To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depend on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

 “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

 “Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
1. **Abstract**

This document describes a program for key matrix and determination.

2. **Introduction**

The application example described in this document applies to the following MCU and parameter(s):

- MCU: R8C/25 Group

This program can be used with other R8C/Tiny Series MCUs which have the same special function registers (SFRs) as the R8C/25 Group. Check the manual for any additions and modifications to functions. Careful evaluation is recommended before using this application note.
3. Application Example Description

The key input and determination specifications are as follows:

1. The keys are set to “L” active (“L”: pressed; “H”: not pressed). If the key codes match three times, it is determined that they are fixed.

2. If multiple keys are pressed simultaneously (multiple pressing), it is determined as an error.

3. The key matrix uses eight ports in total - four ports for scan output and four ports for key input.
 - Scan output: “L” active, P0_4 to P0_7
 - Key input: “L” active, P2_0 to P2_3

4. The scan output is set to serial active output every 5 ms and controlled by the variable scan. Timer RA is used to measure 5 ms.

5. The key input is fixed after each scan output cycle.

6. Key input data is set into the variable key_data and a key code is generated based on this data. The key code is set into the variable now_keycode.

Table 3.1 Keys and Key Codes

<table>
<thead>
<tr>
<th>KEY</th>
<th>Key code</th>
<th>KEY</th>
<th>Key code</th>
<th>KEY</th>
<th>Key code</th>
<th>KEY</th>
<th>Key code</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEY1</td>
<td>01h</td>
<td>KEY2</td>
<td>05h</td>
<td>KEY3</td>
<td>09h</td>
<td>KEY4</td>
<td>0Dh</td>
</tr>
<tr>
<td>KEY5</td>
<td>02h</td>
<td>KEY6</td>
<td>06h</td>
<td>KEY7</td>
<td>0Ah</td>
<td>KEY8</td>
<td>0Eh</td>
</tr>
<tr>
<td>KEY9</td>
<td>03h</td>
<td>KEY10</td>
<td>07h</td>
<td>KEY11</td>
<td>0Bh</td>
<td>KEY12</td>
<td>0Fh</td>
</tr>
<tr>
<td>KEY13</td>
<td>04h</td>
<td>KEY14</td>
<td>08h</td>
<td>KEY15</td>
<td>0Ch</td>
<td>KEY16</td>
<td>10h</td>
</tr>
</tbody>
</table>

The key code for no key being pressing is 00h, and the key code for multiple pressing is FFh.

7. The key code fixed two times previously and the key code fixed one time previously are set into the variables last_keycode[1] and last_keycode[0], respectively. If the key codes set in last_keycode[1], last_keycode[0], and now_keycode match, it is considered the same key code is identified three times and set into the variable fix_keycode.

This sample program may include operations of unused bit functions for the SFR bit layout. Set these values according to the operating conditions of the user system.
3.1 Pin Usage

Table 3.2 Pin Usage and Functions

<table>
<thead>
<tr>
<th>Pin</th>
<th>I/O</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0_4</td>
<td>Output</td>
<td>Scan output 0</td>
</tr>
<tr>
<td>P0_5</td>
<td>Output</td>
<td>Scan output 1</td>
</tr>
<tr>
<td>P0_6</td>
<td>Output</td>
<td>Scan output 2</td>
</tr>
<tr>
<td>P0_7</td>
<td>Output</td>
<td>Scan output 3</td>
</tr>
<tr>
<td>P2_0</td>
<td>Input</td>
<td>Key input 0</td>
</tr>
<tr>
<td>P2_1</td>
<td>Input</td>
<td>Key input 1</td>
</tr>
<tr>
<td>P2_2</td>
<td>Input</td>
<td>Key input 2</td>
</tr>
<tr>
<td>P2_3</td>
<td>Input</td>
<td>Key input 3</td>
</tr>
</tbody>
</table>

Figure 3.1 Key Matrix Configuration
3.2 Memory Usage

Table 3.3 Memory Usage

<table>
<thead>
<tr>
<th>Memory Usage</th>
<th>Size</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROM</td>
<td>351 bytes</td>
<td>In main.c module</td>
</tr>
<tr>
<td>RAM</td>
<td>9 bytes</td>
<td>In main.c module</td>
</tr>
<tr>
<td>Maximum user stack usage</td>
<td>14 bytes</td>
<td>main function: 3 bytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sfr_init function: 3 bytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>key_mat function: 3 bytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>key_scan function: 3 bytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>key_decode function: 8 bytes</td>
</tr>
<tr>
<td>Maximum interrupt stack usage</td>
<td>0 bytes</td>
<td>Unused</td>
</tr>
</tbody>
</table>

Memory usage varies depending on the C compiler version and the compile option.
The above applies under the following conditions:
- C compiler: M16C/60, 30, 20, 10, Tiny, R8C/Tiny Series Compiler V.5.40 Release 00
- Compile option: -c -finfo; NOTE: -dir “$(CONFIGDIR)” -R8C
NOTE: Unavailable in the R8C/Tiny-exclusive free version.

Table 3.4 RAM Usage and Definition

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>Size</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>scan</td>
<td>unsigned char</td>
<td>1 byte</td>
<td>Scan output counter</td>
</tr>
<tr>
<td>key_data[4]</td>
<td>unsigned char</td>
<td>4 bytes</td>
<td>Input key data</td>
</tr>
<tr>
<td>now_keycode</td>
<td>unsigned char</td>
<td>1 byte</td>
<td>Key data fixed this time</td>
</tr>
<tr>
<td>last_keycode[2]</td>
<td>unsigned char</td>
<td>2 bytes</td>
<td>[0]: Key code fixed one time previously</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[1]: Key code fixed two times previously</td>
</tr>
<tr>
<td>fix_keycode</td>
<td>unsigned char</td>
<td>1 byte</td>
<td>Key code fixed by three matches</td>
</tr>
</tbody>
</table>
4. Flowchart

4.1 Main Function

```
main()
asm("FCLR I")
prc0 ← 1
cm14 ← 0
fra2 ← 0x00
fra00 ← 1

Repeat
(i <= 255)
i++;

fra01 ← 1
cm16 ← 0
cm17 ← 0
cm06 ← 0
prc0 ← 0

SFR initial setting processing
sfr_init()
asm("FSET I")

No
ir_traic = 1?
Yes

traic ← traic & 0xF7

Key matrix input processing
key_mat()
```

- Disable interrupt
- Disable system control register protect
- Start low-speed on-chip oscillator oscillation
- High-speed on-chip oscillator clock divided-by-2 mode
- Start high-speed on-chip oscillator oscillation
- Wait until oscillation becomes stable
- Select high-speed on-chip oscillator
- No main clock division
- Enable CM16, CM17
- System control register protect
- SFR initial setting processing (port initial setting/timer RA setting)
- Enable interrupt
- Timer RA Wait for request (5 ms)
- Timer RA Clear interrupt request flag
- Key matrix input processing
4.2 SFR Initial Setting Processing

4.2.1 SFR Initial Setting Processing 1

sfr_init()

\[p0 \leftarrow p0 | 0xF0 \]

Port P0_4 to P0_7 initial setting

\[\text{prc2} \leftarrow 1 \]

Disable oort P0 direction register protect

\[\text{pd0} \leftarrow \text{pd0} | 0xF0 \]

Port P0_4 to P0_7: Set to output ports

\[\text{pd2} \leftarrow \text{pd2} & 0xF0 \]

Port P2_0 to P2_3: Set to input ports

\[\text{tstart_tracr} \leftarrow 0 \]

Stop timer RA operation

\[\text{tcstf_tracr} = 0? \]

Yes

\[\text{traic} \leftarrow 0x00 \]

Disable timer RA interrupt

\[\text{tstop_tracr} \leftarrow 1 \]

Initialize registers TRAPRE and TRA, and bits TSTART and TCSTF in TRACR register

\[\text{trapre} \leftarrow 125 - 1 \]

Underflow period: Set to 5 ms (40 MHz \(\times \) \(f_2 \) \(\times \) \(f_8 \) \(\times \) \(125 \) \(\times \) \(100 \) = 5 ms)

\[\text{tra} \leftarrow 100 - 1 \]

Set to 0 in timer mode.

\[\text{tedgsel_traioc} \leftarrow 0 \]

Set to 0 in timer mode.

\[\text{topcr_traioc} \leftarrow 0 \]

Set to 0 in timer mode.

\[\text{toena_traioc} \leftarrow 0 \]

Set to 0 in timer mode.

\[\text{tipf0_traioc} \leftarrow 0 \]

Set to 0 in timer mode.

\[\text{tipf1_traioc} \leftarrow 0 \]

Set to 0 in timer mode.

\[\text{tmod0_tramr} \leftarrow 0 \]

Set to 000 in timer mode.

\[\text{tmod1_tramr} \leftarrow 0 \]

\[\text{tmod2_tramr} \leftarrow 0 \]
4.2.2 SFR Initial Setting Processing 2

1.

\[tck0_{tramr} \leftarrow 1 \]

\[tck1_{tramr} \leftarrow 0 \]

\[tck2_{tramr} \leftarrow 0 \]

\[tckcut_{tramr} \leftarrow 0 \]

\[tstart_{tracr} \leftarrow 1 \]

If \(tcsf_{tracr} = 1 \)

- Yes: return
- No: Timer RA count source: f8
 - Supply count source
 - Start timer RA operation
4.3 Key Matrix Input Processing

4.3.1 Key Matrix Input Processing

key_mat()

Key read processing
key_scan()

Key fix processing
key_decode()

return

4.3.2 Key Read Processing

key_scan()

\[
p_0 \leftarrow p_0 \mid 0xF0
\]

scan++

scan = 4?

\[\text{No}\]

\[\text{Yes}\]

\[
\text{scan} \leftarrow 0
\]

\[
p_0 \leftarrow p_0 \& \text{MAT_OUT}_\text{data}\[\text{scan}\]
\]

key_data\[\text{scan}\] \leftarrow p_2 \& 0x0F

return
4.3.3 Key Fix Processing

```plaintext
key_decode()

key_work ← 0

scan = 3

Yes

last_keycode[1] ← last_keycode[0]

last_keycode[0] ← now_keycode

now_keycode ← 0

Repeat
i = 0; i < 4; i ++

Repeat
j = 0; j < 4; j ++

key_work++

(Key_data[i] & tblkeydecode[j]) = 0?

Yes

now_keycode = 0?

Yes

now_keycode ← keywork

Store key code

Key code error

No

Clear key code generation counter

Check scan output

Update key code

Clear key code

Increment key code generation counter

Check key pressing

Check multiple key pressing

Determine three matches

Fix key code

Fix key code

Fix key code

return
```
5. **Sample Programming Code**

A sample program can be downloaded from the Renesas Technology website.
To download, click “Application Notes” in the left-hand side menu of the R8C/Tiny Series page.

6. **Reference Documents**

Hardware Manual
R8C/25 Group Hardware Manual
The latest version can be downloaded from the Renesas Technology website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Technology website.
Website and Support

Renesas Technology website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
csc@renesas.com

REVISION HISTORY

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
<th>Page</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Mar 30, 2007</td>
<td>First Edition issued</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>
Notes regarding these materials

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed in our website (http://www.renesas.com).

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guarantees regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document. Renesas semiconductor products, or if you have any other inquiries.

© 2007. Renesas Technology Corp., All rights reserved. Printed in Japan.