To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

RENESANS

Application Note

Key Return Input and Sound Output

For NEC Electronics Microcontrollers

Document no. U18272EU1VOANOO
©July 2006. NEC Electronics America, Inc.
All rights reserved.

Key Return Input and Sound Output

NEC

The information in this document is current as of July 2006. The information is subject to change without notice. For
actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-
date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please
check with an NEC sales representative for availability and additional information.

No part of this document may be copied or reproduced in any form or by any means without prior written consent of
NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.

NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other
liability arising from the use of such NEC Electronics products. No license, express, implied or otherwise, is granted
under any patents, copyrights or other intellectual property rights of NEC Electronics or others.

Descriptions of circuits, software and other related information in this document are provided for illustrative purposes
in semiconductor product operation and application examples. The incorporation of these circuits, software and
information in the design of customer's equipment shall be done under the full responsibility of customer. NEC
Electronics no responsibility for any losses incurred by customers or third parties arising from the use of these circuits,
software and information.

While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of
damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers
must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure
features.

NEC Electronics products are classified into the following three quality grades: “Standard”, “Special” and “Specific”.

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated
“quality assurance program” for a specific application. The recommended applications of NEC Electronics product
depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics
product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and
visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems,
anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support
systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is “Standard” unless otherwise expressly specified in NEC Electronics
data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC
Electronics, they must contact NEC Electronics sales representative in advance to determine NEC Electronics 's
willingness to support a given application.

Notes:
1. "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
2. "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics
(as defined above).

MBS8E 02.10

Key Return Input and Sound Output NEC

Revision History

Date Revision Section Description

July 2006 — — First release

Key Return Input and Sound Output NEC

Key Return Input and Sound Output NEC

Contents
1.] 8 oo (1T 1 o] o SRS 7
1.1 Overview of Key Return Functions and Sound OULPULcceiiiiiiiiniinine e 7
2. Key Return Input and SOUN OUELPUL........coiiiiiie it s seeeneas 8
2.1 Key Return Input and SOUNd OULPUL FEALUIEScciiiiiiiiiiieie st sae s 8
2.1.1 Key Return (KR) INPUL FEALUIEScviviiiiiiiiiieiiite ettt 8
2.1.2 Features of Timer Output for SOUN GENEratioNn...........ccoeiiirieeiiiieiie e 10
2.1.3 Features of Buzzer Output for SOUNd GENErationcccoeririiiieieneieene et 12
2.2 Program Description and SPeCifiCationcccoviiviviieiiiiie s 13
2.3 SOFtWAIE FIOW CRAITS....c.iiiiciiieicie bbbttt b e et sb e et sbe et bt ere b 15
2.3.1 Program Startup and INItialization...........cccooeiiiiiii e 15
2.3.2 INT_Init() — Key-Return Interrupt Initializationccccooveiiiiriieicn e 17
2.3.3 TMOZ1_Init() — Timer 01 Initialization for Square-Wave Generationccccceeevieieresnseannns 18
2.3.4 BUZ_Init() — Alternative Buzzer Initialization for Square-Wave Buzzer Output............c..cc..... 19
2.3.5 TMO0O0_Init() - Timer 00 Initialization for 500-Millisecond Interval.............ccccvevevvrieiiininiiennnns 20
2.3.6 TM51_Init() - Timer 51 Initialization for 5 Millisecond Intervalcccccoovvvveierenieiiniesieannns 21
2.3.7 Main() —Main Program — Key Return and Buzzer QUIPULc.coeverierenininseeee e e seseanens 22
2.3.8 Tone(UCHAR toneno) — Tone Generation Using Timer 00 Square-Wave Generation 23
2.3.9 Tone(UCHAR toneno) — Alternate Tone Generation Using Buzzer OUtpULccceereienienns 24
2.3.10 MD_INTKR() — Key-Return Interrupt-Service ROULINEcccocerieiiirniineneeie e 26
2.3.11 Unsigned char scan_sw() — Scan Key-SWitCh MatriXccccoviriiiiniiiiiiienieeneee e 28
2.3.12 MD_INTTMO00() — Timer 00 Interrupt-Service ROULINEcccoeiiiiieiiieiieieee e 30
2.4 APPHIEL'S RETEIENCE DIFIVEN ..ottt et sb e bbb 31
2.4.1 Configuring Applilet for Key-Return INtEITUPLcccooiiiii i 31
2.4.2 Configuring Applilet for Port Outputs Used as Key Scan OULPULScccvveeveieenieieieseieannas 32
2.4.3 Configuring Applilet for Timer TMO01 Square-Wave Generation............ccocvevevvereereriesesiesinnnens 33
2.4.4 Alternative — Configuring Applilet for Buzzer Square-Wave Generation..........ccccccceevvrivrnannns 34
2.4.5 Setting Applilet to Configure Timer TM51 for 5-Millisecond Interval..........ccccccoevviieiiciiniinnnnns 35
2.4.6 Setting Applilet to Configure Timer TMOO for 500-Millisecond Interval.............ccocccviiriinenns 36
2.4.7 Generating Code With APPHIEL..........coiiiiiii e 38
2.4.8 Applilet-Generated Files and Functions for Key-Return INterrupt...........cccoveveiieneincncienennns 38
2.49 Applilet-Generated Files and Functions for TM00, TMO1 and TM51cociiiiiiiiiiiiiinens 39
2.4.10 Applilet-Generated Files and Functions for Buzzer OQULPULcccooeiiieiiienieieee e 41
2.4.11 Applilet-Generated Files and Functions for Port Initialization..............ccocooveniiinninn s 42
2.4.12 Other Applilet-Generated FilESccciiiiiiiiicieeicie s sre 42
2.4.13 Demonstration Program Files Not Generated by Applilet...........cccooveiiiiiiiiiienircece e 42
2.5 Demonstration PIAtfOrM...... ...ttt et 43
2.5. 1 RESOUICTES ..eeueitieiieste itttk te sttt ese ettt h bbb e e e s et e e bt b e Rt b e bt e b e e e bt nb e e bt bt e bt eb e e e e e e e nnenbeane s 43
2.5.2 Program DemONSLIAtiON........cciviieieriiriesiestese e e e e st et e e esee et esrestesresneera e e enaesrenrenreanens 44
2.6 Hardware BIOCK DIBGFAIMooi ittt ettt b e bbbt e et sbe e 45
2.7 SOFEWAIE IMOUIES ..ottt b e et b et b et ebe et eebe st e besbe st eteabe e ereabe e 46
3. Appendix A — DeVeloPMENT TOOIS........cceii e sre e 48
3.1 SOTEWAKE TOOIS. ittt et b ettt b ettt b ekt b ettt e bt e b e ebe et eebe e et b e re b e 48
KT A T U0 111V T o Yo [SRS 48
4. APPENdiX B — SOFEIWAIE LISTINGSeieiieeieieiee ettt sttt neeseeenes 49
O |V F- U] o K oSO U USROS UPORPTPRURPRT 49
N \V/ - Uod o To [)T o o OSSOSO 52

Key Return Input and Sound Output NEC

Vi

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
412
4.13
4.14
4.15
4.16
417

5] L1 10 18 o SRS 53
SYSTRITHNIT.C ...ttt ettt bbbtk b e ekt e bt ekt eb etk e b e ekt e bt et e eb et et e e b e e et e ene e 54
SYSTIMILC ettt bt b E R R R R R e R R Rt Rt R et r e reane 56
1 00 PSR 57
1 01 S o U TP PRSPPI 58
L TS o PSSR 59
B T 11T o o [OOSR USROS 61
L0 TCT oSO UP PSR PRRPRPR 62
T o] T oSS 67
0] o 0 o OO PR 68
0] B TP TPV PRTPRUPTPRPPPRVRORN 70
L@ 110 1 oSSR 71
L@ 110 =TS o SRR 72
210 4= o (PP SU SRR 73
U 7] PSP PR 73

Key Return Input and Sound Output NEC

1.

1.1

Introduction

This document provides simple examples that illustrate the use of the peripherals included in NEC
Electronics’ microcontrollers. The document includes:

¢ Description of peripheral features

¢ Example program descriptions and specifications
¢ Software flow charts

¢ Applilet reference drivers

¢ Description of demonstration platforms

¢ Hardware block diagram

¢ Software modules

The Applilet is a software tool that easily generates driver code for on-chip peripherals.

Reference the target microcontroller’s user manual and other related documents for further details.

Overview of Key Return Functions and Sound Output

This application note describes key-input functions and two different ways to generate sound from an NEC
Electronics’ 78K0 microcontroller.

The key-return features provided by NEC Electronics” microcontrollers recognize key inputs by scanning
key-switch matrices and processor inputs. If you connect the key-return 1/0O port pins to individual
switches, then pressing any switch causes a key-return interrupt. You can also scan keys with a general-
purpose 1/0 port, and you can configure a key-switch matrix between the key-return and general-purpose
ports.

Pressing switches generally produces noise (sometimes referred to as chattering), so you must debounce
them by sampling the key inputs over a preset interval and recognizing the key input only when there is no
state change over that time. For example, if you sample the key input every millisecond and require that the
data be stable for five sampling periods, you debounce the switch in five milliseconds.

For sound generation, most NEC Electronics’ microcontrollers provide a buzzer (BUZ) output capable of
directly driving an external speaker or buzzer with a square wave. If, however, the microcontroller you
chose does not have a dedicated buzzer output, you can use any of several timer/counters that feature
square-wave, programmable pulse generator (PPG) or PWM features to drive a speaker or buzzer.

Key Return Input and Sound Output NEC

2. Key Return Input and Sound Output

2.1 Key Return Input and Sound Output Features

Below is a brief description of the key-return and sound-output features of NEC Electronics’
microcontrollers. Most NEC Electronics microcontrollers use similar physical circuits for these functions.

2.1.1 Key Return (KR) Input Features
¢ Interrupt triggered by a negative edge on any enabled input

¢ Individual enables for each KR input

Any KR port pins not used for key return can function as independent ports.

Figure 1. Configuration of Key-Return Interrupt

KR7 O!)

KR6 ODi

KR5 ODi

INTKR

KR3

KR2 QI)

KR1 QI)

KRO

[kRM7]KRM6KRMS|KRM4]KRM3]KRM2]KRM1KRMO|

Key return mode register (KRM)

After you set the Key-Return Mode Register (KRMO to KRM7), the port pin becomes an alternate function
for key-interrupt input. A negative edge on any of the selected inputs (KRO to KR7) triggers an interrupt.
Then you read the inputs as an 1/0 port to determine which inputs are low.

The microcontroller’s internal Pull-up Resistor Control Register (PU7) sets internal pull-up resistors for
KRO to KR7, respectively.

Key Return Input and Sound Output NEC

To configure the key-return function:

¢ Set the KRMK mask bit to disable the key-return interrupt.

<*

Use the appropriate pull-up (PU) register bits to enable pull-up resistors on the port pins.

<&

Set the port pins as inputs with the appropriate port mode (PM) register bits.
¢ Setthe KRM register to enable the desired KR inputs.
¢ Set the interrupt priority, and enable the interrupt by clearing the KRMK bit.

Key Return Input and Sound Output

NEC

2.1.2 Features of Timer Output for Sound Generation

Some NEC Electronics microcontrollers have a buzzer output. For those that do not, you can use an internal
timer to generate a square wave to drive a speaker or buzzer. For example, most NEC Electronics
microcontrollers have 16-bit timers, such as Timer 01 (TMO01)

In square-wave generation mode, Timer 01 offers the following features:

* & & o

Optional interrupts on the end of each half cycle

A precise 50% duty cycle; CR001 counts both high and low periods

Variable time base based on divisions of the peripheral clock, using the PRMOL1 register

Variable square-wave half-cycle time of 1 to 65536 clocks, using the CR0O1 register

When you set the Timer-Mode Control Register to its clear-and-start mode, the timer outputs a square wave
from output pin TOO01, with a pulse width set by the Compare Register (CR001).

Figure 2. Timer 01 Generates Square Wave for Buzzer

For 16-Bit Timer00 (TMO01)

TMOn = TMO1
TOOn = TOO1
CROONn = CR0O01
TMCOn2 = TMC012
TMCOn3 = TMC013

Timer/Counter Register (TMO01)

Count clock ?D_

Clear ‘7

16-bit counter (TMOn)

controller

output |, &) 100N pin

Operable bits
TMCOn3, TMCOn2

{} Match signal
i

CROON register

INTTMOON signal

Timer Mode Control Register 00
(TMC012/TMC013)

11

Compare Register (CR001) x

Square-wave Output (TOO01)

Match Interrupt (INTTMO01)

Interval Interval
(N+1) (N+1)

Interval
(N+1)

Square-wave frequency = 1/[2x(N+1)x(Count Clock Cycle)]

10

Interval

(N+1)

Key Return Input and Sound Output NEC

To configure the timer for square-wave output:

¢

¢

¢

* & o

Set the time base using PRMOL.

Set CRO01 as a compare register using CRCO01.

Set the half-cycle time in CRO01.

Set the output-port latch and mode register bit low for square-wave output.

Set the priority for the interrupts, clear the interrupt flags, and unmask the interrupts, if used.
Set the TOCOL1 register for output enable, and invert on CR001 match.

Enable the timer by setting the Timer-Mode Register TMCOL1 to go to its clear-and-start mode on
compare of TM01 and CR001.

11

Key Return Input and Sound Output NEC

2.1.3 Features of Buzzer Output for Sound Generation

The buzzer output (BUZ) provided by NEC Electronics’ microcontrollers offers:

¢ Multiple output frequencies derived from the peripheral clock

¢ Simple enable/disable bit for control

The buzzer output is a square-wave at the frequency selected by clock-output selection register CKS. The
CKS, port-mode and port registers control buzzer operation.

Figure 3. Controlling the Buzzer Frequency

fPRS"| Prescaler

A 4

Output ——»@—» BUZ

Buzzer Output
Latch/Mode

Clock Controller

Output Generation XP—> PCL
Programmable

Clock Output

< A 4 » Internal Bus
< >

Selector

A 4
A 4

Selector

A\ 4

fSUB

|Clock Output Selection Register (CKS) |
A

To configure the buzzer:

¢ Use the appropriate PM register to set the port pin used for the BUZ output.
¢ Select the buzzer frequency with the CKS register.
¢ Use the BZOE bit in the CKS register to enable the buzzer output.

12

Key Return Input and Sound Output NEC

2.2 Program Description and Specification

The demonstration program uses a 2x2-switch matrix and an NEC Electronics microcontroller to illustrate
the key-return function and key-switch matrix scanning. The microcontroller generates one of four different
tones, depending on the switch pressed. You can use more key-scan or key-return inputs to accommaodate a
larger switch matrix.

The key-return port checks key status, while a general-purpose port (column lines) scans the keys. Internal
pull-up registers pull the key-return port inputs (row lines) high when no key is pressed.

The key-scan output port forces all column lines low. Pressing a switch pulls one of the key-interrupt port
input pins low, triggering a key-return interrupt. The interrupt-service sets the key-scan output ports to
drive only one column line low at a time and reads the state of the key return port to determine which key
(or keys) you have pressed.

Figure 4. Configuring Microcontroller for Key Scanning

Column
Port Pins
Key Scan Output >
5
>
Key Return Input | () ()
f < AN
AV
|
| ||
| | | Row
|
|
|
v

Key Return Input | |

VCC
NEC

Microcontroller ‘
Buzzer

Port Pins
. G D
Timer or

C)——|

Buzzer C
Output R S

GND GND

13

Key Return Input and Sound Output

NEC

14

Specifications:

¢ Switch data must be consistent over a 5-milliseconds interval.

¢

¢

Pressing each switch selects a 500-millisecond tone.

Timer 01 generates the square-wave output.

Switch 1 selects 3520 Hz.
Switch 2 selects 1760 Hz.
Switch 3 selects 880 Hz.
Switch 4 selects 440 Hz.

An alternative use of the buzzer output (described but not used) generates different frequencies.

Switch 1 selects 7812 Hz.
Switch 2 selects 3906 Hz.
Switch 3 selects 1953 Hz.
Switch 4 selects 976 Hz.

Key Return Input and Sound Output NEC

2.3 Software Flow Charts

The demonstration program consists of:

¢ Program-initialization code, called before the main() program starts (includes key-return and timer or
buzzer initialization)

¢ The main program loop, which reads the switches and starts tone generation

¢ Subroutines (generated by the Applilet) to handle timer starting, stopping, and interval setting

¢ Alternatively, subroutines (generated by the Applilet) to start and stop the buzzer

¢ Subroutines with user code for handling key-return and timer interrupts (Applilet-generated stub
interrupt service routines, with user code added)

The flowcharts describe this initialization, the main program, key-return interrupt and key scanning, timer
routines for square-wave generation, buzzer routines, and user interrupt service.

2.3.1 Program Startup and Initialization

For 78K0 microcontroller programs written in the C language, an object code file such as sOl.rel, linked to
the user program, provides the startup code. This startup code calls a function named hdwinit(); you can
place hardware-initialization code here.

When the Applilet generates a C program for the 78KaO0, the tool automatically adds the hdwinit() function
to the user program and calls the function Systemlnit(), which calls initialization routines for each
peripheral.

15

Key Return Input and Sound Output NEC

Figure 5. Flowchart for System Initialization

RESET
SOoxx.rel

A

. hdwinit
CALL hdwinit() > 0 o systeminit()
‘ DI() _
' CALL Systeminit() CALL xxx_Init()
" EI()

Other Start-up Code < .
CALL INT_Init()

CALL TMOI_Init()
or
CALL BUZ_Init()

ERCEE

CALL main() —>@

When the hdwinit() function finishes, the startup code calls the user program’s main() function. Thus, when
the main() function starts, peripheral initialization is complete for the ports, key-return interrupt and the
timers.

16

Key Return Input and Sound Output NEC

2.3.2 INT_Init() — Key-Return Interrupt Initialization

Figure 6. Flowchart for Key-Return Interrupt Initialization

@

EGP = 0x00 Disable Edge Detection
EGN = 0x00 Interrupts INTPO - INTP5

KRMK =1 (MK1L.4)
to Disable Key Return Interrupt

PU7.7,6 = 11 to Set Pull-up on P77 and P76
PM7.7,6 = 11 to Set P77 and P76as Input
KRM = 0xCO Set P76/KR6 and P77/KR7

as Key Return Mode

KRPR =1 (PR1L.4) to Set Low Priority
KRIF =0 (IF1L.4) to Clear Interrupt Flag
KRMK =0 (MK1L.4)
to Enable Key Return Interrupt

v

Return

Systemlnit(), calls the INT_Init() routine to set up the key-return function. This demonstration uses pins
P76/KR6 and P77/KR7 as key-return inputs from the key-switch matrix. The initialization routine sets the
EGP and EGN registers to disable other external interrupts.

The routine sets the key-return interrupt mask bit KRMK to 1 to mask the interrupt while modifying other
registers.

The initialization routine writes 0XCO to the PU7 register to provide pull-up resistors on the P77-P76 port
pins, and writes the same value to the port-mode register PM7 to configure the pins as inputs. INT_Init()
also writes 0xCO to the key-return mode register, KRM, to specify that the key-return interrupt sources
KR6 and KR7 trigger a key-return interrupt. A negative edge on either pin P76/KR6 or P77/KR7 triggers
the interrupt.

INT _Init() sets the key-return interrupt priority to low, clears the interrupt flag KRIF, and sets the mask bit
to zero to enable the key-return interrupt INTKR.

See the section on the MD_INTKR() key-return interrupt-service routine for a description of how the
program handles key-return interrupts.

17

Key Return Input and Sound Output NEC

2.3.3 TMOL_Init() — Timer 01 Initialization for Square-Wave Generation

Figure 7. Flowchart for Initializing Timer

| Set TMCO1 = 0x00 to Disable Timer |

| PRMO01 = 0x00 to Select Fprs (8MHz) as Timer Clock |

| Set CRC01.0 =0 (CRCO010) CRO001 is Compare Register |

Set CR001 = 0x46F (1135 Decimal) for 1136*0.125 = 142 uSec Output
Set CRO11 = OxFFFF so no Match with TMO1

Set P0.6 =0 to Set P06 Output Latch Low
Set PMO0.6 =0 to Set P06/TO01 as Output

Set TOC01=0x07 (TOCOL1.7 Fixed to Zero)
TOC01.6=0 (OSPT01) No One-Shot
TOC01.5=0 (OSPEO1) No One-Shot
TOC01.4=0 (TOCO014) Disable Inversion on

CRO011 Match TM01
TOC01.3=0 (LVSO01) Initial Output Low
TOC01.2=1 (LVRO1) Initial Output Low
TOCO01.1=1 (TOCO011) Enable Inversion on

CR001 Match TMO01
TOC01.0=1 (TOEO1) Enable TOO01 Output

v

Return

Systeminit() calls the TMOL_Init() routine to initialize Timer 01 for square-wave output. The routine
disables the timer before writing to the control registers.

TMO1_Init() sets the prescaler-mode register PRMO1 to 0x00 to select fprs , the main 8-MHz clock, as the
count clock. Thus, each TMO01 count takes 0.125 microseconds.

TMO1_Init() sets CRCO1 to use CR0O01 as a compare register and sets CR001 to 0x046F (1135) for a
square-wave width of 1136 * 0.125 = 142 microseconds. This setting results in a square wave with a high
time of 142 microseconds, and low time of 142 microseconds for a total frequency of 1/(142 + 142) = about
3520 Hz.

TMO1_Init() sets the P0.6 output latch and the port-mode register PMO bit 6 to zero, which directs the
timer’s output to pin P0O6/TOO01.

18

Key Return Input and Sound Output NEC

The initialization routine sets the TOCO1 control register for initially low output to invert the timer output
when TMO1 and CR001 match and to enable the TOO1 output.

At this point, the program has set the Timer 01 registers, but the timer is not running. Setting the timer to
clear-and-start mode begins square-wave output.

2.3.4 BUZ Init() — Alternative Buzzer Initialization for Square-Wave Buzzer Output

Figure 8. Flowchart for Alternative Buzzer Initialization

¢

BZOE =0 (CKS.7) to Disable Buzzer

P14.1=0 to Clear P141/BUZ Output Latch
PM14.1 =0 to Set P141/BUZ Pin as Output

CKS.6,5 =00 (BCS1, BCS0)
to Select Buzzer Frequency
as Fprs/1024; at 8MHz, =7812.5 Hz

v

Return

Note that the demonstration program uses the uPD78F0397 (78K0/LG2) device, which does not support
buzzer output. The uPD78F0537 (78KO0/KE2) does support buzzer output, and the Appendix of this
application note includes the code to initialize the on-chip buzzer (files buzzer.h and buzzer.c). The
demonstration program does not use these files, however.

In the alternative initialization, SystemInit() calls the BUZ_Init() routine. The CKS register, which controls
the clock output function, also controls the buzzer function. The routine sets the BZOE enable bit (bit 7 in
the CKS register) to zero to disable the buzzer.

The NEC Electronics microcontroller that supports buzzer output provides the buzzer on pin P141/BUZ. To
make this pin an output, the initialization routine sets both the P14.1 output-port latch and the port-mode
register PM14 bit 1 to zero.

The BCS1 and BCSO bits in the CKS register (CKS.6 and CKS.5) control the buzzer frequency by selecting
one of four possible divisions of the main peripheral clock. The initialization routine sets the initial value
for BCS1,0 = 00, which selects fprs/1024. The main peripheral clock runs at 8 MHz, resulting in a 7812.5-
Hz buzzer frequency.

These settings initialize, but do not start, the buzzer. Setting the BZOE bit to 1 starts buzzer output.
19

Key Return Input and Sound Output NEC

20

2.3.5 TMOO_Init() — Timer 00 Initialization for 500-Millisecond Interval

Figure 9. Initializing 500-millisecond Interval

7

Set TMCOO0 to 00 to disable Timer

Set PRMO00 = 0x02 to Select
Fprs/256 as Count Clock at 8MHz, Each Clock = 32 uSec.

Set PROH.6 = 1 (TMPRO000) for Low Priority Level
Set IFOH.6 = 0 (TMIF000) to Clear Interrupt Flag

Set CRC00.0=0 (CRCO000) to have CR000 Operate as Comparg
Set CR000=0x3D08 (15624 Decimal)
for 15625*32 uSec. = 500mSec. Interval

v

Return

Systeminit() calls the TMO0O_Init() routine, which sets the Timer 00 registers to prepare for interval-timer
operation. First the routine disables the timer while changing register settings.

The initialization routine sets the prescaler-mode register, PRMO0O, which controls the timer clock, to 0x02.
This setting causes Timer 00 to use fprs/256 as the count clock. With fprs (the main peripheral clock) at 8
MHz, the Timer 00 count clock will be 8,000,000/256, or 31.250 kHz. The count register TMOO counts
once every 1/31250 seconds, or once every 32 microseconds.

The initialization routine sets the registers related to the INTTMOOO interrupt for low priority and clears the
interrupt flag. The routine leaves the mask register controlling the timer-interrupt enable in the default
disabled state.

TMOO_Init() sets the CRCOO register for CR000 to act as a compare register and sets the compare value to
0x3D08 (15624). This value causes CR0O00 to match TMO0O every (15624 + 1), or 15625 counts. This match
occurs once every 15625 * 32 microseconds = 500 milliseconds. The Applilet calculates the 0x3D08 value
to provide the 500-millisecond interval.

Key Return Input and Sound Output NEC

2.3.6 TM51 Init() — Timer 51 Initialization for 5 Millisecond Interval

Figure 10. Flowchart for Initializing 5-millisecond Timer

7

TMC51.7 =0 (TMES51) to Disable Timer

TCL51 = 0x06 to Set Fprs/256 as Timer Clock
(at 8MHz, Fprs/256 = 31.25KHz, for 32 uSec/Count

CR51 = 0x9B (155 Decimal)
for 156*32 uSec. = 4.992 mSec. Interval

v

Return

Systemlnit() calls the TM51_Init() routine to initialize Timer51 as an interval timer with a 5-millisecond
duration. TM51_Init() first sets the Timer51 enable bit TME51 to zero to disable the timer while changing
control registers.

TMS51_Init() sets the TCL51 register to 0x06 to set the clock to Timer51 as fprs/256. This setting causes the
timer to divide the 8-MHz main peripheral clock by 256 for a 31.250-kHz clock. Each clock count lasts 32
microseconds.

The initialization then sets the CR51 compare register to 0x9B (155), causing the timer to compare with
CR51 every 156 counts. This comparison rate results in an interval of 156 * 32 microseconds = 4.992
milliseconds — close enough to the desired 5-millisecond interval.

The key-return interrupt-service routine uses TM51 to check switch data 5 milliseconds after the initial
interrupt.

21

Key Return Input and Sound Output NEC

22

2.3.7 Main()—Main Program — Key Return and Buzzer Output

Figure 11. Flowchart for Key Return and Buzzer Output

| sw_in=0 |

v
A

CALL Tone(1)
CALL TMOO_Start()

19

CALL Tone(2)
CALL TMOO_Start()

sw_in==
switch_2?

No

19

sw_in== es CALL Tone(3)
switch_3? CALL TMO0O_Start()

No

sw_in==
switch_4?

CALL Tone(4) E;2
CALL TMOO_Start()

No

| sw_in=0 |

Main() sets the initial value of the sw_in variable to zero, indicating that no switch is down. After this
initialization, the program loops, checking to see if the value changes. When a switch is detected and
debounced, the key-return interrupt-service routine sets its value in sw_in.

If you do not press a switch, the program does nothing but loop.

When the main program detects a new (non-zero) variable in sw_in, the routine verifies that this value
matches a pattern indicating that you pressed only one switch. The program ignores any patterns indicating
that you pressed more than one switch.

If the pattern in sw_in indicates that you pressed one of the four switches, the main program calls the Tone(
n) routine to start the corresponding tone.

Key Return Input and Sound Output NEC

The main program calls TMO0O_Start() to start the interval timer. After the 500-millisecond interval, the
timer triggers the INTTMOOO interrupt, invoking the MD_INTTMO0O0O() interrupt-service routine, which
stops the tone.

The main program then clears the sw_in variable to zero again.

2.3.8 Tone(UCHAR toneno) — Tone Generation Using Timer 00 Square-Wave Generation

Figure 12. Generating Tone with Timer 00

toneno<1or
toneno > 4?

No Return

CALL TMOZ_Stop()

Tone[0] = Tone Tab[tonen01]

CALL TMO01_ChangeTimerCondition(&tone[0], 1)
CALL TMO1_Start

'

Return

When you use Timer 01 for square-wave tone generation, you can select the output frequency by writing a
value from 1 to 65535 to the CR0OO1 register. The Tone() routine sets one of four frequencies.

The Tone(toneno) routine first checks to see if the toneno parameter is in the range of 1 to 4. If the value is
outside that range, the routine returns without starting TMO1.

If toneno is 1 through 4, the routine stops the Timer 01 output by calling TM01_Stop().

The toneno parameter indexes into the ToneTab[] array of USHORT (16-bit) values, selecting one of four
possible values, which it places in the tone[0] variable.

Tone(toneno) calls the TMO01_ChangeTimerCondition(&tone[0], 1) routine, passing the address of tone[0],
and a second parameter of 1. This action writes the value contained in tone[0] to the CR001 compare
register, changing the square-wave frequency.

Table 1 shows the values corresponding to the toneno parameter, the selected ToneTab location and value,
the resulting square-wave width (half-cycle time) and square-wave frequency. The square-wave width time

23

Key Return Input and Sound Output

NEC

24

is (value + 1) * (clock period). The demonstration uses fprs (8 MHZz) as the TMO1 clock for a clock period
of 0.125 microseconds. (The square-wave width is value * 0.125 usec.) The square-wave frequency is 1/(2

* square-wave width).

Table 1. Results for Toneno Parameters
Toneno ToneTab[] Value Value + 1 Square Wave | Square Wave
(decimal) Width (usec) Frequency
1 ToneTab[0] 0x046F 1136 142 3521.1 Hz
2 ToneTab[1] 0x08DF 2272 284 1760.6 Hz
3 ToneTab[2] 0x11BF 4544 568 880.3 Hz
4 ToneTab[3] 0x237F 9088 1136 440.1 Hz

Once Tone(toneno) writes a new value into CR001, the routine starts Timer 01 by calling TM01_Start().
Once started, the timer generates a square wave at the selected frequency until stopped.

2.3.9

No

Return

CALL BUZ_Stop()

cks_val = CKS & 0x9F

Figure 13. Flowchart for Alternate Tone Generation

toneno < 1 or
toneno > 4?

cks_val = cks_val | ToneTab[toneno - 1]

CKS = cks_val

CALL BUZ_Start()

!

Return

Tone(UCHAR toneno) — Alternate Tone Generation Using Buzzer Output

When you use the buzzer output, you can choose among four output frequencies, selecting the appropriate
frequency by setting the BCS1 and BCSO bits in the CKS register. BCS1 is CKS.6, and BCSO0 is CKS.5.

The Tone(toneno) routine first checks to ensure the toneno parameter lies within the range of 1 to 4. If the

parameter is outside of that range, the routine returns without starting the buzzer.

Key Return Input and Sound Output NEC

If toneno is 1 through 4, the routine calls BUZ_Stop() to stop buzzer output. The routine reads the current
value in the CKS register and masks out bits 6 and 5 using a logical AND with 0x9F. The routine stores
this masked value in variable cks_val.

Using the toneno parameter to index into the ToneTab[] array, the routine ORs in one of four possible bit
patterns for BCS1 and BCSO. The routine combines the result in cks_val. Now cks_val holds the new value
for the CKS register, with bits 6 and 5 selecting the buzzer output frequency. Table 2 shows the values
corresponding to the toneno parameter, the corresponding bits for BCS1 and BCSO0, and the resulting
buzzer frequency.

Table 2. Toneno Values for Buzzer-Frequency Selection

Toneno ToneTab[] Value BCS1 BCSO Clock division Frequency at
prs =8 MHz

1 ToneTab[0] 0x00 0 0 frrs/1024 7812.5 Hz

2 ToneTab[1] 0x20 0 1 fprs/2048 3906.2 Hz

3 ToneTab[2] 0x40 1 0 frrs/4096 1953.1 Hz

4 ToneTab[3] 0x60 1 1 frrs/8192 976.6 Hz

Tone(toneno) writes the new value in cks_val to the CKS register to select the desired frequency. The
routine then calls the BUZ_Start() routine to start buzzer output by setting the BZOE bit (CKS.7) to 1.

The demonstration program does not use this version of the Tone() routine, but the routine is included with
the source code listings in the Appendix.

25

Key Return Input and Sound Output NEC

26

2.3.10 MD_INTKR() — Key-Return Interrupt-Service Routine

Figure 14. Flowchart for Key-Return Interrupt-Service Routine
INTKR

| sw_first = scan_sw() lﬁl

| CALL TM51_Start() |

No

CALL TM51_Stop()
TMIF51=0

| sw_second = scan_sw() I ;

sw_first==
sw_second?

No

| sw_in=0 | | sw_in =sw_first |
Return Return

The MD_INTKR() routine handles the INTKR interrupt. Pressing any switch in the key-switch matrix
connects the switch to one of the key-scan output lines, driving the key-return input line low. The resulting
negative edge triggers the INTKR interrupt.

The MD_INTKR() routine calls the scan_sw() routine to read the state of all of the switches and stores the
result in the sw_first variable.

The TM51_Start() routine starts Timer TM51, which counts out a 5-millisecond interval. After that
interval, the routine sets its interrupt flag TMIF51 to true. TM51_Start() does not use an interrupt-service
routine to indicate when the flag is set; MD_INTKR() simply tests the flag repeatedly. When the flag is set,
the routine stops TM51 and clears the flag.

The interrupt handler then calls the scan_sw() routine to read the switch state again. If this reading matches
the first value, the switches have been stable for more than 5 milliseconds, and the routine considers them
debounced. MD_INTKR() sets the global variable sw_in to the debounced value and the routine returns.

Key Return Input and Sound Output NEC

If the first and second switch readings do not agree, MD_INTKR() sets sw_in to zero, indicating that the
switch is not stable. The routine then returns.

If the switches continue to bounce, the next negative edge on the key-return inputs causes another INTKR
interrupt, and the handler checks the state of the switches again.

27

Key Return Input and Sound Output NEC

28

2.3.11 Unsigned char scan_sw() — Scan Key-Switch Matrix

Figure 15. Flowchart for Scan Key-Switch Matrix

?

PM0.5=1
Disable Drive on Second Scan Output

Do two NOPs for short wait
Value = (P7 >> 6) & 0x03
Read P77, P76 to Bits 1, 0

PMO0.4 =1 Disable Drive on First Scan Output
PMO0.5 =0 Enable Drive on Second Scan Output

Do two NOPs for short wait
Value = value | (P7 >>4) & 0x0C)
Read P77, P76 to Bits 3, 2

PMO0.4 =0 Enable both Scan Outputs Again

KRIF=0

return (~value & OxOF)

:

Return

MD_INTKR() calls the scan_sw() routine to scan the key-switch matrix and return a value indicating which
switch or switches are down. At the start of this routine, output ports P04 and P05 drive a low logic value.
Any depressed switch connects either P76 or P77 (or both) to P04 or P05 and is seen as low. To scan the
matrix to see which switch or switches are actually down, the routine needs to turn off the drive on all but
one column and check the inputs.

The scan_sw() routine first turns off the PO5 key-scan output-port line by setting PMO0.5 to one. This
change sets P05 as an input. P04 is still an output and driving low, but P05 is no longer driving. P05 is
pulled up by an internal pull-up resistor, because the PORT_Init() routine previously set the PUO.5 bit to
one.

After a short wait to allow any input lines not being driven low to be pulled up, scan_sw() reads, shifts and
masks the P7 port. These actions store the state of P77 in value variable bit 1 and the state of P76 in bit 0.
Pressing switch 1 connects P04 and P76, causing P76 to go low and resulting in a zero in bit 0. Pressing
switch 2 connects P04 and P77, causing P77 to go low and resulting in a zero in bit 1. Pressing either

Key Return Input and Sound Output NEC

switch 3 or 4 connects P05 to either P77 or P76. Since P05 is not driving, however, connecting P05 has no
effect, so pressing switches 3 and 4 does not affect the value read.

The scan_sw() routine next turns off the P04 key-scan output-port line. This action sets PM0.4 to one,
which sets P04 as an input. The routine then sets PM0.5 to zero, which sets P05 as an output again. At this
point, PO5 is driving low, and P04 is not driving. Because the PORT _Init() routine set the PU0.4 bit to one,
an internal pull-up resistor pulls up P04.

After a short wait to allow inputs to stabilize, scan_sw() reads, shifts, and masks the P7 port. This action
passes the state of P77to variable bit 3 and the state of P76 to bit 2. Pressing switch 3 connects P05 and
P76. P76 will be low, resulting in a zero in bit 2. Pressing switch 4 connects P05 and P77. P77 will be low,
resulting in a zero in bit 3. Pressing switch 1 or 2 connects P04 to either P77 or P76, but since P04 is not
driving, this connection has no effect.

The value variable now contains four bits (0 through 3) which reflect the state of switches 4 through 1,
respectively. Pressing a switch sets its corresponding bit to zero; if the switch is up, its corresponding bit
gets set to one.

The scan_sw() routine then sets PM0.4 to zero again to enable drive on P04, setting both key-scan outputs
driving low again — ready for the next scan or key-return input.

The scan_sw() routine sets KRIF to zero to clear any possible interrupts caused by the scanning process.
This precaution is necessary because scanning can cause all key-return inputs to go high and then one or
more of them to go low again, which can trigger the key-return interrupt. The routine inverts and masks the
variable, so that a one represents a switch that is down, and a zero represents a switch that is up. The
scan_sw() routine returns this value to the calling routine.

You can expand this procedure to accommodate a larger switch matrix by setting one out of several key
scan outputs to drive low, with others as inputs, and reading a larger number of key-return input ports for
each set of switches connected to the scan-output line.

29

Key Return Input and Sound Output NEC

2.3.12 MD_INTTMOO0O0() — Timer 00 Interrupt-Service Routine
Figure 16. Flowchart for Timer 00 Interrupt-Service Routine

INTTMO000

TMO1_Stop() or
BUZ_Stop()

TMO00_Stop()

:

Return

INTTMOOO invokes the MD_INTTMOO00() interrupt-service routine. INTTMOOQO is the interrupt that occurs
when the TMOO timer-count register matches the CR00O0 timer compare register. In the demonstration
program, this match occurs 500 milliseconds after tone-generation begins.

When using a timer for tone generation, the program needs to call the TM01_Stop() routine to end tone
generation. If the tone is generated with the buzzer output, then you stop tone generation by calling the
BUZ_Stop() routine. The demonstration program listings use TM01_Stop().

To prevent further interrupts every 500 milliseconds, stop Timer 00 with the TMO0O_Stop() routine.

30

Key Return Input and Sound Output NEC

2.4 Applilet's Reference Driver
NEC Electronics’” Applilet program generator automatically generates C or assembly-language source code

to manage peripherals for NEC Electronics’ microcontrollers.

The Applilet produces the basic program-initialization code and main functions, as well as driver code for
the key-return interrupt, for the timers, and for buzzer output. After the Applilet produces the basic code,
you can add additional code to customize the program.

This section describes how to configure the Applilet to produce code for the key-return interrupt, timers,
and buzzer output.

When you start the Applilet and select the target device, save your settings to a new project (.prx) file. The
Applilet begins by displaying a dialog box that lets you select different peripheral blocks for setup.

2.4.1 Configuring Applilet for Key-Return Interrupt

Select Interrupt controller and the Key-return function tab to set details for the key-return interrupt.

Figure 17. Applilet Peripheral-Selection Screen

%~ Interrupt Controller

Interrupt setting | Kew retwm function. |
— key return setting

V¥ Enshle key retum intermpt
— Key return interrupt setting
[~ KRO ™ KRI
™ KR2 ™ KR3
[~ KR4 ™ KRS
¥ KRé V¥ KR7
Prionty lonarest j

Detaill Defaultl Help | Info | oK | Cancell

31

Key Return Input and Sound Output

NEC

32

Check Enable key-return interrupt to generate an interrupt when the key-return pins go low. Set the

priority for lowest.

Check the boxes for key-return interrupts KR6 and KR7. The demonstration does not use KRO through
KR5 for key return, leaving pins P70/KRO0 through P75/KR5 available as general-purpose 1/0 pins.

2.4.2 Configuring Applilet for Port Outputs Used as Key Scan Outputs

Select the Digital 1/0 port block to bring up a dialog box showing the I/O ports available. Select the Port0
tab to set the options for port PO pins.

= Digital I/ Port

Figure 18. Applilet Port-Selection Screen

Fortfi | Port?| Portl2| Portl3| Portld|
Portd | Port1] Port2] Port3] Portd] Ports]

— P00
¥ Tnused = In i Ot [T FU 1
—FP01
& Unused " In Ot [FU i
—P02
% Unused " In ™ Ot) i
—F03
¥ Tnused " In = Ot [T FU 1
P04
" rnsed = In % Ot [T El i
—P05 —
= Urmsed T In = Ot I~ EIT 1
— P0G
e Tnused [T FU

Detail | Defautt | Hew | | ok | cancel

Select pins P04 and P05 as key-scan output ports. The Applilet generates the code to initialize them in the

PORT _Init() routine.

Note that the Applilet can configure pins as inputs, outputs or unused. When you choose a pin as an input,

you can select optional pull-up resistors by checking the PU checkbox. This selection causes the

corresponding bits to be set in the PU register for the port. Setting pins as outputs grays-out the PU

Key Return Input and Sound Output NEC

checkbox so you cannot select it. The Applilet sets the corresponding PU register bits to zero for any pin
selected as an output.

For the key-scan routine, the state of the port pins P04 and P05 dynamically changes from output (that
drives low) to input. When the pins become inputs, the microcontroller connects the pins to internal pull-up
resistors. The routine that scans the switches can make this change dynamically; but once the PU register is
set to provide pull-ups on the input pins, you can leave it that way. The pull-up resistors have no effect
when the port functions as an output.

Rather than select the pull-up resistors in the Applilet, the demonstration program changes the definition of
PORT_PUO in the file port.h. This change modifies the value written to the PUO register in the

PORT _Init() routine, so that pull-up resistors are enabled on pins P04 and P05 when you use them as
inputs.

2.4.3 Configuring Applilet for Timer TMO1 Square-Wave Generation

Select Timer to bring up a dialog box showing the various timer blocks. Select Timer01 and click Square-
wave output.

Figure 19. Applilet Timer-Selection Dialog

= Timer

Tirer00 Tireer01 | TimerS0| TimerS1| TimerHO | TimerH1 |

—Timerd1 functions
i~ TIrused

" Interval timer

" External event courter
% Sepuare wave output

" PP output

" Omeshot pulse outpnrt

" Pulse width measurerent

Defaultl Help | Infi | oK | Cancell

Once you have selected TMO1, click Detail for TMO1 settings in the selected mode. This choice brings up
the TMO1 detail dialog box.

33

Key Return Input and Sound Output

NEC

Figure 20. TMO1 Detail Dialog Box

'-._-_'"-TMl]l square wave output E |

—Count clock —

= buto o frs:

" fpsil6 " fprsisd

" TIONT falling edge TIONT rising edge

¢ TIN01 both edge Ext clock{K Hz) |10
—%alue scale

HﬂluE SCE].E nsec j
—Snuare wave output

Sepuare width 144

Init output lewel Init lowr j

—Interrupt setting

Priotity

[T TMOL and CROOL valus match, generate a interrupt

lowrest j

Help | [nfio |

0] | Cancell

The timer should initially generate a 3520-Hz square wave. This frequency requires a cycle time of 1/3520
seconds and a half-cycle time of 1/7040 seconds, or about 142 microseconds. To generate a square wave
with this frequency, enter 142 in Square width and set Value scale to microseconds.

Set Count clock to fprs, to choose the main clock as the TMO1 clock. The demonstration requires the
fastest available clock to ensure that the square-wave frequency gets as close to the desired tone as
possible. The Applilet calculates an appropriate setting for the timer comparison register, using the 142-
microsecond square width and the 8-MHz peripheral clock.

Leave Interrupt setting unchecked to prevent the timer from generating an interrupt after the timer

interval.

2.4.4 Alternative — Configuring Applilet for Buzzer Square-Wave Generation

Selecting Buzzer in the Applilet brings up a dialog box that lets you choose settings for buzzer and clock

output.

34

Key Return Input and Sound Output NEC

Figure 21. Configuring Buzzer Output

i Clock/Buzzer Dutput

— Clock output function sefting———— ~ Buzzer output function setting

* TTnuszed = TTnused

" Erhle clock outpt operation & FErahle buz output operation

— P CL output clock selection

PCL clock{E Hz) 2000 j

—Buzzer output clock selection

BUZ clock{EHz) 18 j
Detail | Default | Help | Infi | oK | Cancel

Select Enable buz output operation, and then you can select the buzzer-clock frequency from a drop-
down menu. The main clock frequency determines the frequencies available in this menu. Select 7.8 kHz as
the default, as this is the highest frequency available with an 8-MHz peripheral clock.

You do not use this dialog box for the demonstration program because the demonstration does not use the
buzzer.

2.45 Setting Applilet to Configure Timer TM51 for 5-Millisecond Interval

In the Applilet’s Timer selection dialog, select Timer51 for use as an interval timer.

Figure 22. Configuring TM51 as Interval Timer

s Timer
Tizaer00 | Timer01 | TirnerS0 Tirer5! | TimerH0 | TimesH1 |

—Function
= Urnnsed

{* Interval timer

i Baternal esent connter

it Soquare weave ortpnit
sl BT contponat

Defaultl Help | Info | oK | Cancell

35

Key Return Input and Sound Output

NEC

Once you have set the TM51 function, click Detail to bring up the TM51 detail dialog box for interval-

timer settings.

Figure 23. Detail Dialog for Interval-Timer Settings

= TM51 interyal timer

—Count clock

" Luto firs

O forsi? fprailf

[fprsifd > fprsidsh

[fprs/4096 | TIS1 falling edze

2] TI51 nsimg edze Ext clock(E-Hz) Img
—%alue scale

Walue scale - j
— Interval timer

Interval walue Ij

~Interrupt setting
[T TM51 and CRS1 reatch, generate a interrupt

Priotity

I]J:uwest j o

0] | Cancell

Help | [nfio |

The timer should set its interrupt flag every 5 milliseconds, so set Value scale to msec (milliseconds) and
Interval value to 5. Set Count clock to fprs/256 to define the basic clock as the main peripheral clock
divided by 256. The Applilet calculates an appropriate setting for the timer-comparison register to create
the 5-millisecond interval.

You do not want to generate an interrupt after the interval, so leave Interrupt setting unchecked. Instead
of using this interrupt, the program checks the state of the TMIF0O flag to determine when the interval has

elapsed.

2.4.6 Setting Applilet to Configure Timer TMO0O for 500-Millisecond Interval

In the Applilet’s Timer dialog box, select Timer00 and check the box for use as an interval timer.

36

Key Return Input and Sound Output

Figure 24. Selecting Timer00 as Interval Timer

i Timer

Titaer00 | Tirer01 | TirerS0| TimerS1| TimerHO | TimerH1 |

— Timerdnd functions
i~ TTnused

% Interval timer

" External event conrter

™ Sepuare weave output

" PPG output

" Omeshot pulse outpt

' Pulse width measurernent

Defaultl Help |

[nfio |

]

| Cancel |

Now click Detail to bring up the TMOO detail dialog box for interval-timer settings.

Figure 25. Setting Interval-Timer Operation

= TMD0 interval timer

—Zount clock
+ Luto fprs
™ fprsia fprsi236
" TIO00 falling edge " TI000 tising edge
" TIN0O bath edge Ext clock{KHz) |10
—%alue scale
Value scale - j
— Interval timer
Interial walue |5|:||:|
—Interrupt setting
¥ THO0 and CRO00 value match, generate a internopt
Pronty Iluwest j
Help | Info | (0] 4 | Cancel |

This timer should generate an interrupt after 500 milliseconds. Set Value scale to msec (milliseconds) and
Interval value to 500. Check Auto for the count clock to allow the Applilet to select an appropriate clock
division as the TMO0O clock. The Applilet uses the clock frequency and the desired interval to calculate an

appropriate setting for the timer comparison register.

37

Key Return Input and Sound Output NEC

38

In this case, check Interrupt setting to generate an interrupt when TMOO (timer-count register) and CR000
(timer-compare register) match.

2.4.7 Generating Code with Applilet

Once you have set up the various dialog boxes, select Generate code. The Applilet displays the peripherals
and functions, and lets you select a source-code directory.

When you click Generate, the Applilet creates the code in several C-language source files (extension .c)
and header files (extension .h), and shows the list of files created in a dialog box.

To support the key-return interrupt, the Applilet generates int.h, int.c, and int_user.c.

To support TM0O0 and TM51, the Applilet generates timer.h, timer.c and timer_user.c. If you are using
TMO1 to generate the square wave, the Applilet also puts that code in these files.

If you are using the buzzer to generate the tones, the Applilet generates buzzer.h and buzzer.c.

The Applilet generates several other files, including a main.c file with a blank main function.

2.4.8 Applilet-Generated Files and Functions for Key-Return Interrupt

The files int.h, int.c and int_user.c contain the code generated for key-return interrupt support.

2.48.1 Int.h

The header file int.h contains declarations for the functions controlling the key-return interrupt and
definitions of values for key-return initialization. The header file macrodriver.h, used for all
Applilet-generated code, also defines some data types and values, such as the MD_STATUS
values, which some functions return.

You need to add code for the external declaration of the sw_in variable, used to report the state of
the key-switch matrix. Other routines need to examine this variable by including int.h. You must
also add definitions of the bit patterns to be set in the sw_in variable corresponding to switch 1
down, switch 2 down, etc.

2.4.8.2 Int.c

The source file Int.c contains functions for the key-return interrupt:

Key Return Input and Sound Output NEC

24.9

void INT_Init(void)
The INT _Init() routine initializes the key-return register and interrupt as specified in the Applilet
key-return dialog box.

2.4.8.3 Int_user.c

The source file int_user.c contains stub functions for user code. When the Applilet generates these
functions, they are empty.

__interrupt void MD_INTKR(void)
This is the interrupt service routine for the key-return interrupt INTKR, triggered by a negative-
going edge on one of the key-return pins.

The Applilet leaves this routine blank. You can add code to use the key-return interrupt to
debounce and read the key-switch matrix.

unsigned char scan_sw(void)

You need to add this routine to provide a function that scans the key-switch matrix. It should return
a value indicating which switch (or switches) is pressed.

Add the declaration of the sw_in variable to this file.

Applilet-Generated Files and Functions for TM0O, TMO1 and TM51

The files timer.h, timer.c and timer_user.c contain the code generated for TM00, TM01 and TM51
support.

2.4.9.1 Timer.h

The header file timer.h contains declarations for the functions controlling the timers and definitions
of values for timer initialization. The header file macrodriver.h, used for all Applilet-generated
code, also defines some data types and values, such as the MD_STATUS values returned by some
functions.

2.4.9.2 Timer.c

The source file Timer.c contains the following functions generated by the Applilet for TMOO,
TMO1 and TM51:

void TMO0O0_Init(void)
The TMOO_Init() routine initializes Timer 00.

39

Key Return Input and Sound Output

NEC

40

void TMO0O_Start(void)
The TMOO_Start() routine enables Timer00 to start operation, and enables interrupt INTTMO000

void TMO0O0_Stop(void)
The TMOO_Stop() routine disables the timer, stopping it, and disables the timer interrupt.

MD_STATUS TMO00_ChangeTimerCondition(USHORT* array_reg, USHORT array_num)
The TMO0O0_ChangeTimerCondition() function changes the value in the Timer 00 compare
registers, CR000 and CRO010, thus changing the timer’s interval.

The array_reg parameter points to an array of values to be stored in one or both of the compare
registers; the array_num parameter is either 1 (to select CR000) or 2 (to select both CR010 and
CR000).

The demonstration program does not use this routine.

void TMOL_Init(void)
The TMO1_Init() routine initializes Timer 01.

void TMO1_Start(void)
The TMO01_Start() routine enables Timer 01, starting operation.

void TMOL1_Stop(void)
The TMO01_Stop() routine disables the timer, stopping it.

MD_STATUS TMO01_ChangeTimerCondition(USHORT* array_reg, USHORT array_num)
The TMO01_ChangeTimerCondition() function changes the value in the Timer 01 compare
registers, CR001 and CRO11, and therefore changes the counter-compare value for Timer 01.

The array_reg parameter points to an array of values to be stored in one or both of the compare
registers; the array_num parameter is either 1 (to select CR001) or 2 (to select both CR011 and
CR001).

void TM51_Init(void)
The TM51_Init() routine initializes the TM51 peripheral as specified in the Applilet TM51 detail
dialog.

void TM51_Start(void)
The TM51_Start() routine starts TM51 operation by enabling the timer.

void TM51_Stop(void)
The TM51_Stop() routine stops TM51 operation by disabling the timer.

Key Return Input and Sound Output NEC

2.4.10

MD_STATUS TM51_ChangeTimerCondition(USHORT value)

The TM50_ChangeTimerCondition() function changes the value in the CR51 compare registers.
This new value changes TM50’s interval. The demonstration program does not use this routine.
Timer_user.c

The source file timer_user.c contains stub functions for user code. The Applilet generates empty
stubs and you can add application-specific code.

__interrupt void MD_INTTMO000(void)

This is the interrupt-service routine for Timer 00 interrupt INTTMOO00. A match of TMO0O0 and
CRO0O0O values triggers the interrupt. Once you start the timer, it generates this interrupt every 500
milliseconds.

The Applilet generates a blank interrupt-service routine. You can add code to have the timer stop
tone generation after 500 milliseconds. You must add code to stop the TMO1 timer generating the
tone, and to stop the TMOO timer itself.

Applilet-Generated Files and Functions for Buzzer Output

The demonstration program does not use the buzzer output, but the Applilet generates code to show
the available functions. The listing section contains these files—buzzer.h and buzzer.c.

2.4.10.1 Buzzer.h

The header file buzzer.h contains declarations for the functions used to initialize, start and stop the
buzzer.

2.4.10.2 Buzzer.c

The source file buzzer.c contains the following function generated by the Applilet for buzzer
operation:

void BUZ_Init(void)
The BUZ_Init() routine initializes the buzzer.

void BUZ_Start(void)
The BUZ_Start() routine starts the buzzer by setting the BZOE bit to one in the CKS register.

void BUZ_Stop(void)
The BUZ_Stop() routine stops the buzzer by clearing the BZOE bit to zero in the CKS register.

41

Key Return Input and Sound Output NEC

2411

2.4.12

Applilet-Generated Files and Functions for Port Initialization

The files port.h and port.c contain the code generated for 1/0 port support.

2.4.11.1 Port.h

The header file port.h contains declarations for the PORT _Init() function, which initializes the
ports and defines values for the initialization of port-output latches, port-mode registers, and port
pull-up registers. For example, to initialize port PO, the initialization routine writes values defined
in port.h to PO, PMO, and PUO.

You can edit the definitions to change the port-initialization values. For the demonstration
program, you should modify the value of PORT_PUO to set pull-up resistors on pins P04 and P05
when the key-scan routine does not use these pins as outputs.

2.4.11.2 Port.c
The source file port.c contains:

void PORT _Init(void)
The PORT _Init() routine initializes all device 1/0 ports by setting the port-output latch, port-mode
register, and pull-up register for each of the ports, using the values defined in port.h.

Other Applilet-Generated Files

For the demonstration program, the Applilet generates several other source files.

Table 3. Additional Applilet-Generated Source Files
File Function
Macrodriver.h General header file for Applilet-generated programs
Systeminit.c Systemlnit() and hdwinit() functions for initialization
Main.c The main program function
System.h Clock-related definitions
System.c Clock_Init() function
Option.asm Defines the option byte and security bytes
Option.inc Defines settings for the option byte and security settings
2.4.13 Demonstration Program Files Not Generated by Applilet

In this case, the Applilet generates all of the demonstration-program files.

42

Key Return Input and Sound Output NEC

2.5 Demonstration Platform

The demonstration platform for key return and buzzer output is a development board from NEC
Electronics. You may be able to duplicate the same hardware using off-the-shelf components along with
the NEC Electronics microcontroller of interest.

2.5.1 Resources

The demonstration uses the following resources:

¢ DemoKit-LG2 demonstration board, with uPD78F0397 8-bit microcontroller mounted
¢ DemoKit-LG2 resources:

- BUZ1 buzzer driven by timer output PO6/TO01
- Added key-switch matrix to prototyping area, connected to P76-P77, P04-P05

For details on the hardware listed above, please refer to the appropriate user manual, available from NEC
Electronics upon request.

Figure 26. Demonstration Platform

J

graaaaaa = \

0000000000000 000C000|
[#]
@
@

eeo

ilrg I:[BF! 00

DH 00

200

U [| UEO nooe o 000
{010}” L2 Demokit §

__Vode In Gerwany Verslon: 2.00 4

43

Key Return Input and Sound Output NEC

2.5.2 Program Demonstration

With the hardware configured and the uPD78F0397 microcontroller programmed with the demonstration
code, the demonstration runs as follows:

¢ Press key-switch matrix keys 1, 2, 3, 4

¢ Observe the square wave generated at PO6/TO01 on an oscilloscope

¢ Listen to the BUZ1 buzzer tone

44

Key Return Input and Sound Output NEC

2.6 Hardware Block Diagram

The 2x2 key switch matrix connects to key-return port pins P76/KR6 and P77/KR7. General-purpose port
pins P05 and P04 provide key-scan outputs.

Figure 27. Hardware Block Diagram

Column
unused
unused
P04 >
P05 >
P04 + P76 =1
P04 +P77=2
P05 + P76 = 3
4 2 P05 + P77 =4
P77/KR7 | S—H
PT6/KR6 |€ PP
P75/KR5
P74/KR4
Row

|

P73/KR3 I
P72/KR2 |
|

|

P71/KR1
oI

uPD78F0397 vcc

78K0/LG2 |
I:(I Buzzer
G D
TO01/P06 (@D—]
R S

GND GND

P70/KRO

Because the uPD78F0397 does not have a dedicated buzzer output, 16-bit timer/counter output pin
P06/TOO01 drives the buzzer with a square wave.

45

Key Return Input and Sound Output NEC

2.7 Software Modules

46

The demonstration program consists of software modules made up of the files shown in Table 4. The table
indicates which files the Applilet generates and which you have to modify.

The listings for these files are located in the Appendix.

Table 4. Demonstration Program Software Modules

File Purpose Generated Modified
By Applilet By User
Main.c Main program Yes Yes
Macrodriver.h General definitions used by Applilet Yes No
System.h Clock-related definitions Yes No
Systeminit.c Systemlnit() and hdwinit() functions Yes No
System.c Clock_Init() function Yes No
Inth Interrupt-related definitions Yes Yeshoe!
Int.c Key return Interrupt-related functions Yes No
Int_user.h User code for key return interrupt Yes Yeghoe!
Timer.h Timer-related definitions Yes No
Timer.c Timer functions Yes No
Timer_user.c User code for timer interrupt handling Yes Yeshore?
Port.h Port-related definitions Yes Yeghote3
Port.c Port_Init() function Yes Yeshore3
Option.inc Option-byte, POC, and security definitions Yes No
Option.asm Option-byte, POC, and security data Yes No

Note 1: You must modify Int.h to add the sw_in declaration (the variable used to store debounced input
from the navigation switch) and definitions for switch input values. Int_user.c requires the addition of the
variable sw3_in, additional code for handling the key-return interrupt in MD_INTKR(), and the addition of
the scan_sw() routine.

Note 2: Timer_user.c requires the addition of code to handle the INTTMOOO interrupt in the
MD_INTTMO000() routine, which turns off the tone generation.

Note 3: The version of the Applilet used for generating source code for the demonstration does not support
the 78K0/LG2 (UPD78F0397) device, but does support the 78K0/Kx2 family of devices, which are very
similar. The Applilet generates the files port.h and port.c for the uPD78F0537_64 in the 78K0/Kx2 family.
Port.c must be modified for the uPD78F0397 by commenting out the lines in PORT _Init() which set ports
not available on the uPD78F0397. You must modify Port.h to change the pull-up register (PUOQ)
initialization value, to provide pull-ups on key scan-output port lines P04 and PO5.

Key Return Input and Sound Output

NEC

The following files, not used in the demonstration program, support buzzer output.

Table 5. Buzzer-Output Files
File Purpose Generated Modified
By Applilet By User
Buzzer.h Buzzer routine declarations Yes No
Buzzer.c Buzzer-related routines Yes No

47

Key Return Input and Sound Output

NEC

3. Appendix A — Development Tools

This application note uses the following software and hardware tools.

3.1 Software Tools

3.2

48

Table 6. Software Tools Used for Application Note

Tool Version Comments

Applilet for 78KOKX2 V151 Source-code generation tool for 78K0/KE2 devices
PM Plus V5.20 Project manager for program compilation and linking
CC78KO0 V3.60 C Compiler for NEC Electronics’ 78K0 devices
RAT78KO0 V3.70 Assembler for NEC Electronics’ 78K0 devices
DF0397.78K V1.01 Device file for uPD78F0397 device

Note: The version of the Applilet used produces code for the 78K0/Kx2 family of microcontrollers, in this
case, the 78K0/KE2 (UPD78F0537_64). This device is very similar to the 78K0/LG2 device (UPD78F0397)

used in the DemoKit-LG2.

Hardware Tools

Table 7. Hardware Tools Used for Application Note

Tool

Version

Comments

DemoKit-LG2

V2.00

Demonstration Kit for 78K0397 (78K0/LG2)

Key Return Input and Sound Output NEC

4. Appendix B — Software Listings

Note: Although the files buzzer.h and buzzer.c do not appear in the demonstration program, they illustrate
support for buzzer output.

4.1 Main.c
/*

** This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
** 78K0O/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses

** jncurred by customers or third parties arising from the use of this file.
** Filename : main.c

** Abstract : This file implements main function

** APIlib: NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler: NEC/CC78KO

** Include files

*/

#include "macrodriver.h"
#include "system.h"
#include "int.h"
#include "port_h"
#include "timer.h"

/*

EaE T S e

** MacroDefine

EE T S e

*/

/* define one or the other to select tone generation type */

#define TONEGEN_TMO1 1

#deFfine TONEGEN_BUZ 0

Y

** Tone(toneno) function
** parameter toneno = 1 - 4
** start tone generation with selected tone

*x

*/
#if (TONEGEN_TMO1 == 1)
/* tone 1 = 3520 Hz, from original 142 millisecond squarewave */

#define TONE_1 TM_TMO1_INTERVALVALUE
/* tone 2 = 1760 Hz, with twice the count value */
#define TONE_2 ((TONE_1 * 2) + 1)

/* tone 3 = 880 Hz, twice again the count value */

49

Key Return Input and Sound Output NEC

#define TONE_3 ((TONE_2 * 2) + 1)
/* tone 4 = 440 Hz, twice again the count value */
#define TONE_4 ((TONE_3 * 2) + 1)

/* table of tone values to use */
USHORT ToneTab[4] = {

TONE_1,

TONE_2,

TONE_3,

TONE_4
};

void Tone(UCHAR toneno)
{
USHORT tone[2];: /* variable array to hold tone setting value */

/* check for proper parameter */
it ((toneno < 1) || (toneno > 4))
return;

/* stop tone output in case it is still going on */
TMO1_Stop();

/* set tone[0] to appropriate value from table */
tone[0] = ToneTab[toneno - 1];

/* set the tone count value in the CROO1 compare register */
TMO1_ChangeTimerCondition(&tone[0],1);
TMO1_Start(); /* start square wave generation */

T

#endi

#if (TONEGEN_BUZ == 1)

/* tone 1 = 7812.5 Hz, CKS.6,5 = 00 to select fPRS/1024 */

#define TONE_1 0x00
/* tone 1 = 7812.5 Hz, CKS.6,5 = 01 to select fPRS/2048 */
#define TONE_2 0x20
/* tone 1 = 7812.5 Hz, CKS.6,5 = 10 to select fPRS/4096 */
#define TONE_3 0x40
/* tone 1 = 7812.5 Hz, CKS.6,5 = 11 to select fPRS/8192 */
#define TONE_4 0x60

/* mask to clear CKS bits 6,5 */
#define TONE_MASK Ox9F

/* table of tone values to use */
UCHAR ToneTab[4] = {

TONE_1,

TONE_2,

TONE_3,

TONE_4
};

void Tone(UCHAR toneno)

{

UCHAR cks_val;
/* check for proper parameter */
if ((toneno < 1) || (toneno > 4))

return;

/* stop tone output in case it is still going on */
BUZ_Stop();

50

Key Return Input and Sound Output NEC

/* get current CKS value, mask out buzzer frequncy bits */
cks_val = CKS & TONE_MASK;

/* set buzzer frequency bits from table entry selected */
cks_val = cks_val | ToneTab[toneno - 1];

/* update CKS register to set buzzer frequncy */
CKS = cks_val;

/* start the buzzer output */
BUZ_Start();

3
#endif

** Abstract:
kel main function

** Parameters:
*x None

** Returns:

*x None
*x
A L o o e e
*/
void main(void)
{
IMS = MEMORY_IMS_SET;
IXS = MEMORY_IXS SET;

/* TODO. add user code */
sw_in = 0; /* clear switch value */

while(1){
if (sw_in '=0) {
if (sw_in == SWITCH_1) {
/* set the tone associated with this switch */
Tone(1);
TMOO_Start(); /* start 500 msec timer */

if (sw_in == SWITCH_2) {
/* set the tone associated with this switch */
Tone(2);
TMOO_Start(); /7* start 500 msec timer */

if (sw_in == SWITCH_3) {
/* set the tone associated with this switch */
Tone(3);
TMOO_Start(); /7* start 500 msec timer */

}

if (sw_in == SWITCH_4) {
/* set the tone associated with this switch */
Tone(4);
TMOO_Start(); /* start 500 msec timer */

}

/* clear switch input */

sw_in = 0;

} /7* end if sw_in = 0 */
} /7* end while (1) loop */
} /* end main() */

51

Key Return Input and Sound Output

NEC

4.2 Macrodriver.h
/*

EaE S

** This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
** 78KO/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses

** jncurred by customers or third parties arising from the use of this file.
** Filename : macrodriver.h

** Abstract : This is the general header file

** APIlib: NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler: NEC/CC78KO

*/
#ifndef _MDSTATUS
#define _MDSTATUS

#pragma sfr
#pragma di
#pragma ei
#pragma NOP
#pragma HALT
#pragma STOP

/* data type defintion */

typedef unsigned longULONG;

typedef unsigned int UINT;

typedef unsigned short USHORT ;

typedef unsigned char UCHAR;

typedef unsigned char BOOL;

#deFfine ON 1

#define OFF 0

#define TRUE 1

#deFfine FALSE O

#define IDLE O /* idle status */
#define READ 1 /* read mode */
#define WRITE2 /* write mode */

#define SET 1
#define CLEARO

#define MD_STATUS unsigned short

52

Key Return Input and Sound Output NEC

#define MD_STATUSBASE 0x0

/* status list definition */

#define MD_OK MD_STATUSBASE+0Ox0 /* register setting OK */

#define MD_RESET MD_STATUSBASE+0x1 /* reset input */

#define MD_SENDCOMPLETE MD_STATUSBASE+0x2 /* send data complete */
#define MD_OVF MD_STATUSBASE+0x3 /* timer count overflow */
/* error list definition */

#define MD_ERRORBASE 0x80

#define MD_ERROR MD_ERRORBASE+0x0 /* error */

#define MD_RESOURCEERROR MD_ERRORBASE+0x1 /* no resource available */

#define MD_PARITYERROR MD_ERRORBASE+0x2 /* UARTn parity error */

#define MD_OVERRUNERROR MD_ERRORBASE+0x3 /* UARTn overrun error */

#define MD_FRAMEERROR MD_ERRORBASE+0x4 /* UARTn frame error */

#define MD_ARGERROR MD_ERRORBASE+0x5 /* Error agrument input error */

#define MD_TIMINGERROR MD_ERRORBASE+0x6 /* Error timing operation error */
#define MD_SETPROHIBITED MD_ERRORBASE+0x7 /* setting prohibited */

#define MD_DATAEXISTS MD_ERRORBASE+0x8 /* Data to be transferred next exists
in TXBn register */

#define MD_SPT MD_STATUSBASE+0x8 /*11C stop*/

#define MD_NACK MD_STATUSBASE+0x9 /*11C no ACK*/

#define MD_SLAVE_SEND_END MD_STATUSBASE+0x10 /*I1IC slave send end*/
#define MD_SLAVE_RCV_END MD_STATUSBASE+0x11 /*11C slave receive end*/
#define MD_MASTER_SEND_END MD_STATUSBASE+0x12 /*11C master send end*/
#define MD_MASTER_RCV_END MD_STATUSBASE+0x13 /*I1IC master receive end*/

/* main clock and subclock as clock source */
enum ClockMode { HiRingClock, SysClock };

/* the value for IMS and IXS */

#define MEMORY_IMS_SET 0OxCC

#define MEMORY_IXS_SET 0x00

/* clear 10 register bit and set 10 register bit */
#define CIr1ORBit(Reg, ClrBitMap) Reg &= ~CIlrBitMap
#define SetlORBit(Reg, SetBitMap) Reg |= SetBitMap

enum INTLevel { Highest, Lowest };

#define SYSTEMCLOCK 8000000
#define SUBCLOCK 32768
#define MAINCLOCK 8000000
#define FRCLOCK 8000000
#define FRCLOCKLOW 240000
#endif

4.3 System.h

/*

AEEAEXEAEALAEAAEAAA KA AEA AKX A AKX A AKX AXAEA AKX AAXA AL A AKX AAXAAXAAXAXAAXAAAXAXAXAAXAAAXAAXAAAXAAAXAALAAAXAAXAX*X

*x

** This device driver was created by Applilet for the 78K0/KB2, 78KO0/KC2,
** 78K0O/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

*x

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.

53

Key Return Input and Sound Output

** NEC Electronics Corporation assumes no responsibility for any losses
** fjncurred by customers or third parties arising from the use of this file.

** Filename : system._h
** Abstract : This file implements device driver for SYSTEM module.
** API1lib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler :NEC/CC78KO

*x
AEEAXEEEAALAEAAEAEAAAAEAAXAEA AKX AAX AKX A AXAAAXAALAAAXAAAXAAXAAXAXAAXAAAXAAXAXAAXAAAXAAXAAAXAAAXAALAAAXAAAXAX*X

*/
#ifndef _MDSYSTEM_
#define “MDSYSTEM_
/*

*/

#define CG_X1STAB_SEL Ox5
#define CG_X1STAB_STAOX1f
#define CG_CPU_CLOCKSEL 0x0

enum CPUClock { SystemClock, Sys Half, Sys_Quarter, Sys OneEighth, Sys_OneSixteen,
Sys_SubClock };

enum PSLevel { PS_STOP, PS_HALT };

enum StabTime { ST_LevelO, ST Levell, ST Level2, ST Level3, ST Level4d };

void Clock_Init(void);

#endif

4.4 Systeminit.c

/*

EaE L S

*x

** This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
** 78KO/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.
** NEC Electronics Corporation assumes no responsibility for any losses
** jncurred by customers or third parties arising from the use of this file.

** Filename : systeminit.c
** Abstract : This file implements macro initialization.
** APIlib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler :NEC/CC78KO

*x
AEEAXEEKIAALAEAAEAEAA KA AEAAXA A AXAAXAAXAEA AKX AAXAALAAAXAAXAXAAXAAXAXAAXAAAXAAXAXAAXAAAXAAXAAAXAAAXAALAAAXAAXAd*X

*/
/>

54

NEC

Key Return Input and Sound Output

NEC

*/

#include "macrodriver.h"
#include "system._h"
#include "int.h"
#include "port_h"
#include "timer.h"

/*

EE A R S S

** MacroDefine

EE L S

*/

/*
*x

*x

** Abstract:

** Init every Macro
*x

** Parameters:

*x None

** Returns:
kel None

*/

void Systemlnit(void)

{
/* Clock generator initiate */
Clock_Init(Q);
/* Port initiate */
PORT_Init();
/* INT initiate */
INT_InitQ);
/* TMOO initiate */
TMOO_Init();
/* TMO1 initiate */
TMO1_Init();
/* TM51 initiate */
TM51_Init();

}
/*
A L o o e e
**x
** Abstract:
*x Init hardware setting
**
** Parameters:
** None
*x
** Returns:
*x None
Eax
R L o o e
*/
void hdwinit(void)
DIC);
Systemlnit();
ENC);

55

Key Return Input and Sound Output NEC

4.5 System.c

/*

E R S

*x

** This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
** 78KO/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses

** jncurred by customers or third parties arising from the use of this file.
** Filename : system.c

** Abstract : This file implements device driver for System module.

** APIlib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler :NEC/CC78KO

** Include files

*/

#include "macrodriver.h"

#include "system.h"

/*

A AR A A A A A A A A A A AAAAAAAAARAAAARAAAARAAAAAAAAA A AL A AKX

** MacroDefine

AEEAEXEEEAEAEIAAXAEAEA XA LA AKX A AXT A AKX AXAEAAXAAAXA AL A AXAAAXAAXAAXAXAAXAAAXAXAXAAXAAAXAAXAAAXAAAXAALAAAXAAXAx*X

*/

/*
*x

*x

** Abstract:
kel Init the Clock Generator and Oscillation stabilization time.

**

** Parameters:
kel None

** Returns:

*x None

**x

A

*/

void Clock_Init(void)
CIr1ORBit(MCM, 0x05); /* High-Internal-0SC operate for CPU */
SetlORBit(MCM, 0x01); /* peripheral hardware clock:frh */

56

Key Return Input and Sound Output NEC

SetlORBit(PM12, 0x18); /* P123/124 input mode */
CIrlIORBit(OSCCTL, 0x20); /* XT1 input mode */
SetlORBit(OSCCTL, 0x10);
SetlORBit(MOC, 0x80); /* stop X1 clock */
PCC = CG_CPU_CLOCKSEL;

}

4.6 Int.h

/*

AEEAEXEAEAE AL AAEAAA A A LA AKX A AKX A AKX AKX A AXAAAXA AL A AXAAXAXAAXAAXAXAAXAAAXAAXAXAAXAAAXAAXAAAXAAAXAALAAAXAAAXAX*X

*x

** This device driver was created by Applilet for the 78K0/KB2, 78KO0/KC2,
** 78K0O/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

**x

** Copyright(C) NEC Electronics Corporation 2002 - 2005

** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses

** fncurred by customers or third parties arising from the use of this file.
** Filename : int.h

** Abstract : This file implements device driver for INT module.

** APIlib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler : NEC/CC78KO

*/
#ifndef _MDINT_
#define _MDINT_
/*

EE S S

** MacroDefine

EE L e

*/

#define EGP_INT 0x0
#define EGN_INT 0x0
#define PU7_KR 0OxcO
#define PM7_KR OxcO
#define KRM_KR 0xcO

enum External INT {
EX_INTPO, EX_INTP1, EX_INTP2, EX_INTP3,
EX_INTP4, EX_INTP5, EX_INTP6, EX_INTP7

};

enum INTInputEdge {
None, RisingEdge, FallingEdge, BothEdge
}:

enum MaskableSource {
INT_LVI, INT_INTPO, INT_INTP1, INT_INTP2,
INT_INTP3, INT_INTP4, INT_INTP5, INT_SREG6,
INT_SR6, INT_ST6, INT_CS110_STO, INT_TMH1,
INT_TMHO, INT_TM50, INT_TMOOO, INT_TMO1O0,

57

Key Return Input and Sound Output NEC

INT_AD, INT_SRO, INT_WTI, INT_TM51,
INT_KR, INT_WT, INT_INTP6, INT_INTP7,
INT_I1CO_DMU, INT_CSI11, INT_TMOO1l, INT_TMO1ll
void INT_Init(void);
__interrupt void MD_INTKR(void);

/* added definitions of switch inputs */
#define SWITCH_1 0x01
#define SWITCH_2 0x02
#define SWITCH_3 0x04
#define SWITCH_4 0x08

/* added declaration of switch variable */
extern unsigned char sw_in;

#endi

4.7 Int.c

** This device driver was created by Applilet for the 78K0/KB2, 78KO0/KC2,
** 78KO/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses

** fjncurred by customers or third parties arising from the use of this file.
** Filename : int.c

** Abstract : This file implements device driver for INT module.

** API1lib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler :NEC/CC78KO

AEEAEXEEKIAALAEAAXAEAAEAAEA AKX A AKX AAXA AKX A AKX AAXAALAAAXAAXAXAAXAAXAXAAXAAAXAXAXAAXAAAXAAXAAAXAAAXAALAAAXAAAXAX*X

*/

/*

*/
#include "macrodriver.h"
#include "int.h"

Key Return Input and Sound Output NEC

*x

** Abstract:

*x This function initializes the external interrupt, key return function.
*x

** Parameters:

*x None

**x

** Returns:

*x None
**x
K
*/
void INT_Init(void)
{
EGP = EGP_INT;
EGN = EGN_INT;
KRMK = 1; /* disable INTKR */

PU7 |= PU7_KR;
PM7 |= PM7_KR;

KRM = KRM_KR; /* set KR input mode */
KRPR = 1;
KRIF = O;

KRMK /* enable INTKR */

4.8 Int_user.h

** This device driver was created by Applilet for the 78K0/KB2, 78KO0/KC2,
** 78KO/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses

** jncurred by customers or third parties arising from the use of this file.
** Filename : int_user.c

** Abstract : This file implements device driver for INT module.

** APIlib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler : NEC/CC78KO

*/
#pragma interrupt INTKR MD_INTKR

/*

S Rk = = = e

*/
#include "macrodriver.h"

59

Key Return Input and Sound Output NEC

#include "int.h"
/* added include of timer.h to access timer functions */
#include "timer.h"

/*

AAEAEEA A A AAA A A A AA A A AR A AR AAA AR AAA AR AAAAAAAALAAAAAAAAAALAAAAAAAAAAAAAAAAAAAAAAAAAAAAXK
** MacroDefine

AAEAKA A A AAAAAAAA AR AR A AR AAA A A AR AL A AAAAAAAA AR AAAAAAAALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK
*/

/* added definition of sw_in variable to hold switch data */

unsigned char sw_in;

/* added function to scan switch matrix
** Parameters: none

** Return: unsigned char with
** bit 0 set if sw 1 down

** bit 1 set if sw 2 down

** bit 2 set if sw 3 down

** bit 3 set if sw 3 down

*/

unsigned char scan_sw(void)

{

unsigned char value;

unsigned char uc;

PMO.5 = 1; /* make P05 an input to turn drive off; P04
is still driving low */

NOPQ); /* short wait before reading inputs to allow
pull-up to bring line high */

NOPQ);

value = (P7 >> 6) & 0x03; /* bits 1 and 0 = P77, P76 with P04 low */
/* bit 0 =0 if sw 1 down, bit1 =0
if sw 2 down, otherwise 1 */

PMO.5 = O; /* make PO5 an output again to drive low */

PMO.4 = 1; /* make P04 an input to turn drive off */

NOPQ); /* short wait */

NOPQ);

value = value | ((P7 >> 4) & 0x0C); /* bits 3 and 2 = P77, P76 with PO5 low */

/* bit 2 = 0 if sw 3 down, bit 3 =0

if sw 4 down, otherwise 1 */

PMO.4 = 0; /* make P04 an output again, both output
lines driving low */

KRIF = O; /* clear key return interrupt flag which may
have been triggered */

return (~value & OxOF); /* return bits 3-0 = 1 if switch down, = O if up */
}
/*

*x

*x

** Abstract:

*x INTKR Interrupt service routine.
**x

** Parameters:

*x None

**

** Returns:

*x None
*k

60

Key Return Input and Sound Output NEC

*/

__interrupt void MD_INTKR(void)

{

unsigned char sw_first, sw_second;

sw_Ffirst = scan_sw(); /* get Ffirst switch input */

TM51_Start(); /* start 5 ms. timer */
while(1TMIF51); /* wait for Timer51 Interrupt */
TM51_Stop(); /* stop the timer */

TMIF51=0; /* clear flag */

sw_second = scan_sw(); /* read switches second time */
if (sw_first == sw_second)

sw_in = sw_first; /* switches are stable, report value */
else

sw_in = 0; /* otherwise no input */

}

4.9 Timer.h

/*

** This device driver was created by Applilet for the 78K0/KB2, 78KO0/KC2,
** 78KO/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.
** NEC Electronics Corporation assumes no responsibility for any losses
** jncurred by customers or third parties arising from the use of this file.

** Filename : timer.h
** Abstract : This file implements a device driver for the timer module
** API1lib: NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler: NEC/CC78KO

AEEAXEEAEAALAEAAXAEAAAAEA AKX A AXAEAAXAAXAEAAXAAAXA AL A AXAAXAXA AKX AXAXAAXAAAXAAXAXAAXAAAXAAXAXAAXAAXAXAALAAAXAAAXAX*X

*/

#ifndef _MDTIMER_
#define _MDTIMER_
/*

*/

#define REGVALUE_MAX OxFf

#define TM_TMOO_CLOCK 0x2

#define TM_TMOO_ INTERVALVALUE 0x3d08
#define TM_TMOO_SQUAREWIDTH 0x3d08
#define TM_TMOO_PPGCYCLE ~ 0x3d08
#define TM_TMOO_PPGWIDTH Ox00

#define TM_TMOO_ONESHOTCYCLE 0x3d08
#define TM_TMOO_ONEPULSEDELAY 0x00
#define TM_TMO1_CLOCK 0x0

61

Key Return Input and Sound Output NEC

#define TM_TMO1_INTERVALVALUE Ox46F
#define TM_TMO1_SQUAREWIDTH Ox46F
#define TM_TMO1_PPGCYCLE Ox46F
#define TM_TMO1_PPGWIDTH Ox00
#define TM_TMO1_ONESHOTCYCLE Ox46F
#define TM_TMO1_ONEPULSEDELAY 0x00
#define TM_TM50_CLOCK 0x2

#define TM_TM50_INTERVALVALUE 0x00
#define TM_TM50_SQUAREWIDTH 0x00
#define TM_TM50_PWMACT IVEVALUE 0x00
#define TM_TM51_CLOCK Ox6

#define TM_TM51_INTERVALVALUE 0x9b
#define TM_TM51_SQUAREWIDTH Ox9b
#define TM_TM51_PWMACT IVEVALUE 0x9b
#define TM_TMHO_CLOCK 0x0

#define TM_TMHO_ INTERVALVALUE 0x00
#define TM_TMHO_SQUAREWIDTH 0x00
#define TM_TMHO_PWMCYCLE 0x00
#define TM_TMHO_PWMDELAY Ox00
#define TM_TMH1_CLOCK 0x0

#define TM_TMH1_INTERVALVALUE 0x00
#define TM_TMH1_SQUAREWIDTH 0x00
#define TM_TMH1_PWMCYCLE Ox00
#define TM_TMH1_PWMDELAY Ox00
#define TM_TMH1_CARRIERDELAY 0x00
#define TM_TMH1_CARRIERWIDTH 0x00

/* timer00 to 01,50,51,HO,H1 configurator initiation */
void TMOO_Init(void);
void TMO1_Init(void);
void TM51_Init(void);

/*timer start*/

void TMOO_Start(void);
void TMO1_Start(void);
void TM51_Start(void);

/*timer stop*/

void TMOO_Stop(void);

void TMO1l_Stop(void);

void TM51_Stop(void);

MD_STATUS TMOO_ChangeTimerCondition(USHORT* array_reg,USHORT array_num);
MD_STATUS TMO1_ChangeTimerCondition(USHORT* array_reg,USHORT array_num);
MD_STATUS TM51_ChangeTimerCondition(UCHAR value);

__interrupt void MD_INTTMOOO(void);

#endif /* _MDTIMER_*/

4,10 Timer.c

** This device driver was created by Applilet for the 78K0/KB2, 78KO0/KC2,
** 78K0O/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

Key Return Input and Sound Output NEC

*x

** This program should be used on your own responsibility.
** NEC Electronics Corporation assumes no responsibility for any losses
** jncurred by customers or third parties arising from the use of this file.

** Filename : timer.c
** Abstract : This file implements a device driver for the timer module
** API1lib: NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler: NEC/CC78KO

*x

AEEAEXEEEAALAEAAXAEAAAAEAAXAA AKX EAAXAAXAEA AKX AAXAALAA XA AAXAAXAAXAXAAXAAXAXAXAAXAAAXAAXAXAAXAAAXAALAAAXAAXAX*X
*/
/*
AEEAXEEKIAALAEAAEAEAAAAEAAXAEA AKX A AKX AXAEAAXAAAXAALAAAXAAXAXAAXAAXAXAAXAAAXAAXAXAAXAAAXAAXAAAXAAAXAALAAAXAAXAd*X

** Include files

*/
#include "macrodriver.h"
#include "timer.h"

*/
/*TMOO pulse width measure*/

/*TMO1 pulse width measure*/

/*
*x

*x

** Abstract:
*x This function initializes TMOO _module.

** Parameters:
**x None

** Returns:

** None

**x

A L o o e e
*/

void TMOO_Init()

{

TMCO0=0x00;
/* internal count clock */
PRMOO |= TM_TMOO_CLOCK;
SetlORBit(PROH, 0x40); /* low priority level */
CIrIORBit(IFOH, 0x40);
/* TMOO interval */
CIr10RBit(CRCO0,0x01);
CROOO = TM_TMOO_INTERVALVALUE;

/*
*x

*x

** Abstract:
** This function starts the TMOO counter.

63

Key Return Input and Sound Output NEC

**x

** Parameters:

*x None

*x

** Returns:

*x None

**x

R e e

*/

void TMOO_Start()
TMCOO = 0xOc; /* interval timer start */
CIr10RBit(MKOH, 0x40); /* INTTMOOO enable */

}

/*

A

**x

** Abstract:

** This function stops the TMOO counter and clear the count register.

*x

** Parameters:

*x None
**
** Returns:
*x None
*x
K e e e e
*/
void TMOO_Stop()
TMCO0=0x0;
SetlORBit(MKOH, 0x40); /* INTTMOOO stop */
}
/*
R o
**x
** Abstract:
*x This function changes TMOO condition.
**
** Parameters:
x USHORT : array_reg
*x USHORT : array_num
** Returns:
*x MD_OK
** MD_ERROR
*x
A L o o o e
*/
MD_STATUS TMOO_ChangeTimerCondition(USHORT* array_reg,USHORT array_num)
{
switch (array_num){
case 2:
CRO10=*(array_reg + 1);
case 1:
CROOO=*(array_reg + 0);
break;
default:
return MD_ERROR;
}

return MD_OKj;

64

Key Return Input and Sound Output NEC

}
/*
AR
**x
** Abstract:
kel This function can initialize TMO1_module.
*x
** Parameters:
*x None
**x
** Returns:
holad None
*x
K e e
*/
void TMO1_Init()
{
TMC01=0x00;
/* internal count clock */
PRMO1 |= TM_TMO1_CLOCK;
/* TMO1 squarewave output */
CIrIORBit(CRCO1,0x01);
CROO1 = TM_TMO1_SQUAREWIDTH;
CRO11 = OxFfff;
CIrIORBit(P0O,0x40); /* T0O01(p06) as output */
CIrIORBit(PMO,0x40);
TOCO1=0x7; /* init low */
}
/*
R e e
*x
** Abstract:
** This function start the TMOl1 counter.
**
** Parameters:
folad None
**x
** Returns:
*x None
**x
R o o e e e e e e e
*/
void TMO1l_Start(void)
TMCO1 = 0OxOc; /* squarewave output start */
s
/*
A L o o o e
E
** Abstract:
kel This fnction stop the TMO1 module.
**
** Parameters:
holad None
**x
** Returns:
*x None
**
o
*/

void TMO1_Stop(void)
65

Key Return Input and Sound Output NEC

TMC01=0x0;
b
/*
A e e e
**x
** Abstract:
kel This function can change TMO1 condition.
**x
** Parameters:
x USHORT : array_reg
**x USHORT : array_num
** Returns:
kel MD_OK
kel MD_ERROR
*x
A o o e e
*/
MD_STATUS TMO1_ChangeTimerCondition(USHORT* array_reg,USHORT array_num)
{
switch (array_num){
case 2:
CROl1l=*(array_reg + 1);
case 1:
CROO1=*(array_reg + 0);
break;
default:
return MD_ERROR;
ks
return MD_OKj;
b
/*
R o e e e e e e e e e e e e
**
** Abstract:
*x This function Initializes TM51_module.
**x
** Parameters:
kel None
o
** Returns:
kel None
**
A
*/
void TM51_Init(void)
{
CIrIORBit(TMC51, 0x80);
TCL51 = TM_TM51_ CLOCK; /* countclock=Ffx/256 */
/* TM51 interval */
CR51 = TM_TM51_INTERVALVALUE;
¥
/*
K e e e
**x
** Abstract:
** This function starts the TM51 counter.
**x

** Parameters:

66

Key Return Input and Sound Output NEC

*x None
*x

** Returns:

*x None
**x
A e e
*/
void TM51_Start(void)
{
/* TM51 interval */
SetlORBit(TMC51, 0x80);
}
/*
K e e
*x
** Abstract:
*x This function stops the TM51 counter and clear the count register.
**x

** Parameters:
*x None

** Returns:
*x None

*/
void TM51_Stop(void)

CIrl1ORBit(TMC51, 0x80);

¥

/*

K e e e
*x

** Abstract:

*x This function can change TM51 condition.

**x

** Parameters:

kel UCHAR : value

** Returns:

**x MD_OK

** MD_ERROR

o

A L o o e e
*/

MD_STATUS TM51_ChangeTimerCondition(UCHAR value)

CR51 =value;
return MD_OK;

411 Timer_user.c

/*

*x

** This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
** 78K0O/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

*x

67

Key Return Input and Sound Output NEC

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses

** fncurred by customers or third parties arising from the use of this file.
** Filename : timer_user.c

** Abstract : This file implements a device driver for the timer module

** APIlib: NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler: NEC/CC78KO

*/

#pragma sfr
#pragma interrupt INTTMOOO MD_INTTMOOO
/*

*/
#include "macrodriver.h"
#include "timer.h"

/*
AEEAXEIE AL EAIAXAEAA KA AEAAA A AXA A AKX AKX A AXAAAXAALAEAAXAAXAXAAXAAXAXAAXAAAXAXAXAAXAAAXAAXAXAAXAAAXAALAAAXA XX Ad*X

** MacroDefine

AEEAEXEIE AL A AKX EAA A AEA AKX A AXT A AKX AXAEAAXAAAXA AL A AXAAAXA AKX AXAAAXAAAXAXAXAAXAAAXAAXAAAXAAAXAALAAAXAAXAd*X

*/

/* Timer00, TimerOl pulse width measure */
/*
**x

**

** Abstract:
** TMOO INTTMOOO interrupt service routine

** Parameters:
*x None

** Returns:

** None

*x

A L o o o e

*/

__interrupt void MD_INTTMO00()

{
/* when TMOO times out, stop TMO1l to turn off sound */
TMO1_Stop();
/* and stop TMOO - only want one interrupt */
TMOO_Stop();

}

4,12 Port.h

68

Key Return Input and Sound Output

NEC

*x

EaE L S s

This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
78K0/KD2, 78K0O/KE2 and 78KO/KF2 8-Bit Single-Chip Microcontrollers.

Copyright(C) NEC Electronics Corporation 2002 - 2005
All rights reserved by NEC Electronics Corporation.

This program should be used on your own responsibility.

NEC Electronics Corporation assumes no responsibility for any losses
incurred by customers or third parties arising from the use of this file.
Filename : port.h

Abstract :This file implements device driver for PORT module.

APIlib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

Device : uPD78F0537

Compiler :NEC/CC78KO

AEEAXEIAEAALEAAXAEAAEAAEA AKX A AXT A AKX AXAEAAXAAAXA AL A AXAAXATXAAXAAXAXAAXAAXAAXAXAAXAAAXAALAXAAXAAAXAALAAAXAA XX AX*X

*/

#ifndef _MDPORT_

#define _MDPORT _

/*

** MacroDefine

*/

#define PORT_PMO Oxcf
#iT 0 /* change definition of default pull-ups for port PO (all off) */
#define PORT_PUO 0x0
#else /* set bits 4 and 5 to 1, so P04 and P05 will have pull-up resistors when inputs */
#define PORT_PUO 0x30
#endif

#deFfine PORT_PO 0x0
#define PORT_PM1 OxFf
#deFfine PORT_PU1 0x0
#define PORT_P1 0x0
#deFfine PORT_PM2 Oxff
#define PORT_P2 0x0
#define PORT_PM3 Oxff
#define PORT_PU3 0x0
#define PORT_P3 0x0
#define PORT_PM4 Oxff
#define PORT_PU4 0x0
#define PORT_P4 0x0
#define PORT_PM5 Oxff
#define PORT_PU5 0x0
#define PORT_P5 0x0
#define PORT_PM6 Oxff
#define PORT_P6 0x0
#define PORT_PM7 Oxff
#define PORT_PU7 0x0
#define PORT_P7 0x0
#define PORT_PM12 OxfFf
#define PORT_PU12 0x0
#define PORT_P12 0x0
#deFfine PORT_P13 0x0
#define PORT_PM14 OxFf
#define PORT_PU14 0x0

69

Key Return Input and Sound Output NEC

#define PORT_P14 0x0
#define PORT_ADPC 0x0

void PORT_Init(void);

#endif

4,13 Port.c

/*
AEEAEXEEEALAAAEAAA KA AL AKX AAXA A AKX AXAEA AKX AAXA AL A AKX AAXAAXAAXAXAAXAAAXAXAXAAXAAAXAAXAAAXAAAXAALAAAXAAXAX*X

*x

** This device driver was created by Applilet for the 78K0/KB2, 78KO0/KC2,
** 78K0O/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses

** jncurred by customers or third parties arising from the use of this file.
** Filename : port.c

** Abstract : This file implements device driver for PORT module.

** APIlib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler : NEC/CC78KO

nnnnnnn
*/
/*
A AR A A AAAAARAAAARAAAARAAAARAAAAAAAA A A AA A AKX
** Include files
A AR A A AAAAARAAAARAAAARAAARAAAARAAAAA A AAAAdK
*/
- “ - “
#include "macrodriver.h
- " (1]
#include "port.h
/*

EaE T S e

** Constants

EaE T e

*/

/*
*x

**

** Abstract:

kel This function initializes the 1/0 module.
o

** Parameters:

kel None

**x

** Returns:

*x None
*k

*x

70

Key Return Input and Sound Output NEC

void PORT_Init(void)

{
/* initialize the port registers */
PO = PORT_PO;
P1 = PORT_P1;
P2 = PORT_P2;
P3 = PORT_P3;
/* remove ports which do not exist for uPD78F0397 */
/* P4 = PORT_P4; */
/* P5 = PORT_P5; */
/* P6 = PORT_P6; */
P7 = PORT_P7;
P12 = PORT_P12;
P13 = PORT_P13;
/* P14 = PORT_P14; */
/* initialize the Pull-up resistor option registers */
PUO = PORT_PUO;
PU1 = PORT_PU1;
PU3 = PORT_PUS;
/* PU4 = PORT_PU4; */
/* PU5 = PORT_PU5; */
PU7 = PORT_PU7;
PU12 = PORT_PU12;
/* PU14 = PORT_PU14; */
/* initialize the mode registers */
PMO = PORT_PMO;
PM1 = PORT_PM1;
PM2 = PORT_PM2;
ADPC = PORT_ADPC;
PM3 = PORT_PM3;
/* PM4 = PORT_PM4; */
/* PM5 = PORT_PM5; */
/* PM6 = PORT_PM6; */
PM7 = PORT_PM7;
PM12 = PORT_PM12;
PM14 = PORT_PM14;
}

4.14 Option.inc

-%kx

;** This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
;** 78K0/KD2, 78K0O/KE2 and 78KO/KF2 8-Bit Single-Chip Microcontrollers.
-k%k

;** Copyright(C) NEC Electronics Corporation 2002 - 2005

;** All rights reserved by NEC Electronics Corporation.

-k%k

;** This program should be used on your own responsibility.

;** NEC Electronics Corporation assumes no responsibility for any losses
;** incurred by customers or third parties arising from the use of this file.
-k%k

;** Filename : option.asm

;** Abstract : This file implements OPTION-BYTES/SECURITY-ID setting.

;** APIlib: NEC78KOKX2.lib V1.01 [09 Aug. 2005]

-%k*

;** Device : uPD78F0537

-k%*

71

Key Return Input and Sound Output NEC

;** Compiler :

-%kx
’

NEC/CC78K0

EaE L S

" EAEEAEAEAA A AA A AAAA A AEA A A A AA A A LA A AAAA A AKX AAEAAXAAAXAAAAXAAAXAALAAAXAAAAALAAAAAAXA AL AAXAAAXAX*X
’

;** MacrobDefine

" EAAEAEAEAAEAAA A AAAA A AL A A A AA A A LA AR A AAAAEAAAEAAXAAAXALAEAAXAAAXAALAAAXAAAAALAAAAAAXAAXAAAXAAXAXX
’

OPTION_BYTE
POC81 EQU

POC82 EQU

POC83 EQU

CG_ONCHIP

CG_SECURITYO
CG_SECURITY1
CG_SECURITY2
CG_SECURITY3
CG_SECURITY4
CG_SECURITY5
CG_SECURITY6
CG_SECURITY?
CG_SECURITYS
CG_SECURITY9

EQU
OOH
OOH
0OH
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

4.15 Option.asm

OOH

02H

OffH
OffH
OffH
OffH
OffH
OffH
OffH
OffH
OffH
OffH

;** This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
;** 78K0/KD2, 78K0/KE2 and 78KO/KF2 8-Bit Single-Chip Microcontrollers.

;** Copyright(C) NEC Electronics Corporation 2002 - 2005
;** All rights reserved by NEC Electronics Corporation.

;** This program should be used on your own responsibility.
;** NEC Electronics Corporation assumes no responsibility for any losses
;** incurred by customers or third parties arising from the use of this file.

;** Filename : option.asm
;** Abstract : This file implements OPTION-BYTES/SECURITY-ID setting.
;** APIlib: NEC78KOKX2.lib V1.01 [09 Aug. 2005]

;** Device :

;** Compiler

uPD78F0537

NEC/CC78K0

$ INCLUDE (option.inc)
OPT_SET CSEG AT 80OH

OPTION:
DB
DB
DB

72

DB

POC81
POC82
POC83

OPTION_BYTE

Key Return Input and Sound Output NEC

ONC_SET CSEG AT 84H
ONCHIP: DB CG_ONCHIP

CSEG SECUR_ID
SECURITYO: DB CG_SECURITYO
SECURITY1: DB CG_SECURITY1
SECURITY2: DB CG_SECURITY2
SECURITY3: DB CG_SECURITY3
SECURITY4: DB CG_SECURITY4
SECURITY5: DB CG_SECURITYS
SECURITY6: DB CG_SECURITY6
SECURITY7: DB CG_SECURITY7
SECURITYS8: DB CG_SECURITY8
SECURITY9: DB CG_SECURITY9
END

4,16 Buzzer.h

/*

EaE L S

*x

** This device driver was created by Applilet for the 78K0/KB2, 78K0/KC2,
** 78K0O/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.
** NEC Electronics Corporation assumes no responsibility for any losses
** jncurred by customers or third parties arising from the use of this file.

** Filename : buzzer.h
** Abstract : This file implements device driver for buzzer module.
** APIlib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler :NEC/CC78KO

*x

AEEAEXEEAEAALAEAAXAEAAAAEAAXAAAXTEAAXAAXAEAAXAAAXAALAAAXAAXAXAAXAAXAXAAXAAAXAXAXAAXAAAXAALAXAAXAAXAXAALAAAXAAXAX*X

*/

#ifndef _MDBUZ_
#define _MDBUZ _
/*

AEEAXEIEA AL EAAXAEAA KA AEA AKX AAXA A AKX AKX A AXAAAXA AL A AXAAXAXAAXAAXAXAAXAAAXAAXAXAAXAAAXAAXAXAAXAAAXAALAAAXAAXAx*X

** MacroDefine

*/

void BUZ_Init(void);
void BUZ_Start(void);
void BUZ_Stop(void);

#endif

4.17 Buzzer.c

73

Key Return Input and Sound Output NEC

** This device driver was created by Applilet for the 78K0/KB2, 78KO0/KC2,
** 78KO/KD2, 78KO/KE2 and 78K0/KF2 8-Bit Single-Chip Microcontrollers.

** Copyright(C) NEC Electronics Corporation 2002 - 2005
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.
** NEC Electronics Corporation assumes no responsibility for any losses
** fjncurred by customers or third parties arising from the use of this file.

** Filename : buzzer.c
** Abstract : This file implements device driver for buzzer module.
** API1lib : NEC78KOKX2.lib V1.01 [09 Aug. 2005]

** Device : uPD78F0537

** Compiler :NEC/CC78KO

*x

AEEAEXEEEIAALAEAAEAAAAAEAAXAEA AKX A AKX AXAEAAXAAAXA AL A AXAAXAXAAXAAXAXAAXAAXAXAXAAXAAAXAAXAXAAXAAAXAALAAAXAA XX Ad*X

*/

/*

** Include files

*/
#include "macrodriver.h"
#include "buzzer.h"

/*
*x

*x

** Abstract:
*x This function initializes the buzzer output controller.

** Parameters:
**x None

** Returns:

olal None
**
R L o o
*/
void BUZ_Init(void)
{
BZOE = O; /* stop BUZ */
CIrIORBit(P14, 0x02);
CIrIORBit(PM14, 0x02); /* set pl4l BUZ output mode */
CIrIORBit(CKS, 0x60); /* BUZ output clock: fprs/2710 */
}
/*

*x

**

** Abstract:
** This function enable buzzer output operation.

74

Key Return Input and Sound Output

NEC

**x

** Parameters:
*x None

*x

** Returns:

*x None
**

**x
*/
void BUZ_Start(void)

BZOE = 1; /> start BUZ */

/*

*x

*x

** Abstract:

*x This function disable buzzer output operation.

**x

** Parameters:

** None

*x

** Returns:

*x None

**x

A
*/

void BUZ_Stop(void)

BZOE = O; /*

stop BUZ */

75

	Application Note
	Key Return Input and Sound Output
	For NEC Electronics Microcontrollers
	Revision History

	Contents
	Introduction
	Overview of Key Return Functions and Sound Output

	Key Return Input and Sound Output
	Key Return Input and Sound Output Features
	Key Return (KR) Input Features
	Features of Timer Output for Sound Generation
	Features of Buzzer Output for Sound Generation

	Program Description and Specification
	Software Flow Charts
	Program Startup and Initialization
	INT_Init() – Key-Return Interrupt Initialization
	TM01_Init() – Timer 01 Initialization for Square-Wave Gener
	BUZ_Init() – Alternative Buzzer Initialization for Square-W
	TM00_Init() – Timer 00 Initialization for 500-Millisecond I
	TM51_Init() – Timer 51 Initialization for 5 Millisecond Int
	Main() –Main Program – Key Return and Buzzer Output
	Tone(UCHAR toneno) – Tone Generation Using Timer 00 Square-W
	Tone(UCHAR toneno) – Alternate Tone Generation Using Buzzer
	MD_INTKR() – Key-Return Interrupt-Service Routine
	Unsigned char scan_sw() – Scan Key-Switch Matrix
	MD_INTTM000() – Timer 00 Interrupt-Service Routine

	Applilet's Reference Driver
	Configuring Applilet for Key-Return Interrupt
	Configuring Applilet for Port Outputs Used as Key Scan Outpu
	Configuring Applilet for Timer TM01 Square-Wave Generation
	Alternative — Configuring Applilet for Buzzer Square-Wave Ge
	Setting Applilet to Configure Timer TM51 for 5-Millisecond I
	Setting Applilet to Configure Timer TM00 for 500-Millisecond
	Generating Code with Applilet
	Applilet-Generated Files and Functions for Key-Return Interr
	Int.h
	Int.c
	Int_user.c

	Applilet-Generated Files and Functions for TM00, TM01 and TM
	Timer.h
	Timer.c

	Applilet-Generated Files and Functions for Buzzer Output
	Buzzer.h
	Buzzer.c

	Applilet-Generated Files and Functions for Port Initializati
	Port.h
	Port.c

	Other Applilet-Generated Files
	Demonstration Program Files Not Generated by Applilet

	Demonstration Platform
	Resources
	Program Demonstration

	Hardware Block Diagram
	Software Modules

	Appendix A — Development Tools
	Software Tools
	Hardware Tools

	Appendix B – Software Listings
	Main.c
	Macrodriver.h
	System.h
	Systeminit.c
	System.c
	Int.h
	Int.c
	Int_user.h
	Timer.h
	Timer.c
	Timer_user.c
	Port.h
	Port.c
	Option.inc
	Option.asm
	Buzzer.h
	Buzzer.c

