

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

Introduction
An IIC serial EEPROM is connected to the H8/38024 via the two lines of SCL (Serial Clock) and SDA (Serial Data).
Data in the on-chip ROM is written to the EEPROM, and the data that was written to the EEPROM is read back to the
on-chip RAM.

Target Device
H8/38024

Contents

1. Specifications.. 2

2. Concepts ... 2

3. Description of Functions ... 3

4. Principle of Operation ... 8

5. Description of Software... 11

6. Flowchart... 13

7. Program Listing... 20

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 1 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

1. Specifications
1. As shown in figure 1.1, an IIC serial EEPROM is connected to the H8/38024 via two lines, SCL (Serial Clock) and

SDA (Serial Data).
2. Data in the on-chip ROM is written to the EEPROM, and the data that was written to the EEPROM is read back to

the on-chip RAM.
3. Data is transferred in an LSB-first method.

P17
P16

SCL (serial clock)

SDA (serial data)

H8/38024 IIC serial EEPROM

SCL
SDA

Figure 1.1 Example of EEPROM Connection

2. Concepts
1. Figure 2.1 illustrates the bus timing of the IIC serial EEPROM used for this sample task.

SCL

SDA
(input)

SDA
(output)

Figure 2.1 Bus Timing of IIC Serial EEPROM

2. The bus timing of the IIC serial EEPROM used is as shown in figure 2.1. In this sample task, the P17 pin is driven
high and low by software to generate a serial clock, which is output to the SCL. In synchronization with this serial
clock generated by software, serial data is output/input via the P16 pin to access the IIC serial EEPROM. Figure
2.2 illustrates timing waveforms of the P17 and P16 pin levels.

P17
(SCL) 1 1 0 0 1 1 0 0 1 1 0 0 1

1 0 0 1 1 1 1 0 0 0 0 1 1
P16
(SDA)

Figure 2.2 Timing Waveforms of P17 and P16 Pin Levels

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 2 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

3. Description of Functions
1. In this sample task, the IIC serial EEPROM is connected to the H8/38024 as shown in figure 3.1. Table 3.1

provides descriptions of the pins of the IIC serial EEPROM.

P17/IRQ3/TMIF

P16 (SDA)

SCL

Vcc
Vss
A0
A1
A2
WP

SDA

H8/38024 IIC serial EEPROM

Figure 3.1 Connection between H8/38024 and IIC Serial EEPROM

Table 3.1 Pins of IIC Serial EEPROM

Pin Name Function
A0 to A2 Device address
SCL Serial clock input
SDA Serial data I/O
WP Write protection
Vcc Vcc
Vss GND

2. The block diagram shown in figure 3.2 illustrates how the IIC serial EEPROM is connected to the H8/38024. The

H8/38024's functions used in this application are explained below.
A. Set the P17/IRQ3/TMIF pin as the P17 output pin and connect to the SCL pin of the IIC serial EEPROM for use

as the serial clock output pin.
C. Connect the P16 pin to the SDA pin of the IIC serial EEPROM for use as the serial data input/output pin.
D. If the PCR16 bit of the port control register PCR1 is cleared to 0, the P16 pin functions as an input pin. If the

PCR16 is set to 1, the P16 pin functions as an output pin.

IIC serial
EEPROM

Input data Output data Clock

RAM

H8/38024 functions

P17 output
pin setting

P16 pin setting
for input or output

Clock output

Output data

Input data

PDR1PCR1

P17

P16

SCL

SDA

Figure 3.2 Block Diagram for Connection with IIC Serial EEPROM

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 3 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

3. Pin functions are assigned as below for connection with the IIC serial EEPROM.

P17 pin Serial clock output
P16 pin Serial data Input/output

4. The following explains specifications of the IIC serial EEPROM used for the sample task.

A. The IIC serial EEPROM is an EEPROM (electrically erasable and programmable ROM) with a two-wire serial
interface. The sample task uses a 64-kbit EEPROM (HN58X2464FPI) from Renesas technology or a 2-kbit
EEPROM (FM24C03UFLM8) from Fairchild.

B. The following lists features of the EEPROM used for the sample task.

• 64-kbit EEPROM (HN58X2464FPI) from Renesas technology
Single power supply 1.8 V to 5.5 V
Two-wire serial interface IIC bus interface
Operating frequency 400 kHz

Standby state 3 µA (max.)
Reading 1 mA (max.)

Current
consumption

Writing 3 mA (max.)
Page write Page size: 32 bytes
Write cycle time 10 ms (2.7 to 5.5 V or higher)/15 ms (1.8 to 2.7 V)
Endurance 105 data changes (for page write)

• 2-kbit EEPROM (FM24C03UFLM8) form Fairchild
Single power supply 2.7 V to 5.5 V
Two-wire serial interface IIC bus interface
Operating frequency 400 kHz

Standby state 10 µA (max.)
Reading 1 mA (max.)

Current
consumption

Writing 1 mA (max.)
Page write Page size: 16 bytes
Write cycle time 10 ms (4.5 to 5.5 V or higher)/15 ms (2.7 to 4.5 V)
Endurance 106 data changes (for page write)

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 4 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

C. To start reading and writing operation, the start condition under which the SDA input is changed from high to
low while the SCL input is high is required.
Setting the SDA input from low to high while the SCL input is high makes the stop condition. In reading,
reading operation is terminated by inputting the stop condition and the standby state is entered. In writing, input
of rewrite data is terminated by inputting the stop condition. Standby mode is entered after the memory has
been rewritten for a programming time (twc). Figure 3.3 shows timing waveforms illustrating the start and stop
conditions.

SCL

SDA
(input)

Start condition Stop condition

Figure 3.3 Signal Output Timing Waveforms under Start and Stop Conditions

D. Serial data including address and reading information is transferred in 8-bit units. The acknowledge signal
indicates that 8-bit data has been transmitted or received successfully. The receiving side outputs 0 at the SCL's
ninth clock cycle. The transmitting side releases the bus to receive the acknowledge signal at the ninth clock
cycle.
As viewed from the EEPROM, data is only received in writing. Upon the completion of reception of 8-bit data,
therefore, the EEPROM outputs 0 as the acknowledge signal at the ninth clock cycle. In reading, the EEPROM
outputs 0 as the acknowledge signal upon reception of 8-bit data after the start condition. Then, the EEPROM
outputs read data in 8-bit units. After this output, it releases the bus, waiting for 0 as the acknowledge signal to
be sent from the master side. Upon detection of 0 as the acknowledge signal, the EEPROM outputs read data
for the next address. If having received the stop condition without detecting 0 as the acknowledge signal, the
EEPROM terminates reading operation, entering the standby state. If it has not detected 0 as the acknowledge
signal and not received the stop condition, the EEPROM does not output data and stays in the bus-released state.
Figure 3.4 illustrates timing waveforms for the acknowledge signal.

SCL

Start condition

Acknowledge
signal output

Bit 9Bit 8Bit 2 . . .Bit 1

SDA
(input)

SDA
(output)

Figure 3.4 Timing Waveforms for Acknowledge Signal Output

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 5 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

E. Following the start condition, input an 8-bit device address word. By this input, the device starts reading and
writing operation. The device address word consists of a 4-bit device code, a 3-bit device address code, and a
one-bit read/write code.
The upper four bits of the device address word provide the device code used for device type identification. The
EEPROM used for the sample task has the device code fixed at 1010.
Following the device code, input a 3-bit device address code in the order of A2, A1, and A0. The device
address code is used to determine which of up to eight devices connected to the bus is to be selected. In the
sample task, the device address code for the EEPROM is set to 000.
Bit 8 of the device address word is an R/W code. If 0 is input, the EEPROM is set for writing operation. If 1 is
input, the EEPROM is set for reading operation. If the device code is not 1010 or if the device address code
does not match, the EEPROM enters standby mode rather than reading/writing operation. Figure 3.5 shows the
device address word.

Start condition

R/W
code

Device address
code

Device code

1 0 1 0 0 0 0

A2 A1 A0

0/1

Figure 3.5 Device Address Word

F. In this sample task, the page write function that rewrites up to 32 (or 16) bytes at a time is used for writing
operation. Input the start condition, the device address word, the memory address (n), and write data (Dn) in
that order while checking 0 output of the acknowledge signal every nine bits. If write data (Dn+1) is input, the
EEPROM will enter page-write mode. When write data (Dn+1) is input, the in-page address (a0 to a4) is
incremented automatically to (n+1). So, write data can be input continuously, with the in-page address
incremented. Up to 32 (or 16) bytes of write data can be input. When the in-page address (a0 to a4) reaches the
last address in the page, the address rolls over to the start address. In this case, write data is input to the same
address twice or more times, but the last input write data is valid. If the stop condition is input, the EEPROM
terminates write data input, entering rewriting operation. Figure 3.6 illustrates page-write operation.

32-kbit EEPROM

Start condition Stop conditionR/W
code

Device address
word

1 0 1 0 0 0 0 0

1 0 1 0 0 0 0 0

a1
1

a1
0

a9 a8 a7 a6 a5 a4 a3 a2 a1 a0 D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

D
5

D
4

D
3

D
2

D
1

D
0

a7 a6 a5 a4 a3 a2 a1 a0 D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

D
5

D
4

D
3

D
2

D
1

D
0

Memory address (n) Memory address (n)

Acknowledge signal

Write data (n) Write data (n+m)

2-kbit EEPROM

Start condition Stop conditionR/W
code

Device address
word Memory address (n)

Acknowledge signal

Write data (n) Write data (n+m)

Figure 3.6 Page-Write Operation

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 6 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

G. An acknowledge polling function is provided to determine whether the EEPROM is being rewritten. During
rewriting, input the start condition, then an 8-bit device address word. When using the acknowledge polling
function, the read/write code may be either 1 or 0. Whether the EEPROM is being rewritten is determined by the
acknowledge signal at the ninth bit. An acknowledge signal of 1 indicates that the EEPROM is being rewritten,
while an acknowledge signal of 0 indicates that the rewriting has ended. The acknowledge polling function
becomes active upon stop condition input after write data is input.

H. In this sample task, sequential read mode, in which data are sequentially read, is used for reading. Input the
start address for data to be read in dummy write mode. Inputting an acknowledge signal of 0 after the output of
8-bit data increments the address, with next 8-bit data output. If an acknowledge signal of 0 is input
continuously after the data output, the EEPROM sequentially outputs data while incrementing the address. The
address, if it has reached the last one, rolls over to 0. In that case as well, sequential read mode can be used.
To terminate the operation, input an acknowledge signal of 1 (or release the bus without inputting an
acknowledge signal) and then input the stop condition. Figure 3.7 illustrates sequential read operation.

32-kbit EEPROM

Start condition Stop conditionR/W
code

R/W
code

Device address
word

1 0 1 0 0 0 0 0

1 0 1 0 0 0 0 0

a1
1

a1
0

a9 a8 a7 a6 a5 a4 a3 a2 a1 a0 D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

D
2

D
1

D
0

a7 a6 a5 a4 a3 a2 a1 a0 D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

D
2

D
1

D
0

Memory
address (n)

Dummy write

Memory
address (n)

Acknowledge signal

Read data (n)

Dummy write

Read data
(n+m)

Sequential read

Sequential read
2-kbit EEPROM

Start condition Stop conditionR/W
code

R/W
code

Device address
word

Memory
address (n)

Acknowledge signal

Read data (n)
Read data

(n+m)
Device address

word

1 0 1 0 0 0 0 1

Device address
word

1 0 1 0 0 0 0 1

Figure 3.7 Sequential Reading

I. To enter reading operation after the end of writing operation, the IIC serial EEPROM must wait for the write
cycle time (twc), which is up to 10 ms when a voltage of 5 volts is applied. Figure 3.8 shows write cycle timing
waveforms.

SCL

SDA

Stop condition Start condition

Writing

Write cycle time (twc): 10 ms
(internally controlled) Reading

Figure 3.8 Write Cycle Timing Waveforms

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 7 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

4. Principle of Operation
1. Figure 4.1 illustrates the principle of operation of this sample task. As shown here, the H8/38024's hardware and

software processing allows data to be written (transmitted) to the EEPROM.

Pin P17
(SCL)

Pin P16
 (SDA)

Start
condition

Device address
word

ACK ACKMemory address Write data Stop
condition

Hardware processing

No processing

Software processing

a.

b.

c.

d.

Outputs a start condition.

Outputs the device
address word (consisting
of the device code, device
address code, and R/W
code).
Checks that an
acknowledge signal is
output by the EEPROM.
Sets the memory
address:
0x0000 for 32-kbit
EEPROM;
0x00 for 2-kbit EEPROM.

Hardware processing

No processing

Software processing

a.

b.

c.

Checks that an
acknowledge signal is
output by the EEPROM.
Writes 8-bit data to the
EEPROM in LSB-first.
Repeats steps (a) and (b)
until all data has been
written.

Hardware processing

No processing

Software processing

Upon completion of the
writing of all the data to the
EEPROM, outputs a stop
condition to finish the
writing operation.

Figure 4.1 Operation Principle of EEPROM Writing

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 8 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

2. Figure 4.2 illustrates the operation principle for reading (reception). As shown here, the H8/38024's hardware and
software processing allows data to be read (received) from the EEPROM.

Dummy write

Start
condition

Start
condition

ACKDevice address word ACKDevice address wordACK Stop
condition

Read
data

Memory address

Hardware processing

No processing

Software processing

Dummy writing (for setting the
memory address at 0x00 or
0x0000)
a.
b.

c.

d.

Outputs a start condition.
Outputs the device address
word (consisting of the device
code, the device address code,
and the R/W code).
Checks that an acknowledge
signal is output by the
EEPROM.
Sets the memory address:
0x0000 for 32-kbit EEPROM;
0x00 for 2-kbit EEPROM.

Hardware processing

No processing

Software processing

a.

b.

c.

Checks that an
acknowledge signal is
output by the EEPROM.
Outputs a start
condition.
Outputs the device
address word.

Hardware processing

No processing

Software processing

a.

b.

c.

d.

Checks that an
acknowledge signal is
output by the EEPROM.
Reads 8-bit data in LSB-
first and stores it in
RAM.
Outputs an acknowledge
signal (memory address
is incremented).
Repeats steps (b) and
(c) until all read data has
been read.

Hardware processing

No processing

Software processing

Upon completion of the
reading of all data to be
read from the EEPROM,
outputs a stop condition
to finish the reading
operation.

Figure 4.2 Operation Principle for Reading from EEPROM

3. Table 4.1 lists the operation of input/output to/from port 1 used for the sample task. Settings listed in table 4.1 are

used to output the serial clock, and input/output serial data.

Table 4.1 Input/Output Operation

Register Transmission to IIC Serial EEPROM Reception from IIC Serial EEPROM
PCR17 1 1 PCR1
PCR16 1 0
P17 Transmits the clock Transmits the clock PDR1
P16 Transmit data Receive data

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 9 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

4. Figure 4.3 shows the memory map of the H8/38024 used for the sample task.

0x0000

0x0030

Interrupt vector

0x0400

0x0500

0x7FFF

This program

Sample program

0xFB80

0xFF7F

Read sample program

On-chip
ROM

On-chip
RAM

Figure 4.3 Memory Map of H8/38024 Used for Sample Task

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 10 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

5. Description of Software

5.1 Modules
Table 5.1 lists the modules used for the sample task.

Table 5.1 Description of Modules

Module Label Function
Main routine main Disables an interrupt, waits for a write cycle time, and controls

writing/reading to/from the EEPROM.
Data transmission on IIC bus send_code Converts specified data into the signal for the IIC bus to be

transmitted to the EEPROM.
SCL and SDA data setting send_p1a Sets data on P17 and P16 connected to the SCL and SDA pins

of the EEPROM.
Start condition code output send_start Outputs the start condition code.
Stop condition code output send_stop Outputs the stop condition code.
Bit 1 output send_bit1 Outputs bit �1� for the IIC bus.
Bit 0 output send_bit0 Outputs bit �0� for the IIC bus.
Data reception on IIC bus rcv_code Reads data from the EEPROM and stores it in the RAM.
Acknowledge signal reception rcv_ack Receives the acknowledge signal.
Received sample program splpgm Sample program received from the EEPROM

5.2 Arguments

Table 5.2 Description of Arguments

Argument Function Label
Data
Length

Input/
Output

*inpdt Start address of the data to be transmitted send_code 1 byte Input
SIZE Number of data bytes to be transmitted send_code 1 byte Input
*outpdt Start address of the area where to store received

data
rcv_code 1 byte Output

SIZE Number of data bytes to be received rcv_code 1 byte Input
dt P17 and P16 settings send_p1a 1 byte Input

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 11 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

5.3 Internal Registers
Table 5.3 lists the internal registers used for the sample task.

Table 5.3 Description of Internal Registers

Register Function Address Setting
P17 Port data register 1 (port data register 17)

When P17 = 0, the output level on pin P17 (SCL) is low.
When P17 = 1, the output level on pin P17 (SCL) is high.

0xFFD4
Bit 7

 PDR1

P16 Port data register 1 (port data register 16)
When P16 = 0, the output level on pin P16 (SDA) is low.
When P16 = 1, the output level on pin P16 (SDA) is high.

0xFFD4
Bit 6

PCR17 Port control register 1 (port control register 17)
When PCR17 = 0, the P17 (SCL) is set as the output pin.
When PCR17 = 1, the P17 (SCL) is set as the input pin.

0xFFE4
Bit 7

1 PCR1

PCR16 Port control register 1 (port control register 16)
When PCR16 = 0, the P16 (SDA) is set as the output pin.
When PCR16 = 1, the P16 (SDA) is set as the input pin.

0xFFE4
Bit 6

5.4 Description of RAM
Table 5.4 lists the RAM used for the sample task

Table 5.4 Description of RAM

Label Function Address Used in
splpgm Stores a sample program read from the EEPROM. 6 bytes main

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 12 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

6. Flowchart
1. Main routine in 64-kbit EEPROM

Sets bit I to 1 to disable an interrupt.

PCR1 = 0xC0
Sets P17 (SCL) and P16 (SDA) as the
output pins.

send_start()
Transmits a start condition.

send_start()
Transmits a start condition.

send_start()
Transmits a start condition.

tmp [0] = 0xA0
Sets the device code to 1010,
the device address to 000,
and a write code of 0.

tmp[0] = 0xA1
Sets the device code to 1010,
the device address to 000,
and a read code of 1.

tmp[0] = 0xA0
Sets the device code to 1010,
the device address to 000,
and a write code of 0.

send_code (tmp,1)
Transmits data (one byte) in tmp[].

send_code (tmp,1)
Transmits data (one byte) in tmp[].

send_code (tmp,1)
Transmits data (one byte) in tmp[].

tmp[0] = 0x00
tmp[1] = 0x00
Sets the EEPROM's write address
to 0x0000.

tmp[0] = 0x00
tmp[1] = 0x00
Sets the EEPROM's write address
to 0x0000.

send_code (tmp,2)
Transmits data (two bytes) in tmp[].

send_code (tmp,2)
Transmits data (two bytes) in tmp[].

Copies the start address of the sample
program to X_BGN.

Copies the end address of the sample
program to X_END.

send_code(X_BGN,X_END-X_BGN)
Transmits (X_END - X_BGN) bytes
of data beginning at X_BGN to write
the sample program into the EEPROM.

rcv_code (splpgm, X_END - XBGN)
Reads (X_END - X_BGN) bytes of
data from the EEPROM into the
memory area beginning at splpgm.

send_stop()
Transmits a stop condition.

send_stop()
Transmits a stop condition.

splpgm()
Executes the sample program on the
memory.

i = 0

main() *

i < 6250?
Waits for 10 ms or more.

1

1

i++

i < 6250

Read
processing

Write
processing

Dummy
write

Note: * In the sample task, the stack pointer is set in INIT.SRC (assembly language).

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 13 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

2. Main routine in 2-kbit EEPROM

Sets bit I to 1 to disable an interrupt.

PCR1 = 0xC0
Sets P17 (SCL) and P16 (SDA) as the
output pins.

send_start()
Transmits a start condition.

send_start()
Transmits a start condition.

send_start()
Transmits a start condition.

tmp[0] = 0xA0
Sets the device code to 1010,
the device address to 000,
and a write code of 0.

tmp[0] = 0xA1
Sets the device code to 1010,
the device address to 000,
and a read code of 1.

tmp[0] = 0xA0
Sets the device code to 1010,
the device address to 000,
and a write code of 0.

send_code (tmp,1)
Transmits data (one byte) in tmp[].

send_code (tmp,1)
Transmits data (one byte) in tmp[].

send_code (tmp,1)
Transmits data (one byte) in tmp[].

tmp[0] = 0x00
Sets the EEPROM's write address
to 0x00.

tmp[0] = 0x00
Sets the EEPROM's write address
to 0x00.

send_code (tmp,1)
Transmits data (one byte) in tmp[].

send_code (tmp,1)
Transmits data (one byte) in tmp[].

Copies the start address of the sample
program to X_BGN.

Copies the end address of the sample
program to X_END.

send_code(X_BGN, X_END-X_BGN)
Transmits (X_END - X_BGN) bytes
of data beginning at X_BGN to write
the sample program into the EEPROM.

rcv_code (splpgm, X_END - XBGN)
Reads (X_END - X_BGN) bytes of
data from the EEPROM into the
memory area beginning at splpgm.

send_stop()
Transmits a stop condition.

send_stop()
Transmits a stop condition.

splpgm ()
Executes the sample program on the
memory.i = 0

main() *

i < 6250?
Waits for 10 ms or more.

1

1

i++

i < 6250

Write
processing

Read
processing

Dummy
write

Note: * In the sample task, the stack pointer is set in INIT.SRC (assembly language).

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 14 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

3. Data transmission on IIC bus

SIZE --?
Transmission of all the data

finished?

i < 8?
Transmission of one byte

of data finished?

i < 8

tmp = *inpdt ++
Sets one byte of data to be
transmitted in tmp.

PCR1 = 0x80
Sets P17 (SCL) as the output port,
and P16 (SDA) as the input port.

PCR1 = 0xC0
Sets P17 (SCL) and P16 (SDA)
as the output pins.

rcv_ack()
ACK receive processing

i = 0

Send_code

SIZE > 0

i ≥ 8
End of transmission

End

SIZE == 0
Transmission of all the data has finished.

tmp & 0x80
Start bit 1 or 0?

Send_bit 1()
Transmits bit "1".

Send_bit 0()
Transmits bit "0".

tmp = tmp << 1
Left shift by one bit

i++

= 1

= 0

4. SCL and SDA data setting

P1A = dt
Sets SCL and SDA data to P17 and P16.

Send_p1a()

End

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 15 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

5. Start condition code output

Send_start()

End

Send_p1a (0x01)
Outputs P17 (SCL: 0) and P16 (SDA: 1).

Send_p1a (0x03)
Outputs P17 (SCL: 1) and P16 (SDA: 1).

Send_p1a (0x02)
Outputs P17 (SCL: 1) and P16 (SDA: 0).

Send_p1a (0x00)
Outputs P17 (SCL: 0) and P16 (SDA: 0).

6. Stop condition code output

Send_stop()

End

Send_p1a (0x00)
Outputs P17 (SCL: 0) and P16 (SDA: 0).

Send_p1a (0x02)
Outputs P17 (SCL: 1) and P16 (SDA: 0).

Send_p1a (0x02)
Outputs P17 (SCL: 1) and P16 (SDA: 0).

Send_p1a (0x00)
Outputs P17 (SCL: 0) and P16 (SDA: 0).

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 16 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

7. Bit 1 output

Send_bit1()

End

Send_p1a (0x01)
Outputs P17 (SCL: 0) and P16 (SDA: 1).

Send_p1a (0x03)
Outputs P17 (SCL: 1) and P16 (SDA: 1).

Send_p1a (0x03)
Outputs P17 (SCL: 1) and P16 (SDA: 1).

Send_p1a (0x01)
Outputs P17 (SCL: 0) and P16 (SDA: 1).

8. Bit 0 output

Send_bit0()

End

Send_p1a (0x00)
Outputs P17 (SCL: 0) and P16 (SDA: 0).

Send_p1a (0x02)
Outputs P17 (SCL: 1) and P16 (SDA: 0).

Send_p1a (0x02)
Outputs P17 (SCL: 1) and P16 (SDA: 0).

Send_p1a (0x00)
Outputs P17 (SCL: 0) and P16 (SDA: 0).

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 17 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

9. Data reception on IIC bus

SIZE > 0?
Transmission of all the data

finished?

SIZE > 0?
Transmission of all the data

finished?

i < 8?
Transmission of one-byte

data finished?

PCR1 = 0x80
Sets P17 (SCL) as the output port,
and P16 (SDA) as the input port.

PCR1 = 0xC0
Sets P17 (SCL) and P16 (SDA)
as the output pins.

*Outpdt = rtn
Stores one-byte data into the memory.

*Outpdt++
Counts up the memory area.

B1dt = b1dt & 0x01
Stores the received data into the least
significant bit of rtn.

B1dt = P1A
Receives one-bit data.

Send_bit0()
Outputs an acknowledge signal.

Send_p1a (0x00)
Outputs P17 (SCL: 0) and P16 (SDA: 0).

Send_p1a (0x02)
Outputs P17 (SCL: 1) and P16 (SDA: 0).

Send_p1a (0x00)
Outputs P17 (SCL: 0) and P16 (SDA: 0).

Send_p1a (0x02)
Outputs P17 (SCL: 1) and P16 (SDA: 0).

rtn = 0

i = 0

SIZE --

Send_code

SIZE == 0
Transmission of all the data has finished.

End

SIZE == 0
Transmission of all the
data has finished.

SIZE > 0

SIZE > 0

i++

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 18 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

10. Acknowledge signal reception

rcv_ack()

End

Send_p1a (0x00)
Outputs P17 (SCL: 0) and P16 (SDA: 0).

Send_p1a (0x02)
Outputs P17 (SCL: 1) and P16 (SDA: 0).

Send_p1a (0x02)
Outputs P17 (SCL: 1) and P16 (SDA: 0).

Send_p1a (0x00)
Outputs P17 (SCL: 0) and P16 (SDA: 0).

P1A & 0x01?
Is P16 (SDA) 1 or 0?

Successful reception

P16 (SDA) = 1
Error processing

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 19 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

7. Program Listing
INIT.SRC (Program listing)

 .EXPORT _INIT

 .IMPORT _main

;

 .SECTION P,CODE

_INIT:

 MOV.W #H'FF80,R7

 LDC.B #B'10000000,CCR

 JMP @_main

;

 .END

7.1 Program list for 64-kbit EEPROM
/***/

/* */

/* H8/300L Super Low Power Series */

/* -H8/38024 Series- */

/* Application Note */

/* */

/* '64kbit EEPROM Write & Read Control' */

/* */

/* Function */

/* : I/O Port Base */

/* */

/* External Clock : 10MHz */

/* Internal Clock : 5MHz */

/* Sub Clock : 32.768kHz */

/* */

/***/

#include <machine.h>

/***/

/* Symbol Definition */

/***/

struct BIT {

 unsigned char b7:1; /* bit7 */

 unsigned char b6:1; /* bit6 */

 unsigned char b5:1; /* bit5 */

 unsigned char b4:1; /* bit4 */

 unsigned char b3:1; /* bit3 */

 unsigned char b2:1; /* bit2 */

 unsigned char b1:1; /* bit1 */

 unsigned char b0:1; /* bit0 */

};

struct BIT2 {

 unsigned char ba:2; /* bit7,6 */

 unsigned char :5; /* other */

};

#define PDR1 *(volatile unsigned char *)0xFFD4 /* Port Data Register 1 */

#define PDR1_BIT2 (*(struct BIT2 *)0xFFD4) /* Port Data Register 1 */

#define P1A PDR1_BIT2.ba /* P17, P16 */

#define PCR1 *(volatile unsigned char *)0xFFE4 /* Port Control Register 1 */

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 20 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

/***/

/* Function define */

/***/

extern void INIT(void); /* SP Set */

extern void splpgm(void);

void main(void);

void send_code(unsigned char *inpdt, unsigned char SIZE);

void send_p1a(unsigned char dt);

void send_start(void);

void send_stop(void);

void send_bit1(void);

void send_bit0(void);

void rcv_code(unsigned char *outpdt, unsigned char SIZE);

void rcv_ack(void);

/***/

/* Vector Address */

/***/

#pragma section V1 /* Vector Section Set */

void (*const VEC_TBL1[])(void) = { /* 0x0000 - 0x000F */

 INIT /* 0x0000 Reset Vector */

};

#pragma section /* P */

/***/

/* Main Program */

/***/

void main(void)

{

 unsigned char tmp[2];

 unsigned char *X_BGN;

 unsigned char *X_END;

 unsigned short i;

 set_imask_ccr(1); /* Interrupt Disable */

 PCR1 = 0xC0; /* P17, P16 Set Output Port */

 send_start(); /* Send Start Condition */

 tmp[0] = 0xA0; /* Set Write Code */

 send_code(tmp,1); /* Send 1byte */

 tmp[0] = 0x00; /* Set EEPROM Write Address */

 tmp[1] = 0x00;

 send_code(tmp,2); /* Send 2byte */

 X_BGN = __sectop("SPLPG"); /* Sample Program Top address */

 X_END = __secend("SPLEND"); /* Sample Program End address */

 send_code(X_BGN,X_END-X_BGN); /* Send and Write Sample Program */

 send_stop(); /* Send Stop Condition */

 for(i = 0; i < 6250; i++); /* Need to wait 10 msec */

 send_start(); /* Dummy Write */

 tmp[0] = 0xA0;

 send_code(tmp,1);

 tmp[0] = 0x00;

 tmp[1] = 0x00;

 send_code(tmp,2);

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 21 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

 send_start(); /* Send Start Condition */

 tmp[0] = 0xA1; /* Set Read Code */

 send_code(tmp,1); /* Send 1byte */

 rcv_code((unsigned char*)splpgm,X_END-X_BGN); /* Read EEPROM --> RAM (splpgm) */

 send_stop(); /* Send Stop Condition */

 splpgm(); /* Go to Sample Program */

 while(1);

}

/***/

/* Send IIC Communication Data */

/***/

void send_code(unsigned char *inpdt, unsigned char SIZE)

{

 unsigned char i,tmp;

 while(SIZE--){

 tmp = *inpdt++; /* Set 1 byte */

 for(i = 0; i < 8; i++){ /* 1 byte Send Finish? */

 if(tmp & 0x80)

 send_bit1(); /* Send bit"1" */

 else

 send_bit0(); /* Send bit"0" */

 tmp = tmp<<1; /* Next bit */

 }

 PCR1 = 0x80; /* P17: Output Port, P16: Input Port */

 rcv_ack(); /* Receive Acknowledge */

 PCR1 = 0xC0; /* P17, P16 Set Output Port */

 }

}

/***/

/* Set SCL,SDA */

/***/

void send_p1a(unsigned char dt)

{

 P1A = dt;

}

/***/

/* Start Condition */

/***/

void send_start(void)

{

 send_p1a(0x01);

 send_p1a(0x03);

 send_p1a(0x02);

 send_p1a(0x00);

}

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 22 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

/***/

/* Stop Condition

/***/

void send_stop(void)

{

 send_p1a(0x00);

 send_p1a(0x02);

 send_p1a(0x03);

 send_p1a(0x01);

}

/***/

/* Send bit "1" */

/***/

void send_bit1(void)

{

 send_p1a(0x01);

 send_p1a(0x03);

 send_p1a(0x03);

 send_p1a(0x01);

}

/***/

/* Send bit "0" */

/***/

void send_bit0(void)

{

 send_p1a(0x00);

 send_p1a(0x02);

 send_p1a(0x02);

 send_p1a(0x00);

}

/***/

/* Receive IIC Communication Data */

/***/

void rcv_code(unsigned char *outpdt, unsigned char SIZE)

{

 unsigned char i,b1dt,rtn;

 while(SIZE > 0){

 PCR1 = 0x80; /* P17: Output Port P16:Input Port */

 rtn = 0;

 for(i = 0; i < 8; i++){ /* 1 byte Receive Finish? */

 rtn = rtn<<1;

 send_p1a(0x00);

 send_p1a(0x02);

 send_p1a(0x02);

 b1dt = P1A; /* Receive 1 bit */

 send_p1a(0x00);

 b1dt = b1dt & 0x01;

 rtn = rtn|b1dt;

 }

 outpdt = rtn; / Set Receive Data */

 PCR1 = 0xC0; /* P17, P16 Set Output Port */

 SIZE--;

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 23 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

 if(SIZE > 0){

 outpdt++; / Ram Address Count up */

 send_bit0(); /* Output Acknowledge */

 }

 }

}

/***/

/* Receive Acknowledge */

/***/

void rcv_ack(void)

{

 send_p1a(0x00);

 send_p1a(0x02);

 send_p1a(0x02);

 if(P1A & 0x01) /* Receive Check Acknowledge */

 while(1);

 send_p1a(0x00);

}

Link address specifications

Section Name Address
CV1
P
SPLPG,PSPLPG,SPLEND
PRAM

0x0000
0x0100
0x0500
0xFB80

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 24 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

7.2 Program list for 2-kbit EEPROM
/***/

/* */

/* H8/300L Super Low Power Series */

/* -H8/38024 Series- */

/* Application Note */

/* */

/* '2kbit EEPROM Write & Read Control' */

/* */

/* Function */

/* : I/O Port Base */

/* */

/* External Clock : 10MHz */

/* Internal Clock : 5MHz */

/* Sub Clock : 32.768kHz */

/* */

/***/

#include <machine.h>

/***/

/* Symbol Definition */

/***/

struct BIT {

 unsigned char b7:1; /* bit7 */

 unsigned char b6:1; /* bit6 */

 unsigned char b5:1; /* bit5 */

 unsigned char b4:1; /* bit4 */

 unsigned char b3:1; /* bit3 */

 unsigned char b2:1; /* bit2 */

 unsigned char b1:1; /* bit1 */

 unsigned char b0:1; /* bit0 */

};

struct BIT2 {

 unsigned char ba:2; /* bit7,6 */

 unsigned char :5; /* other */

};

#define PDR1 *(volatile unsigned char *)0xFFD4 /* Port Data Register 1 */

#define PDR1_BIT2 (*(struct BIT2 *)0xFFD4) /* Port Data Register 1 */

#define P1A PDR1_BIT2.ba /* P17, P16 */

#define PCR1 *(volatile unsigned char *)0xFFE4 /* Port Control Register 1 */

/***/

/* Function define */

/***/

extern void INIT(void); /* SP Set */

extern void splpgm(void);

void main(void);

void send_code(unsigned char *inpdt, unsigned char SIZE);

void send_p1a(unsigned char dt);

void send_start(void);

void send_stop(void);

void send_bit1(void);

void send_bit0(void);

void rcv_code(unsigned char *outpdt, unsigned char SIZE);

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 25 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

void rcv_ack(void);

/***/

/* Vector Address */

/***/

#pragma section V1 /* Vector Section Set */

void (*const VEC_TBL1[])(void) = { /* 0x0000 - 0x000F */

 INIT /* 0x0000 Reset Vector */

};

#pragma section /* P */

/***/

/* Main Program */

/***/

void main(void)

{

 unsigned char tmp[2];

 unsigned char *X_BGN;

 unsigned char *X_END;

 unsigned short i;

 set_imask_ccr(1); /* Interrupt Disable */

 PCR1 = 0xC0; /* P17, P16 Set Output Port */

 send_start(); /* Send Start Condition */

 tmp[0] = 0xA0; /* Set Write Code */

 send_code(tmp,1); /* Send 1byte */

 tmp[0] = 0x00; /* Set EEPROM Write Address */

 send_code(tmp,1); /* Send 1byte */

 X_BGN = __sectop("SPLPG"); /* Sample Program Top address */

 X_END = __secend("SPLEND"); /* Sample Program End address */

 send_code(X_BGN,X_END-X_BGN); /* Send and Write Sample Program */

 send_stop(); /* Send Stop Condition */

 for(i = 0; i < 6250; i++); /* Need to wait 10 msec */

send_start(); /* Dummy Write */

 tmp[0] = 0xA0;

 send_code(tmp,1);

 tmp[0] = 0x00;

 send_code(tmp,1);

 send_start(); /* Send Start Condition */

 tmp[0] = 0xA1; /* Set Read Code */

 send_code(tmp,1); /* Send 1byte */

 rcv_code((unsigned char*)splpgm,X_END-X_BGN); /* Read EEPROM --> RAM(splpgm) */

 send_stop(); /* Send Stop Condition */

 splpgm(); /* Go to Sample Program */

 while(1);

}

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 26 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

/***/

/* Send IIC Communication Data */

/***/

void send_code(unsigned char *inpdt, unsigned char SIZE)

{

 unsigned char i,tmp;

 while(SIZE--){

 tmp = *inpdt++;

/* Set 1 byte */

 for(i = 0; i < 8; i++){ /* 1 byte Send Finish? */

 if(tmp & 0x80)

 send_bit1(); /* Send bit"1" */

 else

 send_bit0(); /* Send bit"0" */

 tmp = tmp<<1; /* Next bit */

 }

 PCR1 = 0x80; /* P17: Output Port , P16: Input Port */

 rcv_ack(); /* Receive Acknowledge */

 PCR1 = 0xC0; /* P17, P16 Set Output Port */

 }

}

/***/

/* Set SCL,SDA */

/***/

void send_p1a(unsigned char dt)

{

 P1A = dt;

}

/***/

/* Start Condition */

/***/

void send_start(void)

{

 send_p1a(0x01);

 send_p1a(0x03);

 send_p1a(0x02);

 send_p1a(0x00);

}

/***/

/* Stop Condition

/***/

void send_stop(void)

{

 send_p1a(0x00);

 send_p1a(0x02);

 send_p1a(0x03);

 send_p1a(0x01);

}

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 27 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

/***/

/* Send bit "1" */

/***/

void send_bit1(void)

{

 send_p1a(0x01);

 send_p1a(0x03);

 send_p1a(0x03);

 send_p1a(0x01);

}

/***/

/* Send bit "0" */

/***/

void send_bit0(void)

{

 send_p1a(0x00);

 send_p1a(0x02);

 send_p1a(0x02);

 send_p1a(0x00);

}

/***/

/* Receive IIC Communication Data */

/***/

void rcv_code(unsigned char *outpdt, unsigned char SIZE)

{

 unsigned char i,b1dt,rtn;

 while(SIZE > 0){

 PCR1 = 0x80; /* P17: Output Port, P16: Input Port */

 rtn = 0;

 for(i = 0; i < 8; i++){ /* 1 byte Receive Finish? */

 rtn = rtn<<1;

 send_p1a(0x00);

 send_p1a(0x02);

 send_p1a(0x02);

 b1dt = P1A; /* Receive 1 bit */

 send_p1a(0x00);

 b1dt = b1dt & 0x01;

 rtn = rtn|b1dt;

 }

 outpdt = rtn; / Set Receive Data */

 PCR1 = 0xC0; /* P17, P16 Set Output Port */

 SIZE--;

 if(SIZE > 0){

 outpdt++; / Ram Address Count-up */

 send_bit0(); /* Output Acknowledge */

 }

 }

}

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 28 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

/***/

/* Receive Acknowledge */

/***/

void rcv_ack(void)

{

 send_p1a(0x00);

 send_p1a(0x02);

 send_p1a(0x02);

 if(P1A & 0x01) /* Receive Check Acknowledge */

 while(1);

 send_p1a(0x00);

}

Link address specifications

Section Name Address
CV1
P
SPLPG, PSPLPG, SPLEND
PRAM

0x0000
0x0100
0x0500
0xFB80

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 29 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

Revision Record
Description

Rev.

Date Page Summary

1.00 Dec.19.03 � First edition issued

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 30 of 31

H8/300L SLP Series
Interfacing the H8/38024 with an IIC Serial EEPROM

REJ06B0293-0100Z/Rev.1.00 December 2003 Page 31 of 31

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corp. product best suited to the customer's application; they do not convey any license
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or
a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corp. without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or
an authorized Renesas Technology Corp. product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising
from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means,
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and
more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

	Cover
	1.Specifications
	2.Concepts
	3.Description of Functions
	4.Principle of Operation
	5.Description of Software
	6.Flowchart
	7.Program Listing

