setting

Serial control register
(SCR0)

Asynchronous mode setting
Serial communication format
setting

Serial mode register
(SMR0)

Transfer rate generation

Baud rate generator

Baud rate register
(BRR0)

Receive end interrupt
(RXI0)

Figure 3 SCI Reception Block Diagram

86

2. Table 1 shows the function assignments for this sample task. H8S/2655 functions are assigned
as shown in this table to perform interfacing to an H8/3314 chip.

Table 1 H8S/2655 Function Assignments

H8S/2655 Function Function

RXD0 Receives data from console

TXD0 Transmits data to console

SMR0 Sets SCI to asynchronous mode, and sets communication format

SCR0 Enables transmit/receive interrupts and sets SCI to transmit/receive
mode

SSR0 Directs start of transmission with TDRE

RDR0 Holds data received from console

TDR0 Holds data to be transmitted to console

BRR0 Transfer rate setting

87

Operation

Figure 4 shows the principles of the operation performed by this task. Interfacing to an H8/3314 is
performed by means of hardware and software processing, using the timing shown in this figure.

Receive data

Transmit data

RTS
(H8S/2655 → H8/3314)

CTS
(H8/3314 → H8S/2655)

RXD
(H8/3314 → H8S/2655)

TXD
(H8S/2655 → H8/3314)

Hardware processing

Software processing

None

Initialization
1.

2.
3.

4.

Set SCI to
asynchronous
mode
Set transfer rate
Enable receive
operation and
receive (RXI)
interrupt
Output low level
from RTS pin

Hardware processing

Software processing

RDRF setting
(RXI interrupt
generation)

Receive processing
1.

2.
3.

4.

Get receive data
from RDR
Clear RDRF
Output high level
from RTS pin, in
preparation for
transmission
Set transmit data
in TDR

Hardware processing

Software processing

None

Start transmission
1.

2.
3.

Enable transmit
operation
Clear TDRE
Enable transmit
end (TEI) interrupt

Hardware processing

Software processing

Disable transmission
1.
2.

Clear TEND
Disable TEI
interrupt

TEND setting
(TEI interrupt
generation)

Figure 4 Principles of Asynchronous SCI Operation

88

Software

1. Modules

Module Name Label Function

Main routine ASCMN SCI initialization, transmission/reception management

Data receive end ASCRX Initiated by RXI interrupt; performs data reception

Data transmit end ASCTE Initiated by TEI interrupt; reports completion of
transmission

2. Arguments

Label/Register
Name Function Data Length Module Input/Output

rcv_data Holds data received from
console

Unsigned char Data receive
end

Output

Main routine Input

rxendf Flag indicating completion of
reception

Unsigned char Data receive
end

Output

1: Reception completed
0: Reception in progress

Main routine Input

txendf Flag indicating completion of
transmission

Unsigned char Data transmit
end

Output

1: Transmission completed
0: Transmission in progress

Main routine Input

89

3. Internal Registers Used

Register Name Function Module

SMR0 Sets SCI mode (asynchronous) and communication
format, and selects clock for baud rate generator (ø clock
input)

Main routine

SCR0 Enables interrupts (RXI, TEI) and sets SCI
transmission/reception enabling

Main routine

SSR0 Directs start of transmission by clearing TDRE (b7) Main routine

RDR0 Holds data received from console Data receive end

TDR0 Holds data to be transmitted to console Main routine

BRR0 Transfer rate setting Main routine

P3DDR Port 3 input/output setting Main routine

P3DR Performs RTS and CTS pin manipulation Main routine

MSTPCR Clears SCI module stop mode Main routine

4. RAM Used

This sample task does not use any RAM apart from the arguments.

90

PAD

1. Main routine

Main routine

ASCMN

Clear SCI module stop
mode

UNTIL
Reception completed?

Set asynchronous mode,
communication format

Clear RXENDF

Set 9600 bps transfer
rate

Set transmit data

Enable RXI interrupt and
receive operation

Output high level from
RTS pin

Set RTS pin as output port
and CTS pin as input port

UNTIL
CTS pin low?

Clear I flag to enable
interrupts

Enable transmit
operation

Output low level from
RTS pin

Clear TDRE

Enable TEI interrupt

UNTIL
Transmission completed?

Clear TXENDF

While (1)

1

1

91

2. Data receive end

Data receive end

Clear RDRF

Set receive data in rcv_data

Set rxendf

ASCRX

3. Data transmit end

Data transmit end

Clear TEND

Set txendf

Disable transmit operation

Disable TEI interrupt

ASCTE

92

Program List

#include <machine.h>
#include "H8S.H"
/**********************************/
/* PROTOCOL */
/**********************************/
void ASCMN(void);
#pragma interrupt (ASCRX)
#pragma interrupt (ASCTE)

/**********************************/
/* SYMBOL DEFINITIONS */
/**********************************/

define rcv_data (*(unsigned char *)0xffec00) /* Receive data from console */
define rxendf (*(unsigned char *)0xffec01) /* Receive end flag */
define txendf (*(unsigned char *)0xffec02) /* Transmit end flag */

/**********************************/
/* MAIN PROGRAM: ASCMN */
/**********************************/
void ASCMN(void)
 {
 MSTPCR = 0xffdf; /* Disable module(SCI0) stop mode */
 SMR0 = 0; /* Initialize SMR0 */
 BRR0 = 64; /* Set 9600bps */
 SCR0 = 0x50; /* Enable RXI interrupt */
 P3DDR = 0xC9; /* RTS(P33):output port CTS(P31):input port */
 P3DR = 0xFF;

 set_imask_ccr(0); /* Enable interrupt */
 P3DR_BP.P33DR=0; /* Output RTS low */

 while (rxendf == 0); /* Receive complete ? */
 rxendf = 0;
 TDR0 = rcv_data; /* Set transmit data (receive data) */
 P3DR_BP. P33DR=1; /* Output RTS high */

 while (PORT3_BP. P31== 1);

 SCR0_BP. TE0 = 1; /* Enable transmit */
 SSR0_BP. TDRE0 = 0; /* Start transmit */
 SCR0_BP. TEIE0 = 1; /* Enable TEI interrupt */

 while (txendf==0); /* Transmit complete? */
 txendf = 0;

 while(1); /* Loop */
 }

93

/**********************************/
/* INTERRUPT PROGRAM: ASCRX */
/**********************************/
void ASCRX(void)
 {
 SSR0_BP. RDRF0 = 0; /* Clear RDRF */
 rcv_data = RDR0; /* Get receive data from RDR0 */
 rxendf = 1; /* Set rxendf */
 }

/**********************************/
/* INTERRUPT PROGRAM: ASCTE */
/**********************************/
void ASCTE(void)
 {
 SSR0_BP. TDRE0 = 0; /* TEND clear */
 txendf = 1; /* Set txendf */
 SCR0_BP. TE0 = 0; /* Disable transmit */
 SCR0_BP. TEIE0 = 0; /* Disable TEI interrupt */
 }

94

3.10 Simultaneous Transmit/Receive
Operation

SCI (Clock Synchronous
Transmission/Reception)

Specifications

1. One-byte data is transferred between an H8S/2655 chip and H8/3314 chip, as shown in figure
1.

2. The clock synchronous communication format is used for data transmission/reception. The
master H8S/2655 supplies the clock to the slave H8/3314.

3. The H8S/2655 transmits data to the H8/3314 and receives data from the H8/3314
simultaneously.

H8S/2655 (master) H8/3314 (slave)

SCK

IRQ6

P67

RXD

TXD

SCK

P65 (RRQ)

P64 (SRQ)

TXD

RXD

Figure 1 H8S/2655 Clock Synchronous SCI Block Diagram

95

Functions Used

1. In this sample task, data transmission/reception is performed using SCI1. Port 6 is used for the
communication control pins (RRQ, SRQ).

a. Figure 2 shows the SCI transmission block diagram for this sample task. Simultaneous
transmit and receive operations are performed using the following functions:

• A function that performs serial data communication in synchronization with a clock
(clock synchronous mode)

• A function that performs transmission and reception simultaneously (simultaneous
transmit/receive operation)

• A function that generates an interrupt when reception is completed (RXI interrupt)

Receive end interrupt setting
Simultaneous transmit/receive
mode setting

Serial control register
(SCR1)

Clock synchronous mode setting
Communication format setting

Serial mode register
(SMR1)

Transmission/reception
control circuit

Directs start of transmission

Serial status register
(SSR1)

Receive end interrupt (RXI)

Stores receive data

Receive data register
(RDR1)

Receive shift register
(RSR1)

Transmit shift register
(TSR1)

Holds transmit data

Transmit data register
(TDR1)

Transfer rate generation

Baud rate generator

Baud rate register
(BRR1)

Serial input pin
(RXD1)

Serial output pin
(TXD1)

Serial clock output
pin (SCK1)

Figure 2 SCI Block Diagram

96

2. Table 1 shows the function assignments for this sample task. H8S/2655 functions are assigned
as shown in this table to perform simultaneous data transmission to and reception from an
H8/3314 chip.

Table 1 H8S/2655 Function Assignments

H8S/2655 Function Function

SCK1 Transmits serial clock

RXD1 Receives data from H8/3314

TXD1 Transmits data to H8/3314

SMR1 Sets SCI to clock synchronous mode

SCR1 Enables receive interrupt and sets SCI to transmit/receive mode

SSR1 Directs start of transmission with TDRE bit

RDR1 Holds data received from H8/3314

TDR1 Holds data to be transmitted to H8/3314

BRR1 Transfer rate setting

P6DDR Sets port 6 input/output

P6DR Performs RRQ transmission and SRQ reception

97

Operation

Figure 3 shows the principles of the operation performed by this task. Interfacing to an H8/3314 is
performed by means of hardware and software processing, using the timing shown in this figure.

RRQ
(H8S/2655 → H8/3314)

SRQ
(H8/3314 → H8S/2655)

SCK

TXD
(H8S/2655 → H8/3314)

RXD
(H8/3314 → H8S/2655)

Hardware processing

Software processing

None

Initialization
1.

2.
3.

Set clock
synchronous mode
as operating mode
Set transfer rate
Enable receive
operation and
receive (RXI)
interrupt

Immediately
after reset

Hardware processing

Software processing

None

Transmission
preparation
1.

2.

3.

Output low level
from RRQ pin
(P65)
Set transmit data
in TDR
Clear TDRE

Hardware processing

Software processing

None

Start transmit/receive
operation
1.

2.

Enable transmit
operation
Output high level
from RRQ pin

Hardware processing

Software processing

RDRF setting
(RXI interrupt
generation)

Data reception
1.

2.

Get receive data
from RDR
Clear RDRF

Figure 3 Principles of Simultaneous Transmit/Receive Operation

98

Software

1. Modules

Module Name Label Function

Main routine simtrmn SCI initialization, transmission/reception management

Data receive end rxend Initiated by RXI interrupt; performs data reception

2. Arguments

Label/Register
Name Function

Data
Length Module

Input/
Output

revend Flag indicating completion of reception
1: Reception completed
0: Reception in progress

Unsigned
char

Data receive
end

Output

Main routine Input

3. Internal Registers Used

Register Name Function Module

SMR1 Sets SCI mode (clock synchronous) and communication
format, and selects clock for baud rate generator
(ø clock input)

Main routine

SCR1 Enables interrupt (RXI) and sets SCI transmission/
reception enabling

Main routine

SSR1 Directs start of transmission by clearing TDRE Main routine

RDR1 Holds data received from H8/3314 Data receive end

TDR1 Holds data to be transmitted to H8/3314 Main routine

BRR1 Transfer rate setting Main routine

P6DDR Port 6 input/output setting Main routine

P6DR Performs RRQ and SRQ pin manipulation Main routine

MSTPCR Clears SCI module stop mode Main routine

4. RAM Used

Label/Register
Name Function Data Length Module

rvdata Holds received data Unsigned char Main routine

trdata Holds data to be transmitted Unsigned char Main routine

99

PAD

1. Main routine

Simultaneous transmit/
receive operation

simtrmn

1

Clear SCI module stop
mode

Output high level from
RRQ pin

Clear TE and RE bits in
SCR1 to 0

Select clock synchronous
mode with SMR1

Set communication
format with BBR1

Set P6DR, P6DDR

Set SCR1 to receive-
data-full interrupt enabling
and receive mode

Clear I flag to enable
interrupts

Output low level from
RRQ pin

While
(PORT6_BP.SRQ == 1)

While
(SSR1_BP.TDRE1 == 0)

Set transmit data in
TDR1

Enable transmit
operation

While (revend == 0)

Store receive data in
RAM

Clear receive-data-full
flag

1

While (1)

100

2. Data receive end

Data receive end

Set revend flag

Clear receive end status flag
rxend

101

Program List

#include <machine.h>
#include <h8s.h>

/**/
/* PROTCOL */
/**/
void simtrmn(void);

/**/
/* RAM ALLOCATION */
/**/
#define trdata (*(unsigned char *)0xffec00)
#define rvdata (*(unsigned char *)0xffec01)
#define revend (*(unsigned char *)0xffec02)

/**/
/* MAIN PROGRAM : simtrmn */
/**/
void simtrmn(void)
{
 MSTPCR = 0xffbf;
 SCR1 = 0x00; /* select clock mode */
 SMR1 = 0x80; /* init SCI1 */
 BRR1 = 0x04; /* set 1MBPS */
 P6DDR = 0x20; /* init port */
 P6DR = 0x20;
 SCR1 = 0x70; /* enable RX,TX,RIE */
 set_imask_ccr(0);

 P6DR_BP.RRQ = 0; /* "Low"-> RRQ */

 while(PORT6_BP.SRQ == 1);

 P6DR_BP.RRQ = 1; /* "High"-> RRQ */
 while(SSR1_BP.TDRE1 == 0);
 TDR1 = trdata; /* set transmit data to TDR */
 SSR1 &= 0x7f; /* start transmit */

 while(revend == 0); /* receive complete? */

 rvdata = RDR1; /* set receive data */
 SSR1 &= 0xbf;

 while(1);
}

/**/
/* NAME : rxend(data receive end) */
/**/
#pragma interrupt(rxend)
void rxend(void)
{
 revend = 0x01;
 SSR1 &= 0xbf;
}

102

3.11 Multiprocessor Communication SCI (Multiprocessor
Communication)

Specifications

1. Data transmission and reception is performed between an H8S/2655 chip and two H8/3314
chips using a common serial communication line, as shown in figure 1.

2. When the H8S/2655 is the transmitting device, data is transmitted to the H8/3314s, and each
H8/3314 receives only data for that device. When the H8S/2655 is the receiving device, it
compares ID data with its own ID and receives data if the IDs match.

3. The format for data transmission/reception is 9600 bps, 8-bit data, one stop bit, and no parity.

Serial communication line

H8S/2655
(ID = 01)

H8/3314
(ID = 02)

TXD RXD

RXD TXD

Figure 1 Block Diagram of Asynchronous SCI Using Multiprocessor Function

103

Functions Used

1. In this sample task, multiprocessor communication is performed using the SCI’s
multiprocessor communication function.

a. Figure 2 shows the transmitting device SCI block diagram for this sample task.
Transmission is performed using the following SCI functions:

• A function that performs data communication asynchronously, establishing
synchronization character by character (asynchronous mode)

• A function that performs communication using a format that includes a multiprocessor
bit (multiprocessor communication function)

• A function that generates an interrupt at the start of transmission (TXI interrupt)

Interrupt setting
Transmit mode setting

Serial control register
(SCR0)

Asynchronous mode setting
Communication format setting
Multiprocessor mode setting

Serial mode register
(SMR0)

Transmission/reception
control circuit

Multiprocessor bit specification

Serial status register
(SSR0)

Transfer rate generation

Baud rate generator

Baud rate register
(BRR0)

Transmit shift register
(TSR0)

Serial output pin
(TXD0)

Transmit data register
(TDR0)

Transmit data register empty interrupt (TXI0)

Figure 2 Transmitting Device SCI Block Diagram

104

b. Figure 3 shows the receiving device SCI block diagram for this sample task. Reception is
performed using the following SCI functions:

• A function that performs data communication asynchronously, establishing
synchronization character by character (asynchronous mode)

• A function that performs communication using a format that includes a multiprocessor
bit (multiprocessor communication function)

• A function that generates an interrupt when a multiprocessor bit is received
(multiprocessor interrupt)

• A function that generates an interrupt when reception is completed (RXI interrupt)

Serial input pin
(RXD0)

Receive data register
(RDR0)

Receive shift register
(RSR0)

Transmission/reception
control circuit

Interrupt setting
Receive mode setting

Serial control register
(SCR0)

Asynchronous mode setting
Serial communication format
setting
Multiprocessor mode setting

Serial mode register
(SMR0)

Transfer rate generation

Baud rate generator

Baud rate register
(BRR0)

Multiprocessor interrupt
Receive end interrupt (RXI0)

Figure 3 Receiving Device SCI Block Diagram

105

2. Table 1 shows the function assignments for this sample task. SCI functions are assigned as
shown in this table to perform multiprocessor communication.

Table 1 SCI Function Assignments

SCI Functions Function

RXD0 Receives data from H8/3314

TXD0 Transmits data to H8/3314

SMR0 Sets SCI to asynchronous mode and multiprocessor mode

SCR0 Enables transmit/receive interrupts and sets SCI to transmit/receive mode

SSR0 Starts transmission/sets multiprocessor bit

RDR0 Holds data received from H8/3314

TDR0 Holds data to be transmitted to H8/3314

BRR0 Transfer rate setting

106

Operation

1. Transmission

Figure 4 shows the principles of the transmit operation performed by this task. Data is
transmitted to the receiving H8/3314 by means of hardware and software processing, using the
timing shown in this figure.

ID (H'02) DATA ID (H'02) DATATXD

TDRE

MPBT

Hardware processing

Software processing

None

Initialization
1.

2.
3.

4.

ID transmission
preparations
1.
2.
3.

Set SCI to
asynchronous
mode
Set transfer rate
Enable transmit
operation and
transmit (TXI)
interrupt
Enable multi-
processor
communication

Set ID in TDR
Set MPBT
Clear TDRE

Hardware processing

Software processing

TDRE setting
(TXI interrupt
generation)
Start ID transmission

Data transmission
preparation
1.

2.

ID transmission
1.

Set transmit data
in TDR
Clear TDRE

Clear MPBT

Immediately after reset

Hardware processing

Software processing

TDRE setting
(TXI interrupt
generation)
Start data transmission

ID transmission
preparation
1.
2.

Data transmission
1.

Set ID in TDR
Clear TDRE

Set MPBT

Hardware processing

Software processing

TDRE setting
(TXI interrupt generation)
Start data transmission

Data transmission
1.
2.

Set MPBT
Disable TXI interrupt

Figure 4 Principles of Multiprocessor Communication (Transmitting Device) Operation

107

2. Reception

Figure 5 shows the principles of the receive operation performed by this task. Data is received
from the transmitting device by means of hardware and software processing, using the timing
shown in this figure.

ID DATARXD

RDRF

MPIE

ID DATARXD

RDRF

MPIE

Hardware processing

Software processing

None

Initialization
1.
2.
3.

4.

Set SCI to asynchronous mode
Set transfer rate
Enable receive operation and receive
(RXI) interrupt
Enable multiprocessor communication

Hardware processing

Software processing

RDRF setting
(RXI interrupt generation)
Clear MPIE

ID evaluation (other device’s ID)
1.
2.
3.

Get ID from RDR
Clear RDRF
Set MPIE

a. Operation when another device’s ID is received

Immediately after reset

b. Operation when device’s own ID is received

Hardware processing

Software processing

None

Initialization
1.
2.
3.

4.

Set SCI to asynchronous mode
Set transfer rate
Enable receive operation and receive
(RXI) interrupt
Enable multiprocessor communication

Hardware processing

Software processing

RDRF setting
(RXI interrupt generation)
Clear MPIE

ID evaluation
(device’s own ID)
1.
2.

Get ID from RDR
Clear RDRF

Immediately after reset

Hardware processing

Software processing

RDRF setting
(RXI interrupt
generation)

Data reception
1.
2.
3.

Get data from RDR
Clear RDRF
Set MPIE

Figure 5 Principles of Multiprocessor Communication (Receiving Device) Operation

108

Software

1. Transmitting device software

a. Modules

Module Name Label Function

Main routine MPMASMN SCI initialization

Data transmission MPSCITX Initiated by TXI interrupt; performs ID and data
transmission

b. Arguments

Label/Register
Name Function Data Length Module

Input/
Output

txdata Buffer that holds ID or data to be
transmitted to receiving H8/3314

Unsigned char Main routine Output

Data
transmission

Input

txendf Indicates end of transmission Unsigned char Main routine Input

1: End of transmission
0: Transmission in progress

Data
transmission

Output

c. Internal Registers Used

Register Name Function Module

SMR0 Sets SCI mode (asynchronous) and communication
format, and selects clock for baud rate generator
(ø clock input)

Main routine

SCR0 Enables interrupt (TXI) and sets SCI transmission
enabling/disabling

Main routine

Transmit end

SSR0 Directs start of transmission by clearing TDRE (b7) Main routine

Data transmission

TDR0 Holds ID or data to be transmitted to receiving H8/3314 Main routine

Data transmission

BRR0 Transfer rate setting Main routine

MSTPCR Clears SCI module stop mode Main routine

109

d. RAM Used

Label Module Data Length Function

txcnt Data transmission Unsigned char Count of transmitted data

2. Receiving device software

a. Modules

Module Name Label Function

Main routine MPSRVMN SCI initialization

Data reception MPSCIRX Initiated by RXI interrupt; performs ID and data reception

b. Arguments

Label Function Data Length Module
Input/
Output

rcv_data Holds received ID or data Unsigned char Data reception Output

Main routine Input

idrcvf Flag indicating reception of device’s
own ID

Unsigned char Data reception Output

1: ID received
0: ID not received

Main routine Input

dtrcvf Flag indicating data reception Unsigned char Data reception Output

1: Data received
0: Data not received

Main routine Input

c. Internal Registers Used

Register Name Function Module

SMR0 Sets SCI mode (asynchronous) and communication format,
and selects clock for baud rate generator (ø clock input)

Main routine

SCR0 Enables interrupt (RXI) and sets SCI reception enabling Main routine

RDR0 Holds ID or data received from transmitting H8/3314 Data reception

BRR0 Transfer rate setting Main routine

MSTPCR Clears SCI module stop mode Main routine

110

d. RAM Used

Label Module Data Length Function

rxid Main routine Unsigned char Holds received ID

rxdata Main routine Unsigned char Holds received data

myid Data reception Unsigned char Holds device’s own ID

111

PAD

1. Transmitting device

a. Main routine

Main routine

MPMASMN

1

Clear SCI module stop
mode

Set ID in TDR0

Set P30 to output, and
output high level from
P30

Enable transmit
operation

Set asynchronous mode,
communication format,
multiprocessor
communication mode

Clear TDRE and start
transmission

Set 9600 bps transfer
rate

Enable transmit
interrupt (TXI)

Set MPBT

Clear I flag to enable
 interrupts

Clear transmit end flag

UNTIL
End of transmission?

Clear transmit counter

While (1)

1

112

b. Data transmission

Data transmission

Yes

No

MPSCITX

Invert MPBT

Transmit
counter < 4?

Set next transmit
data in TDR0

Transmit counter + 1
(txcnt)

Clear TDRE

Set transmit end flag

Disable transmit interrupt
(TXI)

113

2. Receiving device

a. Main routine

Main routine

MPSRVMN

1

Clear SCI module stop
mode

Set asynchronous mode,
communication format,
multiprocessor
communication mode

UNTIL end of data
reception

Set 9600 bps transfer
rate

Set rcv_data in rxdata

Enable receive interrupt
(RXI)

Enable receive
operation

Clear dtrcvf

Clear I flag to enable
interrupts

While (1)

1

UNTIL end of ID
reception

Set rcv_data in rxid

114

b. Data reception

Data reception

Yes

No

MPSCIRX

Get receive data
from RDR0

MPB = 1

Set dtrcvf

Clear RDRF

Set MPIE

Clear MPIE

Set idrcvf

Yes

No

rcv_data = myid

Set MPIE

115

Program List

#include <machine.h>
#include "H8S.H"
/**********************************/
/* PROTOCOL */
/**********************************/
void MPMASMN(void);
#pragma interrupt (MPSCITX)

/**********************************/
/* SYMBOL DEFINITIONS */
/**********************************/
define txdata ((unsigned char *)0xffec00) /* Transmit data */
define txcnt (*(unsigned char *)0xffec04) /* Transmit counter */
define txendf (*(unsigned char *)0xffec05) /* Transmit end flag */

/**********************************/
/* MAIN PROGRAM: MPAMASMN */
/**********************************/
void MPMASMN(void)
{

 MSTPCR = 0xffdf; /* Disable module(SCI0) stop mode*/
 P3DDR_BP.P30DDR = 1; /* P30 high output */
 P3DR_BP.P30DR = 1;
 SMR0 = 0x04; /* Set multi processor mode */
 BRR0 = 64; /* Set 9600bps */
 SSR0_BP.MPBT0=1; /* Set MPBT0 */
 txendf = 0; /* Set txendf=0 */
 txcnt = 0; /* Set txcnt=0 */
 TDR0 = txdata[txcnt]; /* Set ID(H'01) to TDR0 */
 SCR0_BP. TE0 = 1; /* Enable transmit */
 SSR0_BP.TDRE0=0; /* Start transmit */
 SCR0_BP.TIE0=1; /* Enable TXI */
 set_imask_ccr(0); /* Enable interrupt */

 while (txendf == 0);

 while (1);
}

/**********************************/
/* INTERRUPT PROGRAM: MPSCITX */
/**********************************/
void MPSCITX(void)
{
 SSR0_BP. MPBT0 = -SSR0_BP. MPBT0;/* Invert MPBT0 */
 txcnt = txcnt + 1;

 if (txcnt<4)
 {
 TDR0 = txdata[txcnt]; /* Load next tans data */
 SSR0_BP.TDRE0=0; /* Start transmit */

116

 }
 else
 {
 txendf = 1;
 SCR0_BP. TIE0=0; /* Disable TXI */
 }
}

117

#include <machine.h>
#include "H8S.H"
/**********************************/
/* PROTOCOL */
/**********************************/
void MPSRVMN(void);
#pragma interrupt (MPSCIRX)
/**********************************/
/* SYMBOL DEFINITIONS */
/**********************************/
define rcv_data (*(unsigned char *)0xffec00) /* Receive ID,data */
define idrcvf (*(unsigned char *)0xffec01) /* ID code compare flag */
define dtrcvf (*(unsigned char *)0xffec02) /* Data receive flag */
define rxid (*(unsigned char *)0xffec03) /* Receive ID code */
define rxdata (*(unsigned char *)0xffec04) /* Receive data */
define myid (*(unsigned char *)0xffec05) /* My ID code */
/**********************************/
/* MAIN PROGRAM: MPSRVMN */
/**********************************/
void MPSRVMN(void)
{
 MSTPCR = 0xffdf; /* Disable module(SCI0) stop mode*/
 SMR0 = 0x04; /* Set multi processor mode */
 BRR0 = 64; /* Set 9600bps */
 SCR0_BP.MPIE0=1; /* Enable multiprocessor com. */
 SCR0_BP.RIE0=1; /* Enable RXI */
 SCR0_BP.RE0=1; /* Enable receive */
 set_imask_ccr(0); /* Enable interrupt */

 while (1)
 {
 while (idrcvf == 0); /* Receive ID ? */
 rxid = rcv_data; /* Store ID code */
 idrcvf = 0; /* Clear idrcvf */

 while (dtrcvf == 0); /* Data receive? */
 rxdata = rcv_data; /* Store data */
 dtrcvf = 0; /* Clear dtrcvf */
 }
}
/**********************************/
/* INTERRUPT PROGRAM: MPSCIRX */
/**********************************/
void MPSCIRX(void)
{
 rcv_data =RDR0; /* Store receive data */
 SSR0_BP. RDRF0 = 0; /* Clear RDRF */

 if (SSR0_BP.MPB0 == 1) /* MPB0 = 1 */
 {
 if (rcv_data == myid) /* Receive ID = my ID */
 {
 SCR0_BP.MPIE0 =0; /* Clear MPIE0 */
 idrcvf = 1; /* Set idrcvf*/
 }
 else

118

 SCR0_BP.MPIE0=1; /* Set MPIE0 */

 }
 else
 {
 dtrcvf = 1; /* Set dtrcvf */
 SCR0_BP.MPIE0=1; /* Set MPEIE0 */
 }
}

119

3.12 Scan Mode A/D Conversion A/D

Specifications

1. Voltages are input to the H8S/2655 on four channels for A/D conversion, as shown in figure 1,
and the results are stored in RAM.

2. The A/D converter is activated by an external trigger.

Input voltage channel 0

Input voltage channel 4

Input voltage channel 5

Input voltage channel 6

A/D conversion start

H8S/2655

AN0

AN4

AN5

AN6

ADTRG

Figure 1 Block Diagram of Voltage Measurement by H8S/2655

120

Functions Used

1. Figure 2 shows the block diagram for 4-channel A/D conversion. This sample task uses the
following A/D converter functions:

a. A function that performs A/D conversion on four channels (AN0, AN4, AN5, and AN6)
automatically without software intervention (group scan mode)

b. A function that transfers the conversion result to a separate ADDR on completion of
conversion for a particular channel (buffered operation)

c. Initiation of A/D conversion via the external trigger pin (ADTRG)

d. A function that generates an interrupt at the end of A/D conversion

Vref
AVCC

AN0
AN4
AN5
AN6

A
na

lo
g

m
ul

tip
le

xe
r

 (Measured
voltage

retention)

Sample-
and-hold

circuit

Comparator

D/A
conversion

circuit

C
on

tr
ol

 lo
gi

c

A/D data register 0 (ADDRA)

A/D data register 1 (ADDRB)

A/D data register 2 (ADDRC)

A/D data register 3 (ADDRD)

A/D data register 4 (ADDRE)

A/D data register 5 (ADDRF)

A/D data register 6 (ADDRG)
ADCR ADCSR

Bus
I/F

Internal
data bus

M
od

ul
e-

in
te

rn
al

 d
at

a
bu

s
A/D interrupt (ADI)ADTRG

Figure 2 A/D Converter Block Diagram

2. Table 1 shows the function assignments for this sample task. H8S/2655 functions are assigned
as shown in this table to perform A/D conversion.

Table 1 H8S/2655 Function Assignments

H8S/2655 Function Function

ADCSR A/D conversion channel selection (group) and status indication

ADCR Start trigger signal selection and operating mode (scan) setting

ADDRA to ADDRG Store A/D conversion results

ADTRG A/D external trigger input pin

121

Operation

Figure 3 shows the principles of the operation. As shown in this figure, the A/D converter is
started by external trigger ADTRG, and performs A/D conversion repeatedly on four channels,
AN0, AN4, AN5, and AN6. The ADST bit remains at 1 until cleared to 0 by software, and while
this bit is 1, A/D conversion is performed repeatedly on the selected input channels. Buffered
operation (with one 4-stage buffer) is used for this purpose. The A/D conversion results held in
ADDRA to ADDRG are stored a 140-byte RAM area comprising SCN0 to SCN6.

122

.......

.......

.......

.......

.......

.......

.......

ADTRG
(external trigger)

A/D start (ADST)

ADDRA

ADDRB

ADDRC

ADDRD

ADDRE

ADDRF

ADDRG

A/D end (ADF)

Conversion
result 1

Conversion
result 5

Conversion
result 37

Conversion
result 38

Conversion
result 39

Conversion
result 40

Conversion
result 2

Conversion
result 3

Conversion
result 4

Conversion
result 6

Conversion
result 7

Conversion
result 8

Hardware processing

Software processing

None

Initialization
1.

2.
3.

A/D converter settings
• Set group scan mode as
 conversion mode
• Set AN0 to AN6 as
 analog input channels
• Set single 4-stage buffer
 operation
• Set 20-state conversion
 time
• Enable A/D interrupt
Clear A/D interrupt counter
Clear A/D conversion end
flag

Hardware processing

Software processing

1.

None

Start A/D conversion with
external trigger pin (ADTRG)

Hardware processing

Software processing

1.

2.

None

Execute A/D conversion
on AN0, AN4, AN5, AN6
Store conversion results
successively in ADDRA
to ADDRG

Hardware processing

Software processing

1.
2.

ADI handling

Set ADF
A/D interrupt generation
(ADI)

1.
2.

3.

Clear ADF
Increment A/D interrupt
counter
Store AN0, AN4, AN5,
AN6 A/D conversion results
in RAM

Hardware processing

Software processing

1.
2.

ADI handling

Set ADF
A/D interrupt generation
(ADI)

1.
2.

3.

4.

Clear ADF
Increment A/D interrupt
counter
Store AN0, AN4, AN5, AN6
A/D conversion results in RAM
Set A/D conversion end flag
Stop A/D conversion

Figure 3 Principles of Scan Mode A/D Conversion Operation

123

Software

1. Modules

Module Name Label Function

Main routine ADSCNMN A/D converter and externally triggered A/D converter
activation settings

A/D interrupt SCNEND Initiated by ADI; stores A/D conversion results in RAM and
stops A/D conversion

2. Arguments

Label/
Register
Name Function

Data
Length Module

Input/
Output

scn Holds 4-channel A/D conversion results
10-bit conversion result is stored as follows:

Unsigned
short

A/D
interrupt

Output

Bit 7 Bit 0

SCN_RE0 to
SCN_RE6
upper byte

AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2

SCN_RE0 to
SCN_RE6
lower byte

AD1 AD0

AD0 to AD9 are A/D conversion result bit
numbers

scn_endf Flag indicating that 4-channel A/D conversion has all
ended

Unsigned
short

A/D
interrupt

Output

1: End of A/D conversion
0: A/D conversion in progress

Main
routine

Input

3. Internal Registers Used

Register Name Function Module

ADCSR Selection of A/D conversion time, analog input channels,
and enabling/disabling of A/D interrupt at end of A/D
conversion

Main routine
A/D interrupt

ADCR Selection of A/D conversion mode (scan mode) and
buffered operation

Main routine

ADDR0 to ADDRG Store A/D conversion results A/D interrupt

MSTPCR Clears A/D converter module stop mode

124

4. RAM Used

Module Label Function

A/D interrupt adicnt Counts A/D interrupts

A/D interrupt scn_cnt Counter for storing data in RAM from start address

125

PAD

1. Main routine

Main routine

Clear A/D converter module stop
mode

Set 20-state A/D conversion time

Clear flag indicating end of
4-channel A/D conversion

Clear A/D interrupt counter

Set 4-channel scan mode with
buffered operation as A/D
conversion mode, and AN0, AN4,
AN5, AND6 as analog input
channels, and enable A/D interrupt

While (1)

ADSCNMN

Clear I flag to enable interrupts

UNTIL measurement
completed for all 4 channels?

Enable A/D interrupt

126

2. A/D interrupt

A/D interrupt

Yes

No

SCNEND

Clear A/D interrupt
request flag

A/D interrupt
count < 10?

Increment A/D interrupt
counter

Set ADDRA to ADDRG
in RAM

Set flag indicating end
of 4-channel A/D
conversion

Stop A/D conversion

127

Program List

#include <machine.h>
#include "H8S.H"
/**********************************/
/* PROTOCOL */
/**********************************/
void ADSCNMN(void);
#pragma interrupt (SCNEND)

/**********************************/
/* SYMBOL DEFINITIONS */
/**********************************/

define scn ((unsigned short *)0xffec00) /* Result of A/D conversion */
define scn_cnt (*(unsigned char *)0xffec8c) /* Work */
define scn_endf (*(unsigned char *)0xffec8d) /* A/D conversion end flag */
define adicnt (*(unsigned char *)0xffec8e) /* A/D conversion counter */

/**********************************/
/* MAIN PROGRAM: ADSCNMN */
/**********************************/
void ADSCNMN(void)
{
 MSTPCR = 0x3dff; /* Disable module(A/D) stop mode */
 scn_endf = 0;
 scn_cnt = 0;
 adicnt = 0;
 ADCR = 0x3b; /* Initialize ADCR */
 ADCSR = 0x4E; /* Initialize ADCSR */
 set_imask_ccr(0); /* Enable interrupt */

 while (scn_endf == 0) /* A/D conversion finish ? */

 ADCSR_BP.ADIE=1; /* Enable A/D interrupt */

 while (1); /* Loop */
}

/**********************************/
/* INTERRUPT PROGRAM: SCNEND */
/**********************************/
void SCNEND(void)
{
 ADCSR_BP.ADF =0; /* Clear ADF */

 if (adicnt<10)
 {
 scn[scn_cnt++] = ADDRA; /* Set RAM address to store the data */
 scn[scn_cnt++] = ADDRB;
 scn[scn_cnt++] = ADDRC;
 scn[scn_cnt++] = ADDRD;
 scn[scn_cnt++] = ADDRE;
 scn[scn_cnt++] = ADDRF;
 scn[scn_cnt++] = ADDRG;

128

 adicnt = adicnt+1;

 }
 else
 {
 scn_endf = 1; /* Set scn_endf */
 ADCSR_BP.ADST=0;/* Stop A/D conversion */
 }
}

129

3.13 Block Transfer Data Transfer Controller (DTC)
(Block Transfer)

Specifications

Pulse output is performed as shown in figure 1 by transferring 30-byte data (comprising five 6-
byte blocks) set in ROM to I/O ports each time a falling edge is detected in an external signal.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

External signal

Port B7

Port B0

.

.

.

Port C7

Port C0

.

.

.

Port D7

Port D0

.

.

.

Port E7

Port E0

.

.

.

Port F7

Port F0

.

.

.

Port G7

Port G0

.

.

.

Figure 1 Example of Waveform Output

130

Functions Used

1. In this sample task, the DTC is activated on each falling edge of IRQ0, and 6-byte data is
output to ports B to G.

a. Figure 2 shows the DTC block diagram for this sample task. The following functions are
used to perform block transfer:

• A function that activates the DTC by means of an external request (DTC activation by
IRQ)

• A function that transfers data in block units when the DTC is activated (block transfer
mode)

131

IRQ0 Interrupt
controller

DTC
activation
request Control

logic

DTC On-chip RAM

R
eg

is
te

r
in

fo
rm

at
io

n

M
R

A
M

R
B

C
R

A
C

R
B D

A
R

S
A

R

ROM
b7 b0

Output pattern table:
five 6-byte blocks (30 bytes)

1 block
(6 bytes)

5 blocks

Port B output data

Port C output data

Port D output data

Port E output data

Port F output data

Port G output data

Port B output data

Port C output data

Port D output data

Port E output data

Port F output data

Port G output data

Port B output data

Port C output data

Port D output data

Port E output data

Port F output data

Port G output data

Port B output data

Port C output data

Port D output data

Port E output data

Port F output data

Port G output data

Port B output data

Port C output data

Port D output data

Port E output data

Port F output data

Port G output data

As port G is a 5-bit port, the upper
3 bits of port G output data are
invalid.

(Block area)

6 bytes

Port B data
register (PBDR)

Port C data
register (PCDR)

Port D data
register (PDDR)

Port E data
register (PEDR)

Port F data
register (PFDR)

Port G data
register (PGDR)

PB7

PG0

Figure 2 Block Diagram of Block Transfer by DTC

132

b. Figure 3 shows the DTC vector table and memory allocation. DTC register information is
located from address H'FFF800 in the following order: MRA, SAR, MRB, DAR, CRA,
CRB.

DTC vector table Address

H'FFF800

Address
H'000420 H'F8

H'00

RAM
MRA register information
(MRA0)

SAR register information
(SAR0: output pattern
table start address)

MRB register information
(MRB0)

DAR register information
(DAR0: port B data
register address)

DTC internal
registers

DTC mode register A
(MRA)

DTC source address
register (SAR)

DTC mode register B
(MRB)

DTC destination
address register (DAR)

DTC transfer count
register A (CRA)

DTC transfer count
register B (CRB)

Interrupt controller
internal register

DTC enable register
(DTCERA)

Controls DTC activation
signal (IRQ0)

CRB register information
(CRB0: number of transfer
blocks—5)

CRA register information
(CRA0: block size—3 words)

H'A9

H'00

H'21

H'10

H'00

H'FF

H'FF

H'6A

H'03

H'03

H'00

H'05

Figure 3 Example of DTC Vector Table and Memory Allocation

133

2. Table 1 shows the function assignments for this sample task. H8S/2655 functions are assigned
as shown in this table to perform block transfer.

Table 1 H8S/2655 Function Assignments

DTC Functions Function

MRA,B DTC mode control

SAR Transfer source address setting

DAR Transfer destination address setting

CRA Data transfers number setting

CRB Transfer number setting in block transfer mode

DTCER Controls enabling/disabling of DTC activation by each interrupt source

134

Operation

1. Figure 4 shows the principles of block transfer operation using the DTC. Block transfer is
performed by means of hardware and software processing, using the timing shown in this
figure.

Hardware processing

Software processing

None

Initialization
1.

2.

3.

Register information
initialization
• Block transfer mode
• Transfer source: pattern
 table
• Transfer destination:
 I/O port
Set register information
start address to DTC
vector address
Set enable bit for interrupt
source used as activation
source to 1 (DTCERA)

Hardware processing

Software processing

IRQ0
 IRQ0 interrupt generation
DTC activation

None

Hardware processing

Software processing

IRQ0
 IRQ0 interrupt generation
DTC activation

Disable DTC transfer in DTC
end interrupt handling routine

Immediately after reset

External signal

Port B7

Port G0

.

.

.

.

.

.

.

1.

2.

3.

Transfer 1 block of data
(3 words) to block area
(PBDR to PGDR)
Transfer CRAH contents
to CRAL, and initialize
CRAL
Decrement CRB contents

1.

2.

3.
4.

Transfer 1 block of data
(3 words) to block area
(PBDR to PGDR)
Transfer CRAH contents
to CRAL, and initialize
CRAL
Decrement CRB contents
As CRB is H'0000, DTC
transfer end interrupt
generation

Figure 4 Principles of Block Transfer Operation

135

Software

1. Modules

Module Name Label Function

Main routine blkmn DTC initialization

Transfer end txend Initiated by DTC transfer end interrupt; disables DTC
transfer

2. Arguments

This sample task does not use any arguments between modules.

3. Internal Registers Used

Register Name Function Module

DTCER Enables DTC activation by IRQ0 interrupt Main routine

MSTPCR Controls DTC module stop mode Main routine

ISCRL Sets interrupt request on falling edge of IRQ0 Main routine

IER Enables IRQ0 interrupt Main routine

ISR Indicates IRQ0 input status Main routine

4. RAM Used

Label Function Data Length Module

MRA0 Sets DTC0 to block transfer mode Unsigned char Main routine

MRB0 Disables interrupts to CPU Unsigned char Main routine

SAR0 Specifies transfer source address
(PATTBL1)

Unsigned long Main routine

DAR0 Specifies transfer destination address
(PBDR)

Unsigned long Main routine

CRA0 Specifies block size Unsigned short Main routine

CRB0 Specifies number of transfer blocks Unsigned short Main routine

txendf Transfer end flag Unsigned char Transfer end

5. Data Table

Table Name Function Data Length Data Capacity

PATTBL1 Output pattern setting Unsigned short 15 words

136

PAD

1. Main routine

Block transfer

blkmn

1

Clear DTC module stop
mode

Set transfer count
(H'0005) in CRB0

Set ports B to G for
output

Enable interrupt source
(IRQ0) to be used as
DTC activation source

Make the following MRA0
settings:
• SAR incremented after
 transfer
• DAR fixed after transfer
• Block transfer mode
• Destination side is
 block area
• Word-size transfer

Clear txendf

Make the following MRB0
setting:
• Disable interrupts to
 CPU

Generate interrupt on
rising edge of IRQ0 input

Set PATTBL1 start
address in SAR0

Enable IRQ0 interrupt

Set PBDR address in
DAR0

Clear I flag to enable
interrupts

Set transfer block size
(H'0303) in CRA0

While (1)

1

137

2. Transfer end

Transfer end

Disable DTC activation by
interrupt

Set transfer end flag (txendf)
txend

138

Program List

#include <machine.h>
#include "..\h8sapn\h8s.h"

/**/
/* PROTCOL */
/**/
void blkmn(void);
#pragma interrupt (txend)

/**/
/* RAM ALLOCATION */
/**/
#define txendf (*(volatile unsigned char *)0xffec00)
#define SAR0 (*(volatile unsigned long *)0xfff800)
#define MRA0 (*(volatile unsigned char *)0xfff800)
#define DAR0 (*(volatile unsigned long *)0xfff804)
#define MRB0 (*(volatile unsigned char *)0xfff804)
#define CRA0 (*(volatile unsigned short *)0xfff808)
#define CRB0 (*(volatile unsigned short *)0xfff80a)

/**/
/* DATA TABLE */
/**/
const unsigned short PATTBL1[5][3] =
 {{0x1111,0x2222,0x3333,},{0x4444,0x5555,0x6666},
 {0x7777,0x8888,0x9999},{0x1010,0x2020,0x3030},
 {0x4040,0x5050,0x6060}};
 /* Output data table */

/**/
/* MAIN PROGRAM : blkmn */
/**/
void blkmn(void)
{
 MSTPCR = 0x3fff; /* Disable module(DTC) stop mode*/
 PBDDR = 0xff; /* PB-PG : output */
 PCDDR = 0xff;
 PDDDR = 0xff;
 PEDDR = 0xff;
 PFDDR = 0xff;
 PGDDR = 0xff;
 SAR0 = (long)(PATTBL1); /* Set base address */
 DAR0 = (long)(&PBDR); /* Set excute address */
 MRA0 = 0xa9; /* Block translation mode */
 MRB0 = 0x00; /* Initialize MRB0 */
 CRA0 = 0x0303; /* Set excute count */
 CRB0 = 0x0005; /* Set block excute count */
 DTCERA_BP.IRQ0 = 1; /* Enable DTC */

 txendf = 0; /* Clear DTC end flag */

 ISCRL = 0x01; /* Initialize ISCRL */
 ISR_BP.IRQ0F = 0; /* Clear IRQ flag */

139

 IER = 0x01; /* Enable IRQ0 interrupt */
 set_imask_ccr(0); /* Enable interrupt */
 while(txendf == 0);
 while(1);
}

/**/
/* NAME : txend */
/**/
void txend(void)
{
 DTCERA_BP.IRQ0 = 0; /* Disable DTC */
 txendf =1; /* Set DTC end flag */
}

140

3.14 Software-Activated Data
Transfer

Data Transfer Controller (DTC)
(Block Transfer)

Specifications

1. On detection of a port falling edge, the DTC is activated and transfers a 128-byte block, as
shown in figure 1.

2. The transfer area is H'A00000 to H'A000FF.

3. A 20 Hz H8S/2655 internal operating frequency is used.

DTC RAM1

RAM2

H'A00000

H'A0007F

to

H'A00080

H'A000FF

to

H8S/2655

Trigger signal

Figure 1 Block Diagram of Software-Activated Data Transfer

141

Functions Used

1. In this sample task, the DTC is activated by software, and transfers 128-byte data to RAM.

a. Figure 2 shows the DTC block diagram for this sample task. The following functions are
used to perform data transfer:

• A function that activates the DTC by means of software (DTC activation by software)

• The ability to send an interrupt request to the CPU at the end of data transfer

RAM RAM

DTC

M
R

A
M

R
B

C
R

A
C

R
B D

A
R

S
A

R

DTC activation
request

Control
logic

On-chip RAM

R
eg

is
te

r
in

fo
rm

at
io

n
Data transfer
source buffer

Data transfer
destination buffer

Figure 2 Block Diagram of Software-Activated Data Transfer

142

2. Table 1 shows the function assignments for this sample task. H8S/2655 functions are assigned
as shown in this table to perform block transfer.

Table 1 H8S/2655 Function Assignments

H8S/2655 Function Function

MRA,B DTC mode control

SAR Transfer source address setting

DAR Transfer destination address setting

CRA Data transfer number setting

DTCER Controls enabling/disabling of DTC activation by each interrupt source

P3DR Trigger signal input

143

Operation

Figure 3 shows the principles of data transfer operation using the DTC. Block transfer is
performed by means of hardware and software processing, using the timing shown in this figure.

Hardware processing

Software processing

None

Initialization
Register information 1
• Block transfer mode
• Interrupt requests to CPU
• Transfer source address:
 RAM1
• Transfer destination
 address: RAM2

Hardware processing

Software processing

DTC software activation

1.

Hardware processing

Software processing

SWDTEND interrupt
generation

SWDTEND handling

Immediately after reset

Trigger signal
(P31)

RAM1 → RAM2
(DTC)

Interrupt request
to CPU (data transfer
end interrupt)

1. Transfer data from
transfer source address
to transfer destination
address

Enable DTC software
activation

1. Clear SWDTE bit to 0

Figure 3 Principles of Software-Activated Data Transfer Operation

144

Software

1. Modules

Module Name Label Function

Main routine dtcsftmn DTC initialization

Transfer end trsend Initiated by DTC transfer end interrupt; sets transfer end
flag

2. Arguments

Label/Register
Name Function Data Length Module

Input/
Output

trs_end Flag indicating end of transfer Unsigned char Data transfer end Output

1: End of transfer
0: Transfer in progress

Main routine Input

err Flag indicating DTC activation
error

1: Activation failure
0: Activated

Unsigned char Main routine Output

3. Internal Registers Used

Register Name Function Module

DTVECR Enables DTC activation by software Main routine

MSTPCR Controls DTC module stop mode Main routine

4. RAM Used

Label Function Data Length Module

MRA Sets DTC to block transfer mode Unsigned char Main routine

MRB Enables interrupt to CPU after data transfer Unsigned char Main routine

SAR Specifies transfer source address (RAM1) Unsigned long Main routine

DAR Specifies transfer destination address (RAM2) Unsigned long Main routine

CRA Specifies block size (H'8080) Unsigned short Main routine

CRB Specifies number of transfer blocks (H'0001) Unsigned short Main routine

145

PAD

1. Main routine

Software-activated data
transfer

Yes

No

dtcsftmn

1

Clear DTC module stop
mode

PGDR3 == 0?

Set RAM1 start address
in SAR

Make the following MRA
settings:
• SAR incremented after
 transfer
• DAR incremented after
 transfer
• Block transfer mode
• Source side is block area
• Byte-size transfer

Set RAM2 start address
in DAR

Set transfer count (H'01)
in CRB

While
(trs_end == 0)

While (1)

Yes

No

SWDTE == 0?

Set SWDTE to 1 and set
vector address (H'40)

Set error flag

Yes Set error flag

Break

Break

1

DTVECR ==
H'40?

Make the following MRB0
setting:
• Enable interrupts to CPU
 after end of DTC data
 transfer

Set transfer block size
(H'8080) in CRA

146

2. Data transfer end

Data transfer end

Clear SWDTE bit

Set trs_end to 1
trsend

147

Program List

#include <machine.h>
#include <h8s.h>

/**/
/* PROTCOL */
/**/
void dtcsftmn(void);

/**/
/* RAM ALLOCATION */
/**/
#define trs_end (*(volatile unsigned char *)0xffec00)
#define err (*(volatile unsigned char *)0xffec01)

volatile struct databuf
{
 unsigned char ram1[128];
 unsigned char ram2[128];
};
#define dat (*(struct databuf *)0xA00000)

#define MRA (*(volatile unsigned char *)0xfff800)
#define SAR (*(volatile unsigned long *)0xfff800)
#define MRB (*(volatile unsigned char *)0xfff804)
#define DAR (*(volatile unsigned long *)0xfff804)
#define CRA (*(volatile unsigned short *)0xfff808)
#define CRB (*(volatile unsigned short *)0xfff80a)

148

/**/
/* MAIN PROGRAM : dtcsftmn */
/**/
void dtcsftmn(void)
{
 MSTPCR = 0x3fff;
 SAR = (long)(&dat.ram1);
 MRA = 0xa8;
 DAR = (long)(&dat.ram2);
 MRB = 0x40;
 CRA = 0x8080;
 CRB = 0x0001;

 while (trs_end == 0)
 {
 if (P3DR_BP.P31DR == 0)
 {
 if (DTVECR_BP.SWDTE == 0){
 DTVECR = 0xc0;

 if (DTVECR_BP.VECR != 0x40)
 err = 1;
 break;
 }
 else{
 err = 1;
 break;
 }
 }
 }

 while(1);
}

/**/
/* NAME : trsend */
/**/
#pragma interrupt(trsend)
void trsend(void)
{
 DTVECR_BP.SWDTE = 0;
 trs_end = 1;
}

149

3.15 Single Address Mode Data Transfer DMA Controller
(Single Address Mode)

Specifications

1. Using the DMAC single address mode, transfer is performed between external space specified
by either the transfer source or transfer destination address, and an external device selected by
the DACK strobe, without regard to the address, as shown in figure 1.

2. The DMAC is activated by detection of a falling edge in an external signal.

DREQ1 RD

A23 to A0

D15 to D0
(high-impedance)

DACK1

H8S/2655 SRAM

H8/3314
D

at
a

bu
s

Address bus

Figure 1 Single Address Mode Data Bus

150

Functions Used

1. In this sample task, the DMAC single address mode (idle mode specification) is used to
transfer data from external memory (SRAM) to an external device (H8/3314).

a. Figure 2 shows the DMAC block diagram for this sample task. The following DMAC
functions are used to perform block transfer:

• A function that activates the DMAC in response to an external request (DMAC
activation by DREQ)

• Execution of the specified number of one-byte or one-word transfers between external
memory and an external device in response to a single transfer request (single address
mode)

SRAM

H8/3314DACK1

DREQ1

DMAC

DMACR1B
DMABCR

MAR1B
ETCR1B

D
at

a
bu

s

External device
(8-bit-bus,

5-state-access space)

(MAR specified as source address,
and DACK as write strobe)

DMA control

(MAR specified as source
address, and DACK as write
strobe)

Bus control
signals

External memory
(16-bit-bus,

5-state-access space)

Figure 2 DMA Controller Block Diagram

151

2. Table 1 shows the function assignments for this sample task. H8S/2655 functions are assigned
as shown in this table to perform block transfer.

Table 1 H8S/2655 Function Assignments

H8S/2655 Function Function

DREQ1 Inputs external pulse used as DMAC activation trigger

DACK1 Data transfer acknowledge

DMABCR Controls operation of each channel

DMACR1B Sets DMAC to idle mode

MAR1B Transfer source address setting

ETCR1B Transfer number setting

152

Operation

Figure 3 shows the principles of the operation. One-byte transfer is performed from external 16-
bit, 5-state-access space to external device 8-bit, 5-state-access space by means of H8S/2655
hardware and software processing, as shown in this figure.

DREQ1

ø

Address bus

RD

DACK1

TEND1

Software processing

None

DMAC1B activation

Hardware processing Hardware processing

Software processing

1.
2.

Set transfer end flag
Clear DTE bit to 0 to
end transfer

DEND1B generation

Figure 3 Principles of Single Address Mode (Byte Read) Transfer Operation

153

Software

1. Modules

Module Name Label Function

Main routine singlemn DMAC initialization

Data transfer end transend Sets transfer end flag

2. Arguments

Label/Register
Name Function Data Length Module

Input/
Output

status Flag indicating end of data transfer Unsigned char Main routine Input

1: End of transfer
0: Operation in progress

Transfer end Output

3. Internal Registers Used

Register Name Function Module

DMABCRH Sets DMAC1B to single address mode in short address
mode

Main routine

DMABCRL Enables data transfer Main routine

DMACR1B Makes the following DMACR settings:

• Byte-size transfer

• Idle mode

• MAR incremented after data transfer

• Data transfer direction (MAR as source address,
DACK pin as write strobe)

• DREQ pin falling edge input as activation source

Main routine

MAR1B Transfer source address setting Main routine

ETCR Transfer number setting Main routine

MSTPCR Clears DMAC module stop mode Main routine

4. RAM Used

Label/Register Name Function Data Length Module

transdata Holds data to be transferred Unsigned char Main routine

154

PAD

1. Main routine

Single address mode
data transfer

singlemn

1

Clear DMAC module
stop mode

Make the following
DMACR1B settings:
• Byte-size transfer
• Idle mode
• Data transfer direction
 (MAR as source
 address, DACK pin as
 write strobe)
• DREQ pin falling edge
 input as activation
 source

Set P6DR to #H'0F
Set P6DDR to #H'0B

Clear status

Enable TEND1 pin output
Read DMABCR

Set transfer data in
transdata Make the following

DMABCR settings:
• Channel 0B transfer
 enabled
• Channel 0B transfer
 end interrupt enabled

Make the following
DMABCRH settings:
• Single address mode
• Internal interrupt
 clearing disabled

Clear I flag to enable
interrupts

Set transfer source
address (transdata) in
MAR1B While (1)

1

Set number of transfers
(1) in ETCR

155

2. Data transfer end

Data transfer end

Set data transfer end flag (status)

Disable transfer end interrupt
transend

156

Program List

#include <machine.h>
#include <h8s.h>

/**/
/* PROTCOL */
/**/
void singlemn(void);

/**/
/* RAM ALLOCATION */
/**/
#define status (*(volatile unsigned char *)0xffec00)
#define transdata (*(volatile unsigned char *)0x800000)

/**/
/* MAIN PROGRAM : singlemn */
/**/
void singlemn(void)
{
 MSTPCR = 0x7fff;

 status = 0x00; /* Clear user flag */

 P6DR = 0x0F;
 P6DDR = 0x0B; /* Set corresponding port to output */

 DMATCR = 0x20; /* Low output from TEND1 after end of
 transfer */
 transdata = 0xaa; /* Set transfer data */

 DMABCRH = 0x20; /* Set ch1B to short address mode
 Set ch1B to single address mode
 Set ch1B to internal interrupt clear
disabled */
 MAR1B = (long)(&transdata); /* Enter transfer source address */
 ETCR1B = 0x0001; /* Enter number of transfers */
 DMACR1B = 0x22; /* Byte-size transfer, idle mode,
 MAR incremented, DREQ1 falling edge */
 DMABCRL |= 0x88; /* Enable ch1B data transfer, enable
 ch1B transfer end interrupt */
 set_imask_ccr(0);

 while(1);
}

/**/
/* NAME : transend(set end flag) */
/**/
#pragma interrupt(transend)
void transend(void)
{
 status = 0x01; /* Clear user flag */
 DMABCRL &= 0x77; /* Clear flag */

}

157

3.16 Pulse Counting 8-Bit Timer

Specifications

1. An arbitrary number of 50% duty pulses are output, as shown in figure 1.

2. At 20 MHz operation, a pulse cycle of 1.2 µs to 102 µs can be set in 0.4 µs units, and the
number of pulses output can be set from 1 to 256.

Pulse output

Number of pulses = 7

Counting period

1 2 3 4 5 6 7

Figure 1 Pulse Output Timing

158

Functions Used

1. Figure 2 shows the 8-bit timer block diagram for this sample task. This task uses the following
functions:

a. A function that cascades two 8-bit timer channels, and counts channel 0 compare-matches
with the channel 1 timer (compare-match count mode)

b. A function that generates an interrupt at the specified count

This sample task uses these functions as shown in figure 2 to count pulse rising edges.

8-bit timer

Channel 0 (counting period generation)

(Cycle setting)

Time constant
register A (TCORA0)

Comparator

8-bit counter
(TCNT0)

Compare-
match

Counter clear

(TCORA/B0 compare-
match set as counter
clear source)

Timer control register
(TCR0)

Pulse I/O
control

Timer control/status
register 0 (TCSR0)

(Toggle output set for
timer output level on
compare-match)

TMO0 pin

Channel 1 (pulse counting)

(Set to input capture on
TCORA1 compare-match)

Timer control register
(TCR0)

Increment Control
logic Capture

8-bit counter
(TCNT1)

Time constant register A
(TCORA1)

Figure 2 Output Pulse Counting Block Diagram

159

2. Table 1 shows the function assignments for this sample task. H8S/2655 functions are assigned
as shown in this table to perform pulse counting.

Table 1 H8S/2655 Function Assignments

H8S/2655 Function Function

TCNT0 For compare-match A/B generation

TCORA0 For compare-match A generation

TCORB0 For compare-match B generation

TCSR0 1 output on each compare-match A; 0 output on each compare-match B

TMO0 Timer output pin (compare-match output)

TCR0 Counter clearing by compare-match A: input clock selection (ø/8)

TCNT1 Counts channel 0 compare-match A occurrences

TCORA1 For compare-match A generation

TCR1 Counter clearing by compare-match A: sets compare-match (A) interrupt
enabled

160

Operation

Figure 3 shows the principles of the operation. Pulses are counted by means of H8S/2655
hardware and software processing, as shown in this figure.

Software processing

Initialization

None

1.

2.
3.
4.

Enable pulse output from
TMO0
Set cycle data in TCORA0
Set ø/8 as TCNT0 input clock
Set count in TCORA1

Hardware processing Hardware processing

Software processing

1. Disable pulse output

1. TCORA1 interrupt
generation

Immediately
after reset

Pulse output
(TMO0)

TCNT1
counter value H'00 H'01 H'02 H'03 H'04 H'05 H'06 H'07 N N+1

Figure 3 Principles of Pulse Counting Operation

161

Software

1. Modules

Module Name Label Function

Main routine pulsemn 8-bit timer initialization

Pulse output end pulend Initiated by TCORA1 interrupt; sets number of pulses set
in TCNT1 as output argument

2. Arguments

Label/Register
Name Function Data Length Module

Input/
Output

pulse_cycle Pulse cycle setting 1 byte Main routine Input

pulse_count Pulse count setting 1 byte Main routine Input

3. Internal Registers Used

Register Name Function Module

TCORA0 For compare-match A generation Main routine

TCORB0 For compare-match B generation Main routine

TCSR0 1 output on each compare-match A; 0 output on each
compare-match B

Main routine

TCR0 Counter clearing by compare-match A Main routine

Input clock selection (ø/8) Main routine

TCR1 Counts channel 0 compare-match A occurrences Main routine

Counter clearing by compare-match A Main routine

Sets compare-match (A) interrupt enabled Main routine

TCORA1 For compare-match A generation Main routine,
count end

MSTPCR Clears 8-bit timer module stop mode Main routine

4. RAM Used

This task does not use any RAM apart from the arguments.

162

PAD

1. Main routine

Pulse counting

pulsemn

1

Clear 8-bit timer module
stop mode

Set CH0 and CH1 timer
counter clear sources as
follows:
• CH0: Cleared by CMFA
• CH1: Cleared by CMFASet CH0 and CH1 timer

counter TCORA0 as
follows:
• CH0: pulse_cycle
• CH1: pulse_count

Reset channel 0 and 1
counters

Clear I flag to enable
interrupts

While (1)

1

Set CH0 timer counter
output select as follows:
• CH0:
 1 output on each CMFA
 0 output on each CMFB

Set CH0 timer counter
TCORB0 as follows:
• CH0: pulse_cycle/2

Set CH1 timer counter
interrupt requests as
follows:
• CH1: CMFA interrupts
 enabled

Set CH0 and CH1 timer
counter clock select as
follows:
• CH0: ø/8 internal clock
• CH1: Counts on
 TCNT0 CMFA

163

2. Pulse output end

Pulse output end

Clear channel 1 status flag (CMFA)
and enable next interrupt

Disable channel 0 CMFA/B
pulse output (initial value)pulend

164

Program List

#include <machine.h>
#include <h8s.h>

/**/
/* PROTOCOL */
/**/
void pulsemn(void);

/**/
/* RAM ALLOCATION */
/**/
define pulse_cycle (*(unsigned char *) 0xffec00)
define pulse_count (*(unsigned char *) 0xffec01)

/**/
/* MAIN PROGRAM : pulsemn */
/**/
void pulsemn(void)
{
 MSTPCR = 0xefff; /* disable module stop mode*/

 TCORA0 = pulse_cycle; /* set pulse cycle time */
 TCORB0 = pulse_cycle/2; /* set "low"pulse time */
 TCORA1 = pulse_count; /* set pulse counter */

 TCSR0 = 0x06; /* initialize TCSR0 */
 TCSR1 = 0x10; /* initialize TCSR1 */

 TCR0 = 0x09; /* Initialize TCR0 */
 TCR1 = 0x4c; /* initialize TCR1 */

 TCNT0 = 0; /* reset counter */
 TCNT1 = 0;

 set_imask_ccr(0);

 while(1); /* loop */
}

/**/
/* NAME : pulend(output disble) */
/**/
#pragma interrupt (pulend)
void pulend(void)
{
 TCSR0 = 0; /* output disable */
}

 165

Section 4 Application Section

4.1 High-Speed Data Output TPU, PPG, DMAC

Specifications

1. 12-bit data is output each time the rising edge of an external signal is detected, as shown in
figure 1.

.

.

.

.

.

External signal
input (TCLKD)

PPG output 11

PPG output 10
.
.
.
.
.

PPG output 0

Figure 1 Example of 12-Bit Data Output

 166

Functions Used

1. Figure 2 shows the on-chip function block diagram for this sample task. The following
H8S/2655 functions are used to perform high-speed data output:

Output pattern data table

The data patterns to be output from the PPG are set in RAM.

TPU

DMAC0A and the PPG are activated on each occurrence o compare-match A.

(H'0000 is set in TGRA, and incrementing on external clock rising edges is specified)

DMAC0A

Activated by TPU compare-match A; transfers output data from the output pattern data table to
NDR.

PPG

Activated by TPU compare-match A; outputs 12-bit data.

PPGDMAC0A

TCLKD

TPU0

Clock
selection

circuit

16-bit counter

Comparator A

Output compare
register A
(TGR0A)

Compare-
match A

(Interrupt request
enabling/disabling)

Timer status control
register (TSR0)

Interrupt control
circuit

(Output level
setting)

Timer I/O control
register (TIOR0)

TGI0A

Output pattern table

RAM

Stores output
patterns

Output pattern data
transferred to NDR

Control logic

Next data register
(NDR)

Port data register
(PODR)

Performs waveform output
each time a TPU compare-match
is generated.

PO11

PO0
to

Figure 2 High-Speed Data Output Block Diagram

 167

2. Table 1 shows the function assignments for this sample task. H8S/2655 functions are assigned
as shown in this table to perform high-speed data output.

Table 1 H8S/2655 Function Assignments

H8S/2655 Function Function

TPU0 TCLKD External signal input pin

TCNT0 16-bit counter

TGR0A Output compare register

TCR0 Count clock selection, counter clear source selection

TIOR0 Sets TGR0A as output compare register

TSR0 Indicates compare-match or overflow generation

DMAC0A DMABCR H/L Controls operation of each channel

DMACR0A Controls DMAC0A operation

MAR0A Output pattern data table start address setting

IORA0A NDR address setting

ETCR0A Transfer number setting

PPG PODRH Stores PPG output group 2 and 3 output data

PODRL Stores PPG output group 0 and 1 output data

PCR PPG output trigger signal selection

NDERH Enables PPG outputs PO15 to PO8

NDERL Enables PPG outputs PO7 to PO0

NDRH Stores next PPG output data

NDRL Stores next PPG output data

PO11 to PO8 Group 2 pulse output pins

PO7 to PO4 Group 1 pulse output pins

PO3 to PO0 Group 0 pulse output pins

 168

Operation

Figure 3 shows the principles of the operation. High-speed data output is performed by means of
H8S/2655 hardware and software processing as shown in the figure.

.

.

.

.

.

Hardware processing

Software processing

None

TPU
TPU0 counter clock selection
and TGR setting

PPG
PPG activation source and
output bit setting

DMAC
Set DMAC0A to sequential
mode, and set activation
source

Hardware processing

Software processing

TPU

None

Hardware processing

Software processing

DMAC
DMA transfer end, interrupt
generation

1.
2.

Immediately
after reset

External signal
input (TCLKD)

PPG output 11

PPG output 0

.

.

.

.

.

1.
2.

3.

DMAC
Transfer output pattern data t
able value to NDRH

PPG
Output NDRL and NDRH data

Set output end flag to 1
Halt TPU

Compare-match A generation
Counter clearing on TGR0A
compare-match
Activate DMAC and PPG

Figure 3 Principles of High-Speed Data Output Operation

 169

Software

1. Modules

Module Name Label Function

Main routine STPCMN TPU, PPG, DMAC0A initialization

DMA interrupt DMAEND Sets output end flag

2. Arguments

Label/Register
Name Function Data Length Module

Input/
Output

dma_fla Flag indicating end of all output Unsigned char Main routine Input

0: Output of all bits not completed
1: Output of all bits completed

DMA interrupt Output

 170

3. Internal Registers Used

On-Chip Function Register Name Function

TPU0 TGR0A Holds output compare value (H'0000)

TCR0 Makes the following TPU settings:

• Counter clearing by TGR0A compare-match

• Counting on external signal rising edges

• Counting using TCLKD pin

TIOR0 Sets TGR0A as output compare register, disables pin
output

TIER0 Enables TGI0A interrupt

TSTR Starts TCNT0 count operation

PPG PODRH Stores PO11 to PO8 output data

PODRL Stores PO7 to PO0 output data

TPMR Sets normal operation for PO11 to PO0

TPCR Sets TPU0 compare-match as PO11 to PO0 output
trigger

NDERH Enables PPG outputs PO11 to PO8

NDERL Enables PPG outputs PO7 to PO0

NDRL Stores next output pattern data

NDRH Stores next output pattern data

DMAC0A DMACR0A Sets word-size as data size
Sets incrementing of MAR
Sets sequential mode for data transfer
Sets TPU0 compare-match A as activation source

DMABCRH/L Data transfer and transfer end interrupt
enabling/disabling setting

MAR0A Output pattern data table transfer source address
setting

IOAR0A NDRH address (transfer destination) setting

ETCR0A Transfer number setting

MSTPCR Clears DMAC, TPU, PPG module stop mode

4. RAM Used

This sample task does not use RAM.

 171

5. Data Table

Table Name Function Data Length Data Capacity

opat_tab Stores data to be output by PPG Unsigned short 30 bytes

 172

PAD

1. Main routine

Main routine

STPCMN

1

Clear DMAC, TPU, PPG
module stop mode

Word-size as data size,
incrementing of MAR,
sequential mode for data
transfer, TPU0 compare-
match A as activation source

Set P20 to P27 and P10 to
P13 as output pins

Read DMABCRLSet output compare value
H'0000 in TGR0A

Enable transfer end interrupt,
activate DMAC0A

Counter clearing by TGR0A
compare-match, incrementing
on external signal rising edge

Clear dma_fla
Set initial output data in
PODR

Enable TGI0A interrupt in
TIER0Set NDERH and NDERL bits

for output to 1
Clear I flag to enable
interruptsSet TPU0 as PPG output

trigger

Start channel 0 counter

Set next output data in NDR

UNTIL dma_fla = 1?
Set output pattern data table
start address as DMAC0A
transfer source address

Set NDRH address as
DMAC0A transfer destination
address

Set 15 as number of transfers

While (1)

1

 173

2. DMA interrupt

DMA interrupt

Halt TPU0 count operation

Disable interrupt by TPU0
compare-match A

Disable DMAC0A interrupt

Set dma_fla to 1

DMAEND

 174

Program List

#include <machine.h>
#include "H8S.H"
/**********************************/
/* PROTOCOL */
/**********************************/
void STPCMN(void);
#pragma interrupt (DMAEND)
/**********************************/
/* SYMBOL DEFINITIONS */
/**********************************/

define opt_tab ((unsigned short *)0xffec00) /* Output data table */
define dma_fla (*(unsigned char *)0xffec1e) /* DMAC end flag */

/**********************************/
/* MAIN PROGRAM: STPCM */
/**********************************/
void STPCMN(void)
{
 MSTPCR = 0x17ff; /* Disable module(DMA,TPU,PPG) stop mode*/

 P1DDR = 0x4f; /* P1:output port */
 P2DDR = 0xff; /* P2:output port */

 TIOR0H = 0x00; /* Initialize TIOR0H */
 TGR0A = 0x0000; /* Set non overlap time */
 TPU_TCR0 = 0x27; /* Initialize TCR0 */

 PODRH = 0x00; /* Output first data */
 PODRL = 0x00; /* Output first data */
 NDERH = 0x0f; /* Enable next data output */
 NDERL = 0xff; /* Enable next data output */
 PCR = 0x00; /* Output toriga TPU0'S compare match */
 NDRH = 0xff; /* Set second output data */
 NDRL = 0xff; /* Set second output data */

 MAR0A_W = opt_tab; /* Set base address */
 IOAR0A = 0xff4c; /* Set excute address */
 ETCR0A = 0x000f; /* Set excute count */
 DMACR0A = 0x88; /* Initialize DMACR0A */
 DMABCRH = 0x01; /* Initialize DMABCRH */
 DMABCRL |= 0x11; /* Initialize DMABCRL */

 dma_fla = 0; /* Clear dma_fla */
 TIER0_BP.TGIEA0=1; /* Enable TGI0EA interrupt */
 set_imask_ccr(0); /* Enable interrupt */
 TSTR = 0x01; /* Start TCNT0 */
 while(dma_fla==0); /* DMAC end? */
 while(1); /* Loop */
}

/**********************************/
/* INTERRUPT PROGRAM: DMAEND */
/**********************************/

 175

void DMAEND(void)
{
 TSTR_BP.CST0 = 0; /* Stop TCNT0 */
 TIER0_BP.TGIEA0=0; /* Disable timer compare match interrupt */
 DMABCR_BP.DTIE0A=0; /* Disable DMAC end interrupt */
 DMABCR_BP.DTE0A=0; /* Disable data translation */
 dma_fla =1; /* Set dma_fla */
}

 176

4.2 SCI Continuous Transmission/Reception SCI, DMAC

Specifications

1. The H8S/2655’s SCI is set to clock synchronous mode, and performs continuous transmission
and continuous reception of 48-byte data to/from an H8/3314 chip.

2. The DMAC is used to transfer data from memory to TDR and from RDR to memory without
CPU intervention.

3. The transmitting device is the clock master.

SCK

(SRQ) Port

(RRQ) IRQn

RXD

TXD

SCK

P65 (RRQ)

IRQ0 (SRQ)

TXD

RXD

H8S/2655 H8/3314

Figure 1 H8S/2655 Clock Synchronous SCI Block Diagram

Functions Used

1. Figure 2 shows the H8S/2655 on-chip functions used by this sample task. DMAC0A,
DMAC0B, and SCI1 are used as shown in this figure to perform high-speed serial
communication.

Data Buffer

Buffer RAM that stores the transmit/receive data

DMAC0A

Operates in sequential mode. DMAC0A is activated by an SCI transmit end interrupt, and
transfers the contents of the transmit data buffer to the SCI.

DMAC0B

Operates in sequential mode. DMAC0B is activated by an SCI receive end interrupt, and
transfers receive data to the receive data buffer.

 177

SCI1

Performs serial data transmission and reception.

BRRSSR
SCR
SMR

TDRRDR

TSRRSRRXD

TXD

SCK

TXI

RXI DMACR0A
DMACR0B
DMABCR

MAR0A
IOAR0A
ETCR0A

MAR0B
IOAR0B
ETCR0B

SCI1
(performs serial transmission./reception)

Transmit/receive
data buffers

RAMModule data bus

B
us

 in
te

rf
ac

e Internal data bus

Trans-
mission/
reception control

 Baud rate
generator

Clock

DMA control

TEND interrupt

Bus control
signals

DMAC
(DMAC0A: Transfers transmit data to TDR
DMAC0B: Transfers RDR receive data to RAM)

Figure 2 SCI Continuous Transmission/Reception Block Diagram

 178

2. Table 1 shows the function assignments for this sample task. H8S/2655 functions are assigned
as shown in this table to transfer transmit/receive data without CPU intervention.

Table 1 H8S/2655 Function Assignments

H8S/2655 Function Function

Interrupt controller ISCRL Selects interrupt generation on falling edge of IRQ0 input

IER Enables IRQ0 interrupt

ISR Indicates IRQ0 interrupt request status

SCI1 SCK1 Transmits serial clock; also receives serial clock during
reception

RXD1 Receive data input pin

TXD1 Transmit data output pin

SMR1 Sets SCI to clock synchronous mode

SCR1 Transmission and reception settings

SSR1 Indicates transmission/reception status

RDR1 Stores received data

TDR1 Holds data to be transmitted

BRR1 Transfer rate setting

Port 6 P6DDR Port 6 input/output setting

P6DR RRQ transmission

DMAC DMABCR Controls operation of each channel

DMACR0A Controls DMAC0A operation

MAR0A Transfer source address (data buffer) setting

IOAR0A Transfer destination address (TDR) setting

ETCR0A Transfer number setting

DMACR0B Controls DMAC0B operation

MAR0B Transfer destination address (data buffer) setting

IOAR0B Transfer source address (RDR) setting

ETCR0B Transfer number setting

 179

Operation

1. Data transmission

Figure 3 shows the principles of operation in data transmission. Interfacing is performed by
controlling the I/O ports and clock synchronous SCI, using the timing shown in this figure.

Hardware processing

Software processing

None

Initialization

1.

DMAC0A
1.

2.

3.

4.

SCI1
1.

2.
3.

4.

Set transmission status flag

Enable internal interrupt source
clearing in case of DMA transfer
Set transfer source and
destination addresses
Set transfer mode, activation
source, etc.
Enable transfer and transfer
end interrupt

Set clock synchronous mode
as operating mode
Set serial clock
Enable transmit operation and
transmit-data-empty interrupt
Set transmit data in TDR
(transmission start)

Hardware processing

Software processing

DMAC0A activation

None

Hardware processing

Software processing

DEND0A generation

DEND0A handling

. . .

. . .

. . .

Byte 1

5.6 µs

Byte 2 Byte 3 Byte 48

Byte 1 Byte 2 Byte 3 Byte 48

Byte 48Byte 3Byte 2Byte 1

RRQ
(H8S/2655 →
H8/3314)

TDR

TSR

TDRE

SCK
(H8S/2655 →
H8/3314)

TXD
(H8S/2655 →
H8/3314)

1. Transmit data transfer
(transmit butter → TDR)

1.

DMAC0A
1.

SCI1
1.

Clear transmission
status flag

Disable transfer and
transfer end interrupt

Disable interrupts by
TDRE

Figure 3 Principles of Data Transmission Operation

 180

2. Data reception

Figure 4 shows the principles of operation in data reception. Interfacing is performed by
controlling the I/O ports and clock synchronous SCI, using the timing shown in this figure.

Hardware processing

Software processing

None

Initialization

1.

DMAC0A
1.

2.

3.

4.

SCI1
1.

2.
3.

4.

Set transmission status flag

Enable internal interrupt source
clearing in case of DMA transfer
Set transfer source and
destination addresses
Set transfer mode, activation
source, etc.
Enable transfer and transfer
end interrupt

Set clock synchronous mode
as operating mode
Set serial clock
Enable transmit operation and
transmit-data-empty interrupt
Set transmit data in TDR
(transmission start)

Hardware processing

Software processing

DMAC0A activation

None

Hardware processing

Software processing

DEND0A generation

DEND0A handling

. . .

. . .

. . .

Byte 1

5.6 µs

Byte 2 Byte 3 Byte 48

Byte 1 Byte 2 Byte 3 Byte 48

Byte 48Byte 3Byte 2Byte 1

RRQ
(H8S/2655 →
H8/3314)

TDR

TSR

TDRE

SCK
(H8S/2655 →
H8/3314)

TXD
(H8S/2655 →
H8/3314)

1. Transmit data transfer
(transmit butter → TDR)

1.

DMAC0A
1.

SCI1
1.

Clear transmission
status flag

Disable transfer and
transfer end interrupt

Disable interrupts by
TDRE

Figure 3 Principles of Data Reception Operation

 181

Software

1. Modules

Module Name Label Function

Main routine hiscimn I/O port, SCI, DMAC initialization

Data transmission txstart Enables DMAC transfer, and starts SCI transmit operation

Data reception rxstart Initiated by IRQ0 interrupt: enables DMAC transfer and
starts SCI receive operation

Transmit end txend Initiated by DMAC0A transfer end interrupt; disables
stat_tx clearing and transmission processing

Receive end rxend Initiated by DMAC0B transfer end interrupt; disables
stat_rx clearing and reception processing

2. Arguments

Label/Register
Name Function Data Length Module

Input/
Output

stat_tx Flag indicating transmission
in progress

Unsigned char Data transmission
Data reception

Output
Input

stat_rx Flag indicating reception
in progress

Unsigned char Data transmission
Data reception

Input
Output

3. Internal Registers Used

On-Chip Function Register Name Function

SCI1 SMR1 Makes the following SCI settings:

• Sets clock synchronous mode as SCI operating mode

• Sets ø as baud rate generator clock source

SCR1 Makes the following SCI settings for transmission and
reception:

• Transmit operation

Enables transmit-data-empty interrupt
Enables transmit operation
SCK pin as serial clock output

• Receive operation

Enables receive-data-full interrupt
Enables receive operation
SCK pin as serial clock input

SSR1 • Transmit operation

Clears TDRE, starting transmit operation

• Receive operation

 182

Clears RDRF, enabling receive operation

On-Chip Function Register Name Function

SCI1 RDR1 Stores received data

TDR1 Holds data to be transmitted

BRR1 Transfer rate setting

DMAC DMABCR Makes the following DMAC0A and DMAC0B settings:

• Sets short address mode as operating mode

• Enables internal interrupt source clearing in case of
DMA transfer

• Enables data transfer and transfer end interrupt

DMACR0A Makes the following DMAC0A settings:

• Sets byte-size as data size

• Sets incrementing of MAR

• Sets sequential mode for data transfer

• Sets data transfer direction (channel 0A: MAR →
IOAR)

• Sets SCI transmit end interrupt as activation source

MAR0A Transmit buffer address setting

IOAR0A TDR address setting

ETCR0A Transfer number setting

DMACR0B Makes the following DMAC0B settings:

• Sets byte-size as data size

• Sets incrementing of MAR

• Sets sequential mode for data transfer

• Sets data transfer direction (channel 0B: IOAR →
MAR)

• Sets SCI receive end interrupt as activation source

MAR0B Receive buffer address setting

IOAR0B RDR address setting

ETCR0B Transfer number setting

I/O P6DDR Port 6 input/output setting

P6DR RRQ transmission

Interrupt controller IER Enables IRQ0 interrupt

ISCR Sets interrupt request generation on falling edge of
IRQ0 input

ISR Indicates IRQ0 input status

MSTPCR Clears SCI and DMAC module stop mode

 183

4. RAM Used

Label/Register Name Function Data Length Module

buffer Stores transmit/receive data 48 bytes Data
transmission

 184

PAD

1. Main routine

SCI continuous
transmission/reception

hiscimn

1

Clear SCI and DMAC module
stop mode

Set transfer destination
address (MAR0B) to
H'FFEC00 (buffer)

Make the following SMR
settings:
• Clock synchronous mode
• ø as clock source

Set number of transfers
(ETCR0B) to H'30

Set H'20 in P6DDR and
P6DR, set RRQ to output

Make the following
DMABCRH settings:
• Short address mode
• Internal interrupt clearing
 enabled

Clear flag indicating write/
read operation in progress

Set transfer destination
address (IOAR0A) to TDR
(H'FF83)

Interrupt request on falling
edgeSet transfer source address

(MAR0A) to H'FFEC01

Clear IRQ0 status flag
Set number of transfers
(ETCR0A) to H'2F

Enable IRQ0 interrupt

Make the following
DMACR0A settings:
• Byte-size as data size
• Incrementing of MAR
• Sequential mode for data
 transfer
• Transfer direction setting
• SCI transmit end interrupt
 as activation source

Clear I flag to enable
interrupts

Set transfer source address
(IOAR0B) to RDR (H'FF85)

While (stat_rx) ! = 0
End of reception?

Data transmission

While (1)

1

Make the following
DMACR0B settings:
• Byte-size as data size
• Incrementing of MAR
• Sequential mode for
 data transfer
• Transfer direction setting
• SCI receive end interrupt
 as activation source

txstart

 185

2. Data transmission

Data transmission

txstart

Output low level from RRQ

Set SCR1 to transmit mode

Set SMR1 to clock synchronous
mode

Set BRR1 to 1M (bit/s)

Read DMABCR

Make the following DMABCR
settings:
• Enable channel 0A transfer
• Enable channel 0A transfer end
 interrupt

Enable receive interrupt

Output high level from RRQ

While (tdre1 == 0)

Set transmit data in TDR, and
clear TDRE flag

Enable SCI transmit-data-empty
interrupt

 186

3. Data reception

Data reception

Set clock synchronous mode

Enable transmit/receive operation

Read DMABCR

Make the following DMABCR
settings:
• Enable channel 0B transfer
• Enable channel 0B transfer end
 interrupt

rxstart

Set SCR to receive-data-full
interrupt enabled and receive mode

4. Transmit end

Transmit end

Disable DMABCRL transfer
end interrupt

Disable transmit-data-empty
interrupt

Clear stat_tx

txend

 187

5. Receive end

Receive end

Disable DMABCRL data transfer

Disable SCI reception

Clear stat_rx

rxend

 188

Program List

#include <machine.h>
#include <h8s.h>

/**/
/* PROTCOL */
/**/
void hiscimn(void);

/**/
/* RAM ALLOCATION */
/**/
#define buffer (*(volatile unsigned char *)0xffec00)
#define stat_rx (*(volatile unsigned char *)0xffec30)
#define stat_tx (*(volatile unsigned char *)0xffec31)

/**/
/* MAIN PROGRAM : hiscimn */
/**/
void hiscimn(void)
{
 MSTPCR = 0x7fbf;
 SCR1 = 0x00;
 P6DDR = 0x20; /* init port */
 P6DR = 0x20;

 DMABCRH = 0x03;
 IOAR0A = 0xff83;
 MAR0A = 0xffec01;
 ETCR0A = 0x2f;
 DMACR0A = 0x06;

 IOAR0B = 0xff85;
 MAR0B = (long)(&buffer);
 ETCR0B = 0x30;
 DMACR0B = 0x17;

 stat_rx = 0xff;
 stat_tx = 0xff;

 ISCRL = 0x01;
 ISR_BP.IRQ0F = 0;
 IER = 0x01;

 set_imask_ccr(0);

 while(stat_rx != 0); /* receive complete? */
 txstart();

 while(1);
}

 189

/**/
/* NAME : txstart(set transmit data) */
/**/
txstart()
{
 P6DR_BP.RRQ = 0;
 SCR1 = 0x00; /* select clock mode */
 SMR1 = 0x80; /* init SCI1 */
 BRR1 = 0x04; /* set 1MBPS */
 DMABCRL |= 0x11;
 SCR1 = 0x20;
 P6DR_BP.RRQ = 1;

 while(SSR1_BP.TDRE1 == 0);
 TDR1 = buffer; /* set transmit data to TDR */
 SSR1_BP.TDRE1 = 0; /* start transmit */
 SCR1_BP.TIE1 = 1;
}

/**/
/* NAME : rxstart(set SCI to receive operation) */
/**/
#pragma interrupt(rxstart)
void rxstart(void)
{
 SCR1 &= 0xcf;
 SMR1 = 0x80; /* init SCI1 */
 DMABCRL |= 0x22;
 SCR1 = 0x52;
}

/**/
/* NAME : txend(set transmit end flag) */
/**/
#pragma interrupt(txend)
void txend(void)
{
 DMABCRL &= 0xee;
 SCR1_BP.TIE1 = 0;
 stat_tx = 0;
}

/**/
/* NAME : rxend(set receive end flag) */
/**/
#pragma interrupt(rxend)
void rxend(void)
{
 SCR1 = 0x00;
 DMABCRL &= 0xdd;
 stat_rx = 0;
}

 190

4.3 Four-Phase Stepping Motor Application
Example

TPU, PPG, DTC

Specifications

1. The H8S/2655’s TPU, PPG, and DTC on-chip functions are used to control four 4-phase
stepping motors, as shown in figure 1.

2. The stepping motors are controlled by means of two-phase excitation.

3. This task repeats the following cycle of stepping motor operations: stop → forward → stop →
reverse → stop.

4. The task performs slew-up and slew-down processing without software intervention.

5. A through-current prevention period is provided for driver protection.

H8S/2655 Motor driver 4-phase
stepping motorPhase A

Phase B

Phase C

Phase D

Figure 1 Four-Phase Stepping Motor Control Circuit Diagram

Design Concept

1. Example of stepping motor operation

Figure 2 shows an example of 4-phase stepping motor operation using two-phase excitation.
The operating sequence is as follows:

a. When a pulse is high, the corresponding phase is excited, as shown in figure 2.

b. In (1) in the figure, phases D and A are excited simultaneously, and the rotor is positioned
midway between these two phases.

 191

c. In (2) in the figure, phases A and B are excited simultaneously, and the rotor is positioned
midway between these two phases. Two-phase excitation continues in this way, with
adjacent phases excited in succession (phases D and A, A and B, B and C, and C and D), so
rotating the rotor.

d. For reverse operation, the rotor is rotated in the opposite direction by exciting the phases in
the order D and C → C and B → B and A → A and D.

e. The stepping motor is stopped by continuing excitation of the last phase of forward or
reverse operation for a given period.

S

N

D B

C

N

A
N

S

N

D B

C

A
N

N

D B

C

A

NS

N

N

S

ND B

C

N

A

N

(1)
Phase D
and A
excitation

(2)
Phase A
and B
excitation

Phase A

Phase B

Phase C

Phase D

Phase B
and C
excitation

Phase C
and D
excitation

Figure 2 Example of Stepping Motor Operation

 192

2. Non-overlap time

As shown in figure 3, a through-current prevention period (non-overlap time) n is inserted
when the output pattern is switched. Providing a time lag in this way eliminates the risk of
damage to the driver due to turn-off delay when switching the excitation phase.

Phase A

Phase B

Phase C

Phase D

Figure 3 Example of Non-Overlap Time Output

 193

3. Slew-up and slew-down

Pulses are output with controlled acceleration and deceleration as shown in figure 4. Slewing
up and down in this way prevents motor step-out.

If short-cycle pulses are output suddenly when the motor is run, it may not be able to keep up
with the load, and so fail to rotate. Slew-up and slew-down operations are performed to avoid
this problem.

The principles of the operation are as follows:

a. The set number of pulses are output while gradually shortening the pulse cycle (slew-up).

b. The set number of pulses are output with a fixed pulse cycle (constant-speed operation).

c. The set number of pulses are output while gradually lengthening the pulse cycle (slew-
down).

Phase A

Phase B

Phase C

Phase D

Speed

Slew-up Constant-speed operation Slew-down

Acceleration
time

Deceleration
time

Time

Figure 4 Slew-Up and Slew-Down

 194

Functions Used

1. This sample task uses the H8S/2655’s DTC to transfer a 4-phase output pattern to the PPG and
the pulse cycle to TGRB in the TPU on generation of TPU compare-match A, and generate 4-
phase pulse output.

a. Figure 5 shows a block diagram of the H8S/2655 on-chip functions used by this sample
task. The following functions are used to generate motor output waveforms.

• DTC

Activated by TPU compare-match A.

Transfers output data from the output pattern data table to NDR in the PPG. After this
transfer, the DTC transfers pulse cycle data from the cycle data table to TGRB in the
TPU using chain transfer.

• TPU

Compare-match A: Activates the DTC and PPG.

Compare-match B: Performs timer counter clearing, and also activates the PPG.

• PPG

In this sample task, the PPG outputs 16-bit pulses with a non-overlap interval.

Compare-match B: Performs pulse output with a waveform changing from high to low.
Output of pulses with a waveform changing from low to high is held pending.

Compare-match A: Performs low-to-high output held pending on compare-match B
(with the delay specified by TGRA).

 195

Comparator B

Cycle data transferred
to TGRB by DTC
chain transfer

Cycle data table
ROM

DTCB

TPU

UP (slew-up)
DOWN (slew-down)

CONSTANT
(constant-speed

operation)

Stores step cycles.

General
register B
(TGRB)

Compare-
match B

16-bit counter

Comparator A
Compare-
match A

General
register A
(TGRA)

(Interrupt request
enabling/disabling)

Timer interrupt
enable register

(TIER)

Pulse I/O
control

(Output
level setting)

Timer I/O control
register (TIOR)

TIOCB

TIOCA

Output pattern table

ROM

Stores stepping
motor control
waveform data

Output pattern data
transferred to NDR

DTCA
10010000
11000000
01100000
00110000

Output pattern changed
using DTCA, and waveform
output performed on each
TPU compare-match

Control logic

Next data register
(NDR)

Pattern output data
register (PODR)

PO15

PO0
to

PPG L → H H → L

Figure 5 Four-Phase Stepping Motor Control Block Diagram

 196

b. Figure 6 shows the DTC vector table and memory allocation. DTC register information is
located from address H'FFF800 in the following order: MRA, SAR, MRB, DAR, CRA,
CRB.

H'A1

H'FF

H'EC

H'00

H'80

H'FF

H'FE

H'E0

H'00

H'04

H'00

H'00

H'A0

H'FF

H'EC

H'

H'00

H'FF

H'FF

H'00

H'00

H'08

H'00

H'00

(PTN_MRA0)

(PTN_SAR0)

(PTN_MRB0)

(PTN_DAR0)

(PTN_CRA0)

(PTN_CRB0)

(CYC_MRA0)

(CYC_SRA0)

(CYC_MRB0)

(CYC_DAR0)

(CYC_CRA0)

(CYC_CRB0)

H'F8

H'00

Address

H'000440

Address
H'FFF800

DTC vector
table

Next transfer

DTC internal registers
Interrupt controller internal
register

DT enable register (DTED)

Controls DTC activation signal
(DEND0)

Motor 0 pattern transfer
register information

DTC mode register A (MRA)

DTC source address
register (SAR)

DTC mode register B (MRB)

DTC destination address
register (DAR)

DTC transfer count
register A (CRA)

DTC transfer count
register B (CRB)

Motor 0 transfer cycle
register information

DTC mode register A (MRA)

DTC source address
register (SAR)

DTC mode register B
(MRB)

DTC destination address
register (DAR)

DTC transfer count
register A (CRA)

DTC transfer count
register B (CRB)

Figure 6 Example of DTC Vector Table and Memory Allocation

 197

2. Table 1 shows the function assignments for this sample task. H8S/2655 functions are assigned
as shown in this table to generate two-phase excitation stepping motor output waveforms.

Table 1 H8S/2655 Function Assignments

H8S/2655 Function Function

TPU TCNT 16-bit counter

TGRA Output compare register A

TGRB Output compare register B

TCR Count clock selection, counter clear source selection

TIOR Sets TGRA and TGRB as output compare registers

TSR Compare-match and overflow status register

DTC MRA Controls DTC operating mode

MRB Specifies DTC chain transfer

DTCER Enabling/disabling of DTC activation by each interrupt source

DTVECR Sets vector number for software activation interrupt

SAR Transfer source address setting

DAR Transfer destination address setting

CRA Transfer number setting

PPG PODR Stores PPG output data

NDR Stores next PPG output data

PO15 to PO0 4-phase stepping motor output waveform generation

 198

Operation

1. Example of 4-phase pulse output

Hardware processing

Software processing

TPU

None

Hardware processing

Software processing

TPU

None

1.

2.

TGRA0 compare-
match generation
Activate DTCA,
DTCB, and PPG

Hardware processing

Software processing

Initialization
1. Perform software

processing for the
relevant stepping
motor operation
• Forward slew-up
• Forward constant-
 speed
• Forward slew-down
• Stop
• Reverse slew-up
• Reverse constant-
 speed
• Reverse slew-down

1. DTCB transfer end
interrupt generation

TGRB

TGRA
H'0000

TPU (ch3)

Output pattern data
table → NDR (DTCA)

Cycle data table →
TGRB (DTCB)

Interrupt request to CPU
(DTCB transfer end interrupt)

PO15

PO14

PO13

PO12

PPG output

Non-overlap time

1.

2.
3.

TGRB0 compare-
match generation
Clear TCNT3
Activate PPG

PPG
1. Non-overlap output

(perform high-to-low
transition pulse
output; low-to-high
transition pulse
output held
pending)

PPG
1.

2.

Transfer NDR data
to PODR
Perform low-to-high
transition pulse
output

DTCA
1. Transfer output

pattern to NDR

Hardware processing

DTCB chain transfer
1.
2.

Activate DTCB
Transfer cycle
data to TGRB

Software processing

None

Figure 7 Stepping Motor Timing

 199

Software

1. Modules

Module Name Label Function

Main routine stp4mn TPU, PPG, DTC initialization, forward slew-up
operation setting

Motor control mtrctl0
mtrctl1
mtrctl2
mtrctl3

Control motor operations

Forward slew-up fslueup0 to fslueup3 Initiated after end of reverse stop operation;
performs forward slew-up operation DTC transfer
mode switching

Forward constant-
speed

fconst0 to fconst3 Initiated after end of forward slew-up operation;
performs forward constant-speed operation DTC
transfer mode switching

Forward slew-down fsldwn0 to fsldwn3 Initiated after end of forward constant-speed
operation; performs forward slew-down operation
DTC transfer mode switching

Forward stop fstop0 to fstop3 Initiated after end of forward slew-down operation;
performs forward stop operation DTC transfer mode
switching

Reverse slew-up rslueup0 to rslueup3 Initiated after end of forward stop operation;
performs reverse slew-up operation DTC transfer
mode switching

Reverse constant-
speed

rconst0 to rconst3 Initiated after end of reverse slew-up operation;
performs reverse constant-speed operation DTC
transfer mode switching

Reverse slew-down rsludwn0 to rsludwn3 Initiated after end of reverse constant-speed
operation; performs reverse slew-down operation
DTC transfer mode switching

Reverse stop rstop0 to rstop3 Initiated after end of reverse slew-down operation;
performs reverse stop operation DTC transfer mode
switching

2. Arguments

This task does not use any arguments.

 200

3. Internal Registers Used

On-Chip Function Register Name Function

TPU TGRA Non-overlap time setting

TGRB Timer cycle setting

TIER Enables TGFA interrupt

TCR Makes the following TPU settings:

• Counter clearing by TGRB compare-match

• Counting on ø internal clock

TIOR Sets TGRA and TRGB as output compare registers,
disables pin output

TSTR Enables TCNT count operation

DTC DTCER Enables DTC activation by TGIA interrupt

PPG PODR Stores output pattern data

PMR Sets PO15 to PO0 as non-overlap outputs

PCR Selects pulse output trigger signal for each group

Group 3: TPU3 compare-match
Group 2: TPU2 compare-match
Group 1: TPU1 compare-match
Group 0: TPU0 compare-match

NDERL Enables PPG outputs PO7 to PO0

NDERH Enables PPG outputs PO15 to PO8

NDRL Stores next output pattern data for PO7 to PO0

NDRH Stores next output pattern data for PO15 to PO8

MSTPCR Clears TPU, DTC, and PPG module stop mode

 201

4. RAM Used

Label Function Data Length Module

nextmode0
nextmode1
nextmode2
nextmode3

Indicate the stepping motor operation status

H'01: Forward slew-up control
H'02: Forward constant-speed control
H'03: Forward slew-down control
H'04: Forward stop control
H'05: Reverse slew-up control
H'06: Reverse constant-speed control
H'07: Reverse slew-down control
H'08: Reverse stop control

Unsigned char Motor control

PTN_MRA0 Sets repeat mode as transfer mode Unsigned char Main routine

PTN_MRB0 Enables chain transfer Unsigned char Main routine

PTN_SAR0 Transfer source address (PATTBL) setting Unsigned long Main routine

PTN_DAR0 Transfer destination address (NDR0) setting Unsigned long Main routine

PTN_CRA0 Block size setting Unsigned short Main routine

CYC_MRA0 Sets normal mode as transfer mode Unsigned char Main routine

CYC_MRB0 Enables interrupt request to CPU at end of
transfer

Unsigned char Main routine

CYC_SAR0 Transfer source address (UPTBL) setting Unsigned long Main routine

CYC_DAR0 Transfer destination address (TGRB0) setting Unsigned long Main routine

CYC_CRA0 Transfer number setting Unsigned short Main routine

PTN_MRA1 Sets repeat mode as transfer mode Unsigned char Main routine

PTN_MRB1 Enables chain transfer Unsigned char Main routine

PTN_SAR1 Transfer source address (PATTBL) setting Unsigned long Main routine

PTN_DAR1 Transfer destination address (NDR1) setting Unsigned long Main routine

PTN_CRA1 Block size setting Unsigned short Main routine

CYC_MRA1 Sets normal mode as transfer mode Unsigned char Main routine

CYC_MRB1 Enables interrupt request to CPU at end of
transfer

Unsigned char Main routine

CYC_SAR1 Transfer source address (UPTBL) setting Unsigned long Main routine

CYC_DAR1 Transfer destination address (TGRB1) setting Unsigned long Main routine

CYC_CRA1 Transfer number setting Unsigned short Main routine

PTN_MRA2 Sets repeat mode as transfer mode Unsigned char Main routine

PTN_MRB2 Enables chain transfer Unsigned char Main routine

PTN_SAR2 Transfer source address (PATTBL) setting Unsigned long Main routine

PTN_DAR2 Transfer destination address (NDR2) setting Unsigned long Main routine

 202

Label Function Data Length Module

PTN_CRA2 Block size setting Unsigned short Main routine

CYC_MRA2 Sets normal mode as transfer mode Unsigned char Main routine

CYC_MRB2 Enables interrupt request to CPU at end of
transfer

Unsigned char Main routine

CYC_SAR2 Transfer source address (UPTBL) setting Unsigned long Main routine

CYC_DAR2 Transfer destination address (TGRB2) setting Unsigned long Main routine

CYC_CRA2 Transfer number setting Unsigned short Main routine

PTN_MRA3 Sets repeat mode as transfer mode Unsigned char Main routine

PTN_MRB3 Enables chain transfer Unsigned char Main routine

PTN_SAR3 Transfer source address (PATTBL) setting Unsigned long Main routine

PTN_DAR3 Transfer destination address (NDR3) setting Unsigned long Main routine

PTN_CRA3 Block size setting Unsigned short Main routine

CYC_MRA3 Sets normal mode as transfer mode Unsigned char Main routine

CYC_MRB3 Enables interrupt request to CPU at end of
transfer

Unsigned char Main routine

CYC_SAR3 Transfer source address (UPTBL) setting Unsigned long Main routine

CYC_DAR3 Transfer destination address (TGRB3) setting Unsigned long Main routine

CYC_CRA3 Transfer number setting Unsigned short Main routine

5. Data Tables

Table Name Function Data Length Data Capacity

PATTBL0,
PATTBL1

Hold patterns for 4-phase pulse output Unsigned char 4 bytes

UPTBL
DOWNTBL
CNSTBL

Hold data for changing step cycle Unsigned short 121 words

 203

PAD

1. Main routine

4-phase stepping motor
 application example

stp4mn

1

Motor control mode
initialization

Set PPG to non-overlap
mode, and set PMR

Set transfer count (H'0404)
in PTN_CRA0 to PTN_CRA3

Set initial output data
in PODR

Make the following settings
for CYC_MRA0 to
CYC_MRA3:
• SAR incremented after
 transfer
• DAR fixed
• Normal mode for data
 transfer
• Word-size transfer

Set bits corresponding
to PPG output pins to 1

Set UPTBL start address
in CYC_SAR0 to CYC_SAR3

Enable pulse outputs PO15
to PO0

Make the following PCR settings:
Group 3: TPU3 compare-match
Group 2: TPU2 compare-match
Group 1: TPU1 compare-match
Group 0: TPU0 compare-match

Set TGR0 to TGR3B
addresses in CYC_DAR0
to CYC_DAR3

Set next pulse output value
in NDRH and NDRL

Set transfer count (40) in
CYC_CRA0 to CYC_CRA3

Set corresponding bits
of DTCER to 1

Set UPTBL output pattern
address in PTN_SAR0
to PTN_SAR3

Make the following settings
for TCR0 to TCR3:
• Counter clearing by TGRB
 compare-match
• Counting on ø internal clock

Make the following settings
for PTN_MRB0 to
PTN_MRB3:
• DTC chain transfer

Enable interrupt request by
TGFA bit

Clear I flag to enable
interrupts

1

Make the following settings
for PTN_MRA0 to
PTN_MRA3:
• SAR incremented after
 transfer
• DAR fixed
• Repeat mode for data
 transfer
• Source side is repeat area
• Byte-size transfer

Make the following setting
for CYC_MRB0 to
CYC_MRB3:
• Enable interrupt to CPU at
 end of DTC data transfer

Enable TCNT0 to TCNT3
count operations

While (1)

Set NDR0 to NDR3
addresses in PTN_DAR0 to
PTN_DAR3

 204

2. Motor control

Motor control

mtrctl0 to 3

Forward slew-up control

Forward constant-speed

Forward slew-down

Forward stop

Reverse slew-up

Reverse constant-speed

Reverse slew-down

Reverse stop

fslueup0 to 3

fconst0 to 3

fsldwn0 to 3

fstop0 to 3

rslueup0 to 3

rconst0 to 3

rsludwn0 to 3

rstop0 to 3

nextmode0 to 3 == 1

2

3

4

5

6

7

8

 205

3. Forward slew-up 0 to 3

Forward slew-up 0 to 3

Set UPTBL start address
in CYC_SAR0 to CYC_SAR3

Set transfer count (40)
in CYC_CRA0 to CYC_CRA3

Set transfer count (1028)
in PTN_MRA0 to PTN_MRA3

Set nextmode to forward
constant-speed control (H'02)

fslueup0 to fslueup3
Make the following settings for
CYC_MRA0 to CYC_MRA3:
• SAR incremented after transfer
• DAR fixed
• Normal mode for data transfer
• Word-size transfer

Make the following settings for
PTN_MRA0 to PTN_MRA3:
• SAR incremented after transfer
• DAR fixed
• Repeat mode for data transfer
• Source side is repeat area
• Byte-size transfer

 206

4. Forward constant-speed 0 to 3

Forward constant-speed
0 to 3

Set CNSTBL start address
in CYC_SAR0 to CYC_SAR3

Make the following settings for
CYC_MRA0 to CYC_MRA3:
• SAR and DAR fixed
• Normal mode for data transfer
• Word-size transfer

Set transfer count (3000)
in CYC_CRA0 to CYC_CRA3

Set nextmode to forward
slew-down control (H'03)

fconst0 to fconst3

5. Forward slew-down 0 to 3

Forward slew-down
0 to 3

Set DOWNTBL start address in
CYC_SAR0 to CYC_SAR3

Make the following settings for
CYC_MRA0 to CYC_MRA3:
• SAR decremented after transfer
• DAR fixed
• Normal mode for data transfer
• Word-size transfer

Set transfer count (40) in
CYC_CRA0 to CYC_CRA3

Set nextmode to forward stop
control (H'04)

fsldwn0 to fsldwn3

 207

6. Forward stop 0 to 3

Forward stop 0 to 3

Set CNSTBL start address in
CYC_SAR0 to CYC_SAR3

Make the following settings for
CYC_MRA0 to CYC_MRA3:
• SAR and DAR fixed
• Normal mode for data transfer
• Word-size transfer

Set transfer count (1000) in
CYC_CRA0 to CYC_CRA3

Set transfer count (H'01) in
PTN_CRA0 to PTN_CRA3

fstop0 to fstop3

Set nextmode to reverse slew-up
control (H'05)

 208

7. Reverse slew-up 0 to 3

Reverse slew-up
0 to 3

Set UPTBL start address in
CYC_SAR0 to CYC_SAR3

Make the following settings for
CYC_MRA0 to CYC_MRA3:
• SAR incremented after transfer
• DAR fixed
• Normal mode for data transfer
• Word-size transfer

Set transfer count (40) in
CYC_CRA0 to CYC_CRA3

Make the following settings for
PTN_MRA0 to PTN_MRA3:
• SAR decremented after transfer
• DAR fixed
• Repeat mode for data transfer
• Source side is repeat area
• Byte-size transfer

rslueup0 to rslueup3

Set transfer count (1028) in
PTN_CRA0 to PTN_CRA3

Set nextmode to reverse
constant-speed control (H'06)

 209

8. Reverse constant-speed 0 to 3

Reverse constant-speed
0 to 3

Set CNSTBL start address in
CYC_SAR0 to CYC_SAR3

Make the following settings for
CYC_MRA0 to CYC_MRA3:
• SAR and DAR fixed
• Normal mode for data transfer
• Word-size transfer

Set transfer count (3000) in
CYC_CRA0 to CYC_CRA3

Set nextmode to reverse
slew-down control (H'07)

rconst0 to rconst3

9. Reverse slew-down 0 to 3

Reverse slew-down
0 to 3

Set DOWNTBL start address in
CYC_SAR0 to CYC_SAR3

Make the following settings for
CYC_MRA0 to CYC_MRA3:
• SAR decremented after transfer
• DAR fixed
• Normal mode for data transfer
• Word-size transfer

Set transfer count (40) in
CYC_CRA0 to CYC_CRA3

Set nextmode to reverse stop
control (H'08)

rsludwn0 to rsludwn3

 210

10. Reverse stop 0 to 3

Reverse stop
0 to 3

Set CNSTBL start address in
CYC_SAR0 to CYC_SAR3

Make the following settings for
CYC_MRA0 to CYC_MRA3:
• SAR and DAR fixed
• Normal mode for data transfer
• Word-size transfer

Set transfer count (1000) in
CYC_CRA0 to CYC_CRA3

Set transfer count (H'06) in
PTN_MRA0 to PTN_MRA3

rstop0 to rstop3

Set transfer count (H'0101) in
PTN_CRA0 to PTN_CRA3

Set nextmode to forward slew-up
control (H'01)

 211

Program List

#include <machine.h>
#include <h8s.h>

/**/
/* PROTCOL */
/**/
void stp4mn(void);

/**/
/* RAM ALLOCATION */
/**/

#define PTN0_MRA (*(volatile unsigned char *)0xfff800)
#define PTN0_SAR (*(volatile unsigned long *)0xfff800)
#define PTN0_MRB (*(volatile unsigned char *)0xfff804)
#define PTN0_DAR (*(volatile unsigned long *)0xfff804)
#define PTN0_CRA (*(volatile unsigned short *)0xfff808)
#define PTN0_CRB (*(volatile unsigned short *)0xfff80a)

#define CYC0_MRA (*(volatile unsigned char *)0xfff80c)
#define CYC0_SAR (*(volatile unsigned long *)0xfff80c)
#define CYC0_MRB (*(volatile unsigned char *)0xfff810)
#define CYC0_DAR (*(volatile unsigned long *)0xfff810)
#define CYC0_CRA (*(volatile unsigned short *)0xfff814)
#define CYC0_CRB (*(volatile unsigned short *)0xfff816)

#define PTN1_MRA (*(volatile unsigned char *)0xfff818)
#define PTN1_SAR (*(volatile unsigned long *)0xfff818)
#define PTN1_MRB (*(volatile unsigned char *)0xfff81c)
#define PTN1_DAR (*(volatile unsigned long *)0xfff81c)
#define PTN1_CRA (*(volatile unsigned short *)0xfff820)
#define PTN1_CRB (*(volatile unsigned short *)0xfff822)

#define CYC1_MRA (*(volatile unsigned char *)0xfff824)
#define CYC1_SAR (*(volatile unsigned long *)0xfff824)
#define CYC1_MRB (*(volatile unsigned char *)0xfff828)
#define CYC1_DAR (*(volatile unsigned long *)0xfff828)

 212

#define CYC1_CRA (*(volatile unsigned short *)0xfff82c)
#define CYC1_CRB (*(volatile unsigned short *)0xfff82e)

#define PTN2_MRA (*(volatile unsigned char *)0xfff830)
#define PTN2_SAR (*(volatile unsigned long *)0xfff830)
#define PTN2_MRB (*(volatile unsigned char *)0xfff834)
#define PTN2_DAR (*(volatile unsigned long *)0xfff834)
#define PTN2_CRA (*(volatile unsigned short *)0xfff838)
#define PTN2_CRB (*(volatile unsigned short *)0xfff83a)

#define CYC2_MRA (*(volatile unsigned char *)0xfff83c)
#define CYC2_SAR (*(volatile unsigned long *)0xfff83c)
#define CYC2_MRB (*(volatile unsigned char *)0xfff840)
#define CYC2_DAR (*(volatile unsigned long *)0xfff840)
#define CYC2_CRA (*(volatile unsigned short *)0xfff844)
#define CYC2_CRB (*(volatile unsigned short *)0xfff846)

#define PTN3_MRA (*(volatile unsigned char *)0xfff848)
#define PTN3_SAR (*(volatile unsigned long *)0xfff848)
#define PTN3_MRB (*(volatile unsigned char *)0xfff84c)
#define PTN3_DAR (*(volatile unsigned long *)0xfff84c)
#define PTN3_CRA (*(volatile unsigned short *)0xfff850)
#define PTN3_CRB (*(volatile unsigned short *)0xfff852)

#define CYC3_MRA (*(volatile unsigned char *)0xfff854)
#define CYC3_SAR (*(volatile unsigned long *)0xfff854)
#define CYC3_MRB (*(volatile unsigned char *)0xfff858)
#define CYC3_DAR (*(volatile unsigned long *)0xfff858)
#define CYC3_CRA (*(volatile unsigned short *)0xfff85c)
#define CYC3_CRB (*(volatile unsigned short *)0xfff85e)

#define nextmode0 (*(volatile unsigned char *)0xfff860)
#define nextmode1 (*(volatile unsigned char *)0xfff861)
#define nextmode2 (*(volatile unsigned char *)0xfff862)
#define nextmode3 (*(volatile unsigned char *)0xfff863)

 213

/**/
/* DATA TABLE */
/**/
const unsigned char PATTBL0[4] = {0x6f,0x3f,0x9f,0xcf};
const unsigned char PATTBL1[4] = {0xf6,0xf3,0xf9,0xfc};

/*
const unsigned short UPTBL[40] = { 47723, 43885, 40848, 38365, 36286,
 34513, 32977, 31629, 30434, 29365,
 28402, 27527, 26729, 25996, 25321,
 24695, 24114, 23572, 23065, 22589,
 22141, 21720, 21321, 20944, 20585,
 20245, 19921, 19612, 19317, 19035,
 18765, 18506, 18258, 18019, 17790,
 17569, 17356, 17150, 16952, 16760 };
const unsigned short DOWNTBL[] = { 16760 };
const unsigned short CNSTBL[] = { 16760 };

*/

const unsigned short UPTBL[12] = { 35350, 14637, 11225, 9462,
 8337, 7537, 6937, 6450, 6062,
 5725, 5450, 5212 };

const unsigned short DOWNTBL[] = { 5000 };
const unsigned short CNSTBL[] = { 5000 };

/**/
/* MAIN PROGRAM : stp4mn */
/**/
void stp4mn(void)
{
 MSTPCR = 0x97ff;
 nextmode0 = 0x02;
 nextmode1 = 0x02;
 nextmode2 = 0x02;
 nextmode3 = 0x02;

 214

/* PPG INITIALIZE */
 PMR = 0xff;
 PODRH = 0xcc;
 PODRL = 0xcc;
 P1DDR = 0xff;
 P2DDR = 0xff;
 NDERH = 0xff;
 NDERL = 0xff;
 PCR = 0xe4;
 NDR3 = 0xcf;
 NDR2 = 0xfc;
 NDR1 = 0xcf;
 NDR0 = 0xfc;

/* DTC INITIALIZE */
 PTN0_SAR = (long)PATTBL1;
 PTN1_SAR = (long)PATTBL0;
 PTN2_SAR = (long)PATTBL1;
 PTN3_SAR = (long)PATTBL0;
 PTN0_MRA = 0x86;
 PTN1_MRA = 0x86;
 PTN2_MRA = 0x86;
 PTN3_MRA = 0x86;
 PTN0_DAR = (long)(&NDR0);
 PTN1_DAR = (long)(&NDR1);
 PTN2_DAR = (long)(&NDR2);
 PTN3_DAR = (long)(&NDR3);
 PTN0_MRB = 0x80;
 PTN1_MRB = 0x80;
 PTN2_MRB = 0x80;
 PTN3_MRB = 0x80;
 PTN0_CRA = 0x0404;
 PTN1_CRA = 0x0404;
 PTN2_CRA = 0x0404;
 PTN3_CRA = 0x0404;

 215

 CYC0_SAR = (long)UPTBL;
 CYC1_SAR = (long)UPTBL;
 CYC2_SAR = (long)UPTBL;
 CYC3_SAR = (long)UPTBL;
 CYC0_MRA = 0x81;
 CYC1_MRA = 0x81;
 CYC2_MRA = 0x81;
 CYC3_MRA = 0x81;
 CYC0_DAR = (long)(&TGR0B);
 CYC1_DAR = (long)(&TGR1B);
 CYC2_DAR = (long)(&TGR2B);
 CYC3_DAR = (long)(&TGR3B);
 CYC0_MRB = 0x00;
 CYC1_MRB = 0x00;
 CYC2_MRB = 0x00;
 CYC3_MRB = 0x00;
 CYC0_CRA = 13;
 CYC1_CRA = 13;
 CYC2_CRA = 13;
 CYC3_CRA = 13;
 DTCERB_BP.TGI0A = 1;
 DTCERB_BP.TGI1A = 1;
 DTCERC_BP.TGI2A = 1;
 DTCERC_BP.TGI3A = 1;

/* TPU INITIALIZE */
 TPU_TCR0 = 0x42;
 TPU_TCR1 = 0x42;
 TCR2 = 0x42;
 TCR3 = 0x42;
 TIER0 = 0x41;
 TIER1 = 0x41;
 TIER2 = 0x41;
 TIER3 = 0x41;
 TGR0A = 100;
 TGR1A = 100;
 TGR2A = 100;
 TGR3A = 100;
 TGR0B = 62500;
 TGR1B = 62500;
 TGR2B = 62500;
 TGR3B = 62500;

 set_imask_ccr(0);
 TSTR = 0x0f;
 while(1);
}

 216

/**/
/* NAME : mtrcntl0 */
/**/
#pragma interrupt(mtrcntl0)
void mtrcntl0(void)
{
 switch(nextmode0){
 case 1:
 fslueup0();
 break;
 case 2:
 fconst0();
 break;
 case 3:
 fsldwn0();
 break;
 case 4:
 fstop0();
 break;
 case 5:
 rslueup0();
 break;
 case 6:
 rconst0();
 break;
 case 7:
 rsldwn0();
 break;
 case 8:
 rstop0();
 break;
 default:
 break;
 }

 DTCERB_BP.TGI0A = 1;
 TSR0 &= 0xfe;
}

 217

/*********** forward slue-up0 *************/
fslueup0()
{
 CYC0_SAR = (long)UPTBL;
 CYC0_MRA = 0x81;
 CYC0_CRA = 0x000d;
 PTN0_SAR = (long)PATTBL1;
 PTN0_MRA = 0x86;
 PTN0_CRA = 0x0404;
 nextmode0++;
}

/******** forward constant speed0 *********/
fconst0()
{
 CYC0_SAR = (long)CNSTBL;
 CYC0_MRA = 0x01;
 CYC0_CRA = 0x0bb9;
 PTN0_SAR = (long)PATTBL1;
 PTN0_MRA = 0x86;
 PTN0_CRA = 0x0404;
 nextmode0++;
}

/********** forward slue-down0 ************/
fsldwn0()
{
 CYC0_SAR = (long)DOWNTBL;
 CYC0_MRA = 0xc1;
 CYC0_CRA = 0x000d;
 PTN0_SAR = (long)PATTBL1;
 PTN0_MRA = 0x86;
 PTN0_CRA = 0x0404;
 nextmode0++;
}
/************* forward stop0 **************/
fstop0()
{
 CYC0_SAR = (long)UPTBL;
 CYC0_MRA = 0x01;
 CYC0_CRA = 0x03e9;
 PTN0_SAR = (long)PATTBL1;
 PTN0_MRA = 0x06;
 PTN0_CRA = 0x0404;
 nextmode0++;
}

 218

/*********** reverse slue-up0 *************/
rslueup0()
{
 CYC0_SAR = (long)UPTBL;
 CYC0_MRA = 0x81;
 CYC0_CRA = 0x000d;
 PTN0_SAR = (long)(PATTBL1+3);
 PTN0_MRA = 0xc6;
 PTN0_CRA = 0x0404;
 nextmode0++;
}

/******** reverse constant speed0 *********/
rconst0()
{
 CYC0_SAR = (long)CNSTBL;
 CYC0_MRA = 0x01;
 CYC0_CRA = 0x0bb9;
 PTN0_SAR = (long)(PATTBL1+3);
 PTN0_MRA = 0xc6;
 PTN0_CRA = 0x0404;
 nextmode0++;
}

/********** reverse slue-down0 ************/
rsldwn0()
{
 CYC0_SAR = (long)DOWNTBL;
 CYC0_MRA = 0xc1;
 CYC0_CRA = 0x000d;
 PTN0_SAR = (long)(PATTBL1+3);
 PTN0_MRA = 0xc6;
 PTN0_CRA = 0x0404;
 nextmode0++;
}

/************* reverse stop0 **************/
rstop0()
{
 CYC0_SAR = (long)UPTBL;
 CYC0_MRA = 0x01;
 CYC0_CRA = 0x03e9;
 PTN0_SAR = (long)(PATTBL1+3);
 PTN0_MRA = 0x06;
 PTN0_CRA = 0x0404;
 nextmode0 = 0x01;
}

 219

/**/
/* NAME : mtrcntl1 */
/**/
#pragma interrupt(mtrcntl1)
void mtrcntl1(void)
{
 switch(nextmode1){
 case 1:
 fslueup1();
 break;
 case 2:
 fconst1();
 break;
 case 3:
 fsldwn1();
 break;
 case 4:
 fstop1();
 break;
 case 5:
 rslueup1();
 break;
 case 6:
 rconst1();
 break;
 case 7:
 rsldwn1();
 break;
 case 8:
 rstop1();
 break;
 default:
 break;
 }

 DTCERB_BP.TGI1A = 1;
 TSR1 &= 0xfe;
}

 220

/*********** forward slue-up1 *************/
fslueup1()
{
 CYC1_SAR = (long)UPTBL;
 CYC1_MRA = 0x81;
 CYC1_CRA = 0x000d;
 PTN1_SAR = (long)PATTBL0;
 PTN1_MRA = 0x86;
 PTN1_CRA = 0x0404;
 nextmode1++;
}

/******** forward constant speed1 *********/
fconst1()
{
 CYC1_SAR = (long)CNSTBL;
 CYC1_MRA = 0x01;
 CYC1_CRA = 0x0bb9;
 PTN1_SAR = (long)PATTBL0;
 PTN1_MRA = 0x86;
 PTN1_CRA = 0x0404;
 nextmode1++;
}

/********** forward slue-down1 ************/
fsldwn1()
{
 CYC1_SAR = (long)DOWNTBL;
 CYC1_MRA = 0xc1;
 CYC1_CRA = 0x000d;
 PTN1_SAR = (long)PATTBL0;
 PTN1_MRA = 0x86;
 PTN1_CRA = 0x0404;
 nextmode1++;
}

/************* forward stop1 **************/
fstop1()
{
 CYC1_SAR = (long)UPTBL;
 CYC1_MRA = 0x01;
 CYC1_CRA = 0x03e9;
 PTN1_SAR = (long)PATTBL0;
 PTN1_MRA = 0x06;
 PTN1_CRA = 0x0404;
 nextmode1++;
}

 221

/*********** reverse slue-up1 *************/
rslueup1()
{
 CYC1_SAR = (long)UPTBL;
 CYC1_MRA = 0x81;
 CYC1_CRA = 0x000d;
 PTN1_SAR = (long)(PATTBL0+3);
 PTN1_MRA = 0xc6;
 PTN1_CRA = 0x0404;
 nextmode1++;
}

/******** reverse constant speed1 *********/
rconst1()
{
 CYC1_SAR = (long)CNSTBL;
 CYC1_MRA = 0x01;
 CYC1_CRA = 0x0bb9;
 PTN1_SAR = (long)(PATTBL0+3);
 PTN1_MRA = 0xc6;
 PTN1_CRA = 0x0404;
 nextmode1++;
}
/********** reverse slue-down1 ************/
rsldwn1()
{
 CYC1_SAR = (long)DOWNTBL;
 CYC1_MRA = 0xc1;
 CYC1_CRA = 0x000d;
 PTN1_SAR = (long)(PATTBL0+3);
 PTN1_MRA = 0xc6;
 PTN1_CRA = 0x0404;
 nextmode1++;
}

/************* reverse stop1 **************/
rstop1()
{
 CYC1_SAR = (long)UPTBL;
 CYC1_MRA = 0x01;
 CYC1_CRA = 0x03e9;
 PTN1_SAR = (long)(PATTBL0+3);
 PTN1_MRA = 0x06;
 PTN1_CRA = 0x0404;
 nextmode1 = 0x01;
}

 222

/**/
/* NAME : mtrcntl2 */
/**/
#pragma interrupt(mtrcntl2)
void mtrcntl2(void)
{
 switch(nextmode2){
 case 1:
 fslueup2();
 break;
 case 2:
 fconst2();
 break;
 case 3:
 fsldwn2();
 break;
 case 4:
 fstop2();
 break;
 case 5:
 rslueup2();
 break;
 case 6:
 rconst2();
 break;
 case 7:
 rsldwn2();
 break;
 case 8:
 rstop2();
 break;
 default:
 break;
 }

 DTCERC_BP.TGI2A = 1;
 TSR2 &= 0xfe;
}

 223

/*********** forward slue-up2 *************/
fslueup2()
{
 CYC2_SAR = (long)UPTBL;
 CYC2_MRA = 0x81;
 CYC2_CRA = 0x000d;
 PTN2_SAR = (long)PATTBL1;
 PTN2_MRA = 0x86;
 PTN2_CRA = 0x0404;
 nextmode2++;
}

/******** forward constant speed2 *********/
fconst2()
{
 CYC2_SAR = (long)CNSTBL;
 CYC2_MRA = 0x01;
 CYC2_CRA = 0x0bb9;
 PTN2_SAR = (long)PATTBL1;
 PTN2_MRA = 0x86;
 PTN2_CRA = 0x0404;
 nextmode2++;
}

/********** forward slue-down2 ************/
fsldwn2()
{
 CYC2_SAR = (long)DOWNTBL;
 CYC2_MRA = 0xc1;
 CYC2_CRA = 0x000d;
 PTN2_SAR = (long)PATTBL1;
 PTN2_MRA = 0x86;
 PTN2_CRA = 0x0404;
 nextmode2++;
}

/************* forward stop2 **************/
fstop2()
{
 CYC2_SAR = (long)UPTBL;
 CYC2_MRA = 0x01;
 CYC2_CRA = 0x03e9;
 PTN2_SAR = (long)PATTBL1;
 PTN2_MRA = 0x06;
 PTN2_CRA = 0x0404;
 nextmode2++;
}

 224

/*********** reverse slue-up2 *************/
rslueup2()
{
 CYC2_SAR = (long)UPTBL;
 CYC2_MRA = 0x81;
 CYC2_CRA = 0x000d;
 PTN2_SAR = (long)(PATTBL1+3);
 PTN2_MRA = 0xc6;
 PTN2_CRA = 0x0404;
 nextmode2++;
}

/******** reverse constant speed2 *********/
rconst2()
{
 CYC2_SAR = (long)CNSTBL;
 CYC2_MRA = 0x01;
 CYC2_CRA = 0x0bb9;
 PTN2_SAR = (long)(PATTBL1+3);
 PTN2_MRA = 0xc6;
 PTN2_CRA = 0x0404;
 nextmode2++;
}

/********** reverse slue-down2 ************/
rsldwn2()
{
 CYC2_SAR = (long)DOWNTBL;
 CYC2_MRA = 0xc1;
 CYC2_CRA = 0x000d;
 PTN2_SAR = (long)(PATTBL1+3);
 PTN2_MRA = 0xc6;
 PTN2_CRA = 0x0404;
 nextmode2++;
}

/************* reverse stop2 **************/
rstop2()
{
 CYC2_SAR = (long)UPTBL;
 CYC2_MRA = 0x01;
 CYC2_CRA = 0x03e9;
 PTN2_SAR = (long)(PATTBL1+3);
 PTN2_MRA = 0x06;
 PTN2_CRA = 0x0404;
 nextmode2 = 0x01;
}

 225

/**/
/* NAME : mtrcntl3 */
/**/
#pragma interrupt(mtrcntl3)
void mtrcntl3(void)
{
 switch(nextmode3){
 case 1:
 fslueup3();
 break;
 case 2:
 fconst3();
 break;
 case 3:
 fsldwn3();
 break;
 case 4:
 fstop3();
 break;
 case 5:
 rslueup3();
 break;
 case 6:
 rconst3();
 break;
 case 7:
 rsldwn3();
 break;
 case 8:
 rstop3();
 break;
 default:
 break;
 }

 DTCERC_BP.TGI3A = 1;
 TSR3 &= 0xfe;
}

 226

/*********** forward slue-up3 *************/
fslueup3()
{
 CYC3_SAR = (long)UPTBL;
 CYC3_MRA = 0x81;
 CYC3_CRA = 0x000d;
 PTN3_SAR = (long)PATTBL0;
 PTN3_MRA = 0x86;
 PTN3_CRA = 0x0404;
 nextmode3++;
}

/******** forward constant speed3 *********/
fconst3()
{
 CYC3_SAR = (long)CNSTBL;
 CYC3_MRA = 0x01;
 CYC3_CRA = 0x0bb9;
 PTN3_SAR = (long)PATTBL0;
 PTN3_MRA = 0x86;
 PTN3_CRA = 0x0404;
 nextmode3++;
}

/********** forward slue-down3 ************/
fsldwn3()
{
 CYC3_SAR = (long)DOWNTBL;
 CYC3_MRA = 0xc1;
 CYC3_CRA = 0x000d;
 PTN3_SAR = (long)PATTBL0;
 PTN3_MRA = 0x86;
 PTN3_CRA = 0x0404;
 nextmode3++;
}

/************* forward stop3 **************/
fstop3()
{
 CYC3_SAR = (long)UPTBL;
 CYC3_MRA = 0x01;
 CYC3_CRA = 0x03e9;
 PTN3_SAR = (long)PATTBL0;
 PTN3_MRA = 0x06;
 PTN3_CRA = 0x0404;
 nextmode3++;
}

 227

/*********** reverse slue-up3 *************/
rslueup3()
{
 CYC3_SAR = (long)UPTBL;
 CYC3_MRA = 0x81;
 CYC3_CRA = 0x000d;
 PTN3_SAR = (long)(PATTBL0+3);
 PTN3_MRA = 0xc6;
 PTN3_CRA = 0x0404;
 nextmode3++;
}

/******** reverse constant speed3 *********/
rconst3()
{
 CYC3_SAR = (long)CNSTBL;
 CYC3_MRA = 0x01;
 CYC3_CRA = 0x0bb9;
 PTN3_SAR = (long)(PATTBL0+3);
 PTN3_MRA = 0xc6;
 PTN3_CRA = 0x0404;
 nextmode3++;
}

/********** reverse slue-down3 ************/
rsldwn3()
{
 CYC3_SAR = (long)DOWNTBL;
 CYC3_MRA = 0xc1;
 CYC3_CRA = 0x000d;
 PTN3_SAR = (long)(PATTBL0+3);
 PTN3_MRA = 0xc6;
 PTN3_CRA = 0x0404;
 nextmode3++;
}

/************* reverse stop3 **************/
rstop3()
{
 CYC3_SAR = (long)UPTBL;
 CYC3_MRA = 0x01;
 CYC3_CRA = 0x03e9;
 PTN3_SAR = (long)(PATTBL0+3);
 PTN3_MRA = 0x06;
 PTN3_CRA = 0x0404;
 nextmode3 = 0x01;
}

 228

4.4 Timer-Triggered A/D Conversion A/D, DMAC, TPU

Specifications

1. The A/D converter and DMAC are activated by a TPU conversion start trigger, A/D
conversion of voice signals is performed, and the results are transferred to RAM by the
DMAC, as shown in figure 1.

2. The transfer areas are H'A00000 to H'A0FFFF and H'A10000 to H'A1FFFF.

3. The address is activated by a TPU TGRA compare-match.

4. A 20 Hz H8S/2655 internal operating frequency is used.

H'A00000

H'A0FFFF

to

H'A10000

H'A1FFFF

to

RAM1

RAM2

DMACA/D

H8S/2655

TPU

(2.5 ms ≥)

AN0, 1

Trigger signal

Figure 1 Block Diagram of Timer-Triggered A/D Conversion

Functions Used

1. Figure 2 shows the DMAC, A/D, and TPU block diagram for this sample task.

The following DMAC function is used to transfer A/D conversion results to RAM:

a. Activation of DMAC operation by a TPU compare-match A interrupt

The following A/D converter functions are used to perform signal sampling:

a. The ability to start conversion when triggered by the TPU

b. Simultaneous sampling of input voltages on two channels (simultaneous sampling
operation)

 229

The following TPU function is used to perform signal sampling:

a. The ability to generate an A/D converter conversion start trigger

ADDRA

ADDRB

RAMA/DTPU

DMAC0A, 0B

Vref

AVCC

AVSS

AN0

AN1

16-bit
counter

Comparator
A

Output
compare
register A
(TGRA)

(Sampling cycle
setting)

Compare-
match A

(Interrupt request
enabling/disabling)

Timer status
control register

(TSR)

Control
logic

Compare-
match signal

Timer interrupt
enable register

(TIER)

(Interrupt request
enabling)

Control logic

10-bit
D/A

Sample-
and-hold

circuit

Analog
multiplexer

 (A/D conversion of
input from AN0/AN1)

A/D conversion results
transferred to RAM)

H'A00000

(AN0 results)

H'A0FFFF

H'A10000

(AN1 results)

H'A1FFFF

Figure 2 Block Diagram of Timer-Triggered A/D Conversion

 230

2. Table 1 shows the function assignments for this sample task. H8S/2655 functions are assigned
as shown in this table to transfer A/D conversion results to RAM.

Table 1 H8S/2655 Function Assignments

H8S/2655 Function Function

A/D AN0, 1 Analog signal input pins

ADDRA,
ADDRB

Store A/D conversion results

DMAC DMABCR Controls operation of each channel

DMACR Sets sequential mode as transfer mode

MAR Transfer source address setting

IOAR Transfer destination address setting

ETCR Transfer number setting

TPU TGR Cycle setting

TCR Selects clock, counter clear source, etc.

TIOR Sets TGR as output compare register

 231

Operation

Figure 3 shows the principles of the operation. A/D conversion values are stored in RAM by
means of H8S/2655 hardware processing as shown in this figure.

TCNT0 count value

TGR0A

H'0000

A/D start (ADST)

A/D end (ADF)

ADDRA → RAM1
(DMAC0A)

ADDRB → RAM2
(DMAC0B)

Hardware processing

Software processing

None

1.

2.

3.

Hardware processing

Software processing

None

1.

2.

TGR0A compare-
match generation
Start A/D
conversion
(set ADST)

Hardware processing

Software processing

1. Set transfer end
flag

DEND0B generation

Hardware processing

1.

2.

Software processing

None

A/D converter initialization
• Set group single mode as conversion
 mode
• Set AN0 and AN1 as analog input
 channels
• Set high-speed start mode as A/D
 converter conversion start mode
• Enable A/D interrupt
TPU initialization
• Set A/D converter activation time in
 TGR0A
• Set counter clearing by TGR0A
 compare-match
DMAC initialization
• Set sequential transfer mode
• Activation by A/D conversion end
 interrupt
Clear A/D conversion end interrupt flag
Start TPU0 count

1. Interrupt generation
after byte transfer
to RAM

ADI interrupt
generation
DMAC0 activation

Figure 3 Principles of Timer-Triggered A/D Conversion Operation

 232

Software

1. Modules

Module Name Label Function

Main routine tpuadmn TPU and DMAC initialization, setting of RAM used

A/D conversion end adend A/D conversion end flag setting

2. Arguments

Label Function
Data
Length Module

Input/
Output

ad_end Indicates end of data transfer from H'A00000 to
H'A1FFFF

1: End of data transfer
0: Data transfer in progress

Unsigned
char

Main routine

A/D conversion
end

Input

Output

ad_data AN0 and AN1 A/D conversion results are stored
in byte units starting in addata0 and addata1,
respectively, by DMA transfer

The conversion result is transferred to RAM as
follows:

Unsigned
char

Main routine Input

Upper
bits

AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2

sum_cyc Setting of timer value corresponding to A/D
conversion sampling cycle

Cycle (ns) = Timer counter value × ø cycle
(50 ns at 20 MHz operation)

Unsigned
short

Main routine Input

 233

3. Internal Registers Used

On-Chip Function Register Name Function

TPU TGRA A/D conversion sampling cycle setting

TIER Enables TGIEA interrupt’

TCR Makes the following TPU0 settings:

• Counter clearing by TGRA compare-match

• Counting on ø internal clock

TIOR Sets TGRA as output compare register, disables pin
output

TSTR Enables TCNT0 count operation

DMAC DMABCR Controls operation of each channel

DMACR0A Makes the following DMAC0A settings:

• Byte-size transfer

• Sequential mode

• Internal interrupt source clearing in case of DMA
transfer enabled

• Data transfer and transfer end interrupt enabled

DMACR0B Makes the following DMAC0B settings:

• Byte-size transfer

• Sequential mode

• Internal interrupt source clearing in case of DMA
transfer enabled

• Data transfer and transfer end interrupt enabled

IOAR0 Transfer source address setting

MAR0 Transfer destination address setting

ETCR0 Transfer number (H'0000) setting

A/D ADCR ADCR is set as follows:

• High-speed start mode

• A/D conversion started by TPU0

• Single mode

• Simultaneous sampling operation

ADCSR ADCSR is set as follows:

• A/D conversion end interrupt enabled

• Group mode

• AN0 and AN1 set as input channels

MSTPCR Clears module stop mode

 234

4. RAM Used

This task does not use any RAM apart from the arguments.

 235

PAD

1. Main routine

Timer-triggered A/D
conversion

tpuadmn

Make the following
DMACR0A settings:
• Byte transfer data size
• Activation by TPU
 compare-match A
• Sequential mode transfer

Make the following
DMACR0B settings:
• Byte transfer data size
• Activation by TPU
 compare-match A
• Sequential mode transfer

Read DMABCRL

Set channel 0A and 0B data
transfer and channel 0B
transfer end interrupt
enabled in DMABCRL

Set TCR to TCNT clearing
by TGRA compare-match

Set TGRA to output
compare register in TIOR

Set sampling cycle in TGRA
in TPU

Enable TGIA interrupt in
TIER

Set I flag to enable interrupts

Enable TPU0 count
operation

While (1)

1

Clear A/D, TPU, DMAC
module stop mode

Make the following ADCR
settings:
• High-speed start mode
• A/D conversion started by
 TPU
• Single mode
• Simultaneous sampling
 operation

Make the following ADCSR
settings:
• Enable A/D conversion
 end interrupt
• Group mode

Make the following
DMABCRH settings:
• Set channel 0 to short
 address mode
• Enable internal interrupt
 source clearing in case of
 DMA transfer

Set transfer source address
(ADDRA) in IOAR0A and
transfer destination address
(H'A00000) in MAR0A

Set transfer source address
(ADDRB) in IOAR0B and
transfer destination address
(H'A10000) in MAR0B

Set number of transfers
(65,536) in ETCR

1

 236

2. A/D conversion end

A/D conversion end

Disable TPU count operation

Set A/D conversion end flag
adend

 237

Program List

/**/
/* FILE NAME : ap21.c */
/**/
#include <machine.h>
#include <h8s.h>

/**/
/* PROTCOL */
/**/
void tpuadmn(void);

/**/
/* RAM ALLOCATION */
/**/
#define ad_end (*(volatile unsigned char *)0xffec00)
#define sum_cyc (*(volatile unsigned short *)0xffec01)
volatile struct ad_data
{
 unsigned char data1[65536];
 unsigned char data2[65536];
};
#define ad (*(struct ad_data *)0xA00000)

/**/
/* MAIN PROGRAM : tpuadmn */
/**/
void tpuadmn(void)
{
 MSTPCR = 0x5dff;
 ADCR = 0x54;
 ADCSR = 0x49;

 DMABCRH = 0x03;
 IOAR0A = (long)(&ADDRA);
 IOAR0B = (long)(&ADDRB);
 MAR0A = (long)(&ad.data1);
 MAR0B = (long)(&ad.data2);
 ETCR0A = 0x0000;
 ETCR0B = 0x0000;
 DMACR0A = 0x11;
 DMACR0B = 0x11;
 DMABCRL |= 0x32;

 TPU_TCR0 = 0x20;
 TIOR0H = 0x00;
 TGR0A = sum_cyc;
 TIER0 = 0xc0;

 set_imask_ccr(0);

 TSTR = 0x01;
 while(1);
}

 238

/**/
/* NAME : adend(set end flag) */
/**/
#pragma interrupt(adend)
void adend(void)
{
 TSTR = 0x00;
 ad_end = 0x01;
 DMABCRL &= 0xcd;
 ADCSR_BP.ADIE = 0;
}

 239

4.5 D/A Conversion TPU, DMAC, D/A

Specifications

1. The DMAC is activated by TPU channels 0 and 1, and D/A conversion is performed on data
stored in RAM, as shown in figure 1.

2. The RAM area is H'A00000 to H'A1FFFF.

3. A 20 Hz H8S/2655 internal operating frequency is used.

H8S/2655

DMAC0ATPU0

RAM1

TPU1

RAM2

DMAC0B

D/A
DA0

DA1

H'A00000

H'A0FFFF

to

H'A10000

H'A1FFFF

to

Figure 1 D/A Conversion Block Diagram

 240

Functions Used

1. Figure 2 shows the DMAC, D/A, and TPU block diagram for this sample task.

The following H8S/2655 functions are used to perform D/A conversion

DMAC

Activated by TPU compare-match A; transfers data from D/A DADR to data buffer.

TPU

Channels 0 and 1 operate simultaneously, and activate the DMAC.

The timer counter is cleared by each channel 1 compare-match A.

D/A

Immediately conversion data is written to DADR, D/A conversion is started and the
conversion result is output after the elapse of the conversion time. The analog conversion
voltage range can be set, with AVCC as the reference voltage.

 241

DADR0

DADR1DMAC0B

DMAC0A

D/A

DA0

DA1

RAM

H'A00000

H'A0FFFF

H'A10000

H'A1FFFF

TPU0

(Interrupt request
enabling)

Data buffer

16-bit counter

Comparator A

Output compare
register A
(TGRA)

(Sampling cycle setting)

Compare-
match A

(Interrupt request
enabling/disabling)

Timer status control
register (TSR)

Control
logic

Compare-match signal

Synchronous clear
source generation

Timer interrupt
enable register

(TIER)
(Interrupt request
enabling)

16-bit counter

Comparator A

Output compare
register A

(TGRA)

(Sampling cycle
setting)

Compare-
match A

(Interrupt request
enabling/disabling)

Timer status control
register (TSR)

Control
logic

Compare-match
signal

Timer interrupt
enable register

(TIER)

TPU1

Figure 2 Block Diagram of Analog Output Circuit

 242

2. Table 1 shows the function assignments for this sample task. H8S/2655 functions are assigned
as shown in this table to transfer D/A conversion results to RAM.

Table 1 H8S/2655 Function Assignments

H8S/2655 Function Function

TPU TCNT0 16-bit counter

TGR0A Output compare register

TCR0 Selects counter clock and counter clear source

TSR0 Indicates compare-match and overflow status

TIER0 Selects interrupt enabling/disabling

TCNT1 16-bit counter

TGR1A Output compare register

TCR1 Selects counter clock and counter clear source

TSR1 Indicates compare-match and overflow status

TIER1 Selects interrupt enabling/disabling

TSYR Sets simultaneous operation of channels 0 and 1

DMAC DMABCR Controls operation of each channel

DMACR0 Sets sequential mode as transfer mode

MAR0A Data start address setting

MAR0B Data start address setting

IOAR0A DADR0 address setting

IOAR0B DADR1 address setting

ETCR0A Transfer number setting

ETCR0B Transfer number setting

D/A DADR0 Stores data for conversion (AN0 side)

DADR1 Stores data for conversion (AN1 side)

DACR Controls D/A converter operation

AVCC Analog block power supply and reference voltage

AVSS Analog block ground and reference voltage

DA0 Analog output

DA1 Analog output

 243

Operation

Figure 3 shows the principles of the operation. D/A conversion is performed by means of
H8S/2655 hardware and software processing as shown in this figure.

1. Analog output

Hardware processing

Software processing

TPU

None

Hardware processing

Software processing

1.

1.

TCNT0/1 count
value

Time

TGR1A

TGR0A

H'0000

DMAC0A
(RAM1 → DADR0)

DMAC0B
(RAM2 → DADR1)

DA0 output

DA1 output

1. TGR0A compare-match
generation

DMAC
1.
2.

DMAC0A activation
Transfer conversion data
to DADR

D/A
1. Analog output from DA0

after D/A conversion

Hardware processing

Software processing

TPU

None

1.

2.

TGR1A compare-match
generation
Clear TCNT0 and TCNT1

DMAC
1.
2.

DMAC0B activation
Transfer conversion data
to DADR

D/A
1. Analog output from DA1

after D/A conversion

DMA transfer end interrupt
generation

Set transfer end flag

Figure 3 Principles of Analog Output Operation

 244

Software

1. Modules

Module Name Label Function

Main routine dacvtmn TPU, DMAC, D/A initialization, setting of RAM used

D/A conversion end datrend D/A conversion end flag setting

2. Arguments

Label Function
Data
Length Module

Input/
Output

da_end Indicates end of data transfer from
H'A00000 to H'A1FFFF

1: End of data transfer
0: Data transfer in progress

Unsigned char Main routine

D/A conversion
end

Input

Output

3. Internal Registers Used

On-Chip Function Register Name Function

TPU TGR0A D/A conversion sampling cycle setting

TIER0 Enables TGIA interrupt’

TCR0 Makes the following TPU0 settings:

• Synchronous clearing

• Counting on ø internal clock

TIOR0 Sets TGR0A as output compare register, disables pin
output

TGR1A D/A conversion sampling cycle setting

TIER1 Enables TGIA interrupt’

TCR1 Makes the following TPU0 settings:

• Counter clearing by TGR1A compare-match

• Counting on ø internal clock

TIOR1 Sets TGR1A as output compare register, disables pin
output

TSTR Enables TCNT0 and TCNT1 count operation

TSYR Sets synchronous operation of channels 0 and 1

 245

On-Chip Function Register Name Function

DMAC DMABCR Controls operation of each channel

DMACR0A Makes the following DMAC0A settings:

• Byte-size transfer

• Sequential mode

• Internal interrupt source clearing in case of DMA
transfer enabled

• Data transfer enabled

DMACR0B Makes the following DMAC0B settings:

• Byte-size transfer

• Sequential mode

• Internal interrupt source clearing in case of DMA
transfer enabled

• Data transfer and transfer end interrupt enabled

MAR0A Transfer source address (RAM1 start address) setting

MAR0B Transfer source address (RAM2 start address) setting

IOAR0A Transfer destination address (DADR0) setting

IOAR0B Transfer destination address (DADR1) setting

ETCR0A Transfer number (H'0000) setting

ETCR0B Transfer number (H'0000) setting

D/A DACR0 DACR is set as follows:

• Channel 0 D/A conversion and analog output DA0
enabled

DADR0 Stores data for conversion

DADR1 Stores data for conversion

MSTPCR Clears module stop mode

4. RAM Used

Label Function Data Length Data Capacity

da_data1,
da_data2

Stores D/A conversion data Unsigned char 128 kbytes

 246

PAD

1. Main routine

D/A conversion

dacvtmn

1

Clear D/A, TPU, DMAC
module stop mode

Make the following
DMACR0B settings:
• Byte transfer data size
• Activation by TPU1
 compare-match A
• Sequential mode transfer

Make the following DACR
setting:
• Enable channel 0 D/A
 conversion and analog
 output DA0 Read DMABCRL

Make the following
DMABCRH settings:
• Set channel 0 to short
 address mode
• Enable internal interrupt
 source clearing in case of
 DMA transfer

Set channel 0A and 0B data
transfer and channel 0B
transfer end interrupt
enabled in DMABCRL

Set transfer destination
address (DADR0) in
IOAR0A and transfer
source address (H'A00000)
in MAR0A

Set synchronous operation
of channels 0 and 1

Set transfer destination
address (DADR1) in
IOAR0B and transfer source
address (H'A10000) in
MAR0B

Set synchronous clearing as
TCR0 counter clear source

Set number of transfers
(65,536) in ETCR

Set compare-match A as
TCR1 counter clear source

Make the following
DMACR0A settings:
• Byte transfer data size
• Activation by TPU0
 compare-match A
• Transfer in sequential
 mode

Set sampling cycle in TGRA
in TPU0 and TPU1

Enable TGIA interrupt in
TIER0 and TIER1

Set I flag to enable interrupts

Enable TPU0 and TPU1
count operation

While (1)

1

 247

2. D/A conversion end

D/A conversion end

Disable TPU count operation

Set D/A conversion end flag

Disable transfer end interrupt

Disable analog output
Disable D/A conversion

datrend

 248

Program List

#include <machine.h>
#include <h8s.h>

/**/
/* PROTCOL */
/**/
void dacvtmn(void);

/**/
/* RAM ALLOCATION */
/**/
#define trs_end (*(volatile unsigned char *)0xffec00)
#define da (*(struct da_data *)0xA00000)
volatile struct da_data
{
 unsigned char data1[65536];
 unsigned char data2[65536];
};

/**/
/* MAIN PROGRAM : dacvtmn */
/**/
void dacvtmn(void)
{
 MSTPCR = 0x5bff;
 DACR = 0x5f;

 DMABCRH = 0x03;
 IOAR0A = (long)(&DADR0);
 IOAR0B = (long)(&DADR1);
 MAR0A = (long)(&da.data1);
 MAR0B = (long)(&da.data2);
 ETCR0A = 0x0000;
 ETCR0B = 0x0000;
 DMACR0A = 0x08;
 DMACR0B = 0x09;
 DMABCRL |= 0x32;

 TSYR = 0x03;
 TPU_TCR0 = 0xe0;
 TPU_TCR1 = 0x20;
 TGR0A = 0x00c8;
 TGR1A = 0x0190;
 TIER0 = 0x41;
 TIER1 = 0x41;

 set_imask_ccr(0);

 TSTR = 0x03;
 while(1);
}

 249

/**/
/* NAME : datrend(set end flag) */
/**/
#pragma interrupt(datrend)
void datrend(void)
{
 TSTR = 0x00;
 trs_end = 0x01;
 DMABCRL &= 0xcd;
 DACR = 0x1f;

}

 250

4.6 Simultaneous DTC, DMAC, and CPU
Activation

DTC, DMAC, TPU

Specifications

1. The DTC, DMAC, and CPU are activated each time a timer compare-match occurs, as shown
in figure 1.

The DTC transfers data from a data table (ROM) to NDR in the PPG, where pulse output is
performed.

The DMAC transfers 512-byte data stored ion RAM1 to RAM2.

The CPU monitors the port status and stops DTC and DMAC transfers when the port goes low.
However, interrupts continue to be sent to the CPU.

2. The data to be transferred by the DMAC is stored in addresses H'A00000 to H'A002FF.

3. A 20 Hz H8S/2655 internal operating frequency is used.

 251

TPU DMAC
RAM1

RAM2

ROM

PPG

PortCPU

DTC

H'A00000

H'A001FF

to

H'A00200

H'A002FF

to

PO0
PO1
PO2
PO3

H8S/2655

Figure 1 Block Diagram of Simultaneous DTC, DMAC, and CPU Activation

 252

Functions Used

1. In this sample task, the DMAC, DTC, and CPU are activated each time a TPU compare-match
occurs.

a. Figure 2 shows a block diagram of the H8S/2655 on-chip functions used by this sample
task.

The following functions are used to perform to activate the DTC, DMAC, and CPU
simultaneously, perform data transfer, and monitor the port status.

TPU

Generates compare-matches, DTC and DMAC transfer requests, and CPU interrupt
requests.

DMAC:

Activated by a TPU compare-match; transfers 512-byte data from RAM1 to RAM2.

DTC

Activated by a TPU compare-match; transfers 4-byte data from a data table to NDR in the
PPG.

CPU

Executes interrupt handling on a TPU compare-match. During interrupt handling, the CPU
monitors the port status and controls DMAC and DTC transfers.

 253

DMAC

DTC

CPU

RAM1

RAM2

ROM

PPG

PORT

D
at

a
bu

s
D

at
a

bu
s

TPU

Port monitoring

DMAC activation
request

DTC activation
request

CPU interrupt
request

Data table

Pulse
output

Figure 2 Block Diagram of Simultaneous DTC, DMAC, and CPU Activation

 254

2. Table 1 shows the function assignments for this sample task. H8S/2655 functions are assigned
as shown in this table to perform data transfer.

Table 1 H8S/2655 Function Assignments

H8S/2655 Function Function

DMAC DMABCR Makes the following DMAC0A settings:

• Full address mode as transfer mode

• Internal interrupt source clearing in case of DMA transfer disabled

• Data transfer and transfer end interrupt enabled

DMACR0A Makes the following DMAC0A settings:

• Byte-size data

• MAR incremented

• Block transfer mode for data transfer

• Data transfer direction setting (DMAC0A: MAR → IOAR)

• TPU0A as activation source

MAR0A RAM1 start address (transfer source) setting

MAR0B RAM2 start address (transfer destination) setting

ETCR0A Transfer number setting

TPU TCR0 TCNT clearing by compare-match

TIOR0 Sets compare-match output disabling

TIER0 Enables compare-match interrupt

TSR0 TGRA compare-match interrupt request flag setting

DTC DTCER Enabling of DTC activation by TGIA interrupt

PPG NDER Enables pulse outputs PO0 to PO15

NDR Stores next pulse output data

PCR Sets TPU channel 0 compare-match as PPG output request

PMR Sets direct output for PPG output

 255

Operation

Figure 3 shows the principles of the operation. Simultaneous DTC, DMAC, and CPU interrupt
activation is requested by means of H8S/2655 hardware and software processing, using the timing
shown in this figure.

Hardware processing

Software processing

None

Initialization
— TPU —

Hardware processing

Software processing

DMAC activation

TGI0A handling

Compare-match
signal TIOCA0

Immediately
after reset

RAM1 → RAM2
(DMAC)

ROM → NDR
(DTC)

PORT31

1. Interrupt request on TIOCA0
compare-match

— DTC —
1.

2.

3.

DTC register information
• Normal mode
• Transfer source: ROM
• Transfer destination: NDR
Set register information start address
to DTC vector address
Set enable bit for interrupt source used
as activation source to 1

— DMAC —
1.

2.

3.

Disable internal interrupt source
clearing in case of DMA transfer
Set register information start address
to DTC vector address
Set enable bit for interrupt source used
as activation source to 1

1. Transfer data from transfer
source address to transfer
destination address

DTC activation
1. Transfer data from transfer

source address to transfer
destination address

1. Port check processing

Figure 3 Principles of Simultaneous DTC, DMAC, and CPU Activation Operation

 256

Software

1. Modules

Module Name Label Function

Main routine simbsrmn TPU, DTC, PPG, DMAC, interrupt handling initialization

Port check portchk Port checking and transfer disable processing

Data transfer end trsend Data transfer end flag setting

2. Arguments

Register
Name Function

Data
Length Module

Input/
Output

status Indicates port 31 status

0: Data transfer enabled
1: Data transfer disabled

Unsigned
char

Port check Output

trs_end Flag indicating end of 512-byte transfer

1: End of data transfer
0: Data transfer in progress

Unsigned
char

Data transfer
end

Output

 257

3. Internal Registers Used

On-Chip Function Register Name Function

DMAC DMABCR Makes the following DMAC0A settings:

• Full address mode as transfer mode

• Internal interrupt source clearing in case of DMA
transfer disabled

• Data transfer and transfer end interrupt enabled

DMACR0A Makes the following DMAC0A settings:

• Byte-size data

• MAR incremented

• Block transfer mode for data transfer

• Data transfer direction setting (channel 0A: MAR →
IOAR)

• TPU0A as activation source

MAR0A RAM1 start address (trs) setting

MAR0B RAM2 start address (rev) setting

ETCR0A Transfer number setting

TPU TCR0 TCNT clearing by compare-match

TIOR0 Sets compare-match output disabling

TIER0 Enables compare-match interrupt

TSR0 TGRA capture interrupt request flag setting

DTC DTCER Enabling of DTC activation by TGIA interrupt

PPG NDER Enables pulse outputs PO0 to PO15

NDR Stores next pulse output data

PCR Sets TPU channel 0 compare-match for all pulse output
groups

PMR Sets direct output for all pulse output groups

MSTPCR Controls DTC, TPU, DMAC, PPG module stop mode

 258

4. RAM Used

Label Function Data Length Module

MAR0 DTC0 normal mode setting Unsigned char Main routine

MRB0 CPU interrupt enabling Unsigned char Main routine

SAR0 Transfer source address (PATTBL1)
setting

Unsigned long Main routine

DAR0 Transfer destination address (P1DR)
setting

Unsigned long Main routine

CRA0 Transfer number setting Unsigned short Main routine

trs Stores transmit data 512 bytes Main routine

rev Stores receive data 512 bytes Main routine

PATTBL1 Stores PPG output data 4 bytes Main routine

 259

PAD

1. Main routine

Simultaneous activation

simbsrmn

1

Clear TPU, DMAC, DTC
module stop mode

Make the following MRA0
settings:
• SAR incremented after
 transfer
• DAR incremented after
 transfer
• Normal mode for data
 transfer
• Byte-size transfer

Make the following
DMABCRH settings
• Full address mode
• Internal interrupt clearing
 disabled

Set transfer source address
(MAR0A) to RAM1 start
address

Set NDR address in DAR0

Set transfer destination
address (MAR0B) to RAM2
start address

Enable interrupts to CPU

Make the following
DMACRA settings:
• Byte-size data
• MARA incremented
• Block transfer mode
• Activation by TPU
 channel 0 compare-match

Set transfer count (H'04) in
CRA0

Set number of transfers
(128) in ETCR

Set TIOR to compare-match
enable

Read DMABCRL

Enable TGIA interrupt in
TIER

Clear I flag to enable
interrupts

Enable TPU0 count
operation

While (1)

1

Make the following
DMABCRL settings:
• Enable channel 0 transfer
• Enable channel 0 transfer
 end interrupt

Set transmit data buffer
start address in SAR0

 260

2. Port check

Port check
Yes

No

portchk P31DR == 0?

Disable DMAC and
DTC transfer

Set status flag

Clear TGR0A capture interrupt
request flag
(Clear TSR0:TGFA0)

3. Data transfer end

Data transfer end Set transfer end flag

trsend

 261

Program List

/**/
/* FILE NAME : ap17.c */
/**/
#include <machine.h>
#include "..\h8sapn\h8s.h"
/**/
/* PROTCOL */
/**/
void simbsrmn (void);
#pragma interrupt(trsend)
#pragma interrupt(portchk)
/**/
/* RAM ALLOCATION */
/**/
#define status (*(volatile unsigned char *)0xffec00)
#define trs_end (*(volatile unsigned char *)0xffec01)
volatile struct databuf
{
 unsigned char trs[512];
 unsigned char rev[512];
};
#define dat (*(struct databuf *)0xa00000)
#define SAR0 (*(volatile unsigned long *)0xfff800)
#define MRA0 (*(volatile unsigned char *)0xfff800)
#define DAR0 (*(volatile unsigned long *)0xfff804)
#define MRB0 (*(volatile unsigned char *)0xfff804)
#define CRA0 (*(volatile unsigned char *)0xfff808)
#define CRB0 (*(volatile unsigned char *)0xfff80a)
const unsigned char PATTBL1[4] = {0xf6,0xf3,0xf9,0xfc};
/**/
/* MAIN PROGRAM : simbsrmn */
/**/
void simbsrmn(void)
{
 status = 0; /* flag clr */
 trs_end = 0; /* flag clr */
 MSTPCR = 0x17ff; /* Disable module(PPG,DMAC,DTC) stop mode*/
 P1DDR = 0xff; /* P1,2 : output */
 P2DDR = 0xff;
 NDERH = 0xff; /* Set next data enable */
 NDERL = 0xff;
 PCR = 0x00; /* Set trigger TPU0 compare match */
 PMR = 0xf0; /* Set normal mode */
 DMABCRH = 0x40; /* Initialize DMABCRH */
 MAR0A = (long)(&dat.trs); /* Set base address */
 MAR0B = (long)(&dat.rev); /* Set excute address */
 ETCR0A = 0x01ff; /* Set excute count */
 DMACR0A = 0x20; /* Initialize DMACR0 */
 DMACR0B = 0x27;
 DMABCRL |= 0x30; /* Initialize DMABCRL */
 SAR0 = (long)(PATTBL1); /* Set base address */
 MRA0 = 0x86; /* Set repeat mode */
 DAR0 = (long)(&NDRH); /* Set excute address */
 MRB0 = 0x40; /* Initialize MRB */

 262

 CRA0 = 0x0404; /* Set excute count */
 DTCERB_BP.TGI0A = 1; /* Enable DTC */
 TCR0 = 0x20;
 TGR0A = 0x1000; /* Initialize TGR0A */
 TIOR0H = 0x00; /* Initialize TIOR0H */
 TIER0 = 0x01; /* Enable TGI0A interrupt */
 set_imask_ccr(0); /* Enable interrupt */
 TSTR = 0x01;
 while(1);
}

 263

/**/
/* NAME : portchk */
/**/
void portchk(void)
{
 TSR0_BP.TGFA0 = 0; /* Clear TGFA0 flag */

 if (P3DR_BP.P31DR == 1) /* Check port31 */
 {
 status = 1;
 DMABCRL |= 0x30; /* Initialize DMABCRL */
 DTCERB_BP.TGI0A = 1; /* Disble DTC */
 }
 else
 {
 DMABCRL |= 0x00; /* Disable DMAC */
 DTCERB_BP.TGI0A = 0; /* Disble DTC */
 }
}
/**/
/* NAME : trsend */
/**/
void trsend(void)
{
 ETCR0A = 0x01ff; /* Set excute count */
 trs_end = 1; /* Set DMAC end flag */
}

 264

 265

Section 5 Appendix

5.1 Internal Register Definitions

H8S/2655 Header File (1) <H8S.H>

/**/
/* SYMBOL DEFNITIONS */
/**/
struct ISCR_S{ /* IRQ sense control register */
 unsigned char IRQ7SCB:1;
 unsigned char IRQ7SCA:1;
 unsigned char IRQ6SCB:1;
 unsigned char IRQ6SCA:1;
 unsigned char IRQ5SCB:1;
 unsigned char IRQ5SCA:1;
 unsigned char IRQ4SCB:1;
 unsigned char IRQ4SCA:1;
 unsigned char IRQ3SCB:1;
 unsigned char IRQ3SCA:1;
 unsigned char IRQ2SCB:1;
 unsigned char IRQ2SCA:1;
 unsigned char IRQ1SCB:1;
 unsigned char IRQ1SCA:1;
 unsigned char IRQ0SCB:1;
 unsigned char IRQ0SCA:1;
};
#define ISCR_BP (*(struct ISCR_S *)0xffff2c)

struct ISR_S{ /* IRQ0 status register */
 unsigned char IRQ7F:1;
 unsigned char IRQ6F:1;
 unsigned char IRQ5F:1;
 unsigned char IRQ4F:1;
 unsigned char IRQ3F:1;
 unsigned char IRQ2F:1;
 unsigned char IRQ1F:1;
 unsigned char IRQ0F:1;
};
#define ISR_BP (*(struct ISR_S *)0xffff2f)

struct IPRA_S{ /* interrupt priority registerA */
 unsigned char dummy1:1;
 unsigned char IPRA6:1;
 unsigned char IPRA5:1;
 unsigned char IPRA4:1;
 unsigned char dummy2:1;
 unsigned char IPRA2:1;
 unsigned char IPRA1:1;
 unsigned char IPRA0:1;
};
#define IPRA_BP (*(struct IPRA_S *)0xfffec4)

 266

H8S/2655 Header File (2) <H8S.H>

struct DMABCR_S{ /* DMA band control register */
 unsigned char FAE1:1;
 unsigned char FAE0:1;
 unsigned char SAE1:1;
 unsigned char SAE0:1;
 unsigned char DTA1B:1;
 unsigned char DTA1A:1;
 unsigned char DTA0B:1;
 unsigned char DTA0A:1;
 unsigned char DTE1B:1;
 unsigned char DTE1A:1;
 unsigned char DTE0B:1;
 unsigned char DTE0A:1;
 unsigned char DTIE1B:1;
 unsigned char DTIE1A:1;
 unsigned char DTIE0B:1;
 unsigned char DTIE0A:1;
};
#define DMABCR_BP (*(struct DMABCR_S *)0xffff06)

struct DTCERA_S{ /* DTC vector register */
 unsigned char IRQ0:1;
 unsigned char IRQ1:1;
 unsigned char IRQ2:1;
 unsigned char IRQ3:1;
 unsigned char IRQ4:1;
 unsigned char IRQ5:1;
 unsigned char IRQ6:1;
 unsigned char IRQ7:1;
};
#define DTCERA_BP (*(struct DTCERA_S *)0xffff30)

struct DTCERB_S{ /* DTC vector register */
 unsigned char dummy3:1;
 unsigned char ADI:1;
 unsigned char TGI0A:1;
 unsigned char TGI0B:1;
 unsigned char TGI0C:1;
 unsigned char TGI0D:1;
 unsigned char TGI1A:1;
 unsigned char TGI1B:1;
};
#define DTCERB_BP (*(struct DTCERB_S *)0xffff31)

struct DTCERC_S{ /* DTC vector register */
 unsigned char TGI2A:1;
 unsigned char TGI2B:1;
 unsigned char TGI3A:1;
 unsigned char TGI3B:1;
 unsigned char TGI3C:1;
 unsigned char TGI3D:1;
 unsigned char TGI4A:1;
 unsigned char TGI4B:1;
};

 267

H8S/2655 Header File (3) <H8S.H>

#define DTCERC_BP (*(struct DTCERC_S *)0xffff32)

struct DTVECR_S{ /* DTC vector register */
 unsigned char SWDTE:1;
 unsigned char VECR:7;
};
#define DTVECR_BP (*(struct DTVECR_S *)0xffff37)

struct P2DR_S{ /* port2 data register */
 unsigned char P27DR:1;
 unsigned char P26DR:1;
 unsigned char P25DR:1;
 unsigned char P24DR:1;
 unsigned char P23DR:1;
 unsigned char P22DR:1;
 unsigned char P21DR:1;
 unsigned char P20DR:1;
};
#define P2DR_BP (*(struct P2DR_S *)0xffff61)

struct P3DDR_S{
 unsigned char P37:1;
 unsigned char P36:1;
 unsigned char P35DDR:1;
 unsigned char P34DDR:1;
 unsigned char P33DDR:1;
 unsigned char P32DDR:1;
 unsigned char P31DDR:1;
 unsigned char P30DDR:1;
};
#define P3DDR_BP (*(struct P3DDR_S *)0xfffeb2)

struct P3DR_S{ /* port3 data register */
 unsigned char dummy60:1;
 unsigned char dummy61:1;
 unsigned char P35DR:1;
 unsigned char P34DR:1;
 unsigned char P33DR:1;
 unsigned char P32DR:1;
 unsigned char P31DR:1;
 unsigned char TRG:1;
};
#define P3DR_BP (*(struct P3DR_S *)0xffff62)

struct PORT3_S{
unsigned char dummy43:1;
unsigned char dummy44:1;
unsigned char P35:1;
unsigned char P34:1;
unsigned char P33:1; /*RTS*/
unsigned char P32:1;
unsigned char P31:1; /*CTS*/
unsigned char P30:1;
};

 268

H8S/2655 Header File (4) <H8S.H>

#define PORT3_BP (*(struct PORT3_S *)0xffff52)

struct P6DR_S{ /* port6 data register */
 unsigned char IRQ3:1;
 unsigned char IRQ2:1;
 unsigned char RRQ:1;
 unsigned char IRQ0:1;
 unsigned char dummy4:1;
 unsigned char dummy5:1;
 unsigned char dummy6:1;
 unsigned char dummy7:1;
};
#define P6DR_BP (*(struct P6DR_S *)0xffff65)

struct PORT6_S{ /* port6 data register */
 unsigned char IRQ3:1;
 unsigned char IRQ2:1;
 unsigned char RRQ:1;
 unsigned char SRQ:1;
 unsigned char dummy4:1;
 unsigned char dummy5:1;
 unsigned char dummy6:1;
 unsigned char dummy7:1;
};
#define PORT6_BP (*(struct PORT6_S *)0xffff55)

struct TIER0_S{ /* timer interrupt enable
register0 */
 unsigned char TTGE0:1;
 unsigned char dummy8:1;
 unsigned char dummy9:1;
 unsigned char TCIEV0:1;
 unsigned char TGIED0:1;
 unsigned char TGIEC0:1;
 unsigned char TGIEB0:1;
 unsigned char TGIEA0:1;
};
#define TIER0_BP (*(struct TIER0_S *)0xffffd4)

struct TSR0_S{ /* timer status
register0 */
 unsigned char dummy10:1;
 unsigned char dummy11:1;
 unsigned char dummy12:1;
 unsigned char TCFV0:1;
 unsigned char TGFD0:1;
 unsigned char TGFC0:1;
 unsigned char TGFB0:1;
 unsigned char TGFA0:1;
};
#define TSR0_BP (*(struct TSR0_S *)0xffffd5)

struct TIER1_S{ /* timer interrupt enable
register1 */

 269

H8S/2655 Header File (5) <H8S.H>

 unsigned char TTGE1:1;
 unsigned char dummy13:1;
 unsigned char TCIEU1:1;
 unsigned char TCIEV1:1;
 unsigned char dummy14:1;
 unsigned char dummy15:1;
 unsigned char TGIEB1:1;
 unsigned char TGIEA1:1;
};
#define TIER1_BP (*(struct TIER1_S *)0xffffe4)

struct TSR1_S{ /* timer status
register1 */
 unsigned char TCFD1:1;
 unsigned char dummy16:1;
 unsigned char TCFU1:1;
 unsigned char TCFV1:1;
 unsigned char dummy17:1;
 unsigned char dummy18:1;
 unsigned char TGFB1:1;
 unsigned char TGFA1:1;
};
#define TSR1_BP (*(struct TSR1_S *)0xffffe5)

struct TIER2_S{ /* timer interrupt enable
register2 */
 unsigned char TTGE2:1;
 unsigned char dummy19:1;
 unsigned char TCIEU2:1;
 unsigned char TCIEV2:1;
 unsigned char dummy20:1;
 unsigned char dummy21:1;
 unsigned char TGIEB2:1;
 unsigned char TGIEA2:1;
};
#define TIER2_BP (*(struct TIER2_S *)0xfffff4)

struct TSR2_S{ /* timer status register2 */
 unsigned char TCFD2:1;
 unsigned char dummy22:1;
 unsigned char TCFU2:1;
 unsigned char TCFV2:1;
 unsigned char dummy23:1;
 unsigned char dummy24:1;
 unsigned char TGFB2:1;
 unsigned char TGFA2:1;
};
#define TSR2_BP (*(struct TSR2_S *)0xfffff5)

struct TIER3_S{ /* timer interrupt enable
register3 */
 unsigned char TTGE3:1;
 unsigned char dummy25:1;
 unsigned char dummy26:1;

 270

H8S/2655 Header File (6) <H8S.H>

 unsigned char TCIEV3:1;
 unsigned char TGIED3:1;
 unsigned char TGIEC3:1;
 unsigned char TGIEB3:1;
 unsigned char TGIEA3:1;
};
#define TIER3_BP (*(struct TIER3_S *)0xfffe84)

struct TSR3_S{ /* timer status register3 */
 unsigned char dummy27:1;
 unsigned char dummy28:1;
 unsigned char dummy29:1;
 unsigned char TCFV3:1;
 unsigned char TGFD3:1;
 unsigned char TGFC3:1;
 unsigned char TGFB3:1;
 unsigned char TGFA3:1;
};
#define TSR3_BP (*(struct TSR3_S *)0xfffe85)

struct TIER4_S{ /* timer interrupt enable
register4 */
 unsigned char TTGE4:1;
 unsigned char dummy30:1;
 unsigned char TCIEU4:1;
 unsigned char TCIEV4:1;
 unsigned char dummy31:1;
 unsigned char dummy32:1;
 unsigned char TGIEB4:1;
 unsigned char TGIEA4:1;
};
#define TIER4_BP (*(struct TIER4_S *)0xfffe94)

struct TSR4_S{ /* timer status register4 */
 unsigned char TCFD4:1;
 unsigned char dummy33:1;
 unsigned char TCFU4:1;
 unsigned char TCFV4:1;
 unsigned char dummy34:1;
 unsigned char dummy35:1;
 unsigned char TGFB4:1;
 unsigned char TGFA4:1;
};
#define TSR4_BP (*(struct TSR4_S *)0xfffe95)

struct TIER5_S{ /* timer interrupt enable
register5 */
 unsigned char TTGE5:1;
 unsigned char dummy36:1;
 unsigned char TCIEU5:1;
 unsigned char TCIEV5:1;
 unsigned char dummy37:1;
 unsigned char dummy38:1;
 unsigned char TGIEB5:1;

 271

H8S/2655 Header File (7) <H8S.H>

 unsigned char TGIEA5:1;
};
#define TIER5_BP (*(struct TIER5_S *)0xfffea4)
struct TSR5_S{ /* timer status register5 */
 unsigned char TCFD5:1;
 unsigned char dummy39:1;
 unsigned char TCFU5:1;
 unsigned char TCFV5:1;
 unsigned char dummy40:1;
 unsigned char dummy41:1;
 unsigned char TGFB5:1;
 unsigned char TGFA5:1;
};
#define TSR5_BP (*(struct TSR5_S *)0xfffea5)

struct TSTR_S{ /* timer start register */
 unsigned char dummy42:1;
 unsigned char dummy43:1;
 unsigned char CST5:1;
 unsigned char CST4:1;
 unsigned char CST3:1;
 unsigned char CST2:1;
 unsigned char CST1:1;
 unsigned char CST0:1;
};
#define TSTR_BP (*(struct TSTR_S *)0xffffc0)

struct SCR0_S{ /* serial control register0 */
 unsigned char TIE0:1;
 unsigned char RIE0:1;
 unsigned char TE0:1;
 unsigned char RE0:1;
 unsigned char MPIE0:1;
 unsigned char TEIE0:1;
 unsigned char CKE10:1;
 unsigned char CKE00:1;
};
#define SCR0_BP (*(struct SCR0_S *)0xffff7a)

struct SSR0_S{ /* serial status register0 */
 unsigned char TDRE0:1;
 unsigned char RDRF0:1;
 unsigned char OPER0:1;
 unsigned char FER0:1;
 unsigned char PER0:1;
 unsigned char TEND0:1;
 unsigned char MPB0:1;
 unsigned char MPBT0:1;
};
#define SSR0_BP (*(struct SSR0_S *)0xffff7c)

struct SCR1_S{ /* serial control register1 */
 unsigned char TIE1:1;
 unsigned char RIE1:1;

 272

H8S/2655 Header File (8) <H8S.H>

 unsigned char TE1:1;
 unsigned char RE1:1;
 unsigned char MPIE1:1;
 unsigned char TEIE1:1;
 unsigned char CKE11:1;
 unsigned char CKE01:1;
};
#define SCR1_BP (*(struct SCR1_S *)0xffff82)
struct SSR1_S{ /* serial status register1 */
 unsigned char TDRE1:1;
 unsigned char RDRF1:1;
 unsigned char OPER1:1;
 unsigned char FER1:1;
 unsigned char PER1:1;
 unsigned char TEND1:1;
 unsigned char MPB1:1;
 unsigned char MPBT1:1;
};
#define SSR1_BP (*(struct SSR1_S *)0xffff84)

struct SCR2_S{ /* serial control register2 */
 unsigned char TIE2:1;
 unsigned char RIE2:1;
 unsigned char TE2:1;
 unsigned char RE2:1;
 unsigned char MPIE2:1;
 unsigned char TEIE2:1;
 unsigned char CKE12:1;
 unsigned char CKE02:1;
};
#define SCR2_BP (*(struct SCR2_S *)0xffff8a)

struct SSR2_S{ /* serial status register2 */
 unsigned char TDRE2:1;
 unsigned char RDRF2:1;
 unsigned char OPER2:1;
 unsigned char FER2:1;
 unsigned char PER2:1;
 unsigned char TEND2:1;
 unsigned char MPB2:1;
 unsigned char MPBT2:1;
};
#define SSR2_BP (*(struct SSR2_S *)0xffff8c)

struct ADCSR_S{ /* serial status register2 */
 unsigned char ADF:1;
 unsigned char ADIE:1;
 unsigned char ADST:1;
 unsigned char CKS:1;
 unsigned char GRP:1;
 unsigned char CH2:1;
 unsigned char CH1:1;
 unsigned char CH0:1;
};

 273

H8S/2655 Header File (9) <H8S.H>

#define ADCSR_BP (*(struct ADCSR_S *)0xffffa0)

struct MSTPCR_S{ /* module stop mode */
 unsigned char MSTP15:1; /* DMA controller */
 unsigned char MSTP14:1; /* DTC */
 unsigned char MSTP13:1; /* TPU */
 unsigned char MSTP12:1; /* 8bit timer */
 unsigned char MSTP11:1; /* PPG */
 unsigned char MSTP10:1; /* D/A */
 unsigned char MSTP9:1; /* A/D */
 unsigned char MSTP8:1;
 unsigned char MSTP7:1; /* SCI2 */
 unsigned char MSTP6:1; /* SCI1 */
 unsigned char MSTP5:1; /* SCI0 */
 unsigned char MSTP4:1;
 unsigned char MSTP3:1;
 unsigned char MSTP2:1;
 unsigned char MSTP1:1;
 unsigned char MSTP0:1;
};
#define MSTPCR_BP (*(struct MSTPCR_S *)0xffff3c)
#define ISCRH (*(volatile unsigned char *)0xffff2c)
#define ISCRL (*(volatile unsigned char *)0xffff2d)
#define IER (*(volatile unsigned char *)0xffff2e)
#define ISR (*(volatile unsigned char *)0xffff2f)
#define IPRA (*(volatile unsigned char *)0xfffec4)

#define ABWCR (*(volatile unsigned char *)0xfffed0)
#define ASTCR (*(volatile unsigned char *)0xfffed1)
#define WCRH (*(volatile unsigned char *)0xfffed2)
#define WCRL (*(volatile unsigned char *)0xfffed3)
#define BCRH (*(volatile unsigned char *)0xfffed4)
#define BCRL (*(volatile unsigned char *)0xfffed5)
#define MCR (*(volatile unsigned char *)0xfffed6)
#define DRAMCR (*(volatile unsigned char *)0xfffed7)

#define MAR0A_B (*(volatile unsigned char **)0xfffee0)
#define MAR0A_W (*(volatile unsigned short **)0xfffee0)
#define MAR0A_L (*(volatile unsigned long **)0xfffee0)
#define MAR0B_B (*(volatile unsigned char **)0xfffee8)
#define MAR0B_W (*(volatile unsigned short **)0xfffee8)
#define MAR0B_L (*(volatile unsigned long **)0xfffee8)

#define MAR0A (*(volatile unsigned long *)0xfffee0)
#define IOAR0A (*(volatile unsigned short *)0xfffee4)
#define ETCR0A (*(volatile unsigned short *)0xfffee6)
#define MAR0B (*(volatile unsigned long *)0xfffee8)
#define IOAR0B (*(volatile unsigned short *)0xfffeec)
#define ETCR0B (*(volatile unsigned short *)0xfffeee)

#define MAR1A (*(volatile unsigned long *)0xfffef0)
#define IOAR1A (*(volatile unsigned short *)0xfffef4)
#define ETCR1A (*(volatile unsigned short *)0xfffef6)
#define MAR1B (*(volatile unsigned long *)0xfffef8)

 274

H8S/2655 Header File (10) <H8S.H>

#define IOAR1B (*(volatile unsigned short *)0xfffefc)
#define ETCR1B (*(volatile unsigned short *)0xfffefe)

#define DMAWER (*(volatile unsigned char *)0xffff00)
#define DMATCR (*(volatile unsigned char *)0xffff01)
#define DMACR0A (*(volatile unsigned char *)0xffff02)
#define DMACR0B (*(volatile unsigned char *)0xffff03)
#define DMACR1A (*(volatile unsigned char *)0xffff04)
#define DMACR1B (*(volatile unsigned char *)0xffff05)

#define DMABCRH (*(volatile unsigned char *)0xffff06)
#define DMABCRL (*(volatile unsigned char *)0xffff07)

#define DTCERA (*(volatile unsigned char *)0xffff30)
#define DTCERB (*(volatile unsigned char *)0xffff31)
#define DTCERC (*(volatile unsigned char *)0xffff32)
#define DTCERD (*(volatile unsigned char *)0xffff33)
#define DTCERE (*(volatile unsigned char *)0xffff34)
#define DTCERF (*(volatile unsigned char *)0xffff35)
#define DTVECR (*(volatile unsigned char *)0xffff37)

#define P1DDR (*(volatile unsigned char *)0xfffeb0)
#define P1DR (*(volatile unsigned char *)0xffff60)
#define P2DDR (*(volatile unsigned char *)0xfffeb1)
#define P2DR (*(volatile unsigned char *)0xffff61)
#define P3DDR (*(volatile unsigned char *)0xfffeb2)
#define P3DR (*(volatile unsigned char *)0xffff62)
#define P5DDR (*(volatile unsigned char *)0xfffeb4)
#define P5DR (*(volatile unsigned char *)0xffff64)
#define P6DDR (*(volatile unsigned char *)0xfffeb5)
#define P6DR (*(volatile unsigned char *)0xffff65)
#define PADDR (*(volatile unsigned char *)0xfffeb9)
#define PADR (*(volatile unsigned char *)0xffff69)
#define PBDDR (*(volatile unsigned char *)0xfffeba)
#define PBDR (*(volatile unsigned char *)0xffff6a)
#define PCDDR (*(volatile unsigned char *)0xfffebb)
#define PCDR (*(volatile unsigned char *)0xffff6b)
#define PDDDR (*(volatile unsigned char *)0xfffebc)
#define PDDR (*(volatile unsigned char *)0xffff6c)
#define PEDDR (*(volatile unsigned char *)0xfffebd)
#define PEDR (*(volatile unsigned char *)0xffff6d)
#define PFDDR (*(volatile unsigned char *)0xfffebe)
#define PFDR (*(volatile unsigned char *)0xffff6e)
#define PGDDR (*(volatile unsigned char *)0xfffebf)
#define PGDR (*(volatile unsigned char *)0xffff6f)

#define TPU_TCR0 (*(volatile unsigned char *)0xffffd0)
#define TMDR0 (*(volatile unsigned char *)0xffffd1)
#define TIOR0H (*(volatile unsigned char *)0xffffd2)
#define TIOR0L (*(volatile unsigned char *)0xffffd3)
#define TIER0 (*(volatile unsigned char *)0xffffd4)
#define TSR0 (*(volatile unsigned char *)0xffffd5)
#define TPU_TCNT0 (*(volatile unsigned short *)0xffffd6)
#define TGR0A (*(volatile unsigned short *)0xffffd8)

 275

H8S/2655 Header File (11) <H8S.H>

#define TGR0B (*(volatile unsigned short *)0xffffda)
#define TGR0C (*(volatile unsigned short *)0xffffdc)
#define TGR0D (*(volatile unsigned short *)0xffffde)

#define TPU_TCR1 (*(volatile unsigned char *)0xffffe0)
#define TMDR1 (*(volatile unsigned char *)0xffffe1)
#define TIOR1H (*(volatile unsigned char *)0xffffe2)
#define TIER1 (*(volatile unsigned char *)0xffffe4)
#define TSR1 (*(volatile unsigned char *)0xffffe5)
#define TPU_TCNT1 (*(volatile unsigned short *)0xffffe6)
#define TGR1A (*(volatile unsigned short *)0xffffe8)
#define TGR1B (*(volatile unsigned short *)0xffffea)

#define TCR2 (*(volatile unsigned char *)0xfffff0)
#define TMDR2 (*(volatile unsigned char *)0xfffff1)
#define TIOR2H (*(volatile unsigned char *)0xfffff2)
#define TIOR2L (*(volatile unsigned char *)0xfffff3)
#define TIER2 (*(volatile unsigned char *)0xfffff4)
#define TSR2 (*(volatile unsigned char *)0xfffff5)
#define TCNT2 (*(volatile unsigned short *)0xfffff6)
#define TGR2A (*(volatile unsigned short *)0xfffff8)
#define TGR2B (*(volatile unsigned short *)0xfffffa)

#define TCR3 (*(volatile unsigned char *)0xfffe80)
#define TMDR3 (*(volatile unsigned char *)0xfffe81)
#define TIOR3H (*(volatile unsigned char *)0xfffe82)
#define TIOR3L (*(volatile unsigned char *)0xfffe83)
#define TIER3 (*(volatile unsigned char *)0xfffe84)
#define TSR3 (*(volatile unsigned char *)0xfffe85)
#define TCNT3 (*(volatile unsigned short *)0xfffe86)
#define TGR3A (*(volatile unsigned short *)0xfffe88)
#define TGR3B (*(volatile unsigned short *)0xfffe8a)
#define TGR3C (*(volatile unsigned short *)0xfffe8c)
#define TGR3D (*(volatile unsigned short *)0xfffe8e)

#define TCR4 (*(volatile unsigned char *)0xfffe90)
#define TMDR4 (*(volatile unsigned char *)0xfffe91)
#define TIOR4H (*(volatile unsigned char *)0xfffe92)
#define TIOR4L (*(volatile unsigned char *)0xfffe93)
#define TIER4 (*(volatile unsigned char *)0xfffe94)
#define TSR4 (*(volatile unsigned char *)0xfffe95)
#define TCNT4 (*(volatile unsigned short *)0xfffe96)
#define TGR4A (*(volatile unsigned short *)0xfffe98)
#define TGR4B (*(volatile unsigned short *)0xfffe9a)

#define TCR5 (*(volatile unsigned char *)0xfffea0)
#define TMDR5 (*(volatile unsigned char *)0xfffea1)
#define TIOR5H (*(volatile unsigned char *)0xfffea2)
#define TIOR5L (*(volatile unsigned char *)0xfffea3)
#define TIER5 (*(volatile unsigned char *)0xfffea4)
#define TSR5 (*(volatile unsigned char *)0xfffea5)
#define TCNT5 (*(volatile unsigned short *)0xfffea6)
#define TGR5A (*(volatile unsigned short *)0xfffea8)
#define TGR5B (*(volatile unsigned short *)0xfffeaa)

 276

H8S/2655 Header File (12) <H8S.H>

#define TSTR (*(volatile unsigned char *)0xffffc0)
#define TSYR (*(volatile unsigned char *)0xffffc1)

#define PCR (*(volatile unsigned char *)0xffff46)
#define PMR (*(volatile unsigned char *)0xffff47)
#define NDERH (*(volatile unsigned char *)0xffff48)
#define NDERL (*(volatile unsigned char *)0xffff49)
#define PODRH (*(volatile unsigned char *)0xffff4A)
#define PODRL (*(volatile unsigned char *)0xffff4B)
#define NDRH (*(volatile unsigned char *)0xffff4C)
#define NDRL (*(volatile unsigned char *)0xffff4D)
#define NDR3 (*(volatile unsigned char *)0xffff4C)
#define NDR2 (*(volatile unsigned char *)0xffff4E)
#define NDR1 (*(volatile unsigned char *)0xffff4D)
#define NDR0 (*(volatile unsigned char *)0xffff4F)

#define TCR0 (*(volatile unsigned char *)0xffffb0)
#define TCSR0 (*(volatile unsigned char *)0xffffb2)
#define TCORA0 (*(volatile unsigned char *)0xffffb4)
#define TCORB0 (*(volatile unsigned char *)0xffffb6)
#define TCNT0 (*(volatile unsigned char *)0xffffb8)

#define TCR1 (*(volatile unsigned char *)0xffffb1)
#define TCSR1 (*(volatile unsigned char *)0xffffb3)
#define TCORA1 (*(volatile unsigned char *)0xffffb5)
#define TCORB1 (*(volatile unsigned char *)0xffffb7)
#define TCNT1 (*(volatile unsigned char *)0xffffb9)

#define SMR0 (*(volatile unsigned char *)0xffff78)
#define BRR0 (*(volatile unsigned char *)0xffff79)
#define SCR0 (*(volatile unsigned char *)0xffff7a)
#define TDR0 (*(volatile unsigned char *)0xffff7b)
#define SSR0 (*(volatile unsigned char *)0xffff7c)
#define RDR0 (*(volatile unsigned char *)0xffff7d)
#define SCMR0 (*(volatile unsigned char *)0xffff7e)

#define SMR1 (*(volatile unsigned char *)0xffff80)
#define BRR1 (*(volatile unsigned char *)0xffff81)
#define SCR1 (*(volatile unsigned char *)0xffff82)
#define TDR1 (*(volatile unsigned char *)0xffff83)
#define SSR1 (*(volatile unsigned char *)0xffff84)
#define RDR1 (*(volatile unsigned char *)0xffff85)
#define SCMR1 (*(volatile unsigned char *)0xffff86)

#define SMR2 (*(volatile unsigned char *)0xffff88)
#define BRR2 (*(volatile unsigned char *)0xffff89)
#define SCR2 (*(volatile unsigned char *)0xffff8a)
#define TDR2 (*(volatile unsigned char *)0xffff8b)
#define SSR2 (*(volatile unsigned char *)0xffff8c)
#define RDR2 (*(volatile unsigned char *)0xffff8d)
#define SCMR2 (*(volatile unsigned char *)0xffff8e)

 277

H8S/2655 Header File (13) <H8S.H>

#define ADDRA (*(volatile unsigned short *)0xffff90)
#define ADDRB (*(volatile unsigned short *)0xffff92)
#define ADDRC (*(volatile unsigned short *)0xffff94)
#define ADDRD (*(volatile unsigned short *)0xffff96)
#define ADDRE (*(volatile unsigned short *)0xffff98)
#define ADDRF (*(volatile unsigned short *)0xffff9a)
#define ADDRG (*(volatile unsigned short *)0xffff9c)
#define ADDRH (*(volatile unsigned short *)0xffff9e)
#define ADCSR (*(volatile unsigned char *)0xffffa0)
#define ADCR (*(volatile unsigned char *)0xffffa1)

#define DADR0 (*(volatile unsigned char *)0xffffa4)
#define DADR1 (*(volatile unsigned char *)0xffffa5)
#define DACR (*(volatile unsigned char *)0xffffa6)

#define MSTPCR (*(volatile unsigned short *)0xffff3c)

H8S/2655 Series Application Note

Publication Date: 1st Edition, September 1997
Published by: Semiconductor and IC Div.

Hitachi, Ltd.
Edited by: Technical Documentation Center

Hitachi Microcomputer System Ltd.
Copyright © Hitachi, Ltd., 1997. All rights reserved. Printed in Japan.

	Cover
	Notice
	Preface
	Contents
	Section 1 Using the H8S/2655 Series Application Note
	1.1 Introductory Section
	1.2 Application Section

	Section 2 Common Files Used by Tasks
	2.1 Vector Table Definition File
	2.2 Register Definition File
	2.3 Stack Initialization File
	2.4 File Linkage

	Section 3 Introductory Section
	3.1 Pulse Output
	3.2 Two Phase Encoder Count
	3.3 Pulse High and Low Width Measurement
	3.4 Long-Cycle Pulse Output
	3.5 PWM 15-Phase Output
	3.6 Externally Triggered 7-Phase Pulse Output
	3.7 One-Shot Pulse Output
	3.8 Four 4-Bit Outputs
	3.9 Asynchronous SCI
	3.10 Simultaneous Transmit/Receive Operation
	3.11 Multiprocessor Communication
	3.12 Scan Mode A/D Conversion
	3.13 Block Transfer
	3.14 Software-Activated Data Transfer
	3.15 Single Address Mode Data Transfer
	3.16 Pulse Counting

	Section 4 Application Section
	4.1 High-Speed Data Output
	4.2 SCI Continuous Transmission/Reception
	4.3 Four-Phase Stepping Motor Application Example
	4.4 Timer-Triggered A/D Conversion
	4.5 D/A Conversion
	4.6 Simultaneous DTC, DMAC, and CPU Activation

	Section 5 Appendix
	5.1 Internal Register Definitions

	Colophone

