To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depend on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

 “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

 “Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
H8/300H Tiny Series
Measuring Voltages by 4-Channel A/D Conversion

Introduction
The A/D converter is used to measure the four voltages by 4-channel A/D conversion.

Target Device
H8/3664

Contents

1. Specifications .. 2
2. Description of Functions Used .. 2
3. Description of Operations .. 4
4. Description of Software .. 5
5. Flowchart ... 8
6. Program Listing .. 9
1. Specifications

- The A/D converter is used to measure the four voltages by 4-channel A/D conversion.
- Inputs voltage to the H8/3664 Series through four channels, and stores the A/D conversion result in RAM, as shown in figure 1.

![Figure 1 Voltage Measurement by 4-Channel A/D Conversion](image)

2. Description of Functions Used

In this sample task, the voltages are measured using the A/D converter for 4-channel A/D conversion.

- In this sample task, the A/D conversion time is set to 12.4 µs per channel.
- The four A/D data registers (ADDRA to ADDRD) are 16-bit read-only ADDR registers used to store the results of A/D conversion. The converted 10-bit data is stored in bits 15 to 6 of the respective ADDR. The lower 6 bits are always read as 0. The data bus between the CPU and the A/D converter is 8 bits wide. The upper byte can be read directly from the CPU, however the lower byte should be read via a temporary register. The temporary register contents are transferred from the ADDR when the upper byte of data is read. When reading from ADDR, read the upper byte only or read in word units. Each ADDR is initialized to H'0000.
- The A/D control/status register (ADCSR) contains the control bits and conversion end status bits of the A/D converter.
- Analog input pins 0 to 7 (AN0 to AN7) are input pins for input voltage channels 0 to 7.
- The analog power supply (AVCC) is a power supply and reference voltage pin for the analog block.
- The analog ground (AVSS) is a ground and reference voltage pin for the analog block.
- In this sample task, the voltages of analog input pins 0 to 3 (AN0 to AN3) are measured by 4-channel A/D conversion.
Table 1 lists the function allocation for this sample task. The functions listed in table 1 are allocated for measuring voltages by 4-channel A/D conversion.

Table 1 Function Allocation

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADCSR</td>
<td>Sets start, end, status, and conversion time of A/D conversion, and selects analog input pins</td>
</tr>
<tr>
<td>ADDRA to ADDRD</td>
<td>Stores the A/D conversion result</td>
</tr>
<tr>
<td>AN0 to AN7</td>
<td>Input pins for input voltage channels 0 to 7 (in this sample task, only AN0 to AN3 are used)</td>
</tr>
<tr>
<td>AV_{CC}</td>
<td>Power supply and reference voltage pin for the analog block</td>
</tr>
<tr>
<td>AV_{SS}</td>
<td>Ground and reference voltage pin for the analog block</td>
</tr>
</tbody>
</table>
3. Description of Operations

Figure 3 shows this sample task's principle of operation. The hardware and software processing shown in figure 3 applies 4-channel A/D conversion to measure voltages.

![Diagram showing the operation principle of voltage measurement by 4-channel A/D conversion.]

Figure 3 Operation Principle: Voltage Measurement by 4-Channel A/D Conversion
4. Description of Software

4.1 Description of Module

Table 2 describes the software used in this sample task.

Table 2 Description of Modules

<table>
<thead>
<tr>
<th>Module Name</th>
<th>Label Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main routine</td>
<td>main</td>
<td>Sets the A/D converter, enables interrupts, selects the analog input channel, starts A/D conversion, moves the A/D conversion result stored in ADDRA to ADDRD to RAM after A/D conversion ends, and the A/D converter stops after performing A/D conversion by analog input channels 0 to 3.</td>
</tr>
</tbody>
</table>

4.2 Description of Arguments

Table 3 describes the arguments used in this sample task.

Table 3 Description of Arguments

<table>
<thead>
<tr>
<th>Argument Names</th>
<th>Function</th>
<th>Used in</th>
<th>Data Length</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDRA</td>
<td>Stores the A/D conversion result of analog input channel 0.</td>
<td>Main routine</td>
<td>2 bytes</td>
<td>Output</td>
</tr>
<tr>
<td>ADDRB</td>
<td>Stores the A/D conversion result of analog input channel 1.</td>
<td>Main routine</td>
<td>2 bytes</td>
<td>Output</td>
</tr>
<tr>
<td>ADDRC</td>
<td>Stores the A/D conversion result of analog input channel 2.</td>
<td>Main routine</td>
<td>2 bytes</td>
<td>Output</td>
</tr>
<tr>
<td>ADDRD</td>
<td>Stores the A/D conversion result of analog input channel 3.</td>
<td>Main routine</td>
<td>2 bytes</td>
<td>Output</td>
</tr>
</tbody>
</table>
4.3 **Description of Internal Registers**

Table 4 describes the internal registers used in this sample task.

Table 4 Description of Internal Registers

<table>
<thead>
<tr>
<th>Register Name</th>
<th>Function</th>
<th>Address</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADCSR</td>
<td>A/D control/status register (A/D end flag):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Setting conditions]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Completion of A/D conversion in single mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Completion of one round of conversion for all selected channels in scan mode.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Clearing condition]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Writing of 0 to the bit after having read it as 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H'FFB8</td>
<td>Bit 7</td>
<td>0</td>
</tr>
<tr>
<td>ADIE</td>
<td>A/D control/status register (A/D interrupt enable):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>When this bit is set to 1, A/D conversion end interrupt (ADI) requests from ADF are enabled.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H'FFB8</td>
<td>Bit 6</td>
<td>0</td>
</tr>
<tr>
<td>ADST</td>
<td>A/D control/status register (A/D start):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>When ADST is set to 1, A/D conversion starts. When A/D conversion ends in single mode, ADST is automatically cleared.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In scan mode, the sequence of A/D conversion for the selected channels is repeatedly performed until this bit is cleared by software, resetting, or entry to standby mode.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H'FFB8</td>
<td>Bit 5</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 4 Description of Internal Registers (cont)

<table>
<thead>
<tr>
<th>Register Name</th>
<th>Function</th>
<th>Address</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADCSR Scan</td>
<td>A/D control/status register (scan mode): Selection of the A/D conversion mode. 0: Single mode 1: Scan mode</td>
<td>H'FFB8</td>
<td>Bit 4 0</td>
</tr>
<tr>
<td>CKS</td>
<td>A/D control/status register (clock select): Setting for A/D conversion time. 0: A/D conversion time = 134 states (max.) 1: A/D conversion time = 70 states (max.) Note: Clear the ADST bit to 0 before switching the conversion time.</td>
<td>H'FFB8</td>
<td>Bit 3 0</td>
</tr>
<tr>
<td>CH2</td>
<td>A/D control/status register (channel select 2 to 0): When CH2, CH1, and CH0 are all cleared to 0, AN0 is selected. When CH2 and CH1 are both cleared to 0 and CH2 is set to 1, AN1 is selected. When CH2 and CH0 are both cleared to 0 and CH1 is set to 1, AN2 is selected. When CH2 is cleared to 0 and CH1 and CH0 are both set to 1, AN3 is selected.</td>
<td>H'FFB8</td>
<td>Bit 2 CH2 = 0 Bit 1 CH1 = 0 Bit 0 CH0 = 0</td>
</tr>
<tr>
<td>ADDRA</td>
<td>A/D data register A: Stores the 16-bit data of the A/D conversion result.</td>
<td>H'FFB0</td>
<td>H'0000</td>
</tr>
<tr>
<td>ADDR B</td>
<td>A/D data register B: Stores the 16-bit data of the A/D conversion result.</td>
<td>H'FFB2</td>
<td>H'0000</td>
</tr>
<tr>
<td>ADDRC</td>
<td>A/D data register C: Stores the 16-bit data of the A/D conversion result.</td>
<td>H'FFB4</td>
<td>H'0000</td>
</tr>
<tr>
<td>ADDRD</td>
<td>A/D data register D: Stores the 16-bit data of the A/D conversion result.</td>
<td>H'FFB6</td>
<td>H'0000</td>
</tr>
</tbody>
</table>

4.4 Description of RAM

Table 5 describes the RAM used in this sample task.

Table 5 Description of RAM

<table>
<thead>
<tr>
<th>Label Name</th>
<th>Function</th>
<th>Address</th>
<th>Used in</th>
</tr>
</thead>
<tbody>
<tr>
<td>addata[4]</td>
<td>Data variables for RAM storage</td>
<td>H'FB80</td>
<td>Main routine</td>
</tr>
<tr>
<td>counter</td>
<td>Counts number of times of 4-channel A/D conversion</td>
<td>H'FB88</td>
<td>Main routine</td>
</tr>
</tbody>
</table>
5. Flowchart

[Flowchart image]

Main routine

1. Initialize PDRB to 0
2. Initialize addata[0] to addata[3] to 0
3. Assign address of ADDRA to addr_ptr
4. Assign address of addata[0] to save_ptr
5. Initialize adc_data to H'00
6. Initialize counter to 0

- counter < 4?
 - Yes: ADF = 0?
 - No: Clear ADST to 0 to end A/D conversion
 - Yes: Set ADST to 1 to start A/D conversion
 - No: Store A/D conversion results stored in addresses of A/D data registers (ADDRs) to address indicated by addata

Note: * In this sample task, the stack pointer is set in INIT.SRC (assembly).

Figure 4 Flowchart for Main Routine
6. Program Listing

INIT.SRC (Program listing)

```assembly
.EXPORT _INIT
.IMPORT _main 
;
.SECTION P, CODE
_INIT:
    MOV.W #H'FF80, R7
    LDC.B #B'10000000, CCR
    JMP @_main
;
.END
```

/**/
/* */
/* H8/300H Tiny Series -H8/3664- */
/* Application Note */
/* */
/* 'Voltage Measurement by 4-Channel A/D */
/* Converter' */
/* */
/* Function */
/* : A/D Converter */
/* */
/* External Clock : 16MHz */
/* Internal Clock : 16MHz */
/* Sub Clock : 32.768kHz */
/* */
/**/

#include <machine.h>
/**/
/* Symbol Definition */
/**/

struct BIT {
 unsigned char b7:1; /* bit7 */
 unsigned char b6:1; /* bit6 */
 unsigned char b5:1; /* bit5 */
 unsigned char b4:1; /* bit4 */
 unsigned char b3:1; /* bit3 */
 unsigned char b2:1; /* bit2 */
 unsigned char b1:1; /* bit1 */
 unsigned char b0:1; /* bit0 */
};

#define TMA *(volatile unsigned char *)0xFFA6 /* Timer Mode Register A */
#define TCA *(volatile unsigned char *)0xFFA7 /* Timer Counter A */
#define PDR8 *(volatile unsigned char *)0xFFDB /* Port Data Register 8 */
#define P81 PDR8_BIT.b1 /* Port Data Register 8 bit1 */
#define PCR8 *(volatile unsigned char *)0xFFEB /* Port Control Register 8 */
#define PCR81 PCR8_BIT.b1 /* Port Control Register 8 bit1 */
#define IENR1_BIT (*(struct BIT *)0xFFF4) /* Interrupt Enable Register 1 */
#define IENTA IENR1_BIT.b6 /* Timer A Interrupt Enable */
#define IRR1_BIT (*(struct BIT *)0xFFF6) /* Interrupt Request Register 1 */
#define IRRTA IRR1_BIT.b6 /* Timer A Interrupt Request Flag */
#define ADDRA *(volatile unsigned int *)0xFFB0 /* A/D Data Register A */
#define ADDR8 *(volatile unsigned int *)0xFFB2 /* A/D Data Register B */
#define ADDRC *(volatile unsigned int *)0xFFB4 /* A/D Data Register C */
#define ADDR4 *(volatile unsigned int *)0xFFB6 /* A/D Data Register D */
#define ADCSR *(volatile unsigned char *)0xFFB8 /* A/D Control/Status Register */
#define ADCSR_BIT (*(struct BIT *)0xFFB8) /* A/D Control/Status Register */
#define ADF ADCSR_BIT.b7 /* A/D END Flag */
#define ADIE ADCSR_BIT.b6 /* A/D Interrupt Enable */
#define ADST ADCSR_BIT.b5 /* A/D Start */
#define SCAN ADCSR_BIT.b4 /* A/D Scan Mode */
#define CRS ADCSR_BIT.b3 /* A/D Clock Select */
#define CH2 ADCSR_BIT.b2 /* Channel Select 2 */
#define CH1 ADCSR_BIT.b1 /* Channel Select 1 */
#define CH0 ADCSR_BIT.b0 /* Channel Select 0 */
#define PD8 *(volatile unsigned char *)0xFFDD /* Port Data Register B */

/**/
/* Function Definition */
/**/
extern void INIT(void); /* SP Set */
void main (void);
/**/
/* RAM define */
/**/
unsigned int addata[4];
unsigned char counter;
/**/
/* Vector Address */
/**/
#pragma section V1 /* VECTOR SECTIOIN SET */
void (*const VEC_TBL1[])(void) = {
 /* 0x00 - 0x0f */
 INIT /* 00 Reset */
};
#pragma section /* P */
/**/
/* Main Program */
/**/
void main (void)
{
 unsigned int *addr_ptr,*save_ptr;
 unsigned char adc_data;
 unsigned int cnt;

 PDRB = 0; /* Clear PDRB */
 addata[0] = 0; /* Clear adddata[0] */
 addata[1] = 0; /* Clear adddata[1] */

 addr_ptr = &ADDRA;
 save_ptr = &addata[0];
 adc_data = 0x00; /* Clear adc_data */
 counter = 0; /* Clear counter */
 while(counter < 4){ /* A/D Convert END ? */
 ADCSR = adc_data; /* Select A/D Convert Time & Analog Input Channel */
 ADF = 0; /* Initialize ADF */
 ADST = 1; /* Start A/D Convert */

 while(ADF == 0){ /* A/D Convert End ? */
 ;
 }

 ADST = 0; /* Stop A/D Convert */
 *(save_ptr + counter) = *(addr_ptr + counter);
 adc_data++; /* Decrement A/D Convert Counter */
 counter++; /* Decrement A/D Convert Counter */
 }
}
while(1){
 ;
}

Link Address Setting:

<table>
<thead>
<tr>
<th>Section Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV1</td>
<td>H'0000</td>
</tr>
<tr>
<td>P</td>
<td>H'0100</td>
</tr>
<tr>
<td>B</td>
<td>H'FB80</td>
</tr>
</tbody>
</table>
Website and Support

Renesas Technology Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
csc@renesas.com

Revision Record

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Page</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>Sep.01.06</td>
<td>All pages</td>
<td>Format has been changed from Hitachi version to Renesas version.</td>
</tr>
</tbody>
</table>
Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

© 2006. Renesas Technology Corp., All rights reserved.