

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REJ06B0234-0101/Rev.1.01 June 2007 Page 1 of 49

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

Introduction
LIN (Local Interconnect Network) Application Note: Slave provides specifications and setting examples that use the
on-chip peripheral functions of the H8/36057F microcomputer to enable communication based on the LIN
communication protocol. This application note provides reference information for those users who are involved in
software and hardware design.

Target Device
H8/300H Tiny Series H8/36057F CPU

Contents

1. LIN Communication System Overview ... 2

2. Library Software Specifications... 6

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 2 of 49

1. LIN Communication System Overview
This section describes LIN communication for a system that incorporates the sample LIN communication software
library (hereinafter referred to as the library) described in this application note.

1.1 Connection to the LIN Bus
When a system is connected to a network through the LIN bus (Figure 1) and via a LIN bus interface circuit (or an LIN
transceiver), LIN communication including header frame transmission by the master node, as well as the transmission
and reception of response frames, is performed.

1.1.1 System Configuration
A sample LIN bus network system configuration is shown in Figure 1.

Master node
H8/36057F

SCI3
IRQ

timer Z

LIN bus I/F circuit

LIN bus I/F circuit LIN bus I/F circuit LIN bus I/F circuit

LIN bus

Slave node-1 Slave node-2 Slave node-n

Figure 1 Block Diagram of a System Connected Through the LIN Bus

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 3 of 49

1.1.2 LIN Bus (Single-Wire Bus) Interface
Figure 2 shows a sample circuit for interfacing the LIN bus to the input/output pins of the on-chip functions of the
H8/36057F microcomputer (hereinafter referred to as the microcomputer).

H8/36057F

RxD

5.0 V

5.0 V 5.0 V

Vbatt (12.0 V)

33 kΩ

47 kΩ

4.7 kΩ

470 pF

470 pF

1 kΩ (master)
33 kΩ (slave)100 Ω

470 pF47 kΩ

47 kΩ
Port (P22)/TxD

IRQ0

LIN bus

Figure 2 Sample LIN Bus Interface Circuit

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 4 of 49

1.2 Overview of LIN Communication
This section describes the message frames that are transmitted and received using the LIN communication protocol.

1.2.1 Message Frame Structure
The structure of a message frame is shown in Figure 3. Each message frame consists of a header frame transmitted
from the master node and a response frame transmitted from the master node or a slave node.

Message frame

Header frame

Response frame

LIN bus

Header frame (master)

Header frame (master)

13-bit or longer I/O port output SCI transmission 8-bit data

SCI transmission 8-bit data SCI transmission 8-bit data SCI transmission 8-bit data SCI transmission 8-bit data

SCI transmission data (55h)

Response frame (master or slave)

Response frame (master or slave)

Sync break
field

Sync break field

Sync
field

Sync field

ID
field

ID field

Checksum
field

Checksum field

Data 1 Data n
(n = 2, 4, 8)

Sync break delimiter

Sync break delimiter

Inter-frame spaceInter-frame
response space

Data field

Data field

Inter-frame
space

Inter-frame
response space

Inter-frame
response

space

Inter-frame
space

Figure 3 Message Frame Structure

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 5 of 49

1.2.2 Transmission and Reception of Message Frames
Figure 4 illustrates transmission and reception of message frames in the master node and slave nodes.

1. The master node transmits a header frame.
2. Each slave node determines an ID from the received header frame and, when the ID is of the local node, the node
transmits a response. The ID is determined by the master node at transmission.

Rx

Tx

Rx

Tx

Rx

Tx

Tx

Rx

Message frame - 1
Response transmission

request ID issued to slave
node 1

Message frame - 2
Response transmission

request ID issued to slave
node 2

Message frame - 3
Response transmission

request ID issued to master
node

Master node

Slave node 1

Slave node 2

Slave node n

Header Header Header Response

ResponseResponseResponse

ResponseResponse

Response

Response

ResponseResponseResponse

ResponseResponseResponse

Response

Header Header Header

Header Header Header

Header Header Header

Header Header Header

Figure 4 Transmission and Reception of Message Frames

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 6 of 49

2. Library Software Specifications
By including the library in the user application program, the user application program can use the on-chip functions to
perform LIN communication as a slave node.

2.1 Operating Environment
• Device used: H8/36037/57 Group microcomputer
• Operating frequency range (system clock (φ osc)): Range equivalent to device operating frequencies. It is

necessary to define φ osc in LIND.h by considering the LIN communication speed and processing conditions of the
user application program. (Refer to Section 2.4.2, LINID.h File Setting Example.)

• Functions used: Table 1 is a list of on-chip peripheral functions to be used with the library, together with their uses.

Table 1 Use of On-Chip (H8/36057) Peripheral Functions

Function

Pin
function
(pin No.) Use Description

I/O port P22
(pin 46)

Transmission of sync break field Sync break field is formed
by the I/O port (high or low)
output.

Transmission TXD
(pin 46)

Transmission of sync field
Transmission of ID field
Transmission of response frame
Transmission of wake-up signal
Reception of response frame

Asynchronous mode
Data length: 8 bits
No parity bits
One stop bit (with start bit
added)
LSB first

SCI3
(channel-0)

Reception RXD
(pin 465)

Communication error detection Error detection function in a
module

Timer Z
(channel-1)

— Measurement of sync break field
dominant period
Measurement of sync break
delimiter period
Measurement of wait period
(internal function of the library)
Timeout detection

Counting is performed at
cycles of φ osc/8, and each
period is measured.

IRQ /IRQ0
(pin 51)

Wake-up signal detection In the standby state, the
LIN bus is monitored to
detect a falling-edge.

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 7 of 49

2.2 File Configuration
• LINmtrT.c (Ver.1.00)

C source file used for (master) microcomputer function setting and communication control for LIN communication
in the H8/36057 Group.

• LINID.h (Ver.1.00)
Include file used to include user-defined items such as the communication transfer rate and ID settings at LINmtrT.c
(Ver.1.00) compilation. This file also contains user application interface functions and variable definitions. These
must also be included at the time of user application program compilation.

• H8_36057.h (Ver.1.00)
Internal I/O register definition file for the H8/36057 Group

2.3 Required ROM/RAM Capacity
(When H8S or H8/300 Series C compiler CH38.exe Ver.2.0C is used)

The ROM/RAM size used varies depending on the number of IDs that are set and so on.

• ROM size: Approximately 1.5 Kbytes
• RAM size: Approximately 35 bytes

2.4 Functional Specifications
2.4.1 LIN Communication Specifications
• Node: Slave node supported
• ID: User-defined ID

A. Response transmission ID
Zero to 60 IDs (00h to 3bh) can be set in LINID.h.
(If nodes having the same ID are set on the same LIN bus, normal operation is impossible.)

B. LIN protocol definition ID
a. Master request frame ID 3ch (ID field data: 3Ch)

The master automatically transmits a response frame (8-byte data).
The data field is set by the user. If the first byte of the data field is 00h, a sleep command is assumed.

b. Slave response frame ID 3dh (ID field data: 7Dh)
A response frame (8-byte data) is received.

c. Extended frame ID 3eh, 3fh (ID field data: FEh, BFh)
Not supported by this library (Ver.1.00).

C. ID setting method
In LINID.h, delete the definition statements (#define __IDm 0xnn (m = 00h to 3bh)) of IDs other than those to
be set as response transmission IDs, or set them as comment statements so that only the IDs to be set are defined,
and then compile LINmtrT.c.

• Response data length: Specified by the DLC (data length control) bits in the ID (LIN_tx_id) field data to be
transmitted.
LIN_tx_id = 00h to 1fh : 2 bytes
 = 20h to 2fh : 4 bytes
 = 30h to 3Dh : 8 bytes

• Communication transfer rate: The communication transfer rate used is defined in LINID.h.
From the system clock (φ osc) definition value and communication transfer rate definition value, the constants used
in the library and the SCI3 module setting value are calculated automatically. (Note: The communication transfer
rate may be restricted by φ osc. For details, refer to "SCI3 Module: BRR Setting Example (Asynchronous Mode)
for the Bit Rate" in the hardware manual.)

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 8 of 49

• Wake-up signal transmission and reception: Wake-up signal transmission and reception functions can be included.
Including the wake-up signal transmission function
A definition statement (#define __T_WAKEUP __ON) in LINID.h includes the wake-up transmission function.
By calling the function (LIN_transmit_wake_up) from the user application program, the wake-up signal is
transmitted on the LIN bus.
Including the wake-up signal reception function
A definition statement (#define __R_WAKEUP __ON) in LINID.h includes the wake-up reception function. Even
when the H8/36057 microcomputer is in the standby state, the wake-up signal on the LIN bus is detected (falling-
edge detection) through IRQ0 (external interrupt input).

2.4.2 LINID.h File Setting Example
An example of setting LINID.h is shown below.

1. The node does not transmit a wake-up signal.
2. Wake-up signal detection (falling-edge detection) through IRQ0 (external interrupt) is performed.
3. Response frames are transmitted to the following four IDs:

ID (ID bit + DLC bits) (including parity bits)
01h (C1h)
12h (92h)
23h (A3h)
34h (B4h)

4. The system clock (φ osc) is 20 [MHz].
5. The LIN communication transfer rate is 9600 [bit/sec].

An example of the settings made based on the specifications described in items 1. to 5., above, is given below.

(Definition statements other than the statements indicated in boldface must be deleted or set as comment lines.)

/**/

/* */

/* LINID.h Ver.1.00 */

/* */

/**/

#define __ON 1 /* This line must not be changed or deleted. */

#define __OFF 0 /* This line must not be changed or deleted. */

/**/

/* Setting of wake-up signal transmission function */

/**/

/*#define __T_WAKEUP __ON /* When transmitting a wake-up signal, define this line. */

#define __T_WAKEUP __OFF /* When not transmitting wake-up signal, define this line. */

/**/

/* Setting of wake-up signal detection function */

/**/

#define __R_WAKEUP __ON /* When detecting a wake-up signal (falling-edge detection),

/*define this line. */

/*#define __R_WAKEUP __OFF /* When not detecting wake-up signal, define this line. */

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 9 of 49

/**/

/* Setting of response transmission IDs */

/**/

/* 2-byte data */

/*--*/

#define __Res2byte_ID __ON /* When using a 2-byte response data transmission ID, define

/*this line. */

/*#define __Res2byte_ID __OFF /* When not using a 2-byte response data transmission ID,

/*define this line. */

#if __Res2byte_ID == __ON

/*#define __ID00 0x80 /* */

#define __ID01 0xC1 /* Transmit response to ID field C1h. */

/*#define __ID02 0x42 /* */

/*#define __ID03 0x03 /* */

/*#define __ID04 0xC4 /* */

/*#define __ID05 0x85 /* */

/*#define __ID06 0x06 /* */

/*#define __ID07 0x47 /* */

/*#define __ID08 0x08 /* */

/*#define __ID09 0x49 /* */

/*#define __ID0a 0xCA /* */

/*#define __ID0b 0x8B /* */

/*#define __ID0c 0x4C /* */

/*#define __ID0d 0x0D /* */

/*#define __ID0e 0x8E /* */

/*#define __ID0f 0xCF /* */

/*#define __ID10 0x50 /* */

/*#define __ID11 0x11 /* */

#define __ID12 0x92 /* Transmit response to ID field 92h. */

/*#define __ID13 0xD3 /* */

/*#define __ID14 0x14 /* */

/*#define __ID15 0x55 /* */

/*#define __ID16 0xD6 /* */

/*#define __ID17 0x97 /* */

/*#define __ID18 0xD8 /* */

/*#define __ID19 0x99 /* */

/*#define __ID1a 0x1A /* */

/*#define __ID1b 0x5B /* */

/*#define __ID1c 0x9C /* */

/*#define __ID1d 0xDD /* */

/*#define __ID1e 0x5E /* */

/*#define __ID1f 0x1F /* */

#endif

---/

/* 4-byte data */

/*--*/

#define __Res4byte_ID __ON /* When using a 4-byte response data transmission ID, define

/*this line. */

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 10 of 49

/*#define __Res4byte_ID __OFF /* When not using a 2-byte response data transmission ID,

/*define this line. */

#if __Res4byte_ID == __ON

/*#define __ID20 0x20 /* */

/*#define __ID21 0x61 /* */

/*#define __ID22 0xE2 /* */

#define __ID23 0xA3 /* Transmit response to ID field A3h. */

/*#define __ID24 0x64 */

/*#define __ID25 0x25 /* */

/*#define __ID26 0xA6 /* */

/*#define __ID27 0xE7 /* */

/*#define __ID28 0xA8 /* */

/*#define __ID29 0xE9 /* */

/*#define __ID2a 0x6A /* */

/*#define __ID2b 0x2B /* */

/*#define __ID2c 0xEC /* */

/*#define __ID2d 0xAD /* */

/*#define __ID2e 0x2E /* */

/*#define __ID2f 0x6F /* */

#endif

/*--*/

/* 8-byte data */

/*--*/

#define __Res8byte_ID __ON /* When using an 8-byte response data transmission ID, define

/*this line. */

/*#define __Res8byte_ID __OFF /* When not using an 8-byte response data transmission ID,

/*define this line. */

#if __Res8byte_ID == __ON

/*#define __ID30 0xF0 /* */

/*#define __ID31 0xB1 /* */

/*#define __ID32 0x32 /* */

/*#define __ID33 0x73 /* */

#define __ID34 0xB4 /* Transmit response to ID field B4h. */

/*#define __ID35 0xF5 /* */

/*#define __ID36 0x76 /* */

/*#define __ID37 0x37 /* */

/*#define __ID38 0x78 /* */

/*#define __ID39 0x39 /* */

/*#define __ID3a 0xBA /* */

/*#define __ID3b 0xFB /* */

#endif

/**/

/* System clock (φosc) definition section */
/**/

#define OSC_Hz 20000000 /* φ osc=20.000MHz → 20000000 */

/*#define OSC_Hz 16000000 /* φ osc=16.000MHz → 16000000 */

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 11 of 49

/*#define OSC_Hz 10486000 /* φ osc=10.486MHz → 10486000 */

/*#define OSC_Hz 10000000 /* φ osc=10MHz → 10000000 */

/*#define OSC_Hz 9830400 /* φ osc=9.8304MHz → 9830400 */

/*#define OSC_Hz 8000000 /* φ osc=8.0000MHz → 8000000 */

/*#define OSC_Hz 7372800 /* φ osc=7.3728MHz → 7372800 */

/*#define OSC_Hz 4915200 /* φ osc=4.9152MHz → 4915200 */

/*#define OSC_Hz 2457600 /* φ osc=2.4576MHz → 2457600 */

/**/

/* Baud rate definition module */

/**/

/*#define B_rate 2400 /* 2400bps → 2400 */

/*#define B_rate 4800 /* 4800bps → 4800 */

#define B_rate 9600 /* 9600bps → 9600 */

/*#define B_rate 10000 /* 10000bps → 10000 */

/*#define B_rate 14400 /* 14400bps → 14400 */

/*#define B_rate 19200 /* 19200bps → 19200 */

/*#define B_rate 20000 /* 20000bps → 20000 */

/**/

/* Library constant calculation module The following must not be changed or deleted. */

/**/

#define t_1_data ((((OSC_Hz) / (B_rate)) + 0x04) >>3)

#define t_2_data ((((OSC_Hz) / (B_rate)) + 0x02) >>2)

#define t_3_data (t_1_data + t_2_data)

#define t_13_data ((((13 * ((OSC_Hz) >>2)) / (B_rate)) + 0x01) >>1)

#define t_2byte_data ((((91 * ((OSC_Hz) >>2)) / (B_rate)) + 0x01) >>1)

#define t_4byte_data ((((119 * ((OSC_Hz) >>2)) / (B_rate)) + 0x01) >>1)

#define t_8byte_data ((((175 * ((OSC_Hz) >>2)) / (B_rate)) + 0x01) >>1)

#define baudrate_data ((((((OSC_Hz) >>4) / (B_rate)) + 0x01) >>1) - 1)

/***/

/* Function and variable definition module The following must not be changed or

deleted. */

/***/

#ifndef __LIN_LIB

extern void LIN_end(void);

extern void LIN_data_set(void);

extern void LIN_error(void);

extern void LIN_initialize(void);

extern void LIN_transmit_header(void);

#if __T_WAKEUP == __ON

extern void LIN_transmit_wake_up(void);

#endif

#if __R_WAKEUP == __ON

extern void LIN_wake_up(void);

extern void LIN_wake_up_PR(void);

#endif

extern volatile unsigned char LIN_tx_id;

extern volatile unsigned char LIN_tx_data[8];

extern volatile unsigned char LIN_rx_id;

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 12 of 49

extern volatile unsigned char LIN_rx_data[8];

extern volatile union {

 unsigned char BYTE;

 struct {

 unsigned char wk7 :1;

 unsigned char CSE :1;

 unsigned char wk5 :2;

 unsigned char SNRE :1;

 unsigned char SCI :1;

 unsigned char SUC :1;

 unsigned char Ready :1;

 } BIT;

} LIN_status;

extern volatile union {

 unsigned char BYTE;

 struct {

 unsigned char SB_DEL :2;

 unsigned char WU :1;

 unsigned char wk4 :5;

 } BIT;

} LIN_control;

#endif

2.4.3 User Application Interface
This section describes the specifications of the interface between this library and the user application program.

• Interface by function (module) call
The user application program calls functions from the library to initialize the necessary on-chip (H8/36057)
peripheral functions for LIN communication control, transmitting a header frame, controlling wake-up signal
transmission, and preparing for wake-up signal reception.

Table 2 Functions in the Library That are Called by the User Application Program

Function name Description
LIN_initialize Initializes necessary on-chip (H8/36057) peripheral functions for LIN

communication control.
LIN_transmit_header Starts header frame transmission.
LIN_transmit_wake_up Transmits a wake-up signal.
LIN_wake_up_PR Makes the preparations needed to receive the wake-up signal.

If functions called by the library are prepared within the user application program, processing is performed at certain
event timings (upon the completion of transmission and reception, upon the detection of a communication error, and so
forth) during LIN communication.

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 13 of 49

Table 3 User Application Control Functions Called by the Library

Function name Description
LIN_wake_up Function for controlling the user application program when a wake-up signal is detected
LIN_data_set Function for controlling the user application program before response-frame transmission
LIN_end Function for controlling the user application program after the completion of message-frame

transmission or reception
LIN_error Function for controlling the user application program when a LIN communication error is

detected

• Operation overview

Operation when the message frame is transmitted or received is shown in Figure 5, and the operation when the error
is detected or a wake-up signal is transmitted or received is shown in figure 5.

LIN_data_set

SCI3_int

LIN_end

SCI3_intLIN_initialize LIN_transmit_header

LIN bus

Library

User application program

Header frame
Sync break delimiter

Inter-frame
response space

Sync break
field

ID field

Function call Function call

Data fieldSync
field

Checksum
field

Inter-frame
space

Data 1 Data n

Response frame

Figure 5 Operation Overview at Message Frame Transmission or Reception

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 14 of 49

LIN_wake_up

IRQ0_int

LIN_error

TZ1_int, SCI3_intLIN_wake_up_PR

LIN_transmit_wake_up

LIN bus

Library

Library

User application program

User application program

When transmitting a wake-up signal

Wake-up
delimiter

When receiving
a wake-up signal

When detecting
an error

Wake-up
field

Sync break
field

Sync
field

Sync break
delimiter

ID field

Function call

Function call

Figure 6 Operation at Error Detection and Wake-Up Signal Transmission or Reception

• Interface using global variables (data stored in the RAM area)

The user application program and the library interface with each other by sharing data.

Table 4 Data (Global Variables) Shared by the User Application and Library

Label name
(variable name) Data type Description
LIN_tx_id unsigned char Sets the transmit ID (ID bit + DLC bit) used when a

header frame is transmitted. (See Table 5, "ID List".)
LIN_tx_data[0] to [7] unsigned char

(array)
Sets the transmission data when transmitting a response
frame.

LIN_rx_id unsigned char Stores a received ID.
LIN_rx_data[0] to [7] unsigned char

(array)
Stores received response data.

LIN_status (Structure)
LIN_status.BYTE Byte access

unsigned char
 Bit access

Communication state

LIN_status.BIT.wk7 Bit 7 Reserved bit

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 15 of 49

Label name
(variable name) Data type Description
LIN_status.BIT.CSE Bit 6 Checksum error flag

Set condition : A checksum error is detected when
a response is received.

LIN_status.BIT.wk5 Bit 5 to 4 Reserved bits
LIN_status.BIT.SNRE Bit 3 Slave-not-responding error

Set condition : Reception of a response frame from
a slave is not completed within a
specified period.

LIN_status.BIT.SCI Bit 2 SCI error
Set condition : An error in the SCI3 module (overrun

error or framing error) is detected.
LIN_status.BIT.SUC Bit 1 Message-frame normal-reception completion flag

Set condition : A response frame has been received
normally.

Clearing condition : Transmission of the next response
reception ID is started.

LIN_status.BIT.Ready Bit 0 Header frame transmission ready flag
Set condition : Initialization has been completed.

Message frame transmission/
reception has been completed.
A communication error is detected.

Clearing condition : A message frame is transmitted or
received.

LIN_control (Structure)
LIN_control.BYTE Byte access

unsigned char
 Bit access

Communication control

LIN_control.BIT.SB_DEL Bit 7 to 6 Bits for setting the sync break delimiter length
Bit 7 Bit 6

0 0 : 1 bit
0 1 : 1 bit
1 0 : 2 bits
1 1 : 3 bits

LIN_control.BIT.WU Bit 5 (Wake-up control bit)
LIN_control.BIT.wk4 Bits 4 to 0 Reserved bits

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 16 of 49

Table 5 ID List

LIN_tx_id setting
ID field trans-
mission data LIN_tx_id setting

ID field trans-
mission data

Dec. Hex. Dec. Hex.

Response
data
length Dec. Hex. Dec. Hex.

Response
data
length

0 0x00 128 0x80 2 32 0x20 32 0x20 4
1 0x01 193 0xC1 2 33 0x21 97 0x61 4
2 0x02 66 0x42 2 34 0x22 226 0xE2 4
3 0x03 3 0x03 2 35 0x23 163 0xA3 4
4 0x04 196 0xC4 2 36 0x24 100 0x64 4
5 0x05 133 0x85 2 37 0x25 37 0x25 4
6 0x06 6 0x06 2 38 0x26 166 0xA6 4
7 0x07 71 0x47 2 39 0x27 231 0xE7 4
8 0x08 8 0x08 2 40 0x28 168 0xA8 4
9 0x09 73 0x49 2 41 0x29 233 0xE9 4
10 0x0A 202 0xCA 2 42 0x2A 106 0x6A 4
11 0x0B 139 0x8B 2 43 0x2B 43 0x2B 4
12 0x0C 76 0x4C 2 44 0x2C 236 0xEC 4
13 0x0D 13 0x0D 2 45 0x2D 173 0xAD 4
14 0x0E 142 0x8E 2 46 0x2E 46 0x2E 4
15 0x0F 207 0xCF 2 47 0x2F 111 0x6F 4
16 0x10 80 0x50 2 48 0x30 240 0xF0 8
17 0x11 17 0x11 2 49 0x31 177 0xB1 8
18 0x12 146 0x92 2 50 0x32 50 0x32 8
19 0x13 211 0xD3 2 51 0x33 115 0x73 8
20 0x14 20 0x14 2 52 0x34 180 0xB4 8
21 0x15 85 0x55 2 53 0x35 245 0xF5 8
22 0x16 214 0xD6 2 54 0x36 118 0x76 8
23 0x17 151 0x97 2 55 0x37 55 0x37 8
24 0x18 216 0xD8 2 56 0x38 120 0x78 8
25 0x19 153 0x99 2 57 0x39 57 0x39 8
26 0x1A 26 0x1A 2 58 0x3A 186 0xBA 8
27 0x1B 91 0x5B 2 59 0x3B 251 0xFB 8
28 0x1C 156 0x9C 2 60 0x3C 60 0x3C 8
29 0x1D 221 0xDD 2 61 0x3D 125 0x7D 8
30 0x1E 94 0x5E 2 (62) (0x3E) (254) (0xFE) ―
31 0x1F 31 0x1F 2 (63) (0x3F) (191) (0xBF) ―

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 17 of 49

2.5 Operation
This section explains the transmission and reception operations performed with the library.

2.5.1 Transmission of a Header Frame
When the header frame transmission ready flag (LIN_status.BIT.Ready) is set to 1, the user program starts header
frame transmission by calling the LIN_transmit_header function.

Before the LIN_transmit_header function can be called, the bit length of the sync break delimiter
(LIN_control.BIT.SB_DEL) and the transmission ID (LIN_tx_id) must be set. (Refer to Table 4 and Table 5.)

1. Transmission of a Sync Break Field:

The I/O port (P22 (a multiplexed pin also functioning as TxD)) output function outputs the sync break field
dominant state for a period of about 13 bits.

TSYNBRK

Sync break field Sync field

TSYNDEL

Sync break
delimiter

Execution module : LIN_transmit_header
(subroutine)

Pin function : I/O port output (P22)

Function used : Timer Z compare match C
(Start of measuring the low level
output period)

Internal software processing of the library
• Determine the ready flag (clear).
• Set the I/O port output function (start of low

level output)
• Measuring the low level output period is

started by timer Z compare match C
(compare match interrupt C enabled).

Figure 7 Output of the Sync Break Field Dominant Period

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 18 of 49

2. Transmission of a Sync Break Delimiter:
The I/O port output function outputs a sync break delimiter (recessive period).
After the output of the recessive state for the period set by the LIN_control.BIT.SB_DEL setting, which is about 1
to 3 bits long, the port function changes to the TxD pin function (SCI3: channel-0 (called SCI hereafter)
transmission function).

TSYNBRK

Sync break field Sync field

TSYNDEL

Sync break
delimiter

Execution module : TZ1_int (timer Z compare match C
interrupt)

Pin function : I/O port output (P22) → TxD

Function used : Timer Z compare match C
(Start of measuring the high level
output period (delimiter))

Internal software processing of the library
• Timer Z compare match C starts measuring the

delimiter period (compare match C enabled).
• Output the high level on the I/O port (change to the

TxD function).

Figure 8 Sync Break Delimiter Output

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 19 of 49

3. Transmission of a Sync Field:
The SCI transmission function transmits data 55h.

0 1 2 3 4 5 6 7

Sync field

Data: 55h

Start
bit

Stop
bit

Execution module : TZ1_int (timer Z compare match C
interrupt)

Pin function : TxD

Function used : SCI transmission (transmission
interrupt)

Internal software processing of the library
• Disable the timer Z compare match C interrupt.
• The SCI transmission function transmits sync field

data (55h).
• Enable the SCI transmission interrupt.

Figure 9 Sync Field Transmission

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 20 of 49

4. Transmission of an ID Field:
The ID field data is transmitted by the SCI transmission function. The ID field data includes the LIN_tx_id setting,
value and parity bits are automatically added. (Refer to Table 5.)

ID0 ID1 ID2 ID3 ID4 ID5 P0 P1

ID field

Start
bit

Stop
bit

Data length
control (DLC)

ID bits Parity bits

Execution module : SCI3_int (SCI transmission interrupt)
Note: The module is executed at the

timing of the SCI3 module
transmission interrupt initiated
by sync field data transmission.

Pin function : TxD

Function used : SCI transmission (transmission interrupt,
transmission end interrupt)
Timer Z compare match C, overflow
(Start of timeout measurement)

Internal software processing of the library
• The SCI transmission function transmits ID field data.
• Determine the ID.

For response transmission ID:
−− Set the transmission data counter.
−− Call the LIN_data_set function (user application

program).
For response reception ID:
−− Set the reception data counter.
−− Clear the SUC flag.
−− Save the transmission ID (LIN_rx_id).
−− Disable the transmission interrupt and enable the

transmission end interrupt.
−− The timer Z compare match C overflow function

starts response timeout measurement.

For response reception ID only:
Execution module : SCI3_int (SCI

transmission end
interrupt)

Pin function : TxD and RxD

Function used : SCI reception (reception
interrupt)
Timer Z compare match C,
overflow (timeout
measurement)

Internal software processing of the library
• Enable SCI reception.
• Enable the reception interrupt (disable

the transmission end interrupt).

Figure 10 ID Field Data Transmission and Determination

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 21 of 49

2.5.2 Transmission and Reception of a Response Frame
When the ID field transmission data includes a response transmission ID, the SCI transmission function transmits a
response frame. When the ID field transmission data includes a response reception ID, the SCI reception function
receives a response frame.

1. Transmission of a Data Field:

The SCI transmission function transmits a data field.
The transmission data is set in LIN_tx_data[0] to LIN_tx_data [7], and as many bytes of data as the value (2, 4, or 8
bytes) set by the DLC bits of the ID field data are transmitted sequentially from LIN_tx_data[0].

D0 D1 D2 D3 D4 D5 D6 D7

LSB MSB

Data field

Start
bit

Stop
bit

For response transmission ID only:
Execution module : SCI3_int (SCI transmission interrupt)

Note: The module is executed at the
timing of the SCI3 module
transmission interrupt initiated
by the preceding data
transmission.

Pin function : TxD

Function used : SCI transmission (transmission interrupt)

Internal software processing of the library
• Determine the number of transmission data bytes.
• The SCI transmission function transmits data

(LIN_tx_data[n]).
• Transmission data checksum operation
• Count transmission data bytes.

Figure 11 Transmission of a Data Field

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 22 of 49

2. Transmission of a Checksum Field:
The SCI transmission function transmits a checksum field.

C0 C1 C2 C3 C4 C5 C6 C7

LSB MSB

Checksum field

Checksum bits
Start
bit

Stop
bit

For response transmission ID only:
Execution module : SCI3_int (SCI transmission

interrupt)
Note: The module is

executed at the timing
of the SCI3 module
transmission interrupt
initiated by the
preceding data
transmission.

Pin function : TxD

Function used : SCI transmission (transmission
interrupt)

Internal software processing of the library
• Determine the number of transmission data

bytes.
• Disable the transmission interrupt and enable

the transmission end interrupt.
• The SCI transmission function transmits

checksum data.
• Clear the transmission data counter.

For response reception ID only:
Execution module : SCI3_int (SCI

transmission end
interrupt)

Pin function : TxD
Function used : −

Internal software processing of the library
• Disable the transmission end interrupt.
• Initialize internal status flags of the

library.
(Set the ready flag.)

• Call the LIN_end function (user
application program).

Figure 12 Checksum Field Transmission

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 23 of 49

3. Reception of the Data Field:
The SCI reception function receives the data field.
The received data is saved in LIN_rx_data[0] to LIN_rx_data[7] sequentially from LIN_rx_data[0]. Only the bytes
that are received are saved.

D0 D1 D2 D3 D4 D5 D6 D7

LSB MSB

Data field

Start
bit

Stop
bit

For response reception ID only:
Execution module : SCI3_int (SCI reception

interrupt)

Pin function : RxD
Function used : SCI reception (reception

interrupt)
Timer Z compare match C,
overflow (timeout
measurement)

Internal software processing of the library
• Determine the number of received data

bytes.
• Save the received data (LIN_rx_data[n]).
• Reception data checksum operation
• Count received data bytes.

Figure 13 Reception of a Data Field

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 24 of 49

4. Reception of a Checksum Field:
The SCI reception function receives a checksum field, compares it with the operation result from the received data
field, then makes a decision.

C0 C1 C2 C3 C4 C5 C6 C7

LSB MSB

Checksum field

Checksum bits
Start
bit

Stop
bit

For response reception ID only:
Execution module : SCI3_int (SCI reception

interrupt)

Pin function : RxD
Function used : −

Internal software processing of the library
• Determine the number of received data

bytes.
• Disable the timer Z compare match C

interrupt and overflow interrupt (stop
response timeout measurement).

• Disable SCI reception (disable the
reception interrupt).

• Initialize internal status flags of the
library.

• Determine the checksum.
If the determination is acceptable
−− Set the SUC flag and ready flag.
−− Call the LIN_end function (user

application program).
 If the determination is not acceptable

−− Set the CSE flag and ready flag.
−− Call the LIN_eror function (user

application program).

Figure 14 Checksum Field Reception and Determination

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 25 of 49

2.5.3 Transmission and Reception of a Wake-Up Signal
The SCI transmission function transmits a wake-up signal (transmit data: 80h).

The IRQ0 (hereafter called IRQ) falling-edge detection function detects a wake-up signal from another node.

1. Transmission of a Wake-Up Signal:

A definition statement in LINID.h (#define __T_WAKEUP __ON) includes the wake-up signal transmission
function at compilation, allowing the SCI transmission function to transmit a wake-up signal (transmit data : 80h)
when the user application program calls the LIN_transmit_wake_up function.
The library does not control the wake-up delimiter output and the retry transmission. Although the ready flag is set
during the transmission of a wake-up signal, if header frame transmission is started before the other nodes (slave
nodes) complete the preparation needed for LIN communication, communication may not be performed normally.

TWUSIG

Wake-up field

Data: 80h

Sync break field

TWUDEL

Wake-up
delimiter

Execution module : LIN_transmit_wake_up
(subroutine)

Pin function : TxD

Function used : Timer Z compare match C
(wait for internal setting of the
library)

Internal software processing of the library
• Clear the WU flag.
• Initialize the SCI module.
• Enable the timer Z compare match C

interrupt (wait for SCI module initialization)

Execution module : TZ1_int (timer Z compare
match C interrupt)

Pin function : TxD

Function used : SCI transmission

Internal software processing of the library
• Enable SCI transmission.
• Transmit wake-up field data (80h).
• Disable the timer Z compare match C

interrupt.
• Set the ready flag.

Figure 15 Transmission of a Wake-Up Signal

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 26 of 49

2. Reception of a Wake-up Signal:
A definition statement in LINID.h (#define __R_WAKEUP __ON) includes the wake-up signal reception function
at compilation, allowing the IRQ falling-edge detection function to wait for a wake-up signal from another node
when the user application program calls the LIN_wake_up_PR function.
The library detects only falling-edges, without verifying the wake-up field data.

TWUSIG

Wake-up field transmitted from another node

TWUDEL

Wake-up
delimiter

Execution module :
LIN_wake_up_PR
(subroutine)

Pin function : IRQ0

Function used : IRQ0
(Falling edge detection
interrupt)

Internal software processing of
the library
• Enable the IRQ0 falling

edge detection interrupt.

Execution module : TZ1_int
(timer Z compare match C
interrupt)

Pin function : −

Function used : −

Internal software processing
of the library
• Enable SCI transmission.
• Disable the timer Z

compare match C
interrupt.

• Set the ready flag.

Execution module : IRQ0_int
(The IRQ0 falling edge detection
interrupt)

Pin function : −

Function used : Timer Z compare
match C (wait for
internal setting of the
library)

Internal software processing of the
library
• Disable the IRQ0 falling edge

detection interrupt.
• Initialize the SCI module.
• Enable the timer Z compare match

C interrupt (wait for SCI module
initialization).

• Call the LIN_wake_up function
(user application program).

Figure 16 Reception of a Wake-Up Signal

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 27 of 49

2.5.4 Issuing a Sleep Command
The sleep command (when a command frame ID (3CH) is transmitted, and the first byte of the response transmission
data is 00h), which is defined by the LIN communication protocol (LIN Protocol Specification Rev 1.2 , Rev 1.3 Draft
7), is transmitted by calling the LIN_transmit_header function with 3Ch set in LIN_tx_id and 00h set in
LIN_tx_data[0].

The library does not contain any special operations that are to be performed after the transmission of the sleep
command (flag setting, microcomputer operation mode change, and so on).

2.6 Software Description
This section explains the library software.

2.6.1 Including Header Files
The standard library (machine.h), the H8/36057 on-chip peripheral register definition file (H8_36057.h), and the LIN
library definition file (LINID.h) are included.

#include <machine.h>

#include "H8_36057.h"

#define __LIN_LIB

#include "LINID.h"

2.6.2 Defining Functions
Functions (modules) in the library must be defined.

The inclusion of the LIN_transmit_wake_up function is selected by the __T_WAKEUP definition in LINID.h.
Similarly, the inclusion of the LIN_intc_init function, LIN_wake_up function, and LIN_wake_up_PR function is
selected by the __R_WAKEUP definition.

void LIN_initialize(void);

void LIN_system_init(void);

void LIN_port_init(void);

void LIN_sci_init(void);

void LIN_timerZ_init(void);

void LIN_Sflag_init(void);

void LIN_end(void);

void LIN_data_set(void);

void LIN_error(void);

void LIN_transmit_header(void);

#if __T_WAKEUP == __ON

void LIN_transmit_wake_up(void);

#endif

#if __R_WAKEUP == __ON

void LIN_intc_init(void);

void LIN_wake_up(void);

void LIN_wake_up_PR(void);

#endif

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 28 of 49

2.6.3 Defining Internal Constants for the Library
Constants used in the library must be defined.

Table 6 Internal Constants for the Library

Label name
(variable name) Data type Description
id_field[0] to [63] unsigned char

(array)
ID field transmission data (refer to the list of IDs in
Table 5.)

wait_time[0] to [3] unsigned short
(array)

Wait settings for internal control of the library (used at
SCI3 module initialization and sync break delimiter
period setting)

t_13 unsigned short Setting of sync break field dominant period (13-bit
period)

flame_max_2
flame_max_4
flame_max_8

unsigned long Maximum response timeout value

baudrate unsigned short Baud rate setting for the SCI3 module

const unsigned char id_field[64] = { 0x80, 0xC1, 0x42, 0x03, 0xC4, 0x85, 0x06, 0x47,

 0x08, 0x49, 0xCA, 0x8B, 0x4C, 0x0D, 0x8E, 0xCF,

 0x50, 0x11, 0x92, 0xD3, 0x14, 0x55, 0xD6, 0x97,

 0xD8, 0x99, 0x1A, 0x5B, 0x9C, 0xDD, 0x5E, 0x1F,

 0x20, 0x61, 0xE2, 0xA3, 0x64, 0x25, 0xA6, 0xE7,

 0xA8, 0xE9, 0x6A, 0x2B, 0xEC, 0xAD, 0x2E, 0x6F,

 0xF0, 0xB1, 0x32, 0x73, 0xB4, 0xF5, 0x76, 0x37,

 0x78, 0x39, 0xBA, 0xFB, 0x3C, 0x7D, 0xFE, 0xBF };

const unsigned short wait_time[4] = { t_1_data, t_1_data, t_2_data, t_3_data };

const unsigned short t_13 = t_13_data;

const union {

 unsigned long LONG;

 struct {

 unsigned short h;

 unsigned short l;

 } WORD;

} flame_max_2 = t_2byte_data;

const union {

 unsigned long LONG;

 struct {

 unsigned short h;

 unsigned short l;

 } WORD;

} flame_max_4 = t_4byte_data;

const union {

 unsigned long LONG;

 struct {

 unsigned short h;

 unsigned short l;

 } WORD;

} flame_max_8 = t_8byte_data;

const union {

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 29 of 49

 unsigned short WORD;

 struct {

 unsigned char smr;

 unsigned char brr;

 } BYTE;

} baudrate = baudrate_data;

2.6.4 Defining Internal Variables for the Library
Variables used in the library must be defined. Refer to Table 7.

Table 7 Internal Variables for the Library

Label name
(variable name) Data type Description
ex_counter unsigned long Timer Z extended counter
flame_max unsigned short Response timeout setting (timer Z overflow count

value)
t_counter unsigned char Transmission data counter
r_counter unsigned char Reception data counter
t_checksum (Structure)
t_checksum.WORD unsigned short
t_checksum.BYTE.carry
t_checksum.BYTE.data

unsigned char
unsigned char

Transmission data checksum operation value

r_checksum (Structure)
r_checksum.WORD unsigned short
r_checksum.BYTE.carry
r_checksum.BYTE.data

unsigned char
unsigned char

Reception data checksum operation value

in_status (Structure)
in_status.BYTE unsigned char

Internal state of the library

in_status.BIT.sync_break Bit 7 Sync break field transmission flag
in_status.BIT.sync_break_delimiter Bit 6 Sync break delimiter transmission flag
in_status.BIT.sync_field Bit 5 Sync field transmission flag
in_status.BIT.response_id Bit 4 Response ID determination flag

At response data transmission: 1
At reception: 0

in_status.BIT.wk3 Bits 3 to 2 Reserved bits
in_status.BIT.wu Bits 1 to 0 Wake-up signal transmission flag (transmission

counter for internal settings)

static union {

 unsigned long LONG;

 struct {

 unsigned short h;

 unsigned short l;

 } WORD;

} ex_counter;

static unsigned short flame_max;

static unsigned char t_counter;

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 30 of 49

static unsigned char r_counter;

static union {

 unsigned short WORD;

 struct {

 unsigned char carry;

 unsigned char data;

 } BYTE;

} t_checksum;

static union {

 unsigned short WORD;

 struct {

 unsigned char carry;

 unsigned char data;

 } BYTE;

} r_checksum;

static union {

 unsigned char BYTE;

 struct {

 unsigned char sync_break :1;

 unsigned char sync_break_delimiter :1;

 unsigned char sync_field :1;

 unsigned char response_id :1;

 unsigned char dummy2 :2;

 unsigned char wu :2;

 } BIT;

} In_status;

2.6.5 Defining Global Variables
The variables that are shared between the user application program and library must be defined.

(Refer to Table 4.)

volatile unsigned char LIN_tx_id;

volatile unsigned char LIN_tx_data[8];

volatile unsigned char LIN_rx_id;

volatile unsigned char LIN_rx_data[8];

volatile union {

 unsigned char BYTE;

 struct {

 unsigned char wk7 :1;

 unsigned char CSE :1;

 unsigned char wk5 :2;

 unsigned char SNRE :1;

 unsigned char SCI :1;

 unsigned char SUC :1;

 unsigned char Ready :1;

 } BIT;

} LIN_status;

volatile union {

 unsigned char BYTE;

 struct {

 unsigned char SB_DEL :2;

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 31 of 49

 unsigned char WU :1;

 unsigned char wk4 :5;

 } BIT;

} LIN_control;

2.6.6 Initialization Function
This function initializes the H8/36057 on-chip peripheral functions used for LIN communication control and the
software flags, as well as other settings used in the library.

Note: Pins P14 (IRQ0), P21 (RxD), and P22 (TxD) are used for LIN communication. When the user application

program uses other pins (P10 to P12, P15 to P17, P20, P23, and P24) in ports 1 and 2, the pin settings may be
changed by the setting statement of PCR2 in the LIN_port_init function and the setting statement of PCR1 in
the LIN_intc_init function in the source file shown below. When using the above mentioned pins, set each
PCR within the user application program, and then either delete the setting statements of PCR1 and PCR2 in the
source file below or write them as comments.

LIN_initialize

RTS

Module control initialization
LIN_system_init

I/O port initialization
LIN_port_init

Timer Z initialization
LIN_timerZ_init

SCI3 initialization
LIN_sci_init

Initialization of internal variables
of library

LIN_Sflag_init

Interrupt controller initialization
(when wake-up reception

function is included)
LIN_intc_init

Clear status flags

Clear control flags

Figure 17 Initialization Function Flowchart

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 32 of 49

void LIN_initialize(void) {

 LIN_status.BYTE = 0x00;

 LIN_system_init();

 LIN_port_init();

 LIN_timerZ_init();

 LIN_Sflag_init();

 LIN_sci_init();

#if __R_WAKEUP == __ON

 LIN_intc_init();

#endif

 LIN_control.BYTE = 0x00;

}

void LIN_system_init(void) {

 MSTCR1.BIT.MSTS3 = 0;

 MSTCR2.BIT.MSTTZ = 0;

}

void LIN_port_init(void) {

#if __R_WAKEUP == __ON

 IO.PMR1.BYTE |= 0x12;

#elif __R_WAKEUP == __OFF

 IO.PMR1.BYTE |= 0x02;

#endif

 IO.PDR2.BIT.B2 = 1;

 IO.PCR2 = 0x04;

}

void LIN_sci_init(void) {

 SCI3.SCR3.BYTE = 0x00;

 SCI3.SMR.BYTE = baudrate.BYTE.smr;

 SCI3.BRR = baudrate.BYTE.brr;

 TZ.GRC1 = TZ.TCNT1 + wait_time[1];

 TZ.TSR1.BIT.IMFC = 0;

 TZ.TIER1.BIT.IMIEC = 1;

 In_status.BIT.wu += 1;

}

void LIN_timerZ_init(void) {

 TZ.TSTR.BIT.STR1 = 0;

 TZ.TCR1.BYTE = 0x03;

 TZ.TIORC1.BIT.IOC2 = 0;

 TZ.TIORC1.BIT.IOC1 = 0;

 TZ.TIORC1.BIT.IOC0 = 0;

 TZ.GRC1 = 0x0000;

 TZ.TIER1.BYTE &= 0xEB;

 TZ.TSTR.BIT.STR1 = 1;

}

#if __R_WAKEUP == __ON

void LIN_intc_init(void) {

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 33 of 49

 IO.PCR1 = 0x00;

 IEGR1.BIT.IEG0 = 0;

 IRR1.BIT.IRRI0 = 0;

 IENR1.BIT.IEN0 = 0;

}

#endif

void LIN_Sflag_init(void) {

 t_counter = 0;

 r_counter = 0;

 In_status.BYTE = 0;

}

2.6.7 Header Frame Transmission Function
This function starts transmitting a header frame (the sync break field, sync field, and ID field).

LIN_transmit_header

RTS

Yes

NoHeader frame transmission
ready flag = 1?
(Ready = 1)?

Clear header frame
transmission ready flag

Start sync break output.
Set P22 as I/O port output function.

Output low level on P22.

Set sync break field
transmission flag (for internal

determination of compare match

Set sync break 13-bit period.
(Timer Z compare match C function)
Enable timer Z compare match

C interrupt.

Figure 18 Flowchart of the Header Frame Transmission Function

void LIN_transmit_header(void) {

 if(LIN_status.BIT.Ready) {

 LIN_status.BIT.Ready = 0;

 IO.PMR1.BIT.TXD = 0;

 IO.PDR2.BIT.B2 = 0;

 TZ.GRC1 = TZ.TCNT1 + t_13;

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 34 of 49

 TZ.TSR1.BIT.IMFC = 0;

 TZ.TIER1.BIT.IMIEC = 1;

 In_status.BYTE = 0x80;

 }

}

2.6.8 Wake-Up Signal Transmission Function
This function transmits a wake-up signal.

LIN_transmit_wake_up

RTS

(Clear wake-up signal transmission flag)
(LIN_control.BIT.WU)

Disable wake-up signal detection
(IRQ0 falling-edge detection function)
(when wake-up reception function is

included)

Set internal wake-up signal
transmission flag

(for internal determination of compare
match interrupt)

SCI3 initialization
LIN_sci_init

Figure 19 Flowchart of the Wake-up Signal Transmission Function

#if __T_WAKEUP == __ON

void LIN_transmit_wake_up(void) {

 LIN_control.BIT.WU = 0;

 In_status.BIT.wu = 1;

 LIN_sci_init();

#if __R_WAKEUP == __ON

 IENR1.BIT.IEN0 = 0;

#endif

}

#endif

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 35 of 49

2.6.9 Function for Preparing for Wake-up Signal Reception
This function performs the necessary preparations prior to receiving a wake-up signal from another node (slave node).

LIN_wake_up_PR

RTS

Enable wake-up signal detection
(IRQ0 falling-edge detection function)
(when wake-up reception function is

included)

Figure 20 Flowchart of the Wake-Up Signal Reception Preparation Function

#if __R_WAKEUP == __ON

void LIN_wake_up_PR(void) {

 IRR1.BIT.IRRI0 = 0;

 IENR1.BIT.IEN0 = 1;

}

#endif

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 36 of 49

2.6.10 IRQ Interrupt Function
This function processes the IRQ0 falling-edge detection interrupt. After the settings have been made by the wake-up
signal reception preparation function described in Section 2.7.9, this function detects a falling edge (such as a wake-up
signal from another node) on the LIN bus and makes the necessary preparations for LIN communication control.

IRQ0_int

RTE

Clear header frame transmission
ready flag

SCI3 initialization
LIN_sci_init

User application program
LIN_wake_up

Disable wake-up signal detection
(IRQ0 falling-edge detection function)
(when wake-up reception function is

included)

Figure 21 Flowchart of the IRQ Interrupt Function

#if __R_WAKEUP == __ON

#pragma interrupt(IRQ0_int)

void IRQ0_int(void) {

 LIN_status.BIT.Ready = 0;

 IRR1.BIT.IRRI0 = 0;

 IENR1.BIT.IEN0 = 0;

 LIN_sci_init();

 LIN_wake_up();

}

#endif

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 37 of 49

2.6.11 Timer Z Interrupt Function
This function processes the timer Z (channel-1) overflow interrupt and compare match C interrupt.

TZ1_int

RTE

Yes

No

Yes

Yes

Yes

No

No

No

No

Yes

YesNo

Yes

No

Overflow interrupt?

Reception timeout?

Increment overflow counter

Clear status flag
(timer Z overflow)

Compare match
interrupt?

SCI initialized?

Wake-up signal
transmitted?

Enable SCI
transmission

13-bit wait period ends?

Sync break
delimiter ends?

Clear status flag
(Timer Z compare

match C)

Transmit wake-up signal
(SCI transmission data 80h)

Transmit sync field
(SCI transmission data 55h)

Set slave not responding error
flag

Set sync break delimiter period
(Timer Z compare match C

function)

Set sync break delimiter
transmission flag

(for internal determination of
compare match interrupt)

Clear wake-up signal
transmission flag

(In_status.BIT.wu)

Disable timer Z interrupt

Disable timer Z interrupt

Disable timer Z interrupt

Enable SCI transmission
interrupt

Set header frame transmission
ready flag

Disable SCI reception (interrupt)

Initialization of
internal variables of

library
LIN_Sflag_init

User application
program
LIN_error

Set transmission ready flag

Start sync break delimiter output.
Output high level on P22.
Set P22 as TxD function.

(Set sync field transmission
flag)

Figure 22 Flowchart of the Timer Z Interrupt Function

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 38 of 49

#pragma interrupt(TZ1_int)

void TZ1_int(void) {

 if((TZ.TSR1.BIT.OVF) && (TZ.TIER1.BIT.OVIE)) {

 TZ.TSR1.BIT.OVF = 0;

 ex_counter.WORD.h += 1;

 } else if((TZ.TSR1.BIT.IMFC) && (TZ.TIER1.BIT.IMIEC)) {

 TZ.TSR1.BIT.IMFC = 0;

 if(In_status.BIT.wu) {

 SCI3.SSR.BYTE &= 0x80;

 SCI3.SCR3.BIT.TE = 1;

 if(In_status.BIT.wu == 2) {

 SCI3.TDR = 0x80;

 }

 TZ.TIER1.BYTE &= 0xEB;

 In_status.BIT.wu = 0;

 LIN_status.BYTE = 0x01;

 } else if(In_status.BIT.sync_break) {

 TZ.GRC1 = TZ.TCNT1 + wait_time[LIN_control.BIT.SB_DEL];

 In_status.BYTE = 0x40;

 IO.PDR2.BIT.B2 = 1;

 IO.PMR1.BIT.TXD = 1;

 } else if(In_status.BIT.sync_break_delimiter) {

 TZ.TIER1.BYTE &= 0xEB;

 SCI3.SSR.BYTE &= 0x80;

 SCI3.TDR = 0x55;

 SCI3.SCR3.BIT.TIE = 1;

 In_status.BYTE = 0x20;

 } else if(r_counter) {

 if(ex_counter.WORD.h >= flame_max) {

 LIN_status.BYTE = 0x09;

 TZ.TIER1.BYTE &= 0xEB;

 SCI3.SCR3.BYTE = 0x20;

 LIN_Sflag_init();

 LIN_error();

 }

 }

 }

}

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 39 of 49

2.6.12 SCI3 Interrupt Function
This function processes the SCI3 (channel-0) error detection interrupt, reception interrupt, transmission interrupt, and
transmission-end interrupt.

RTE

SCI3_int

Yes

No

No

No

Yes

No
Yes

Yes

Yes

Yes

No

H

R
H

R

Yes

No

No

SCI error interrupt?

Reception interrupt?

Set SCI error flag

Save received data

Count transmission
data

Transmission
checksum operation

Transmit next
data

Transmission interrupt?

Response (R) or
header (H)?

Transmission end
interrupt?

Response (R) or
header (H)?

Data
field transmission

completed?

Checksum OK?

Set checksum error flag

Count received data

Reception checksum
operation

Response
frame reception

completed?

Set header frame
transmission ready flag

Set header frame
transmission ready flag

Prepare for receiving
response

(Enable SCI reception
(interrupt))Set header frame

transmission ready flag

Set response transmission flag
(for internal determination of

SCI interrupt)

Disable SCI reception
(interrupt)

Disable SCI reception
(interrupt)

Transmit checksum field

Disable SCI
transmission end

interrupt

Clear internal status flag

Transmit ID field data

Set reception counter

Clear message frame
normal reception
completion flag

Set timeout (timer Z
overflow and compare

match functions)

Save ID
Set transmission counter

ID determination
shows response transmission

or reception?

Disable SCI transmission
interrupt

(Enable transmission end
interrupt)

Disable SCI transmission
interrupt

(Enable transmission end
interrupt)

Set message frame
normal reception
completion flag

Cancel timeout setting
(Disable timer Z

interrupt)
Cancel timeout setting

(Disable timer Z
interrupt)

Initialization of
internal variables

of library
LIN_Sflag_init Initialization of

internal variables
of library

LIN_Sflag_init

Initialization of
internal variables

of library
LIN_Sflag_init

User application
program
LIN_error

User application
program
LIN_end

User application
program
LIN_end

User application
program

LIN_Error

User application
program

LIN_data_set

Reception

Transmission

Figure 23 Flowchart of the SCI3 Interrupt Function

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 40 of 49

#pragma interrupt(SCI3_int)

void SCI3_int(void) {

 unsigned char buff, nmbr, nm, dlc;

 if(SCI3.SSR.BYTE & 0x38) {

 LIN_status.BYTE = 0x05;

 TZ.TIER1.BYTE &= 0xEB;

 SCI3.SCR3.BYTE = 0x20;

 LIN_Sflag_init();

 LIN_error();

 } else if(SCI3.SSR.BIT.RDRF) {

 buff = SCI3.RDR;

 nm = r_counter & 0x0F;

 nmbr = (r_counter >> 4) - nm;

 if(nm) {

 LIN_rx_data[nmbr] = buff;

 r_checksum.WORD += (unsigned short)LIN_rx_data[nmbr];

 r_checksum.BYTE.data += r_checksum.BYTE.carry;

 r_checksum.BYTE.carry = 0;

 r_counter -= 1;

 } else {

 TZ.TIER1.BYTE &= 0xEB;

 SCI3.SCR3.BYTE = 0x20;

 LIN_Sflag_init();

 if((r_checksum.BYTE.data ^ buff) != 0xFF) {

 LIN_status.BYTE = 0x41;

 LIN_error();

 } else {

 LIN_status.BYTE = 0x03;

 LIN_end();

 }

 }

 } else if((SCI3.SSR.BIT.TDRE) && (SCI3.SCR3.BIT.TIE)) {

 if(In_status.BIT.response_id) {

 nm = t_counter & 0x0F;

 nmbr = (t_counter >> 4) - nm;

 if(nm) {

 buff = LIN_tx_data[(nmbr)];

 SCI3.TDR = buff;

 t_checksum.WORD += buff;

 t_checksum.BYTE.data += t_checksum.BYTE.carry;

 t_checksum.BYTE.carry = 0;

 t_counter -= 1;

 } else {

 SCI3.SSR.BYTE &= 0x80;

 SCI3.SCR3.BYTE = 0x24;

 t_checksum.BYTE.data = ~(t_checksum.BYTE.data);

 SCI3.TDR = t_checksum.BYTE.data;

 t_counter = 0;

 }

 } else {

 In_status.BYTE = 0x00;

 buff = id_field[LIN_tx_id];

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 41 of 49

 SCI3.TDR = buff;

 switch(buff) {

#if __Res2byte_ID == __ON

#ifdef __ID00

 case __ID00:

#endif

#ifdef __ID01

 case __ID01:

#endif

#ifdef __ID02

 case __ID02:

#endif

#ifdef __ID03

 case __ID03:

#endif

#ifdef __ID04

 case __ID04:

#endif

#ifdef __ID05

 case __ID05:

#endif

#ifdef __ID06

 case __ID06:

#endif

#ifdef __ID07

 case __ID07:

#endif

#ifdef __ID08

 case __ID08:

#endif

#ifdef __ID09

 case __ID09:

#endif

#ifdef __ID0a

 case __ID0a:

#endif

#ifdef __ID0b

 case __ID0b:

#endif

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 42 of 49

#ifdef __ID0c

 case __ID0c:

#endif

#ifdef __ID0d

 case __ID0d:

#endif

#ifdef __ID0e

 case __ID0e:

#endif

#ifdef __ID0f

 case __ID0f:

#endif

#ifdef __ID10

 case __ID10:

#endif

#ifdef __ID11

 case __ID11:

#endif

#ifdef __ID12

 case __ID12:

#endif

#ifdef __ID13

 case __ID13:

#endif

#ifdef __ID14

 case __ID14:

#endif

#ifdef __ID15

 case __ID15:

#endif

#ifdef __ID16

 case __ID16:

#endif

#ifdef __ID17

 case __ID17:

#endif

#ifdef __ID18

 case __ID18:

#endif

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 43 of 49

#ifdef __ID19

 case __ID19:

#endif

#ifdef __ID1a

 case __ID1a:

#endif

#ifdef __ID1b

 case __ID1b:

#endif

#ifdef __ID1c

 case __ID1c:

#endif

#ifdef __ID1d

 case __ID1d:

#endif

#ifdef __ID1e

 case __ID1e:

#endif

#ifdef __ID1f

 case __ID1f:

#endif

 t_counter = 0x22;

 In_status.BIT.response_id = 1;

 t_checksum.WORD = 0;

 LIN_data_set();

 break;

#endif

#if __Res4byte_ID == __ON

#ifdef __ID20

 case __ID20:

#endif

#ifdef __ID21

 case __ID21:

#endif

#ifdef __ID22

 case __ID22:

#endif

#ifdef __ID23

 case __ID23:

#endif

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 44 of 49

#ifdef __ID24

 case __ID24:

#endif

#ifdef __ID25

 case __ID25:

#endif

#ifdef __ID26

 case __ID26:

#endif

#ifdef __ID27

 case __ID27:

#endif

#ifdef __ID28

 case __ID28:

#endif

#ifdef __ID29

 case __ID29:

#endif

#ifdef __ID2a

 case __ID2a:

#endif

#ifdef __ID2b

 case __ID2b:

#endif

#ifdef __ID2c

 case __ID2c:

#endif

#ifdef __ID2d

 case __ID2d:

#endif

#ifdef __ID2e

 case __ID2e:

#endif

#ifdef __ID2f

 case __ID2f:

#endif

 t_counter = 0x44;

 In_status.BIT.response_id = 1;

 t_checksum.WORD = 0;

 LIN_data_set();

 break;

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 45 of 49

#endif

#if __Res8byte_ID == __ON

#ifdef __ID30

 case __ID30:

#endif

#ifdef __ID31

 case __ID31:

#endif

#ifdef __ID32

 case __ID32:

#endif

#ifdef __ID33

 case __ID33:

#endif

#ifdef __ID34

 case __ID34:

#endif

#ifdef __ID35

 case __ID35:

#endif

#ifdef __ID36

 case __ID36:

#endif

#ifdef __ID37

 case __ID37:

#endif

#ifdef __ID38

 case __ID38:

#endif

#ifdef __ID39

 case __ID39:

#endif

#ifdef __ID3a

 case __ID3a:

#endif

#ifdef __ID3b

 case __ID3b:

#endif

 t_counter = 0x88;

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 46 of 49

 In_status.BIT.response_id = 1;

 t_checksum.WORD = 0;

 LIN_data_set();

 break;

#endif

 case 0x3C:

 t_counter = 0x88;

 In_status.BIT.response_id = 1;

 t_checksum.WORD = 0;

 LIN_data_set();

 break;

 case 0x7D:

 case 0xFE:

 case 0xBF:

 r_counter = 0x88;

 r_checksum.WORD = 0;

 LIN_status.BIT.SUC = 0;

 LIN_rx_id = buff;

 SCI3.SSR.BYTE &= 0x80;

 SCI3.SCR3.BYTE = 0x24;

 TZ.GRC1 = flame_max_8.WORD.l;

 flame_max = flame_max_8.WORD.h;

 ex_counter.WORD.h = 0;

 TZ.TSR1.BYTE &= 0xEB;

 TZ.TIER1.BYTE |= 0x14;

 break;

 default :

 dlc = buff & 0x30;

 if(dlc == 0x20) {

 r_counter = 0x44;

 TZ.GRC1 = flame_max_4.WORD.l;

 flame_max = flame_max_4.WORD.h;

 } else if(dlc == 0x30) {

 r_counter = 0x88;

 TZ.GRC1 = flame_max_8.WORD.l;

 flame_max = flame_max_8.WORD.h;

 } else {

 r_counter = 0x22;

 TZ.GRC1 = flame_max_2.WORD.l;

 flame_max = flame_max_2.WORD.h;

 }

 r_checksum.WORD = 0;

 LIN_status.BIT.SUC = 0;

 LIN_rx_id = buff;

 SCI3.SSR.BYTE &= 0x80;

 SCI3.SCR3.BYTE = 0x24;

 ex_counter.WORD.h = 0;

 TZ.TSR1.BYTE &= 0xEB;

 TZ.TIER1.BYTE |= 0x14;

 break;

 }

 }

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 47 of 49

 } else if((SCI3.SSR.BIT.TEND) && (SCI3.SCR3.BIT.TEIE)) {

 if(In_status.BIT.response_id) {

 SCI3.SCR3.BYTE = 0x20;

 LIN_Sflag_init();

 LIN_status.BIT.Ready = 1;

 LIN_end();

 } else {

 SCI3.SSR.BYTE &= 0x80;

 SCI3.SCR3.BYTE = 0x70;

 }

 }

}

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 48 of 49

Website and Support
Renesas Technology Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry
csc@renesas.com

Revision Record
Description

Rev.

Date Page Summary

1.00 Dec.20.03 — First edition issued
1.01 Jun.15.07 Pages 1,

6, 7, 14,
49 and 50

Content correction

H8/300H Tiny Series
LIN (Local Interconnect Network) Application Note: Master

REJ06B0234-0101/Rev.1.01 June 2007 Page 49 of 49

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who

elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

 2007. Renesas Technology Corp., All rights reserved.

	Cover
	1. LIN Communication System Overview
	1.1 Connection to the LIN Bus
	1.1.1 System Configuration
	1.1.2 LIN Bus (Single-Wire Bus) Interface

	1.2 Overview of LIN Communication
	1.2.1 Message Frame Structure
	1.2.2 Transmission and Reception of Message Frames

	2. Library Software Specifications
	2.1 Operating Environment
	2.2 File Configuration
	2.3 Required ROM/RAM Capacity
	2.4 Functional Specifications
	2.4.1 LIN Communication Specifications
	2.4.2 LINID.h File Setting Example
	2.4.3 User Application Interface

	2.5 Operation
	2.5.1 Transmission of a Header Frame
	2.5.2 Transmission and Reception of a Response Frame
	2.5.3 Transmission and Reception of a Wake-Up Signal
	2.5.4 Issuing a Sleep Command

	2.6 Software Description
	2.6.1 Including Header Files
	2.6.2 Defining Functions
	2.6.3 Defining Internal Constants for the Library
	2.6.4 Defining Internal Variables for the Library
	2.6.5 Defining Global Variables
	2.6.6 Initialization Function
	2.6.7 Header Frame Transmission Function
	2.6.8 Wake-Up Signal Transmission Function
	2.6.9 Function for Preparing for Wake-up Signal Reception
	2.6.10 IRQ Interrupt Function
	2.6.11 Timer Z Interrupt Function
	2.6.12 SCI3 Interrupt Function

	Website and Support
	Revision Record
	Notes regarding these materials

