To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depend on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is intended for use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
1.0 Abstract
In this process, Timer A0 and Timer A1 are connected to make a 16-bit timer with a 16-bit prescaler.
Use the following peripheral functions:
• Timer mode of timer A
• Event counter mode of timer A

2.0 Introduction
Specifications
(1) Set timer A0 to timer mode, and set timer A1 to event counter mode.
(2) Perform a count on count source \(f \) using timer A0 to count for 1 ms, and perform a count on timer A0 using timer A1 to count for 1 second.
(3) Connect a 20-MHz oscillator to \(X_{IN} \).
(4) The formula for calculating the Long-Period becomes as follows.
\[
\text{Long-Period} = (\text{Count source period of Timer A0}) \times (\text{Timer A0 register +1}) \times (\text{Timer A1 register +1})
\]
Setting example for 1 sec period
\[
(1 \text{ sec}) = (50\text{ns}) \times (19999+1) \times (999+1)
\]
Operation
(1) Setting the count start flag to “1” causes the counter to begin counting. The counter of timer A0 performs a down count on count source \(f \).
(2) If the counter of timer A0 underflows, the counter reloads the content of the reload register and continues counting. At this time, the timer A0 interrupt request bit goes to “1”. The counter of timer A1 performs a down count on underflows in timer A0.
(3) If the counter of timer A1 underflows, the counter reloads the content of the reload register and continues counting. At this time, the timer A1 interrupt request bit goes to “1”.

Figure 1 shows the operation timing.
Figure 2 shows the connection diagram of long-period timers.

Figure 2. Connection diagram of long-period timers
3.0 Set-up procedure

Setting timer A0

Selecting timer mode and functions

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Timer A0 mode register [Address 035616]

TA0MR

Selection of timer mode

Gate function select bit

b4 b3

0 0 : Gate function not available (TA0IN pin is a normal port pin)

0 (Must always be “0” in timer mode)

Count source select bit

b7 b6

0 0 : f1

Setting divide ratio

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>Count source period</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>f1 : 50ns</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>f8 : 400ns</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>f32 : 1.6µs</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>fC32 : 976.56µs</td>
</tr>
</tbody>
</table>

Setting timer A1

Selecting event counter mode and each function

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Timer A1 mode register [Address 035716]

TA1MR

Selection of event counter mode

Count polarity select bit

Up/down switching cause select bit

0 : Up/down flag content

0 (Must always be “0” in event counter mode)

Count operation type select bit

0 : Reload type

When not using two-phase pulse signal processing, set this bit to “0”

Continued to the next page
Continued from the previous page

Setting up/down flag

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>UDF</td>
<td>Timer A1 up/down flag</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 : Down count</td>
<td></td>
</tr>
</tbody>
</table>

When not using the 2-phase pulse signal processing function, set the select bit to “0”.

Note1: Use MOV instruction to write to this register.

Setting trigger select register

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRGSR</td>
<td>Trigger select register [Address 034316]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Timer A1 event/trigger select bit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b1 b0</td>
<td>1 0 : TA0 overflow is selected</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setting divide ratio

<table>
<thead>
<tr>
<th>b15</th>
<th>b14</th>
<th>b13</th>
<th>b12</th>
<th>b11</th>
<th>b10</th>
<th>b9</th>
<th>b8</th>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0316</td>
<td>E716</td>
<td>Timer A1 register [Address 034916, 034816]</td>
<td></td>
</tr>
</tbody>
</table>

Setting count start flag

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABSR</td>
<td>Count start flag [Address 034016]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Timer A0 count start flag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 : Starts counting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Timer A1 count start flag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 : Starts counting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Start counting
4.0 Programming Code

;**
; M16C/80 Program Collection
; FILE NAME : rjj05b0505.src.a30
; CPU : M16C/80 Group
; FUNCTION : Timer A Applications
; (Long-Period Timers)
; HISTORY : 2004.03.15 Ver 1.00
; Copyright(C)2003, Renesas Technology Corp.
; Copyright(C)2003, Renesas Solutions Corp.
; All rights reserved.
;**
; Include
;**
.LIST OFF ;Stops outputting lines to the assembler list file
.INCLUDE sfr80100.inc ;Reads the file that defined SFR
.LIST ON ;Starts outputting lines to the assembler list file

;**
; Symbol definition
;**
RAM_TOP .EQU 000400H ;Start address of RAM
RAM_END .EQU 002BFFH ;End address of RAM
ROM_TOP .EQU 0FFC000H ;Start address of ROM
FIXED_VECT_TOP .EQU 0FFFFDCH ;Start address of fixed vector

;**
; Program area
;**

.RESET:
LDC #RAM_END+1, ISP ;Sets initial value in stack pointer
; Sets Processor mode, System clock and Main clock division
MOV.B #03H, prcr ;Removes protect
MOV.B #10000000B, pm0 ; Single-chip mode
MOV.B #11000000B, pm1 ; Flash memory version
MOV.B #00001000B, cm0 ; Xcin-Xcout High
MOV.B #00100000B, cm1 ; Xin-Xout High
MOV.B #00010010B, mcd ; No division mode
MOV.B #00H, prcr ;Protects all registers
}
LONG-PERIOD TIMERS

;--
; TimerA (Long-Period Timers)
;--

; Setting Timer A0 (Timer mode, 1ms)
;--

; Selecting timer mode and functions
MOV.B #00000000B, ta0mr
; |++++++|Selection of timer mode
; | |-----|This bit is invalid in M16C/80 series
; | |++++|Gate function select bit
; | | |++++|Must always be "0" in timer mode
; | | |++++|Count source select bit (00: f1)

; Setting divide ratio
MOV.W #04E1FH, ta0 ; (1msec @20MHz, f1)

;--
; Setting Timer A1 (Event counter mode, count underflows of Timer A0)
;--

; Setting event counter mode and functions
MOV.B #00000001B, ta1mr
; |++++++|Selection of event counter mode
; | |-----|This bit is invalid in M16C/80 series
; | |++++|Count polarity select bit
; | | |++++|Up/down switching cause select bit (0: Up/down flag's content)
; | | |++++|Must always be "0" in event counter mode
; | | |++++|Count operation type select bit (0: Reload type)

; Setting up/down flag
MOV.B #00000000B, udf
; |++++++|Timer A1 up/down flag (0: Down count)
; | |-----|When not using the 2-phase pulse signal processing function,
; | | |++++|set the select bit to "0"

; Setting trigger select register
MOV.B #00000010B, trgsr
; ++---------|Timer A1 event/trigger select bit
; (10: TA0 overflow is selected)

; Setting divide ratio
MOV.W #03E7H, ta1 ; (1msec * 1000 = 1sec)

; Setting count start flag
MOV.B #00000011B, tabsr
; |+---------|TimerA0 count start flag (1: Starts counting)
; |++++++|TimerA1 count start flag (1: Starts counting)

MAIN:
JMP MAIN

;--
; Dummy interrupt processing program
;--
dummy:
REIT

;--
; Setting of fixed vector
;--

; SECTION F_VECT, ROMDATA
.ORG FIXED_VECT_TOP

; LWORD dummy ;Undefined instruction
; LWORD dummy ;Overflow
; LWORD dummy ;BRK instruction execution
; LWORD dummy ;Address match
; LWORD dummy ;
; LWORD dummy ;Watchdog timer
; LWORD dummy ;
; LWORD dummy ;NMI
; LWORD RESET ;Reset

; .END
5.0 Reference
Renesas Technology Corporation Semiconductor Home page
http://www.renesas.com/

Technical Support
E-mail: support_apl@renesas.com

Data Sheet
M16C/80 group Rev. E3
(Use the latest version on the Home page: http://www.renesas.com/)

TECHNICAL UPDATE/TECHNICAL NEWS
(Use the latest information on the Home page: http://www.renesas.com/)
Keep safety first in your circuit designs!

- Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer’s application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.

- Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

- Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

- Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

- The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.

- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

- Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.