Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

H8SX Family

Little-Big Endian Conversion by Bus Controller

Introduction

Little endian data is converted into big endian data using the bus controller.

Target Device

H8SX/1653

Contents

1.	Specifications	2
2.	Conditions for Application	3
3.	Description of Modules Used	4
4.	Description of Operation	5
5.	Description of Software	. 8

1. Specifications

- Figure 1 shows a block diagram of little-big endian conversion.
- Little endian data is converted into big endian data using the bus controller.
- Area 3 (SRAM) is set up as a little endian area.

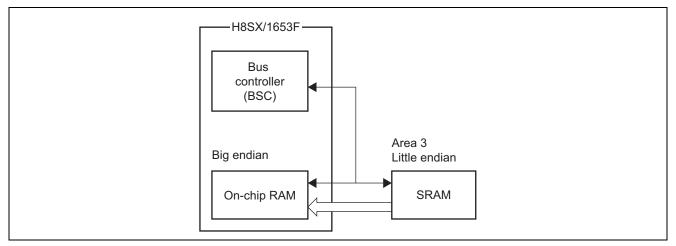


Figure 1 Little-Big Endian Conversion

2. Conditions for Application

Table 1 Conditions for Application

Item	Contents				
Operating frequency	Input clock: 16 MHz				
	System clock (Iφ):	32 MHz			
	Peripheral module clock (Pφ):	32 MHz			
	External bus clock (Βφ):	32 MHz			
Operating mode	Mode 6 (MD2 = 1, MD1 = 1, MD0 = 0)				
Development tool	High-performance Embedded Workshop Version 4.00.03				
C/C++ compiler	H8S, H8/300 SERIES C/C++ (Compiler Version 6.01.01			
	(from Renesas Technology Corp.)				
Compile option	-cpu = h8sxa:24:md, -code = machinecode, -optimize = 1, -regparam = 3,				
	-speed = (register, shift, struct,	expression)			

Table 2 Section Settings

Address	Section Name	Description
H'001000	Р	Program area
H'C00000	BCS3	Little endian area
H'FF2000	В	Non-initialized data area (RAM area)

3. Description of Modules Used

Figure 2 shows a block diagram of the bus controller. The register for endian conversion in the bus controller is described below.

• Endian control register (ENDIANCR)
Selects the endian format for each area of the external address space. In this sample task, the little endian data in area 3 is converted into big endian data.

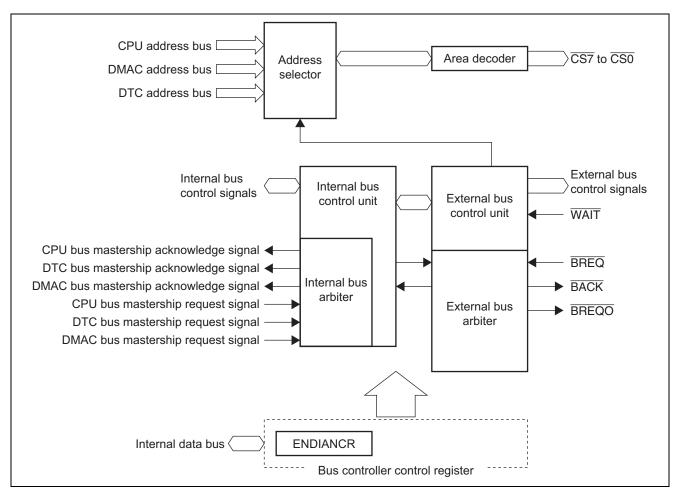


Figure 2 Block Diagram of Bus Controller

4. Description of Operation

4.1 Endian and Data Alignment

Data sizes for the CPU and other internal bus masters are byte, word, and longword. The bus controller has a data alignment function, and controls whether the upper-byte data bus (D15 to D8) or lower-byte data bus (D7 to D0) is used according to the bus specifications for the area being accessed (8-bit access space or 16-bit access space), the data size, and endian format when accessing an external address space.

(1) 8-Bit Access Space

With the 8-bit access space, the lowest-byte data bus (D7 to D0) is always used for access. The amount of data that can be accessed at a time is one byte: a word access is performed as two byte accesses, and a longword access as four byte accesses.

Figures 3 and 4 illustrate the data alignment control for the 8-bit access space. Figure 3 shows the data alignment when big endian is specified. Figure 4 shows the data alignment when little endian is specified.

Access	Access	Access	Bus	Data		Data	Bus
Size	Address	Count	Cycle	Size	D15	D8	D7 D0
Byte	n	1	1st	Byte			7
Word	n	2	1st	Word			15 8
			2nd	Byte			7
Longword	n	4	1st	Word			31 24
			2nd	Word			23 1 16
			3rd	Word			15 8
			4th	Byte			7

Figure 3 Access Sizes and Data Alignment Control for 8-Bit Access Space (Big Endian)

Access	Access	Access	Bus	Data		Data	Bus
Size	Address	Count	Cycle	Size	D15	D8	D7 D0
Byte	n	1	1st	Byte			7
Word	n	2	1st	Byte			7
			2nd	Byte			15, , , , , , , 8
Longword	n	4	1st	Byte			7
			2nd	Byte			15, , , , , , , 8
			3rd	Byte			23 16
			4th	Byte			31 24

Figure 4 Access Sizes and Data Alignment Control for 8-Bit Access Space (Little Endian)

(2) 16-Bit Access Space

With the 16-bit access space, the upper-byte data bus (D15 to D8) and lower-byte data bus (D7 to D0) are used for accesses. The amount of data that can be accessed at one time is one byte or one word.

Figures 5 and 6 illustrate data alignment control for the 16-bit access space. Figure 5 shows the data alignment when big endian is specified. Figure 6 shows the data alignment when little endian is specified.

In big endian, byte access to an even address is performed by using the upper-byte data bus and byte access to an odd address is performed by using the lowest-byte data bus.

In little endian, byte access to an even address is performed by using the lowest-byte data bus, and byte access to an odd address is performed by using the third-byte data bus.

Access	Access	Access	Bus	Data	Dat	Data Bus		
Size	Address	Count	Cycle	Size	D15 D8	D7 D0		
Byte	Even (2n)	1	1st	Byte	7; ; ; ; ; ; 0			
	Odd (2n + 1)	1	1st	Byte		7 0		
Word	Even (2n)	1	1st	Word	15, 1 1 1 8	7		
	Odd (2n + 1)	2	1st	Byte		15 8		
			2nd	Byte	7			
Longword	Even (2n)	2	1st	Word	31 24	23 16		
			2nd	Word	15	7		
	Odd	3	1st	Byte		31 24		
	(2n + 1)		2nd	Word	23 1 1 16	15, , , , , , 8		
			3rd	Byte	7::::::::::0			

Figure 5 Access Sizes and Data Alignment Control for 16-Bit Access Space (Big Endian)

Access	Access	Access	Bus	Data	Da	ta Bus
Size	Address	Count	Cycle	Size	D15 D8	D7 D0
Byte	Even (2n)	1	1st	Byte		7: : : : : : 0
	Odd (2n + 1)	1	1st	Byte	7:::::::0	
Word	Even (2n)	1	1st	Word	15, 8	7
	Odd (2n + 1)	2	1st	Byte	7 0	
			2nd	Byte		15
Longword	Even (2n)	2	1st	Word	15 8	7
			2nd	Word	31 24	23 16
		1) 3	1st	Byte	7 0	
	(2n + 1)		2nd	Word	23	15, 8
			3rd	Byte		31

Figure 6 Access Sizes and Data Alignment Control for 16-Bit Access Space (Little Endian)

4.2 Operation Example of Byte Access to 16-Bit Access Space

In this sample task, a 16-bit access space specified for little endian is accessed in bytes and little—big endian conversion is performed. Figure 7 shows an example of little—big endian conversion. The endian can be selected separately for each area by setting the ENDIANCR register of the bus controller.

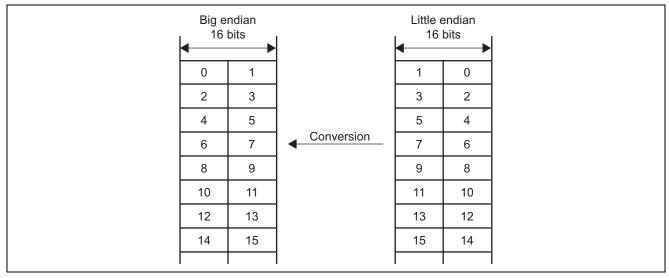


Figure 7 Example of Little-Big Endian Conversion

5. Description of Software

5.1 List of Functions

Table 3 List of Functions

Function Name	Functions
init	Initialization routine
	Sets the CCR and clocks, cancels module stop mode, and calls the main function.
main	Main routine
	Calls the BscInit function, specifies the data format of area 3 as little endian, and transfers data in area 3 to on-chip RAM.
BscInit	Bus setting
	Connects area 3 to SRAM.

5.2 Vector Table

Table 4 Interrupt Exception Handling Vector Table

Exception Handling	Exception Handling		
Source	Vector Number	Vector Table Address	Routine
Reset	0	H'000000	main

5.3 RAM Usage

Table 5 RAM Usage

Type	Variable Name	Description	Used In
unsigned char	buf[16]	Area in on-chip RAM to which16 bytes of data from little endian area are stored in big endian format.	main
unsigned char	cs3area[16]	Little endian area (area 3)	main

5.4 Description of Functions

5.4.1 init Function

(1) Functional overview

Initialization routine which cancels module stop mode, sets up the clocks, and calls the main function.

(2) Argument

None

(3) Return value

None

(4) Description of internal registers

The internal registers used in this sample task are shown below. Note that the settings shown below are not the initial values but the values used in this sample task.

System clock control register (SCKCR)
 Address: H'FFFDC4

Bit	Bit Name	Setting	R/W	Function
10	ICK2	0	R/W	System Clock (I) Select
9	ICK1	0	R/W	These bits select the frequency of the system clock, which is
8	ICK0	1	R/W	supplied to the CPU, DMAC, and DTC.
				001: Input clock × 2
6	PCK2	0	R/W	Peripheral Module Clock (Pφ) Select
5	PCK1	0	R/W	These bits select the frequency of the peripheral module clock.
4	PCK0	1	R/W	001: Input clock × 2
2	BCK2	0	R/W	External Bus Clock (Βφ) Select
1	BCK1	0	R/W	These bits select the frequency of the external bus clock.
0	BCK0	1	R/W	001: Input clock × 2

H8SX Family Little-Big Endian Conversion by Bus Controller

Address: H'FFFDCA

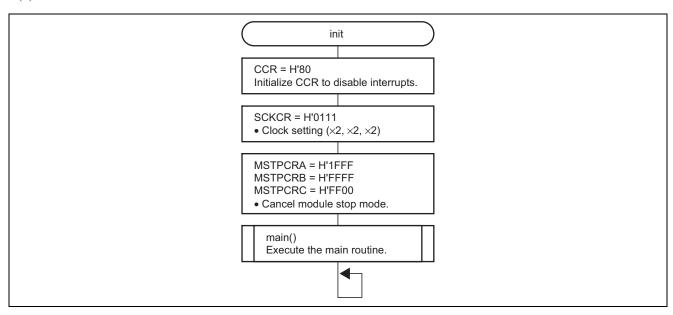
• MSTPCRA, MSTPCRB, and MSTPCRC control module stop mode. Setting a bit in these registers to 1 places the corresponding module in module stop mode, while clearing the bit to 0 cancels module stop mode.

• Module stop control register A (MSTPCRA) Address: H'FFFDC8

Bit	Bit Name	Setting	R/W	Function
15	ACSE	0	R/W	All-module-clock-stop mode enable Enables or disables transition to all-module-clock-stop mode. If this bit is set to 1, all-module-clock-stop mode is entered when the SLEEP instruction is executed by the CPU while all the modules under control of the MSTPCR registers are placed in
				module stop mode. In all-module-clock-stop mode, even the bus controller and I/O ports are stopped to reduce the supply current. 0: Disables transition to all-module-clock-stop mode.
				1: Enables transition to all-module-clock-stop mode.
13	MSTPA13	1	R/W	DMA controller (DMAC)
12	MSTPA12	1	R/W	Data transfer controller (DTC)
9	MSTPA9	1	R/W	8-bit timer (TMR_3 and TMR_2)
8	MSTPA8	1	R/W	8-bit timer (TMR_1 and TMR_0)
5	MSTPA5	1	R/W	D/A converter (channels 1 and 0)
3	MSTPA3	1	R/W	A/D converter (unit 0)
0	MSTPA0	1	R/W	16-bit timer pulse unit (TPU channels 5 to 0)

• Module stop control register B (MSTPCRB)

Bit	Bit Name	Setting	R/W	Function
15	MSTPB15	1	R/W	Programmable pulse generator (PPG)
12	MSTPB12	1	R/W	Serial communication interface_4 (SCI_4)
10	MSTPB10	1	R/W	Serial communication interface_2 (SCI_2)
9	MSTPB9	1	R/W	Serial communication interface_1 (SCI_1)
8	MSTPB8	1	R/W	Serial communication interface_0 (SCI_0)
7	MSTPB7	1	R/W	I ² C bus interface_1 (IIC_1)
6	MSTPB6	1	R/W	I ² C bus interface_0 (IIC_0)


H8SX Family Little-Big Endian Conversion by Bus Controller

Address: H'FFFDCC

• Module stop control register C (MSTPCRC)

Bit	Bit Name	Setting	R/W	Function
15	MSTPC15	1	R/W	Serial communication interface_5 (SCI_5), (IrDA)
14	MSTPC14	1	R/W	Serial communication interface_6 (SCI_6)
13	MSTPC13	1	R/W	8-bit timer (TMR_4 and TMR_5)
12	MSTPC12	1	R/W	8-bit timer (TMR_6 and TMR_7)
11	MSTPC11	1	R/W	Universal serial bus interface (USB)
10	MSTPC10	1	R/W	CRC calculation unit
4	MSTPC4	0	R/W	On-chip RAM_4 (H'FF2000 to H'FF3FFF)
3	MSTPC3	0	R/W	On-chip RAM_3 (H'FF4000 to H'FF5FFF)
2	MSTPC2	0	R/W	On-chip RAM_2 (H'FF6000 to H'FF7FFF)
1	MSTPC1	0	R/W	On-chip RAM_1 (H'FF8000 to H'FF9FFF)
0	MSTPC0	0	R/W	On-chip RAM_0 (H'FFA000 to H'FFBFFF)

(5) Flowchart

5.4.2 main Function

(1) Overview of functions

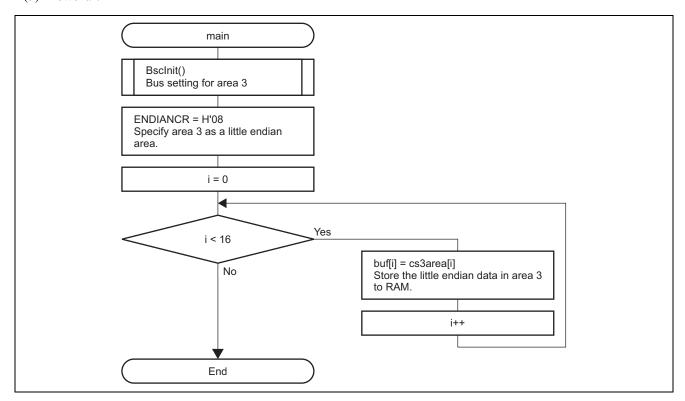
Calls the BscInit function, specifies the data format of area 3 as little endian, and transfers data in area 3 to on-chip RAM.

(2) Argument

None

(3) Return value

None


(4) Description of internal register

The internal register used in this sample task is shown below. Note that the settings shown below are not the initial values but the values used in this sample task.

• Endian control register (ENDIANCR) Address: H'FFFD95

Bit	Bit Name	Setting	Function	
7	LE7	0/0	Little Endian Select	
6	LE6	0/0	LEn = 0: Data format of area n is specified as big endian	
5	LE5	0/0	LEn = 1: Data format of area n is specified as little endian	
4	LE4	0/0		
3	LE3	1/0		
2	LE2	0/0		

(5) Flowchart

5.4.3 BscInit Function

(1) Functional overview

Makes bus-related settings for area 3.

(2) Argument

None

(3) Return value

None

(4) Description of internal registers

The internal registers used in this sample task are shown below. Note that the settings shown below are not the initial values but the values used in this sample task.

Port D data direction register (PDDDR)

.....

Function: Sets the PD7 to PD0 pins to function as address output pins.

Setting: H'FF

• Port E data direction register (PEDDR)

Address: H'FFFB8D

Address: H'FFFB8C

Function: Sets the PE7 to PE0 pins to function as address output pins.

Setting: H'FF

• Bus width control register (ABWCR)

Address: H'FFFD84

Function: Specifies areas 7 to 0 as 16-bit access spaces.

Setting: H'00FF

• Access state control register (ASTCR)

Address: H'FFFD86

Function: Specifies areas 7 to 0 as 3-state access spaces.

Setting: H'FF00

• Wait control register B (WTCRB)

Address: H'FFFD8A

Function: Sets the number of program wait cycles. 7 program wait cycles are inserted for area 3.

Setting: H'7000

• Read strobe timing control register (RDNCR)

Address: H'FFFD8C

Function: Sets the \overline{RD} signal to be negated at the end of the read cycle in a read access to areas 7 to 0.

Setting: H'0000

H8SX Family Little-Big Endian Conversion by Bus Controller

Address: H'FFFBC0

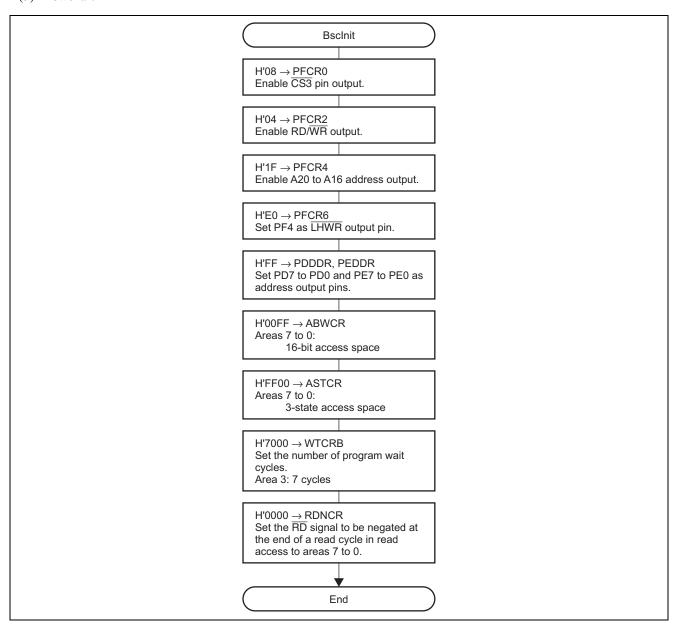
• Port function control register 0 (PFCR0)

Bit	Bit Name	Setting	Function
7	CS7E	0	CS7 to CS0 Enable
6	CS6E	0	These bits enable/disable the corresponding CSn output.
5	CS5E	0	0: Pin functions as I/O port
4	CS4E	0	1: Pin functions as CSn output pin
3	CS3E	1	(n = 7 to 0)
2	CS2E	0	
1	CS1E	0	
0	CS0E	0	

• Port function control register 2 (PFCR2) Address: H'FFFBC2

Bit	Bit Name	Setting	Function
2	RDWRE	1	RD/WR Output Enable
			0: Disables the RD/WR output
			1: Enables the RD/WR output

• Port function control register 4 (PFCR4) Address: H'FFFBC4


Bit	Bit Name	Setting	Function
4	A20E	1	Address A20 Enable
			0: Disables the A20 address output
			1: Enables the A20 address output
3	A19E	1	Address A19 Enable
			0: Disables the A19 address output
			1: Enables the A19 address output
2	A18E	1	Address A18 Enable
			0: Disables the A18 address output
			1: Enables the A18 address output
1	A17E	1	Address A17 Enable
			0: Disables the A17 address output
			1: Enables the A17 address output
0	A16E	1	Address A16 Enable
			0: Disables the A16 address output
			1: Enables the A16 address output

• Port function control register 6 (PFCR6) Address: H'FFFBC6

Bit	Bit Name	Setting	Function
6	LHWROE	1	LHWR Output Enable
			0: Specifies pin PA4 as I/O port
			1: Specifies pin PA4 as LHWR output pin

(5) Flowchart

Website and Support

Renesas Technology Website http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry csc@renesas.com

Revision Record

	Date	Descript	ion
Rev.		Page	Summary
1.00	Sep.11.06	_	First edition issued

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.