Integrated Development Environment e2 studio

e2 studio with Subversion and plug-in Subversive

Summary

Subversion (SVN) is an open-source version control system. SVN allows developers to share their projects on repositories, where they are stored afterwards. Subversive is an Eclipse plug-in. Though subversive plugin, user can use SVN from Eclipse. e² studio is an integrated development environment based on Eclipse, so that e² studio is possible to realize work with external tool using plugin of Eclipse. This document describes how to utilize SVN from e² studio using Subversive plugin.

Contents

1. Introduction ... 2
2. Usage ... 3
3. Reference Information .. 15
1. Introduction

1.1 e² studio with Subversive

e² studio is an integrated development environment based on Eclipse, so that e² studio is possible to realize work with external tool using plugin of Eclipse. Subversive is a popular SVN bridge plug-in for Eclipse. Subversive plug-in provides access to SVN repositories from the e² studio workbench. Friendly user interface of Subversive makes it much more comfortable to operate repositories.

1.2 Environment

This document is described based on environment as the following:

- e² studio: 2.1.0.xx
- Subversive SVN Team Provider: 1.1.0
- Subversive SVN Connector: 3.0.0
- SVN: 1.6.5
- OS: Windows 7
2. Usage

2.1 Workflow of access to SVN via the subversive plug-in from e² studio

Subversive plug-in provides access to SVN repositories from the e² studio workbench.

Note: Red box is leader/manager’s operation and blue box is engineer’s operation

Figure 1: Workflow of access to SVN via the subversive plug-in from e² studio

2.2 Architecture of SVN and e² studio co-operation
2.3 SVN Repository Exploring Perspective

‘SVN Repository Exploring Perspective’ is the default one for most Subversive views. It's recommended to allocate all the views with contents connected to the repositories and synchronizing. Use this perspective to operate and navigate through repository locations.

This is how the 'SVN Repository Exploring Perspective' looks like:

![SVN Repository Exploring Perspective]

2.4 Create SVN Repository Location (engineer's operation)

If repository exists, do as following steps to create SVN Repository Location:

2. On ‘General’ tab, fill necessary information to new repository location
a. URL: Specifies an URL for a new repository location.
b. Label: Specifies which label will be used in the workspace for the repository. To use custom label choose 'Use custom label' and input the wished name into editable space.
c. User name, Password: Input user name, password (optional).
3. On ‘Advanced’ tab (optional)
 a. Enable Structure Detection: Specifies if the SVN should detect the structure of repository.
 b. Trunk: Specifies trunk name to use for structure detection.
 c. Branch: Specifies branches name to use for structure detection.
 d. Tag: Specifies tags name to use for structure detection.
 e. Override author name with represented below: Specifies if the author name should be overridden for repository affecting operations
4. On the ‘SSH settings’ tab (optional)
 a. Port: Specifies port number for SSH.
 b. Authentication: Selecting of an authentication method: 'Password' or 'Private Key'. For 'Private Key'
 authentication input file path and password phrase. There is also an option for to enable saving password feature.

5. On the ‘SSL Settings’ tab (optional)
 Enable Client Authentication: Specifies if the SSL client authentication is needed
2.5 Create repository (leader/manager’s operation)

If no repository exists, user has to create repository first.

This facility provides a probability to create a new repository on local drive. There are two kinds of file system type: File System and Berkley DB which the user can select.

To create Repository:

2. Specify ‘Repository Path’ > select ‘Create Repository Location’
3. Press the ‘Finish’ button to create ‘Repository’ and also create ‘Repository Location’ in e² studio successfully
2.6 Import project to SVN (leader/manager’s operation)

To import project to SVN:

2.6.1 Import project on the ‘SVN Repository Exploring’ perspective:
1. On the ‘SVN Repositories’ view, right click on the ‘Repository Location’ > ‘Import…’
2. On the ‘Import Folder’ dialog, enter a local folder path to import from

![Import Folder dialog]

3. Press the ‘OK’ button to finish import folder from local to repository

2.6.2 Import project on the ‘C/C++’ perspective:
1. On the ‘Project Explorer’ view, right click on a project > ‘Team’ > ‘Share Project…’
2. On the ‘Share Project’ dialog, select ‘SVN’ > press the ‘Next >’ button

![Share Project dialog]
3. On the ‘Share Project Wizard’ dialog, select repository location > press the ‘Next >’ button

4. Specify the project location > press the ‘Finish’ button

Note: It is unnecessary to checkout project if you have import project on the Project Explorer’ view.
2.7 Checkout project from SVN (engineer’s operation)

To checkout from SVN:

1. On menu items of e2 studio, ‘File’ > ‘Import…’
2. On the ‘Import’ dialog, select ‘SVN’ > ‘Project from SVN’
3. Press the ‘Next’ button > ‘Checkout from SVN’ dialog occur > select SVN repository which want to checkout > press the ‘Next’ button
4. Select a resource which will be checked out as project > press the ‘Finish’ button
5. On the ‘Check out As’ dialog, you can check out the selected repository resource by different ways. Select the method of checkout.

6. Press the ‘Next >’ button. Select the project location.

7. Press the ‘Finish’ button to checkout project successfully.
2.8 Commit data to SVN repository (engineer’s operation)

To commit data to SVN:

1. Right click on project which check out from SVN > ‘Team’ > ‘Commit’
2. The ‘Commit’ dialog will be shown. Select data need to commit > press the ‘OK’ button
2.9 Synchronize with SVN repository (engineer’s operation)

To update newest resource from SVN:

1. Right click on project or file need to update > ‘Team’ > ‘Update’

2. Data update successfully (if no conflict)

To synchronize with SVN repository (or user wants to solve conflict data):

1. Right click on project or file need to synchronize > ‘Team’ > ‘Synchronize with Repository’

2. ‘Confirm Open Perspective’ question dialog will be shown > press the ‘Yes’ button to open the ‘Team Synchronizing’ perspective
3. On the ‘Synchronize’ view, double click to a file to open ‘Compare Viewer’

![Image of Synchronize view with Compare Viewer opened]

4. Using synchronize function in toolbar icon on ‘Compare Viewer’

![Image of toolbar icons with synchronize function highlighted]
3. Reference Information

3.1 Web Site

SVN home page URL:
http://subversion.tigris.org/

Subversive home page URL:
http://www.eclipse.org/subversive/

Polarion home page URL:
http://www.polarion.com/

Subversive Documentation URL:
Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owner
General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

<table>
<thead>
<tr>
<th>Precaution</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Handling of Unused Pins</td>
<td>Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.</td>
</tr>
<tr>
<td>2. Processing at Power-on</td>
<td>The state of the product is undefined at the moment when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.</td>
</tr>
<tr>
<td>3. Prohibition of Access to Reserved Addresses</td>
<td>Access to reserved addresses is prohibited. The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.</td>
</tr>
<tr>
<td>4. Clock Signals</td>
<td>After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized. When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.</td>
</tr>
<tr>
<td>5. Differences between Products</td>
<td>Before changing from one product to another, i.e. to a product with a different type number, confirm that the change will not lead to problems. The characteristics of an MPU or MCU in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software and information in the design of your equipment. Renesas Electronics assumes no responsibility for any damages incurred by you or third parties arising from the use of these circuits, software or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in the document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality." The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
- "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crisis systems; and safety equipment etc.

6. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantation etc.) or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

7. You should not use Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

8. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures prescribed by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of the unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries. (Note 2) "Renesas Electronics products" means any product developed or manufactured by or for Renesas Electronics.